1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright 2017 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 #include <linux/delay.h>
7 #include <linux/slab.h>
8 #include <linux/sched/types.h>
10 #include <media/cec-pin.h>
11 #include "cec-pin-priv.h"
13 /* All timings are in microseconds */
15 /* start bit timings */
16 #define CEC_TIM_START_BIT_LOW 3700
17 #define CEC_TIM_START_BIT_LOW_MIN 3500
18 #define CEC_TIM_START_BIT_LOW_MAX 3900
19 #define CEC_TIM_START_BIT_TOTAL 4500
20 #define CEC_TIM_START_BIT_TOTAL_MIN 4300
21 #define CEC_TIM_START_BIT_TOTAL_MAX 4700
23 /* data bit timings */
24 #define CEC_TIM_DATA_BIT_0_LOW 1500
25 #define CEC_TIM_DATA_BIT_0_LOW_MIN 1300
26 #define CEC_TIM_DATA_BIT_0_LOW_MAX 1700
27 #define CEC_TIM_DATA_BIT_1_LOW 600
28 #define CEC_TIM_DATA_BIT_1_LOW_MIN 400
29 #define CEC_TIM_DATA_BIT_1_LOW_MAX 800
30 #define CEC_TIM_DATA_BIT_TOTAL 2400
31 #define CEC_TIM_DATA_BIT_TOTAL_MIN 2050
32 #define CEC_TIM_DATA_BIT_TOTAL_MAX 2750
33 /* earliest safe time to sample the bit state */
34 #define CEC_TIM_DATA_BIT_SAMPLE 850
35 /* earliest time the bit is back to 1 (T7 + 50) */
36 #define CEC_TIM_DATA_BIT_HIGH 1750
38 /* when idle, sample once per millisecond */
39 #define CEC_TIM_IDLE_SAMPLE 1000
40 /* when processing the start bit, sample twice per millisecond */
41 #define CEC_TIM_START_BIT_SAMPLE 500
42 /* when polling for a state change, sample once every 50 microseconds */
43 #define CEC_TIM_SAMPLE 50
45 #define CEC_TIM_LOW_DRIVE_ERROR (1.5 * CEC_TIM_DATA_BIT_TOTAL)
48 * Total data bit time that is too short/long for a valid bit,
49 * used for error injection.
51 #define CEC_TIM_DATA_BIT_TOTAL_SHORT 1800
52 #define CEC_TIM_DATA_BIT_TOTAL_LONG 2900
55 * Total start bit time that is too short/long for a valid bit,
56 * used for error injection.
58 #define CEC_TIM_START_BIT_TOTAL_SHORT 4100
59 #define CEC_TIM_START_BIT_TOTAL_LONG 5000
61 /* Data bits are 0-7, EOM is bit 8 and ACK is bit 9 */
66 const char * const name
;
70 static const struct cec_state states
[CEC_PIN_STATES
] = {
72 { "Idle", CEC_TIM_IDLE_SAMPLE
},
73 { "Tx Wait", CEC_TIM_SAMPLE
},
74 { "Tx Wait for High", CEC_TIM_IDLE_SAMPLE
},
75 { "Tx Start Bit Low", CEC_TIM_START_BIT_LOW
},
76 { "Tx Start Bit High", CEC_TIM_START_BIT_TOTAL
- CEC_TIM_START_BIT_LOW
},
77 { "Tx Start Bit High Short", CEC_TIM_START_BIT_TOTAL_SHORT
- CEC_TIM_START_BIT_LOW
},
78 { "Tx Start Bit High Long", CEC_TIM_START_BIT_TOTAL_LONG
- CEC_TIM_START_BIT_LOW
},
79 { "Tx Start Bit Low Custom", 0 },
80 { "Tx Start Bit High Custom", 0 },
81 { "Tx Data 0 Low", CEC_TIM_DATA_BIT_0_LOW
},
82 { "Tx Data 0 High", CEC_TIM_DATA_BIT_TOTAL
- CEC_TIM_DATA_BIT_0_LOW
},
83 { "Tx Data 0 High Short", CEC_TIM_DATA_BIT_TOTAL_SHORT
- CEC_TIM_DATA_BIT_0_LOW
},
84 { "Tx Data 0 High Long", CEC_TIM_DATA_BIT_TOTAL_LONG
- CEC_TIM_DATA_BIT_0_LOW
},
85 { "Tx Data 1 Low", CEC_TIM_DATA_BIT_1_LOW
},
86 { "Tx Data 1 High", CEC_TIM_DATA_BIT_TOTAL
- CEC_TIM_DATA_BIT_1_LOW
},
87 { "Tx Data 1 High Short", CEC_TIM_DATA_BIT_TOTAL_SHORT
- CEC_TIM_DATA_BIT_1_LOW
},
88 { "Tx Data 1 High Long", CEC_TIM_DATA_BIT_TOTAL_LONG
- CEC_TIM_DATA_BIT_1_LOW
},
89 { "Tx Data 1 High Pre Sample", CEC_TIM_DATA_BIT_SAMPLE
- CEC_TIM_DATA_BIT_1_LOW
},
90 { "Tx Data 1 High Post Sample", CEC_TIM_DATA_BIT_TOTAL
- CEC_TIM_DATA_BIT_SAMPLE
},
91 { "Tx Data 1 High Post Sample Short", CEC_TIM_DATA_BIT_TOTAL_SHORT
- CEC_TIM_DATA_BIT_SAMPLE
},
92 { "Tx Data 1 High Post Sample Long", CEC_TIM_DATA_BIT_TOTAL_LONG
- CEC_TIM_DATA_BIT_SAMPLE
},
93 { "Tx Data Bit Low Custom", 0 },
94 { "Tx Data Bit High Custom", 0 },
95 { "Tx Pulse Low Custom", 0 },
96 { "Tx Pulse High Custom", 0 },
97 { "Tx Low Drive", CEC_TIM_LOW_DRIVE_ERROR
},
98 { "Rx Start Bit Low", CEC_TIM_SAMPLE
},
99 { "Rx Start Bit High", CEC_TIM_SAMPLE
},
100 { "Rx Data Sample", CEC_TIM_DATA_BIT_SAMPLE
},
101 { "Rx Data Post Sample", CEC_TIM_DATA_BIT_HIGH
- CEC_TIM_DATA_BIT_SAMPLE
},
102 { "Rx Data Wait for Low", CEC_TIM_SAMPLE
},
103 { "Rx Ack Low", CEC_TIM_DATA_BIT_0_LOW
},
104 { "Rx Ack Low Post", CEC_TIM_DATA_BIT_HIGH
- CEC_TIM_DATA_BIT_0_LOW
},
105 { "Rx Ack High Post", CEC_TIM_DATA_BIT_HIGH
},
106 { "Rx Ack Finish", CEC_TIM_DATA_BIT_TOTAL_MIN
- CEC_TIM_DATA_BIT_HIGH
},
107 { "Rx Low Drive", CEC_TIM_LOW_DRIVE_ERROR
},
111 static void cec_pin_update(struct cec_pin
*pin
, bool v
, bool force
)
113 if (!force
&& v
== pin
->adap
->cec_pin_is_high
)
116 pin
->adap
->cec_pin_is_high
= v
;
117 if (atomic_read(&pin
->work_pin_num_events
) < CEC_NUM_PIN_EVENTS
) {
120 if (pin
->work_pin_events_dropped
) {
121 pin
->work_pin_events_dropped
= false;
122 ev
|= CEC_PIN_EVENT_FL_DROPPED
;
124 pin
->work_pin_events
[pin
->work_pin_events_wr
] = ev
;
125 pin
->work_pin_ts
[pin
->work_pin_events_wr
] = ktime_get();
126 pin
->work_pin_events_wr
=
127 (pin
->work_pin_events_wr
+ 1) % CEC_NUM_PIN_EVENTS
;
128 atomic_inc(&pin
->work_pin_num_events
);
130 pin
->work_pin_events_dropped
= true;
131 pin
->work_pin_events_dropped_cnt
++;
133 wake_up_interruptible(&pin
->kthread_waitq
);
136 static bool cec_pin_read(struct cec_pin
*pin
)
138 bool v
= pin
->ops
->read(pin
->adap
);
140 cec_pin_update(pin
, v
, false);
144 static void cec_pin_low(struct cec_pin
*pin
)
146 pin
->ops
->low(pin
->adap
);
147 cec_pin_update(pin
, false, false);
150 static bool cec_pin_high(struct cec_pin
*pin
)
152 pin
->ops
->high(pin
->adap
);
153 return cec_pin_read(pin
);
156 static bool rx_error_inj(struct cec_pin
*pin
, unsigned int mode_offset
,
157 int arg_idx
, u8
*arg
)
159 #ifdef CONFIG_CEC_PIN_ERROR_INJ
160 u16 cmd
= cec_pin_rx_error_inj(pin
);
161 u64 e
= pin
->error_inj
[cmd
];
162 unsigned int mode
= (e
>> mode_offset
) & CEC_ERROR_INJ_MODE_MASK
;
165 u8 pos
= pin
->error_inj_args
[cmd
][arg_idx
];
169 else if (pos
!= pin
->rx_bit
)
174 case CEC_ERROR_INJ_MODE_ONCE
:
175 pin
->error_inj
[cmd
] &=
176 ~(CEC_ERROR_INJ_MODE_MASK
<< mode_offset
);
178 case CEC_ERROR_INJ_MODE_ALWAYS
:
180 case CEC_ERROR_INJ_MODE_TOGGLE
:
181 return pin
->rx_toggle
;
190 static bool rx_nack(struct cec_pin
*pin
)
192 return rx_error_inj(pin
, CEC_ERROR_INJ_RX_NACK_OFFSET
, -1, NULL
);
195 static bool rx_low_drive(struct cec_pin
*pin
)
197 return rx_error_inj(pin
, CEC_ERROR_INJ_RX_LOW_DRIVE_OFFSET
,
198 CEC_ERROR_INJ_RX_LOW_DRIVE_ARG_IDX
, NULL
);
201 static bool rx_add_byte(struct cec_pin
*pin
)
203 return rx_error_inj(pin
, CEC_ERROR_INJ_RX_ADD_BYTE_OFFSET
, -1, NULL
);
206 static bool rx_remove_byte(struct cec_pin
*pin
)
208 return rx_error_inj(pin
, CEC_ERROR_INJ_RX_REMOVE_BYTE_OFFSET
, -1, NULL
);
211 static bool rx_arb_lost(struct cec_pin
*pin
, u8
*poll
)
213 return pin
->tx_msg
.len
== 0 &&
214 rx_error_inj(pin
, CEC_ERROR_INJ_RX_ARB_LOST_OFFSET
,
215 CEC_ERROR_INJ_RX_ARB_LOST_ARG_IDX
, poll
);
218 static bool tx_error_inj(struct cec_pin
*pin
, unsigned int mode_offset
,
219 int arg_idx
, u8
*arg
)
221 #ifdef CONFIG_CEC_PIN_ERROR_INJ
222 u16 cmd
= cec_pin_tx_error_inj(pin
);
223 u64 e
= pin
->error_inj
[cmd
];
224 unsigned int mode
= (e
>> mode_offset
) & CEC_ERROR_INJ_MODE_MASK
;
227 u8 pos
= pin
->error_inj_args
[cmd
][arg_idx
];
231 else if (pos
!= pin
->tx_bit
)
236 case CEC_ERROR_INJ_MODE_ONCE
:
237 pin
->error_inj
[cmd
] &=
238 ~(CEC_ERROR_INJ_MODE_MASK
<< mode_offset
);
240 case CEC_ERROR_INJ_MODE_ALWAYS
:
242 case CEC_ERROR_INJ_MODE_TOGGLE
:
243 return pin
->tx_toggle
;
252 static bool tx_no_eom(struct cec_pin
*pin
)
254 return tx_error_inj(pin
, CEC_ERROR_INJ_TX_NO_EOM_OFFSET
, -1, NULL
);
257 static bool tx_early_eom(struct cec_pin
*pin
)
259 return tx_error_inj(pin
, CEC_ERROR_INJ_TX_EARLY_EOM_OFFSET
, -1, NULL
);
262 static bool tx_short_bit(struct cec_pin
*pin
)
264 return tx_error_inj(pin
, CEC_ERROR_INJ_TX_SHORT_BIT_OFFSET
,
265 CEC_ERROR_INJ_TX_SHORT_BIT_ARG_IDX
, NULL
);
268 static bool tx_long_bit(struct cec_pin
*pin
)
270 return tx_error_inj(pin
, CEC_ERROR_INJ_TX_LONG_BIT_OFFSET
,
271 CEC_ERROR_INJ_TX_LONG_BIT_ARG_IDX
, NULL
);
274 static bool tx_custom_bit(struct cec_pin
*pin
)
276 return tx_error_inj(pin
, CEC_ERROR_INJ_TX_CUSTOM_BIT_OFFSET
,
277 CEC_ERROR_INJ_TX_CUSTOM_BIT_ARG_IDX
, NULL
);
280 static bool tx_short_start(struct cec_pin
*pin
)
282 return tx_error_inj(pin
, CEC_ERROR_INJ_TX_SHORT_START_OFFSET
, -1, NULL
);
285 static bool tx_long_start(struct cec_pin
*pin
)
287 return tx_error_inj(pin
, CEC_ERROR_INJ_TX_LONG_START_OFFSET
, -1, NULL
);
290 static bool tx_custom_start(struct cec_pin
*pin
)
292 return tx_error_inj(pin
, CEC_ERROR_INJ_TX_CUSTOM_START_OFFSET
,
296 static bool tx_last_bit(struct cec_pin
*pin
)
298 return tx_error_inj(pin
, CEC_ERROR_INJ_TX_LAST_BIT_OFFSET
,
299 CEC_ERROR_INJ_TX_LAST_BIT_ARG_IDX
, NULL
);
302 static u8
tx_add_bytes(struct cec_pin
*pin
)
306 if (tx_error_inj(pin
, CEC_ERROR_INJ_TX_ADD_BYTES_OFFSET
,
307 CEC_ERROR_INJ_TX_ADD_BYTES_ARG_IDX
, &bytes
))
312 static bool tx_remove_byte(struct cec_pin
*pin
)
314 return tx_error_inj(pin
, CEC_ERROR_INJ_TX_REMOVE_BYTE_OFFSET
, -1, NULL
);
317 static bool tx_low_drive(struct cec_pin
*pin
)
319 return tx_error_inj(pin
, CEC_ERROR_INJ_TX_LOW_DRIVE_OFFSET
,
320 CEC_ERROR_INJ_TX_LOW_DRIVE_ARG_IDX
, NULL
);
323 static void cec_pin_to_idle(struct cec_pin
*pin
)
326 * Reset all status fields, release the bus and
329 pin
->rx_bit
= pin
->tx_bit
= 0;
331 memset(pin
->rx_msg
.msg
, 0, sizeof(pin
->rx_msg
.msg
));
332 pin
->ts
= ns_to_ktime(0);
333 pin
->tx_generated_poll
= false;
334 pin
->tx_post_eom
= false;
335 if (pin
->state
>= CEC_ST_TX_WAIT
&&
336 pin
->state
<= CEC_ST_TX_LOW_DRIVE
)
338 if (pin
->state
>= CEC_ST_RX_START_BIT_LOW
&&
339 pin
->state
<= CEC_ST_RX_LOW_DRIVE
)
341 pin
->state
= CEC_ST_IDLE
;
345 * Handle Transmit-related states
347 * Basic state changes when transmitting:
349 * Idle -> Tx Wait (waiting for the end of signal free time) ->
350 * Tx Start Bit Low -> Tx Start Bit High ->
352 * Regular data bits + EOM:
353 * Tx Data 0 Low -> Tx Data 0 High ->
355 * Tx Data 1 Low -> Tx Data 1 High ->
357 * First 4 data bits or Ack bit:
358 * Tx Data 0 Low -> Tx Data 0 High ->
360 * Tx Data 1 Low -> Tx Data 1 High -> Tx Data 1 Pre Sample ->
361 * Tx Data 1 Post Sample ->
363 * After the last Ack go to Idle.
365 * If it detects a Low Drive condition then:
366 * Tx Wait For High -> Idle
368 * If it loses arbitration, then it switches to state Rx Data Post Sample.
370 static void cec_pin_tx_states(struct cec_pin
*pin
, ktime_t ts
)
373 bool is_ack_bit
, ack
;
375 switch (pin
->state
) {
376 case CEC_ST_TX_WAIT_FOR_HIGH
:
377 if (cec_pin_read(pin
))
378 cec_pin_to_idle(pin
);
381 case CEC_ST_TX_START_BIT_LOW
:
382 if (tx_short_start(pin
)) {
384 * Error Injection: send an invalid (too short)
387 pin
->state
= CEC_ST_TX_START_BIT_HIGH_SHORT
;
388 } else if (tx_long_start(pin
)) {
390 * Error Injection: send an invalid (too long)
393 pin
->state
= CEC_ST_TX_START_BIT_HIGH_LONG
;
395 pin
->state
= CEC_ST_TX_START_BIT_HIGH
;
397 /* Generate start bit */
401 case CEC_ST_TX_START_BIT_LOW_CUSTOM
:
402 pin
->state
= CEC_ST_TX_START_BIT_HIGH_CUSTOM
;
403 /* Generate start bit */
407 case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE
:
408 case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_SHORT
:
409 case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_LONG
:
410 if (pin
->tx_nacked
) {
411 cec_pin_to_idle(pin
);
413 if (pin
->tx_generated_poll
)
415 pin
->work_tx_ts
= ts
;
416 pin
->work_tx_status
= CEC_TX_STATUS_NACK
;
417 wake_up_interruptible(&pin
->kthread_waitq
);
421 case CEC_ST_TX_DATA_BIT_0_HIGH
:
422 case CEC_ST_TX_DATA_BIT_0_HIGH_SHORT
:
423 case CEC_ST_TX_DATA_BIT_0_HIGH_LONG
:
424 case CEC_ST_TX_DATA_BIT_1_HIGH
:
425 case CEC_ST_TX_DATA_BIT_1_HIGH_SHORT
:
426 case CEC_ST_TX_DATA_BIT_1_HIGH_LONG
:
428 * If the read value is 1, then all is OK, otherwise we have a
429 * low drive condition.
431 * Special case: when we generate a poll message due to an
432 * Arbitration Lost error injection, then ignore this since
433 * the pin can actually be low in that case.
435 if (!cec_pin_read(pin
) && !pin
->tx_generated_poll
) {
437 * It's 0, so someone detected an error and pulled the
438 * line low for 1.5 times the nominal bit period.
441 pin
->state
= CEC_ST_TX_WAIT_FOR_HIGH
;
442 pin
->work_tx_ts
= ts
;
443 pin
->work_tx_status
= CEC_TX_STATUS_LOW_DRIVE
;
444 pin
->tx_low_drive_cnt
++;
445 wake_up_interruptible(&pin
->kthread_waitq
);
449 case CEC_ST_TX_DATA_BIT_HIGH_CUSTOM
:
450 if (tx_last_bit(pin
)) {
451 /* Error Injection: just stop sending after this bit */
452 cec_pin_to_idle(pin
);
454 if (pin
->tx_generated_poll
)
456 pin
->work_tx_ts
= ts
;
457 pin
->work_tx_status
= CEC_TX_STATUS_OK
;
458 wake_up_interruptible(&pin
->kthread_waitq
);
463 case CEC_ST_TX_START_BIT_HIGH
:
464 case CEC_ST_TX_START_BIT_HIGH_SHORT
:
465 case CEC_ST_TX_START_BIT_HIGH_LONG
:
466 case CEC_ST_TX_START_BIT_HIGH_CUSTOM
:
467 if (tx_low_drive(pin
)) {
468 /* Error injection: go to low drive */
470 pin
->state
= CEC_ST_TX_LOW_DRIVE
;
472 if (pin
->tx_generated_poll
)
474 pin
->work_tx_ts
= ts
;
475 pin
->work_tx_status
= CEC_TX_STATUS_LOW_DRIVE
;
476 pin
->tx_low_drive_cnt
++;
477 wake_up_interruptible(&pin
->kthread_waitq
);
480 if (pin
->tx_bit
/ 10 >= pin
->tx_msg
.len
+ pin
->tx_extra_bytes
) {
481 cec_pin_to_idle(pin
);
483 if (pin
->tx_generated_poll
)
485 pin
->work_tx_ts
= ts
;
486 pin
->work_tx_status
= CEC_TX_STATUS_OK
;
487 wake_up_interruptible(&pin
->kthread_waitq
);
491 switch (pin
->tx_bit
% 10) {
494 * In the CEC_ERROR_INJ_TX_ADD_BYTES case we transmit
495 * extra bytes, so pin->tx_bit / 10 can become >= 16.
496 * Generate bit values for those extra bytes instead
497 * of reading them from the transmit buffer.
499 unsigned int idx
= (pin
->tx_bit
/ 10);
502 if (idx
< pin
->tx_msg
.len
)
503 val
= pin
->tx_msg
.msg
[idx
];
504 v
= val
& (1 << (7 - (pin
->tx_bit
% 10)));
506 pin
->state
= v
? CEC_ST_TX_DATA_BIT_1_LOW
:
507 CEC_ST_TX_DATA_BIT_0_LOW
;
511 unsigned int tot_len
= pin
->tx_msg
.len
+
513 unsigned int tx_byte_idx
= pin
->tx_bit
/ 10;
515 v
= !pin
->tx_post_eom
&& tx_byte_idx
== tot_len
- 1;
516 if (tot_len
> 1 && tx_byte_idx
== tot_len
- 2 &&
518 /* Error injection: set EOM one byte early */
520 pin
->tx_post_eom
= true;
521 } else if (v
&& tx_no_eom(pin
)) {
522 /* Error injection: no EOM */
525 pin
->state
= v
? CEC_ST_TX_DATA_BIT_1_LOW
:
526 CEC_ST_TX_DATA_BIT_0_LOW
;
530 pin
->state
= CEC_ST_TX_DATA_BIT_1_LOW
;
533 if (tx_custom_bit(pin
))
534 pin
->state
= CEC_ST_TX_DATA_BIT_LOW_CUSTOM
;
538 case CEC_ST_TX_DATA_BIT_0_LOW
:
539 case CEC_ST_TX_DATA_BIT_1_LOW
:
540 v
= pin
->state
== CEC_ST_TX_DATA_BIT_1_LOW
;
541 is_ack_bit
= pin
->tx_bit
% 10 == ACK_BIT
;
542 if (v
&& (pin
->tx_bit
< 4 || is_ack_bit
)) {
543 pin
->state
= CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE
;
544 } else if (!is_ack_bit
&& tx_short_bit(pin
)) {
545 /* Error Injection: send an invalid (too short) bit */
546 pin
->state
= v
? CEC_ST_TX_DATA_BIT_1_HIGH_SHORT
:
547 CEC_ST_TX_DATA_BIT_0_HIGH_SHORT
;
548 } else if (!is_ack_bit
&& tx_long_bit(pin
)) {
549 /* Error Injection: send an invalid (too long) bit */
550 pin
->state
= v
? CEC_ST_TX_DATA_BIT_1_HIGH_LONG
:
551 CEC_ST_TX_DATA_BIT_0_HIGH_LONG
;
553 pin
->state
= v
? CEC_ST_TX_DATA_BIT_1_HIGH
:
554 CEC_ST_TX_DATA_BIT_0_HIGH
;
559 case CEC_ST_TX_DATA_BIT_LOW_CUSTOM
:
560 pin
->state
= CEC_ST_TX_DATA_BIT_HIGH_CUSTOM
;
564 case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE
:
565 /* Read the CEC value at the sample time */
566 v
= cec_pin_read(pin
);
567 is_ack_bit
= pin
->tx_bit
% 10 == ACK_BIT
;
569 * If v == 0 and we're within the first 4 bits
570 * of the initiator, then someone else started
571 * transmitting and we lost the arbitration
572 * (i.e. the logical address of the other
573 * transmitter has more leading 0 bits in the
576 if (!v
&& !is_ack_bit
&& !pin
->tx_generated_poll
) {
578 pin
->work_tx_ts
= ts
;
579 pin
->work_tx_status
= CEC_TX_STATUS_ARB_LOST
;
580 wake_up_interruptible(&pin
->kthread_waitq
);
581 pin
->rx_bit
= pin
->tx_bit
;
583 memset(pin
->rx_msg
.msg
, 0, sizeof(pin
->rx_msg
.msg
));
584 pin
->rx_msg
.msg
[0] = pin
->tx_msg
.msg
[0];
585 pin
->rx_msg
.msg
[0] &= (0xff << (8 - pin
->rx_bit
));
587 pin
->ts
= ktime_sub_us(ts
, CEC_TIM_DATA_BIT_SAMPLE
);
588 pin
->state
= CEC_ST_RX_DATA_POST_SAMPLE
;
592 pin
->state
= CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE
;
593 if (!is_ack_bit
&& tx_short_bit(pin
)) {
594 /* Error Injection: send an invalid (too short) bit */
595 pin
->state
= CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_SHORT
;
596 } else if (!is_ack_bit
&& tx_long_bit(pin
)) {
597 /* Error Injection: send an invalid (too long) bit */
598 pin
->state
= CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_LONG
;
602 /* Was the message ACKed? */
603 ack
= cec_msg_is_broadcast(&pin
->tx_msg
) ? v
: !v
;
604 if (!ack
&& (!pin
->tx_ignore_nack_until_eom
||
605 pin
->tx_bit
/ 10 == pin
->tx_msg
.len
- 1) &&
608 * Note: the CEC spec is ambiguous regarding
609 * what action to take when a NACK appears
610 * before the last byte of the payload was
611 * transmitted: either stop transmitting
612 * immediately, or wait until the last byte
615 * Most CEC implementations appear to stop
616 * immediately, and that's what we do here
619 pin
->tx_nacked
= true;
623 case CEC_ST_TX_PULSE_LOW_CUSTOM
:
625 pin
->state
= CEC_ST_TX_PULSE_HIGH_CUSTOM
;
628 case CEC_ST_TX_PULSE_HIGH_CUSTOM
:
629 cec_pin_to_idle(pin
);
638 * Handle Receive-related states
640 * Basic state changes when receiving:
642 * Rx Start Bit Low -> Rx Start Bit High ->
643 * Regular data bits + EOM:
644 * Rx Data Sample -> Rx Data Post Sample -> Rx Data High ->
646 * Rx Ack Low -> Rx Ack Low Post -> Rx Data High ->
648 * Rx Ack High Post -> Rx Data High ->
650 * Rx Ack Low -> Rx Ack Low Post -> Rx Ack Finish -> Idle
652 static void cec_pin_rx_states(struct cec_pin
*pin
, ktime_t ts
)
661 switch (pin
->state
) {
663 case CEC_ST_RX_START_BIT_LOW
:
664 v
= cec_pin_read(pin
);
667 pin
->state
= CEC_ST_RX_START_BIT_HIGH
;
668 delta
= ktime_us_delta(ts
, pin
->ts
);
669 /* Start bit low is too short, go back to idle */
670 if (delta
< CEC_TIM_START_BIT_LOW_MIN
- CEC_TIM_IDLE_SAMPLE
) {
671 if (!pin
->rx_start_bit_low_too_short_cnt
++) {
672 pin
->rx_start_bit_low_too_short_ts
= ktime_to_ns(pin
->ts
);
673 pin
->rx_start_bit_low_too_short_delta
= delta
;
675 cec_pin_to_idle(pin
);
678 if (rx_arb_lost(pin
, &poll
)) {
679 cec_msg_init(&pin
->tx_msg
, poll
>> 4, poll
& 0xf);
680 pin
->tx_generated_poll
= true;
681 pin
->tx_extra_bytes
= 0;
682 pin
->state
= CEC_ST_TX_START_BIT_HIGH
;
687 case CEC_ST_RX_START_BIT_HIGH
:
688 v
= cec_pin_read(pin
);
689 delta
= ktime_us_delta(ts
, pin
->ts
);
691 * Unfortunately the spec does not specify when to give up
692 * and go to idle. We just pick TOTAL_LONG.
694 if (v
&& delta
> CEC_TIM_START_BIT_TOTAL_LONG
) {
695 pin
->rx_start_bit_too_long_cnt
++;
696 cec_pin_to_idle(pin
);
701 /* Start bit is too short, go back to idle */
702 if (delta
< CEC_TIM_START_BIT_TOTAL_MIN
- CEC_TIM_IDLE_SAMPLE
) {
703 if (!pin
->rx_start_bit_too_short_cnt
++) {
704 pin
->rx_start_bit_too_short_ts
= ktime_to_ns(pin
->ts
);
705 pin
->rx_start_bit_too_short_delta
= delta
;
707 cec_pin_to_idle(pin
);
710 if (rx_low_drive(pin
)) {
711 /* Error injection: go to low drive */
713 pin
->state
= CEC_ST_RX_LOW_DRIVE
;
714 pin
->rx_low_drive_cnt
++;
717 pin
->state
= CEC_ST_RX_DATA_SAMPLE
;
722 case CEC_ST_RX_DATA_SAMPLE
:
723 v
= cec_pin_read(pin
);
724 pin
->state
= CEC_ST_RX_DATA_POST_SAMPLE
;
725 switch (pin
->rx_bit
% 10) {
727 if (pin
->rx_bit
/ 10 < CEC_MAX_MSG_SIZE
)
728 pin
->rx_msg
.msg
[pin
->rx_bit
/ 10] |=
729 v
<< (7 - (pin
->rx_bit
% 10));
733 pin
->rx_msg
.len
= pin
->rx_bit
/ 10 + 1;
741 case CEC_ST_RX_DATA_POST_SAMPLE
:
742 pin
->state
= CEC_ST_RX_DATA_WAIT_FOR_LOW
;
745 case CEC_ST_RX_DATA_WAIT_FOR_LOW
:
746 v
= cec_pin_read(pin
);
747 delta
= ktime_us_delta(ts
, pin
->ts
);
749 * Unfortunately the spec does not specify when to give up
750 * and go to idle. We just pick TOTAL_LONG.
752 if (v
&& delta
> CEC_TIM_DATA_BIT_TOTAL_LONG
) {
753 pin
->rx_data_bit_too_long_cnt
++;
754 cec_pin_to_idle(pin
);
760 if (rx_low_drive(pin
)) {
761 /* Error injection: go to low drive */
763 pin
->state
= CEC_ST_RX_LOW_DRIVE
;
764 pin
->rx_low_drive_cnt
++;
769 * Go to low drive state when the total bit time is
772 if (delta
< CEC_TIM_DATA_BIT_TOTAL_MIN
) {
773 if (!pin
->rx_data_bit_too_short_cnt
++) {
774 pin
->rx_data_bit_too_short_ts
= ktime_to_ns(pin
->ts
);
775 pin
->rx_data_bit_too_short_delta
= delta
;
778 pin
->state
= CEC_ST_RX_LOW_DRIVE
;
779 pin
->rx_low_drive_cnt
++;
783 if (pin
->rx_bit
% 10 != 9) {
784 pin
->state
= CEC_ST_RX_DATA_SAMPLE
;
788 dest
= cec_msg_destination(&pin
->rx_msg
);
789 bcast
= dest
== CEC_LOG_ADDR_BROADCAST
;
790 /* for_us == broadcast or directed to us */
791 for_us
= bcast
|| (pin
->la_mask
& (1 << dest
));
793 ack
= bcast
? 1 : !for_us
;
795 if (for_us
&& rx_nack(pin
)) {
796 /* Error injection: toggle the ACK bit */
801 /* No need to write to the bus, just wait */
802 pin
->state
= CEC_ST_RX_ACK_HIGH_POST
;
806 pin
->state
= CEC_ST_RX_ACK_LOW
;
809 case CEC_ST_RX_ACK_LOW
:
811 pin
->state
= CEC_ST_RX_ACK_LOW_POST
;
814 case CEC_ST_RX_ACK_LOW_POST
:
815 case CEC_ST_RX_ACK_HIGH_POST
:
816 v
= cec_pin_read(pin
);
817 if (v
&& pin
->rx_eom
) {
818 pin
->work_rx_msg
= pin
->rx_msg
;
819 pin
->work_rx_msg
.rx_ts
= ktime_to_ns(ts
);
820 wake_up_interruptible(&pin
->kthread_waitq
);
822 pin
->state
= CEC_ST_RX_ACK_FINISH
;
826 pin
->state
= CEC_ST_RX_DATA_WAIT_FOR_LOW
;
829 case CEC_ST_RX_ACK_FINISH
:
830 cec_pin_to_idle(pin
);
839 * Main timer function
842 static enum hrtimer_restart
cec_pin_timer(struct hrtimer
*timer
)
844 struct cec_pin
*pin
= container_of(timer
, struct cec_pin
, timer
);
845 struct cec_adapter
*adap
= pin
->adap
;
851 if (ktime_to_ns(pin
->timer_ts
)) {
852 delta
= ktime_us_delta(ts
, pin
->timer_ts
);
854 if (delta
> 100 && pin
->state
!= CEC_ST_IDLE
) {
855 /* Keep track of timer overruns */
856 pin
->timer_sum_overrun
+= delta
;
857 pin
->timer_100ms_overruns
++;
859 pin
->timer_300ms_overruns
++;
860 if (delta
> pin
->timer_max_overrun
)
861 pin
->timer_max_overrun
= delta
;
864 if (adap
->monitor_pin_cnt
)
867 if (pin
->wait_usecs
) {
869 * If we are monitoring the pin, then we have to
870 * sample at regular intervals.
872 if (pin
->wait_usecs
> 150) {
873 pin
->wait_usecs
-= 100;
874 pin
->timer_ts
= ktime_add_us(ts
, 100);
875 hrtimer_forward_now(timer
, ns_to_ktime(100000));
876 return HRTIMER_RESTART
;
878 if (pin
->wait_usecs
> 100) {
879 pin
->wait_usecs
/= 2;
880 pin
->timer_ts
= ktime_add_us(ts
, pin
->wait_usecs
);
881 hrtimer_forward_now(timer
,
882 ns_to_ktime(pin
->wait_usecs
* 1000));
883 return HRTIMER_RESTART
;
885 pin
->timer_ts
= ktime_add_us(ts
, pin
->wait_usecs
);
886 hrtimer_forward_now(timer
,
887 ns_to_ktime(pin
->wait_usecs
* 1000));
889 return HRTIMER_RESTART
;
892 switch (pin
->state
) {
893 /* Transmit states */
894 case CEC_ST_TX_WAIT_FOR_HIGH
:
895 case CEC_ST_TX_START_BIT_LOW
:
896 case CEC_ST_TX_START_BIT_HIGH
:
897 case CEC_ST_TX_START_BIT_HIGH_SHORT
:
898 case CEC_ST_TX_START_BIT_HIGH_LONG
:
899 case CEC_ST_TX_START_BIT_LOW_CUSTOM
:
900 case CEC_ST_TX_START_BIT_HIGH_CUSTOM
:
901 case CEC_ST_TX_DATA_BIT_0_LOW
:
902 case CEC_ST_TX_DATA_BIT_0_HIGH
:
903 case CEC_ST_TX_DATA_BIT_0_HIGH_SHORT
:
904 case CEC_ST_TX_DATA_BIT_0_HIGH_LONG
:
905 case CEC_ST_TX_DATA_BIT_1_LOW
:
906 case CEC_ST_TX_DATA_BIT_1_HIGH
:
907 case CEC_ST_TX_DATA_BIT_1_HIGH_SHORT
:
908 case CEC_ST_TX_DATA_BIT_1_HIGH_LONG
:
909 case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE
:
910 case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE
:
911 case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_SHORT
:
912 case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_LONG
:
913 case CEC_ST_TX_DATA_BIT_LOW_CUSTOM
:
914 case CEC_ST_TX_DATA_BIT_HIGH_CUSTOM
:
915 case CEC_ST_TX_PULSE_LOW_CUSTOM
:
916 case CEC_ST_TX_PULSE_HIGH_CUSTOM
:
917 cec_pin_tx_states(pin
, ts
);
921 case CEC_ST_RX_START_BIT_LOW
:
922 case CEC_ST_RX_START_BIT_HIGH
:
923 case CEC_ST_RX_DATA_SAMPLE
:
924 case CEC_ST_RX_DATA_POST_SAMPLE
:
925 case CEC_ST_RX_DATA_WAIT_FOR_LOW
:
926 case CEC_ST_RX_ACK_LOW
:
927 case CEC_ST_RX_ACK_LOW_POST
:
928 case CEC_ST_RX_ACK_HIGH_POST
:
929 case CEC_ST_RX_ACK_FINISH
:
930 cec_pin_rx_states(pin
, ts
);
935 if (!cec_pin_high(pin
)) {
936 /* Start bit, switch to receive state */
938 pin
->state
= CEC_ST_RX_START_BIT_LOW
;
940 * If a transmit is pending, then that transmit should
941 * use a signal free time of no more than
942 * CEC_SIGNAL_FREE_TIME_NEW_INITIATOR since it will
943 * have a new initiator due to the receive that is now
946 if (pin
->tx_msg
.len
&& pin
->tx_signal_free_time
>
947 CEC_SIGNAL_FREE_TIME_NEW_INITIATOR
)
948 pin
->tx_signal_free_time
=
949 CEC_SIGNAL_FREE_TIME_NEW_INITIATOR
;
952 if (ktime_to_ns(pin
->ts
) == 0)
954 if (pin
->tx_msg
.len
) {
956 * Check if the bus has been free for long enough
957 * so we can kick off the pending transmit.
959 delta
= ktime_us_delta(ts
, pin
->ts
);
960 if (delta
/ CEC_TIM_DATA_BIT_TOTAL
>
961 pin
->tx_signal_free_time
) {
962 pin
->tx_nacked
= false;
963 if (tx_custom_start(pin
))
964 pin
->state
= CEC_ST_TX_START_BIT_LOW_CUSTOM
;
966 pin
->state
= CEC_ST_TX_START_BIT_LOW
;
967 /* Generate start bit */
971 if (delta
/ CEC_TIM_DATA_BIT_TOTAL
>
972 pin
->tx_signal_free_time
- 1)
973 pin
->state
= CEC_ST_TX_WAIT
;
976 if (pin
->tx_custom_pulse
&& pin
->state
== CEC_ST_IDLE
) {
977 pin
->tx_custom_pulse
= false;
978 /* Generate custom pulse */
980 pin
->state
= CEC_ST_TX_PULSE_LOW_CUSTOM
;
983 if (pin
->state
!= CEC_ST_IDLE
|| pin
->ops
->enable_irq
== NULL
||
984 pin
->enable_irq_failed
|| adap
->is_configuring
||
985 adap
->is_configured
|| adap
->monitor_all_cnt
)
987 /* Switch to interrupt mode */
988 atomic_set(&pin
->work_irq_change
, CEC_PIN_IRQ_ENABLE
);
989 pin
->state
= CEC_ST_RX_IRQ
;
990 wake_up_interruptible(&pin
->kthread_waitq
);
991 return HRTIMER_NORESTART
;
993 case CEC_ST_TX_LOW_DRIVE
:
994 case CEC_ST_RX_LOW_DRIVE
:
996 cec_pin_to_idle(pin
);
1003 switch (pin
->state
) {
1004 case CEC_ST_TX_START_BIT_LOW_CUSTOM
:
1005 case CEC_ST_TX_DATA_BIT_LOW_CUSTOM
:
1006 case CEC_ST_TX_PULSE_LOW_CUSTOM
:
1007 usecs
= pin
->tx_custom_low_usecs
;
1009 case CEC_ST_TX_START_BIT_HIGH_CUSTOM
:
1010 case CEC_ST_TX_DATA_BIT_HIGH_CUSTOM
:
1011 case CEC_ST_TX_PULSE_HIGH_CUSTOM
:
1012 usecs
= pin
->tx_custom_high_usecs
;
1015 usecs
= states
[pin
->state
].usecs
;
1019 if (!adap
->monitor_pin_cnt
|| usecs
<= 150) {
1020 pin
->wait_usecs
= 0;
1021 pin
->timer_ts
= ktime_add_us(ts
, usecs
);
1022 hrtimer_forward_now(timer
,
1023 ns_to_ktime(usecs
* 1000));
1024 return HRTIMER_RESTART
;
1026 pin
->wait_usecs
= usecs
- 100;
1027 pin
->timer_ts
= ktime_add_us(ts
, 100);
1028 hrtimer_forward_now(timer
, ns_to_ktime(100000));
1029 return HRTIMER_RESTART
;
1032 static int cec_pin_thread_func(void *_adap
)
1034 struct cec_adapter
*adap
= _adap
;
1035 struct cec_pin
*pin
= adap
->pin
;
1038 wait_event_interruptible(pin
->kthread_waitq
,
1039 kthread_should_stop() ||
1040 pin
->work_rx_msg
.len
||
1041 pin
->work_tx_status
||
1042 atomic_read(&pin
->work_irq_change
) ||
1043 atomic_read(&pin
->work_pin_num_events
));
1045 if (pin
->work_rx_msg
.len
) {
1046 struct cec_msg
*msg
= &pin
->work_rx_msg
;
1048 if (msg
->len
> 1 && msg
->len
< CEC_MAX_MSG_SIZE
&&
1050 /* Error injection: add byte to the message */
1051 msg
->msg
[msg
->len
++] = 0x55;
1053 if (msg
->len
> 2 && rx_remove_byte(pin
)) {
1054 /* Error injection: remove byte from message */
1057 if (msg
->len
> CEC_MAX_MSG_SIZE
)
1058 msg
->len
= CEC_MAX_MSG_SIZE
;
1059 cec_received_msg_ts(adap
, msg
,
1060 ns_to_ktime(pin
->work_rx_msg
.rx_ts
));
1063 if (pin
->work_tx_status
) {
1064 unsigned int tx_status
= pin
->work_tx_status
;
1066 pin
->work_tx_status
= 0;
1067 cec_transmit_attempt_done_ts(adap
, tx_status
,
1071 while (atomic_read(&pin
->work_pin_num_events
)) {
1072 unsigned int idx
= pin
->work_pin_events_rd
;
1073 u8 v
= pin
->work_pin_events
[idx
];
1075 cec_queue_pin_cec_event(adap
,
1076 v
& CEC_PIN_EVENT_FL_IS_HIGH
,
1077 v
& CEC_PIN_EVENT_FL_DROPPED
,
1078 pin
->work_pin_ts
[idx
]);
1079 pin
->work_pin_events_rd
= (idx
+ 1) % CEC_NUM_PIN_EVENTS
;
1080 atomic_dec(&pin
->work_pin_num_events
);
1083 switch (atomic_xchg(&pin
->work_irq_change
,
1084 CEC_PIN_IRQ_UNCHANGED
)) {
1085 case CEC_PIN_IRQ_DISABLE
:
1086 pin
->ops
->disable_irq(adap
);
1088 cec_pin_to_idle(pin
);
1089 hrtimer_start(&pin
->timer
, ns_to_ktime(0),
1092 case CEC_PIN_IRQ_ENABLE
:
1093 pin
->enable_irq_failed
= !pin
->ops
->enable_irq(adap
);
1094 if (pin
->enable_irq_failed
) {
1095 cec_pin_to_idle(pin
);
1096 hrtimer_start(&pin
->timer
, ns_to_ktime(0),
1104 if (kthread_should_stop())
1110 static int cec_pin_adap_enable(struct cec_adapter
*adap
, bool enable
)
1112 struct cec_pin
*pin
= adap
->pin
;
1114 pin
->enabled
= enable
;
1116 atomic_set(&pin
->work_pin_num_events
, 0);
1117 pin
->work_pin_events_rd
= pin
->work_pin_events_wr
= 0;
1118 pin
->work_pin_events_dropped
= false;
1120 cec_pin_to_idle(pin
);
1121 pin
->tx_msg
.len
= 0;
1122 pin
->timer_ts
= ns_to_ktime(0);
1123 atomic_set(&pin
->work_irq_change
, CEC_PIN_IRQ_UNCHANGED
);
1124 pin
->kthread
= kthread_run(cec_pin_thread_func
, adap
,
1126 if (IS_ERR(pin
->kthread
)) {
1127 pr_err("cec-pin: kernel_thread() failed\n");
1128 return PTR_ERR(pin
->kthread
);
1130 hrtimer_start(&pin
->timer
, ns_to_ktime(0),
1133 if (pin
->ops
->disable_irq
)
1134 pin
->ops
->disable_irq(adap
);
1135 hrtimer_cancel(&pin
->timer
);
1136 kthread_stop(pin
->kthread
);
1138 cec_pin_to_idle(pin
);
1139 pin
->state
= CEC_ST_OFF
;
1144 static int cec_pin_adap_log_addr(struct cec_adapter
*adap
, u8 log_addr
)
1146 struct cec_pin
*pin
= adap
->pin
;
1148 if (log_addr
== CEC_LOG_ADDR_INVALID
)
1151 pin
->la_mask
|= (1 << log_addr
);
1155 void cec_pin_start_timer(struct cec_pin
*pin
)
1157 if (pin
->state
!= CEC_ST_RX_IRQ
)
1160 atomic_set(&pin
->work_irq_change
, CEC_PIN_IRQ_UNCHANGED
);
1161 pin
->ops
->disable_irq(pin
->adap
);
1163 cec_pin_to_idle(pin
);
1164 hrtimer_start(&pin
->timer
, ns_to_ktime(0), HRTIMER_MODE_REL
);
1167 static int cec_pin_adap_transmit(struct cec_adapter
*adap
, u8 attempts
,
1168 u32 signal_free_time
, struct cec_msg
*msg
)
1170 struct cec_pin
*pin
= adap
->pin
;
1173 * If a receive is in progress, then this transmit should use
1174 * a signal free time of max CEC_SIGNAL_FREE_TIME_NEW_INITIATOR
1175 * since when it starts transmitting it will have a new initiator.
1177 if (pin
->state
!= CEC_ST_IDLE
&&
1178 signal_free_time
> CEC_SIGNAL_FREE_TIME_NEW_INITIATOR
)
1179 signal_free_time
= CEC_SIGNAL_FREE_TIME_NEW_INITIATOR
;
1181 pin
->tx_signal_free_time
= signal_free_time
;
1182 pin
->tx_extra_bytes
= 0;
1185 /* Error injection: add byte to the message */
1186 pin
->tx_extra_bytes
= tx_add_bytes(pin
);
1188 if (msg
->len
> 2 && tx_remove_byte(pin
)) {
1189 /* Error injection: remove byte from the message */
1192 pin
->work_tx_status
= 0;
1194 cec_pin_start_timer(pin
);
1198 static void cec_pin_adap_status(struct cec_adapter
*adap
,
1199 struct seq_file
*file
)
1201 struct cec_pin
*pin
= adap
->pin
;
1203 seq_printf(file
, "state: %s\n", states
[pin
->state
].name
);
1204 seq_printf(file
, "tx_bit: %d\n", pin
->tx_bit
);
1205 seq_printf(file
, "rx_bit: %d\n", pin
->rx_bit
);
1206 seq_printf(file
, "cec pin: %d\n", pin
->ops
->read(adap
));
1207 seq_printf(file
, "cec pin events dropped: %u\n",
1208 pin
->work_pin_events_dropped_cnt
);
1209 seq_printf(file
, "irq failed: %d\n", pin
->enable_irq_failed
);
1210 if (pin
->timer_100ms_overruns
) {
1211 seq_printf(file
, "timer overruns > 100ms: %u of %u\n",
1212 pin
->timer_100ms_overruns
, pin
->timer_cnt
);
1213 seq_printf(file
, "timer overruns > 300ms: %u of %u\n",
1214 pin
->timer_300ms_overruns
, pin
->timer_cnt
);
1215 seq_printf(file
, "max timer overrun: %u usecs\n",
1216 pin
->timer_max_overrun
);
1217 seq_printf(file
, "avg timer overrun: %u usecs\n",
1218 pin
->timer_sum_overrun
/ pin
->timer_100ms_overruns
);
1220 if (pin
->rx_start_bit_low_too_short_cnt
)
1222 "rx start bit low too short: %u (delta %u, ts %llu)\n",
1223 pin
->rx_start_bit_low_too_short_cnt
,
1224 pin
->rx_start_bit_low_too_short_delta
,
1225 pin
->rx_start_bit_low_too_short_ts
);
1226 if (pin
->rx_start_bit_too_short_cnt
)
1228 "rx start bit too short: %u (delta %u, ts %llu)\n",
1229 pin
->rx_start_bit_too_short_cnt
,
1230 pin
->rx_start_bit_too_short_delta
,
1231 pin
->rx_start_bit_too_short_ts
);
1232 if (pin
->rx_start_bit_too_long_cnt
)
1233 seq_printf(file
, "rx start bit too long: %u\n",
1234 pin
->rx_start_bit_too_long_cnt
);
1235 if (pin
->rx_data_bit_too_short_cnt
)
1237 "rx data bit too short: %u (delta %u, ts %llu)\n",
1238 pin
->rx_data_bit_too_short_cnt
,
1239 pin
->rx_data_bit_too_short_delta
,
1240 pin
->rx_data_bit_too_short_ts
);
1241 if (pin
->rx_data_bit_too_long_cnt
)
1242 seq_printf(file
, "rx data bit too long: %u\n",
1243 pin
->rx_data_bit_too_long_cnt
);
1244 seq_printf(file
, "rx initiated low drive: %u\n", pin
->rx_low_drive_cnt
);
1245 seq_printf(file
, "tx detected low drive: %u\n", pin
->tx_low_drive_cnt
);
1246 pin
->work_pin_events_dropped_cnt
= 0;
1248 pin
->timer_100ms_overruns
= 0;
1249 pin
->timer_300ms_overruns
= 0;
1250 pin
->timer_max_overrun
= 0;
1251 pin
->timer_sum_overrun
= 0;
1252 pin
->rx_start_bit_low_too_short_cnt
= 0;
1253 pin
->rx_start_bit_too_short_cnt
= 0;
1254 pin
->rx_start_bit_too_long_cnt
= 0;
1255 pin
->rx_data_bit_too_short_cnt
= 0;
1256 pin
->rx_data_bit_too_long_cnt
= 0;
1257 pin
->rx_low_drive_cnt
= 0;
1258 pin
->tx_low_drive_cnt
= 0;
1259 if (pin
->ops
->status
)
1260 pin
->ops
->status(adap
, file
);
1263 static int cec_pin_adap_monitor_all_enable(struct cec_adapter
*adap
,
1266 struct cec_pin
*pin
= adap
->pin
;
1268 pin
->monitor_all
= enable
;
1272 static void cec_pin_adap_free(struct cec_adapter
*adap
)
1274 struct cec_pin
*pin
= adap
->pin
;
1277 pin
->ops
->free(adap
);
1282 static int cec_pin_received(struct cec_adapter
*adap
, struct cec_msg
*msg
)
1284 struct cec_pin
*pin
= adap
->pin
;
1286 if (pin
->ops
->received
)
1287 return pin
->ops
->received(adap
, msg
);
1291 void cec_pin_changed(struct cec_adapter
*adap
, bool value
)
1293 struct cec_pin
*pin
= adap
->pin
;
1295 cec_pin_update(pin
, value
, false);
1296 if (!value
&& (adap
->is_configuring
|| adap
->is_configured
||
1297 adap
->monitor_all_cnt
))
1298 atomic_set(&pin
->work_irq_change
, CEC_PIN_IRQ_DISABLE
);
1300 EXPORT_SYMBOL_GPL(cec_pin_changed
);
1302 static const struct cec_adap_ops cec_pin_adap_ops
= {
1303 .adap_enable
= cec_pin_adap_enable
,
1304 .adap_monitor_all_enable
= cec_pin_adap_monitor_all_enable
,
1305 .adap_log_addr
= cec_pin_adap_log_addr
,
1306 .adap_transmit
= cec_pin_adap_transmit
,
1307 .adap_status
= cec_pin_adap_status
,
1308 .adap_free
= cec_pin_adap_free
,
1309 #ifdef CONFIG_CEC_PIN_ERROR_INJ
1310 .error_inj_parse_line
= cec_pin_error_inj_parse_line
,
1311 .error_inj_show
= cec_pin_error_inj_show
,
1313 .received
= cec_pin_received
,
1316 struct cec_adapter
*cec_pin_allocate_adapter(const struct cec_pin_ops
*pin_ops
,
1317 void *priv
, const char *name
, u32 caps
)
1319 struct cec_adapter
*adap
;
1320 struct cec_pin
*pin
= kzalloc(sizeof(*pin
), GFP_KERNEL
);
1323 return ERR_PTR(-ENOMEM
);
1325 hrtimer_init(&pin
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1326 pin
->timer
.function
= cec_pin_timer
;
1327 init_waitqueue_head(&pin
->kthread_waitq
);
1328 pin
->tx_custom_low_usecs
= CEC_TIM_CUSTOM_DEFAULT
;
1329 pin
->tx_custom_high_usecs
= CEC_TIM_CUSTOM_DEFAULT
;
1331 adap
= cec_allocate_adapter(&cec_pin_adap_ops
, priv
, name
,
1332 caps
| CEC_CAP_MONITOR_ALL
| CEC_CAP_MONITOR_PIN
,
1342 cec_pin_update(pin
, cec_pin_high(pin
), true);
1345 EXPORT_SYMBOL_GPL(cec_pin_allocate_adapter
);