1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner.
5 * Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/)
7 * This code is more or less generated from another driver, please
8 * excuse some codingstyle oddities.
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/i2c.h>
16 #include <linux/mutex.h>
18 #include <media/dvb_frontend.h>
21 #include "dibx000_common.h"
24 module_param(debug
, int, 0644);
25 MODULE_PARM_DESC(debug
, "turn on debugging (default: 0)");
27 #define dprintk(fmt, arg...) do { \
29 printk(KERN_DEBUG pr_fmt("%s: " fmt), \
33 #define CONFIG_SYS_DVBT
34 #define CONFIG_SYS_ISDBT
35 #define CONFIG_BAND_CBAND
36 #define CONFIG_BAND_VHF
37 #define CONFIG_BAND_UHF
38 #define CONFIG_DIB0090_USE_PWM_AGC
40 #define EN_LNA0 0x8000
41 #define EN_LNA1 0x4000
42 #define EN_LNA2 0x2000
43 #define EN_LNA3 0x1000
44 #define EN_MIX0 0x0800
45 #define EN_MIX1 0x0400
46 #define EN_MIX2 0x0200
47 #define EN_MIX3 0x0100
48 #define EN_IQADC 0x0040
53 #define EN_BIAS 0x0001
55 #define EN_IQANA 0x0002
56 #define EN_DIGCLK 0x0080 /* not in the 0x24 reg, only in 0x1b */
57 #define EN_CRYSTAL 0x0002
65 /* Calibration defines */
69 #define CAPTRIM_CAL 0x8
71 #define KROSUS_PLL_LOCKED 0x800
74 /* Use those defines to identify SOC version */
76 #define SOC_7090_P1G_11R1 0x82
77 #define SOC_7090_P1G_21R1 0x8a
78 #define SOC_8090_P1G_11R1 0x86
79 #define SOC_8090_P1G_21R1 0x8e
81 /* else use thos ones to check */
88 #define MP001 0x1 /* Single 9090/8096 */
89 #define MP005 0x4 /* Single Sband */
90 #define MP008 0x6 /* Dual diversity VHF-UHF-LBAND */
91 #define MP009 0x7 /* Dual diversity 29098 CBAND-UHF-LBAND-SBAND */
93 #define pgm_read_word(w) (*w)
95 struct dc_calibration
;
97 struct dib0090_tuning
{
98 u32 max_freq
; /* for every frequency less than or equal to that field: this information is correct */
109 u32 max_freq
; /* for every frequency less than or equal to that field: this information is correct */
116 struct dib0090_identity
{
123 struct dib0090_state
{
124 struct i2c_adapter
*i2c
;
125 struct dvb_frontend
*fe
;
126 const struct dib0090_config
*config
;
129 enum frontend_tune_state tune_state
;
133 s16 wbd_target
; /* in dB */
135 s16 rf_gain_limit
; /* take-over-point: where to split between bb and rf gain */
136 s16 current_gain
; /* keeps the currently programmed gain */
137 u8 agc_step
; /* new binary search */
139 u16 gain
[2]; /* for channel monitoring */
144 /* for the software AGC ramps */
149 /* for the captrim/dc-offset search */
157 const struct dc_calibration
*dc
;
160 const struct dib0090_tuning
*current_tune_table_index
;
161 const struct dib0090_pll
*current_pll_table_index
;
166 struct dib0090_identity identity
;
176 u8 wbd_calibration_gain
;
177 const struct dib0090_wbd_slope
*current_wbd_table
;
180 /* for the I2C transfer */
181 struct i2c_msg msg
[2];
182 u8 i2c_write_buffer
[3];
183 u8 i2c_read_buffer
[2];
184 struct mutex i2c_buffer_lock
;
187 struct dib0090_fw_state
{
188 struct i2c_adapter
*i2c
;
189 struct dvb_frontend
*fe
;
190 struct dib0090_identity identity
;
191 const struct dib0090_config
*config
;
193 /* for the I2C transfer */
195 u8 i2c_write_buffer
[2];
196 u8 i2c_read_buffer
[2];
197 struct mutex i2c_buffer_lock
;
200 static u16
dib0090_read_reg(struct dib0090_state
*state
, u8 reg
)
204 if (mutex_lock_interruptible(&state
->i2c_buffer_lock
) < 0) {
205 dprintk("could not acquire lock\n");
209 state
->i2c_write_buffer
[0] = reg
;
211 memset(state
->msg
, 0, 2 * sizeof(struct i2c_msg
));
212 state
->msg
[0].addr
= state
->config
->i2c_address
;
213 state
->msg
[0].flags
= 0;
214 state
->msg
[0].buf
= state
->i2c_write_buffer
;
215 state
->msg
[0].len
= 1;
216 state
->msg
[1].addr
= state
->config
->i2c_address
;
217 state
->msg
[1].flags
= I2C_M_RD
;
218 state
->msg
[1].buf
= state
->i2c_read_buffer
;
219 state
->msg
[1].len
= 2;
221 if (i2c_transfer(state
->i2c
, state
->msg
, 2) != 2) {
222 pr_warn("DiB0090 I2C read failed\n");
225 ret
= (state
->i2c_read_buffer
[0] << 8)
226 | state
->i2c_read_buffer
[1];
228 mutex_unlock(&state
->i2c_buffer_lock
);
232 static int dib0090_write_reg(struct dib0090_state
*state
, u32 reg
, u16 val
)
236 if (mutex_lock_interruptible(&state
->i2c_buffer_lock
) < 0) {
237 dprintk("could not acquire lock\n");
241 state
->i2c_write_buffer
[0] = reg
& 0xff;
242 state
->i2c_write_buffer
[1] = val
>> 8;
243 state
->i2c_write_buffer
[2] = val
& 0xff;
245 memset(state
->msg
, 0, sizeof(struct i2c_msg
));
246 state
->msg
[0].addr
= state
->config
->i2c_address
;
247 state
->msg
[0].flags
= 0;
248 state
->msg
[0].buf
= state
->i2c_write_buffer
;
249 state
->msg
[0].len
= 3;
251 if (i2c_transfer(state
->i2c
, state
->msg
, 1) != 1) {
252 pr_warn("DiB0090 I2C write failed\n");
257 mutex_unlock(&state
->i2c_buffer_lock
);
261 static u16
dib0090_fw_read_reg(struct dib0090_fw_state
*state
, u8 reg
)
265 if (mutex_lock_interruptible(&state
->i2c_buffer_lock
) < 0) {
266 dprintk("could not acquire lock\n");
270 state
->i2c_write_buffer
[0] = reg
;
272 memset(&state
->msg
, 0, sizeof(struct i2c_msg
));
273 state
->msg
.addr
= reg
;
274 state
->msg
.flags
= I2C_M_RD
;
275 state
->msg
.buf
= state
->i2c_read_buffer
;
277 if (i2c_transfer(state
->i2c
, &state
->msg
, 1) != 1) {
278 pr_warn("DiB0090 I2C read failed\n");
281 ret
= (state
->i2c_read_buffer
[0] << 8)
282 | state
->i2c_read_buffer
[1];
284 mutex_unlock(&state
->i2c_buffer_lock
);
288 static int dib0090_fw_write_reg(struct dib0090_fw_state
*state
, u8 reg
, u16 val
)
292 if (mutex_lock_interruptible(&state
->i2c_buffer_lock
) < 0) {
293 dprintk("could not acquire lock\n");
297 state
->i2c_write_buffer
[0] = val
>> 8;
298 state
->i2c_write_buffer
[1] = val
& 0xff;
300 memset(&state
->msg
, 0, sizeof(struct i2c_msg
));
301 state
->msg
.addr
= reg
;
302 state
->msg
.flags
= 0;
303 state
->msg
.buf
= state
->i2c_write_buffer
;
305 if (i2c_transfer(state
->i2c
, &state
->msg
, 1) != 1) {
306 pr_warn("DiB0090 I2C write failed\n");
311 mutex_unlock(&state
->i2c_buffer_lock
);
315 #define HARD_RESET(state) do { if (cfg->reset) { if (cfg->sleep) cfg->sleep(fe, 0); msleep(10); cfg->reset(fe, 1); msleep(10); cfg->reset(fe, 0); msleep(10); } } while (0)
316 #define ADC_TARGET -220
320 static void dib0090_write_regs(struct dib0090_state
*state
, u8 r
, const u16
* b
, u8 c
)
323 dib0090_write_reg(state
, r
++, *b
++);
327 static int dib0090_identify(struct dvb_frontend
*fe
)
329 struct dib0090_state
*state
= fe
->tuner_priv
;
331 struct dib0090_identity
*identity
= &state
->identity
;
333 v
= dib0090_read_reg(state
, 0x1a);
336 identity
->in_soc
= 0;
338 dprintk("Tuner identification (Version = 0x%04x)\n", v
);
340 /* without PLL lock info */
341 v
&= ~KROSUS_PLL_LOCKED
;
343 identity
->version
= v
& 0xff;
344 identity
->product
= (v
>> 8) & 0xf;
346 if (identity
->product
!= KROSUS
)
347 goto identification_error
;
349 if ((identity
->version
& 0x3) == SOC
) {
350 identity
->in_soc
= 1;
351 switch (identity
->version
) {
352 case SOC_8090_P1G_11R1
:
353 dprintk("SOC 8090 P1-G11R1 Has been detected\n");
356 case SOC_8090_P1G_21R1
:
357 dprintk("SOC 8090 P1-G21R1 Has been detected\n");
360 case SOC_7090_P1G_11R1
:
361 dprintk("SOC 7090 P1-G11R1 Has been detected\n");
364 case SOC_7090_P1G_21R1
:
365 dprintk("SOC 7090 P1-G21R1 Has been detected\n");
369 goto identification_error
;
372 switch ((identity
->version
>> 5) & 0x7) {
374 dprintk("MP001 : 9090/8096\n");
377 dprintk("MP005 : Single Sband\n");
380 dprintk("MP008 : diversity VHF-UHF-LBAND\n");
383 dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND\n");
386 goto identification_error
;
389 switch (identity
->version
& 0x1f) {
391 dprintk("P1G_21R2 detected\n");
395 dprintk("P1G detected\n");
399 dprintk("P1D/E/F detected\n");
402 dprintk("P1C detected\n");
405 dprintk("P1-A/B detected: driver is deactivated - not available\n");
406 goto identification_error
;
409 goto identification_error
;
415 identification_error
:
419 static int dib0090_fw_identify(struct dvb_frontend
*fe
)
421 struct dib0090_fw_state
*state
= fe
->tuner_priv
;
422 struct dib0090_identity
*identity
= &state
->identity
;
424 u16 v
= dib0090_fw_read_reg(state
, 0x1a);
426 identity
->in_soc
= 0;
428 dprintk("FE: Tuner identification (Version = 0x%04x)\n", v
);
430 /* without PLL lock info */
431 v
&= ~KROSUS_PLL_LOCKED
;
433 identity
->version
= v
& 0xff;
434 identity
->product
= (v
>> 8) & 0xf;
436 if (identity
->product
!= KROSUS
)
437 goto identification_error
;
439 if ((identity
->version
& 0x3) == SOC
) {
440 identity
->in_soc
= 1;
441 switch (identity
->version
) {
442 case SOC_8090_P1G_11R1
:
443 dprintk("SOC 8090 P1-G11R1 Has been detected\n");
446 case SOC_8090_P1G_21R1
:
447 dprintk("SOC 8090 P1-G21R1 Has been detected\n");
450 case SOC_7090_P1G_11R1
:
451 dprintk("SOC 7090 P1-G11R1 Has been detected\n");
454 case SOC_7090_P1G_21R1
:
455 dprintk("SOC 7090 P1-G21R1 Has been detected\n");
459 goto identification_error
;
462 switch ((identity
->version
>> 5) & 0x7) {
464 dprintk("MP001 : 9090/8096\n");
467 dprintk("MP005 : Single Sband\n");
470 dprintk("MP008 : diversity VHF-UHF-LBAND\n");
473 dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND\n");
476 goto identification_error
;
479 switch (identity
->version
& 0x1f) {
481 dprintk("P1G_21R2 detected\n");
485 dprintk("P1G detected\n");
489 dprintk("P1D/E/F detected\n");
492 dprintk("P1C detected\n");
495 dprintk("P1-A/B detected: driver is deactivated - not available\n");
496 goto identification_error
;
499 goto identification_error
;
505 identification_error
:
509 static void dib0090_reset_digital(struct dvb_frontend
*fe
, const struct dib0090_config
*cfg
)
511 struct dib0090_state
*state
= fe
->tuner_priv
;
515 dib0090_write_reg(state
, 0x24, EN_PLL
| EN_CRYSTAL
);
519 dib0090_write_reg(state
, 0x1b, EN_DIGCLK
| EN_PLL
| EN_CRYSTAL
); /* PLL, DIG_CLK and CRYSTAL remain */
520 /* adcClkOutRatio=8->7, release reset */
521 dib0090_write_reg(state
, 0x20, ((cfg
->io
.adc_clock_ratio
- 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0);
522 if (cfg
->clkoutdrive
!= 0)
523 dib0090_write_reg(state
, 0x23, (0 << 15) | ((!cfg
->analog_output
) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
524 | (cfg
->clkoutdrive
<< 5) | (cfg
->clkouttobamse
<< 4) | (0 << 2) | (0));
526 dib0090_write_reg(state
, 0x23, (0 << 15) | ((!cfg
->analog_output
) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
527 | (7 << 5) | (cfg
->clkouttobamse
<< 4) | (0 << 2) | (0));
529 /* Read Pll current config * */
530 PllCfg
= dib0090_read_reg(state
, 0x21);
532 /** Reconfigure PLL if current setting is different from default setting **/
533 if ((PllCfg
& 0x1FFF) != ((cfg
->io
.pll_range
<< 12) | (cfg
->io
.pll_loopdiv
<< 6) | (cfg
->io
.pll_prediv
)) && (!cfg
->in_soc
)
534 && !cfg
->io
.pll_bypass
) {
536 /* Set Bypass mode */
538 dib0090_write_reg(state
, 0x21, PllCfg
);
541 PllCfg
&= ~(1 << 13);
542 dib0090_write_reg(state
, 0x21, PllCfg
);
544 /*** Set new Pll configuration in bypass and reset state ***/
545 PllCfg
= (1 << 15) | (0 << 13) | (cfg
->io
.pll_range
<< 12) | (cfg
->io
.pll_loopdiv
<< 6) | (cfg
->io
.pll_prediv
);
546 dib0090_write_reg(state
, 0x21, PllCfg
);
548 /* Remove Reset Pll */
550 dib0090_write_reg(state
, 0x21, PllCfg
);
552 /*** Wait for PLL lock ***/
555 v
= !!(dib0090_read_reg(state
, 0x1a) & 0x800);
561 dprintk("Pll: Unable to lock Pll\n");
565 /* Finally Remove Bypass mode */
566 PllCfg
&= ~(1 << 15);
567 dib0090_write_reg(state
, 0x21, PllCfg
);
570 if (cfg
->io
.pll_bypass
) {
571 PllCfg
|= (cfg
->io
.pll_bypass
<< 15);
572 dib0090_write_reg(state
, 0x21, PllCfg
);
576 static int dib0090_fw_reset_digital(struct dvb_frontend
*fe
, const struct dib0090_config
*cfg
)
578 struct dib0090_fw_state
*state
= fe
->tuner_priv
;
583 dprintk("fw reset digital\n");
586 dib0090_fw_write_reg(state
, 0x24, EN_PLL
| EN_CRYSTAL
);
587 dib0090_fw_write_reg(state
, 0x1b, EN_DIGCLK
| EN_PLL
| EN_CRYSTAL
); /* PLL, DIG_CLK and CRYSTAL remain */
589 dib0090_fw_write_reg(state
, 0x20,
590 ((cfg
->io
.adc_clock_ratio
- 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (cfg
->data_tx_drv
<< 4) | cfg
->ls_cfg_pad_drv
);
592 v
= (0 << 15) | ((!cfg
->analog_output
) << 14) | (1 << 9) | (0 << 8) | (cfg
->clkouttobamse
<< 4) | (0 << 2) | (0);
593 if (cfg
->clkoutdrive
!= 0)
594 v
|= cfg
->clkoutdrive
<< 5;
599 dib0090_fw_write_reg(state
, 0x23, v
);
601 /* Read Pll current config * */
602 PllCfg
= dib0090_fw_read_reg(state
, 0x21);
604 /** Reconfigure PLL if current setting is different from default setting **/
605 if ((PllCfg
& 0x1FFF) != ((cfg
->io
.pll_range
<< 12) | (cfg
->io
.pll_loopdiv
<< 6) | (cfg
->io
.pll_prediv
)) && !cfg
->io
.pll_bypass
) {
607 /* Set Bypass mode */
609 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
612 PllCfg
&= ~(1 << 13);
613 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
615 /*** Set new Pll configuration in bypass and reset state ***/
616 PllCfg
= (1 << 15) | (0 << 13) | (cfg
->io
.pll_range
<< 12) | (cfg
->io
.pll_loopdiv
<< 6) | (cfg
->io
.pll_prediv
);
617 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
619 /* Remove Reset Pll */
621 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
623 /*** Wait for PLL lock ***/
626 v
= !!(dib0090_fw_read_reg(state
, 0x1a) & 0x800);
632 dprintk("Pll: Unable to lock Pll\n");
636 /* Finally Remove Bypass mode */
637 PllCfg
&= ~(1 << 15);
638 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
641 if (cfg
->io
.pll_bypass
) {
642 PllCfg
|= (cfg
->io
.pll_bypass
<< 15);
643 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
646 return dib0090_fw_identify(fe
);
649 static int dib0090_wakeup(struct dvb_frontend
*fe
)
651 struct dib0090_state
*state
= fe
->tuner_priv
;
652 if (state
->config
->sleep
)
653 state
->config
->sleep(fe
, 0);
655 /* enable dataTX in case we have been restarted in the wrong moment */
656 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) | (1 << 14));
660 static int dib0090_sleep(struct dvb_frontend
*fe
)
662 struct dib0090_state
*state
= fe
->tuner_priv
;
663 if (state
->config
->sleep
)
664 state
->config
->sleep(fe
, 1);
668 void dib0090_dcc_freq(struct dvb_frontend
*fe
, u8 fast
)
670 struct dib0090_state
*state
= fe
->tuner_priv
;
672 dib0090_write_reg(state
, 0x04, 0);
674 dib0090_write_reg(state
, 0x04, 1);
677 EXPORT_SYMBOL(dib0090_dcc_freq
);
679 static const u16 bb_ramp_pwm_normal_socs
[] = {
680 550, /* max BB gain in 10th of dB */
681 (1<<9) | 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
683 (4 << 9) | 0, /* BB_RAMP3 = 26dB */
684 (0 << 9) | 208, /* BB_RAMP4 */
685 (4 << 9) | 208, /* BB_RAMP5 = 29dB */
686 (0 << 9) | 440, /* BB_RAMP6 */
689 static const u16 rf_ramp_pwm_cband_7090p
[] = {
690 280, /* max RF gain in 10th of dB */
691 18, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
692 504, /* ramp_max = maximum X used on the ramp */
693 (29 << 10) | 364, /* RF_RAMP5, LNA 1 = 8dB */
694 (0 << 10) | 504, /* RF_RAMP6, LNA 1 */
695 (60 << 10) | 228, /* RF_RAMP7, LNA 2 = 7.7dB */
696 (0 << 10) | 364, /* RF_RAMP8, LNA 2 */
697 (34 << 10) | 109, /* GAIN_4_1, LNA 3 = 6.8dB */
698 (0 << 10) | 228, /* GAIN_4_2, LNA 3 */
699 (37 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */
700 (0 << 10) | 109, /* RF_RAMP4, LNA 4 */
703 static const u16 rf_ramp_pwm_cband_7090e_sensitivity
[] = {
704 186, /* max RF gain in 10th of dB */
705 40, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
706 746, /* ramp_max = maximum X used on the ramp */
707 (10 << 10) | 345, /* RF_RAMP5, LNA 1 = 10dB */
708 (0 << 10) | 746, /* RF_RAMP6, LNA 1 */
709 (0 << 10) | 0, /* RF_RAMP7, LNA 2 = 0 dB */
710 (0 << 10) | 0, /* RF_RAMP8, LNA 2 */
711 (28 << 10) | 200, /* GAIN_4_1, LNA 3 = 6.8dB */ /* 3.61 dB */
712 (0 << 10) | 345, /* GAIN_4_2, LNA 3 */
713 (20 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ /* 4.96 dB */
714 (0 << 10) | 200, /* RF_RAMP4, LNA 4 */
717 static const u16 rf_ramp_pwm_cband_7090e_aci
[] = {
718 86, /* max RF gain in 10th of dB */
719 40, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
720 345, /* ramp_max = maximum X used on the ramp */
721 (0 << 10) | 0, /* RF_RAMP5, LNA 1 = 8dB */ /* 7.47 dB */
722 (0 << 10) | 0, /* RF_RAMP6, LNA 1 */
723 (0 << 10) | 0, /* RF_RAMP7, LNA 2 = 0 dB */
724 (0 << 10) | 0, /* RF_RAMP8, LNA 2 */
725 (28 << 10) | 200, /* GAIN_4_1, LNA 3 = 6.8dB */ /* 3.61 dB */
726 (0 << 10) | 345, /* GAIN_4_2, LNA 3 */
727 (20 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ /* 4.96 dB */
728 (0 << 10) | 200, /* RF_RAMP4, LNA 4 */
731 static const u16 rf_ramp_pwm_cband_8090
[] = {
732 345, /* max RF gain in 10th of dB */
733 29, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
734 1000, /* ramp_max = maximum X used on the ramp */
735 (35 << 10) | 772, /* RF_RAMP3, LNA 1 = 8dB */
736 (0 << 10) | 1000, /* RF_RAMP4, LNA 1 */
737 (58 << 10) | 496, /* RF_RAMP5, LNA 2 = 9.5dB */
738 (0 << 10) | 772, /* RF_RAMP6, LNA 2 */
739 (27 << 10) | 200, /* RF_RAMP7, LNA 3 = 10.5dB */
740 (0 << 10) | 496, /* RF_RAMP8, LNA 3 */
741 (40 << 10) | 0, /* GAIN_4_1, LNA 4 = 7dB */
742 (0 << 10) | 200, /* GAIN_4_2, LNA 4 */
745 static const u16 rf_ramp_pwm_uhf_7090
[] = {
746 407, /* max RF gain in 10th of dB */
747 13, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
748 529, /* ramp_max = maximum X used on the ramp */
749 (23 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
750 (0 << 10) | 176, /* RF_RAMP4, LNA 1 */
751 (63 << 10) | 400, /* RF_RAMP5, LNA 2 = 8dB */
752 (0 << 10) | 529, /* RF_RAMP6, LNA 2 */
753 (48 << 10) | 316, /* RF_RAMP7, LNA 3 = 6.8dB */
754 (0 << 10) | 400, /* RF_RAMP8, LNA 3 */
755 (29 << 10) | 176, /* GAIN_4_1, LNA 4 = 11.5dB */
756 (0 << 10) | 316, /* GAIN_4_2, LNA 4 */
759 static const u16 rf_ramp_pwm_uhf_8090
[] = {
760 388, /* max RF gain in 10th of dB */
761 26, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
762 1008, /* ramp_max = maximum X used on the ramp */
763 (11 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
764 (0 << 10) | 369, /* RF_RAMP4, LNA 1 */
765 (41 << 10) | 809, /* RF_RAMP5, LNA 2 = 8dB */
766 (0 << 10) | 1008, /* RF_RAMP6, LNA 2 */
767 (27 << 10) | 659, /* RF_RAMP7, LNA 3 = 6dB */
768 (0 << 10) | 809, /* RF_RAMP8, LNA 3 */
769 (14 << 10) | 369, /* GAIN_4_1, LNA 4 = 11.5dB */
770 (0 << 10) | 659, /* GAIN_4_2, LNA 4 */
773 /* GENERAL PWM ramp definition for all other Krosus */
774 static const u16 bb_ramp_pwm_normal
[] = {
775 500, /* max BB gain in 10th of dB */
776 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
778 (2 << 9) | 0, /* BB_RAMP3 = 21dB */
779 (0 << 9) | 168, /* BB_RAMP4 */
780 (2 << 9) | 168, /* BB_RAMP5 = 29dB */
781 (0 << 9) | 400, /* BB_RAMP6 */
785 /* Currently unused */
786 static const u16 bb_ramp_pwm_boost
[] = {
787 550, /* max BB gain in 10th of dB */
788 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
790 (2 << 9) | 0, /* BB_RAMP3 = 26dB */
791 (0 << 9) | 208, /* BB_RAMP4 */
792 (2 << 9) | 208, /* BB_RAMP5 = 29dB */
793 (0 << 9) | 440, /* BB_RAMP6 */
797 static const u16 rf_ramp_pwm_cband
[] = {
798 314, /* max RF gain in 10th of dB */
799 33, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
800 1023, /* ramp_max = maximum X used on the ramp */
801 (8 << 10) | 743, /* RF_RAMP3, LNA 1 = 0dB */
802 (0 << 10) | 1023, /* RF_RAMP4, LNA 1 */
803 (15 << 10) | 469, /* RF_RAMP5, LNA 2 = 0dB */
804 (0 << 10) | 742, /* RF_RAMP6, LNA 2 */
805 (9 << 10) | 234, /* RF_RAMP7, LNA 3 = 0dB */
806 (0 << 10) | 468, /* RF_RAMP8, LNA 3 */
807 (9 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
808 (0 << 10) | 233, /* GAIN_4_2, LNA 4 */
811 static const u16 rf_ramp_pwm_vhf
[] = {
812 398, /* max RF gain in 10th of dB */
813 24, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
814 954, /* ramp_max = maximum X used on the ramp */
815 (7 << 10) | 0, /* RF_RAMP3, LNA 1 = 13.2dB */
816 (0 << 10) | 290, /* RF_RAMP4, LNA 1 */
817 (16 << 10) | 699, /* RF_RAMP5, LNA 2 = 10.5dB */
818 (0 << 10) | 954, /* RF_RAMP6, LNA 2 */
819 (17 << 10) | 580, /* RF_RAMP7, LNA 3 = 5dB */
820 (0 << 10) | 699, /* RF_RAMP8, LNA 3 */
821 (7 << 10) | 290, /* GAIN_4_1, LNA 4 = 12.5dB */
822 (0 << 10) | 580, /* GAIN_4_2, LNA 4 */
825 static const u16 rf_ramp_pwm_uhf
[] = {
826 398, /* max RF gain in 10th of dB */
827 24, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
828 954, /* ramp_max = maximum X used on the ramp */
829 (7 << 10) | 0, /* RF_RAMP3, LNA 1 = 13.2dB */
830 (0 << 10) | 290, /* RF_RAMP4, LNA 1 */
831 (16 << 10) | 699, /* RF_RAMP5, LNA 2 = 10.5dB */
832 (0 << 10) | 954, /* RF_RAMP6, LNA 2 */
833 (17 << 10) | 580, /* RF_RAMP7, LNA 3 = 5dB */
834 (0 << 10) | 699, /* RF_RAMP8, LNA 3 */
835 (7 << 10) | 290, /* GAIN_4_1, LNA 4 = 12.5dB */
836 (0 << 10) | 580, /* GAIN_4_2, LNA 4 */
840 /* Currently unused */
841 static const u16 rf_ramp_pwm_sband
[] = {
842 253, /* max RF gain in 10th of dB */
843 38, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
845 (4 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.1dB */
846 (0 << 10) | 508, /* RF_RAMP4, LNA 1 */
847 (9 << 10) | 508, /* RF_RAMP5, LNA 2 = 11.2dB */
848 (0 << 10) | 961, /* RF_RAMP6, LNA 2 */
849 (0 << 10) | 0, /* RF_RAMP7, LNA 3 = 0dB */
850 (0 << 10) | 0, /* RF_RAMP8, LNA 3 */
851 (0 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
852 (0 << 10) | 0, /* GAIN_4_2, LNA 4 */
860 static u16
slopes_to_scale(const struct slope
*slopes
, u8 num
, s16 val
)
865 for (i
= 0; i
< num
; i
++) {
866 if (val
> slopes
[i
].range
)
867 rest
= slopes
[i
].range
;
870 ret
+= (rest
* slopes
[i
].slope
) / slopes
[i
].range
;
876 static const struct slope dib0090_wbd_slopes
[3] = {
877 {66, 120}, /* -64,-52: offset - 65 */
878 {600, 170}, /* -52,-35: 65 - 665 */
879 {170, 250}, /* -45,-10: 665 - 835 */
882 static s16
dib0090_wbd_to_db(struct dib0090_state
*state
, u16 wbd
)
885 if (wbd
< state
->wbd_offset
)
888 wbd
-= state
->wbd_offset
;
889 /* -64dB is the floor */
890 return -640 + (s16
) slopes_to_scale(dib0090_wbd_slopes
, ARRAY_SIZE(dib0090_wbd_slopes
), wbd
);
893 static void dib0090_wbd_target(struct dib0090_state
*state
, u32 rf
)
897 /* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */
899 if (state
->current_band
== BAND_VHF
)
901 #ifndef FIRMWARE_FIREFLY
902 if (state
->current_band
== BAND_VHF
)
903 offset
= state
->config
->wbd_vhf_offset
;
904 if (state
->current_band
== BAND_CBAND
)
905 offset
= state
->config
->wbd_cband_offset
;
908 state
->wbd_target
= dib0090_wbd_to_db(state
, state
->wbd_offset
+ offset
);
909 dprintk("wbd-target: %d dB\n", (u32
) state
->wbd_target
);
912 static const int gain_reg_addr
[4] = {
913 0x08, 0x0a, 0x0f, 0x01
916 static void dib0090_gain_apply(struct dib0090_state
*state
, s16 gain_delta
, s16 top_delta
, u8 force
)
919 u16 i
, v
, gain_reg
[4] = { 0 }, gain
;
922 if (top_delta
< -511)
928 top_delta
*= (1 << WBD_ALPHA
);
929 gain_delta
*= (1 << GAIN_ALPHA
);
932 if (top_delta
>= ((s16
) (state
->rf_ramp
[0] << WBD_ALPHA
) - state
->rf_gain_limit
)) /* overflow */
933 state
->rf_gain_limit
= state
->rf_ramp
[0] << WBD_ALPHA
;
935 state
->rf_gain_limit
+= top_delta
;
937 if (state
->rf_gain_limit
< 0) /*underflow */
938 state
->rf_gain_limit
= 0;
940 /* use gain as a temporary variable and correct current_gain */
941 gain
= ((state
->rf_gain_limit
>> WBD_ALPHA
) + state
->bb_ramp
[0]) << GAIN_ALPHA
;
942 if (gain_delta
>= ((s16
) gain
- state
->current_gain
)) /* overflow */
943 state
->current_gain
= gain
;
945 state
->current_gain
+= gain_delta
;
946 /* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */
947 if (state
->current_gain
< 0)
948 state
->current_gain
= 0;
950 /* now split total gain to rf and bb gain */
951 gain
= state
->current_gain
>> GAIN_ALPHA
;
953 /* requested gain is bigger than rf gain limit - ACI/WBD adjustment */
954 if (gain
> (state
->rf_gain_limit
>> WBD_ALPHA
)) {
955 rf
= state
->rf_gain_limit
>> WBD_ALPHA
;
957 if (bb
> state
->bb_ramp
[0])
958 bb
= state
->bb_ramp
[0];
959 } else { /* high signal level -> all gains put on RF */
968 /* Start with RF gains */
969 g
= state
->rf_ramp
+ 1; /* point on RF LNA1 max gain */
971 for (i
= 0; i
< 7; i
++) { /* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */
972 if (g
[0] == 0 || ref
< (g
[1] - g
[0])) /* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */
973 v
= 0; /* force the gain to write for the current amp to be null */
974 else if (ref
>= g
[1]) /* Gain to set is higher than the high working point of this amp */
975 v
= g
[2]; /* force this amp to be full gain */
976 else /* compute the value to set to this amp because we are somewhere in his range */
977 v
= ((ref
- (g
[1] - g
[0])) * g
[2]) / g
[0];
979 if (i
== 0) /* LNA 1 reg mapping */
981 else if (i
== 1) /* LNA 2 reg mapping */
982 gain_reg
[0] |= v
<< 7;
983 else if (i
== 2) /* LNA 3 reg mapping */
985 else if (i
== 3) /* LNA 4 reg mapping */
986 gain_reg
[1] |= v
<< 7;
987 else if (i
== 4) /* CBAND LNA reg mapping */
988 gain_reg
[2] = v
| state
->rf_lt_def
;
989 else if (i
== 5) /* BB gain 1 reg mapping */
990 gain_reg
[3] = v
<< 3;
991 else if (i
== 6) /* BB gain 2 reg mapping */
992 gain_reg
[3] |= v
<< 8;
994 g
+= 3; /* go to next gain bloc */
996 /* When RF is finished, start with BB */
998 g
= state
->bb_ramp
+ 1; /* point on BB gain 1 max gain */
1002 gain_reg
[3] |= state
->bb_1_def
;
1003 gain_reg
[3] |= ((bb
% 10) * 100) / 125;
1006 dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x\n", rf
, bb
, rf
+ bb
,
1007 gain_reg
[0], gain_reg
[1], gain_reg
[2], gain_reg
[3]);
1010 /* Write the amplifier regs */
1011 for (i
= 0; i
< 4; i
++) {
1013 if (force
|| state
->gain_reg
[i
] != v
) {
1014 state
->gain_reg
[i
] = v
;
1015 dib0090_write_reg(state
, gain_reg_addr
[i
], v
);
1020 static void dib0090_set_boost(struct dib0090_state
*state
, int onoff
)
1022 state
->bb_1_def
&= 0xdfff;
1023 state
->bb_1_def
|= onoff
<< 13;
1026 static void dib0090_set_rframp(struct dib0090_state
*state
, const u16
* cfg
)
1028 state
->rf_ramp
= cfg
;
1031 static void dib0090_set_rframp_pwm(struct dib0090_state
*state
, const u16
* cfg
)
1033 state
->rf_ramp
= cfg
;
1035 dib0090_write_reg(state
, 0x2a, 0xffff);
1037 dprintk("total RF gain: %ddB, step: %d\n", (u32
) cfg
[0], dib0090_read_reg(state
, 0x2a));
1039 dib0090_write_regs(state
, 0x2c, cfg
+ 3, 6);
1040 dib0090_write_regs(state
, 0x3e, cfg
+ 9, 2);
1043 static void dib0090_set_bbramp(struct dib0090_state
*state
, const u16
* cfg
)
1045 state
->bb_ramp
= cfg
;
1046 dib0090_set_boost(state
, cfg
[0] > 500); /* we want the boost if the gain is higher that 50dB */
1049 static void dib0090_set_bbramp_pwm(struct dib0090_state
*state
, const u16
* cfg
)
1051 state
->bb_ramp
= cfg
;
1053 dib0090_set_boost(state
, cfg
[0] > 500); /* we want the boost if the gain is higher that 50dB */
1055 dib0090_write_reg(state
, 0x33, 0xffff);
1056 dprintk("total BB gain: %ddB, step: %d\n", (u32
) cfg
[0], dib0090_read_reg(state
, 0x33));
1057 dib0090_write_regs(state
, 0x35, cfg
+ 3, 4);
1060 void dib0090_pwm_gain_reset(struct dvb_frontend
*fe
)
1062 struct dib0090_state
*state
= fe
->tuner_priv
;
1063 const u16
*bb_ramp
= bb_ramp_pwm_normal
; /* default baseband config */
1064 const u16
*rf_ramp
= NULL
;
1065 u8 en_pwm_rf_mux
= 1;
1068 if (state
->config
->use_pwm_agc
) {
1069 if (state
->current_band
== BAND_CBAND
) {
1070 if (state
->identity
.in_soc
) {
1071 bb_ramp
= bb_ramp_pwm_normal_socs
;
1072 if (state
->identity
.version
== SOC_8090_P1G_11R1
|| state
->identity
.version
== SOC_8090_P1G_21R1
)
1073 rf_ramp
= rf_ramp_pwm_cband_8090
;
1074 else if (state
->identity
.version
== SOC_7090_P1G_11R1
|| state
->identity
.version
== SOC_7090_P1G_21R1
) {
1075 if (state
->config
->is_dib7090e
) {
1076 if (state
->rf_ramp
== NULL
)
1077 rf_ramp
= rf_ramp_pwm_cband_7090e_sensitivity
;
1079 rf_ramp
= state
->rf_ramp
;
1081 rf_ramp
= rf_ramp_pwm_cband_7090p
;
1084 rf_ramp
= rf_ramp_pwm_cband
;
1087 if (state
->current_band
== BAND_VHF
) {
1088 if (state
->identity
.in_soc
) {
1089 bb_ramp
= bb_ramp_pwm_normal_socs
;
1090 /* rf_ramp = &rf_ramp_pwm_vhf_socs; */ /* TODO */
1092 rf_ramp
= rf_ramp_pwm_vhf
;
1093 } else if (state
->current_band
== BAND_UHF
) {
1094 if (state
->identity
.in_soc
) {
1095 bb_ramp
= bb_ramp_pwm_normal_socs
;
1096 if (state
->identity
.version
== SOC_8090_P1G_11R1
|| state
->identity
.version
== SOC_8090_P1G_21R1
)
1097 rf_ramp
= rf_ramp_pwm_uhf_8090
;
1098 else if (state
->identity
.version
== SOC_7090_P1G_11R1
|| state
->identity
.version
== SOC_7090_P1G_21R1
)
1099 rf_ramp
= rf_ramp_pwm_uhf_7090
;
1101 rf_ramp
= rf_ramp_pwm_uhf
;
1104 dib0090_set_rframp_pwm(state
, rf_ramp
);
1105 dib0090_set_bbramp_pwm(state
, bb_ramp
);
1107 /* activate the ramp generator using PWM control */
1109 dprintk("ramp RF gain = %d BAND = %s version = %d\n",
1111 (state
->current_band
== BAND_CBAND
) ? "CBAND" : "NOT CBAND",
1112 state
->identity
.version
& 0x1f);
1114 if (rf_ramp
&& ((state
->rf_ramp
&& state
->rf_ramp
[0] == 0) ||
1115 (state
->current_band
== BAND_CBAND
&&
1116 (state
->identity
.version
& 0x1f) <= P1D_E_F
))) {
1117 dprintk("DE-Engage mux for direct gain reg control\n");
1120 dprintk("Engage mux for PWM control\n");
1122 dib0090_write_reg(state
, 0x32, (en_pwm_rf_mux
<< 12) | (en_pwm_rf_mux
<< 11));
1124 /* Set fast servo cutoff to start AGC; 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast*/
1125 if (state
->identity
.version
== SOC_7090_P1G_11R1
|| state
->identity
.version
== SOC_7090_P1G_21R1
)
1126 dib0090_write_reg(state
, 0x04, 3);
1128 dib0090_write_reg(state
, 0x04, 1);
1129 dib0090_write_reg(state
, 0x39, (1 << 10)); /* 0 gain by default */
1132 EXPORT_SYMBOL(dib0090_pwm_gain_reset
);
1134 void dib0090_set_dc_servo(struct dvb_frontend
*fe
, u8 DC_servo_cutoff
)
1136 struct dib0090_state
*state
= fe
->tuner_priv
;
1137 if (DC_servo_cutoff
< 4)
1138 dib0090_write_reg(state
, 0x04, DC_servo_cutoff
);
1140 EXPORT_SYMBOL(dib0090_set_dc_servo
);
1142 static u32
dib0090_get_slow_adc_val(struct dib0090_state
*state
)
1144 u16 adc_val
= dib0090_read_reg(state
, 0x1d);
1145 if (state
->identity
.in_soc
)
1150 int dib0090_gain_control(struct dvb_frontend
*fe
)
1152 struct dib0090_state
*state
= fe
->tuner_priv
;
1153 enum frontend_tune_state
*tune_state
= &state
->tune_state
;
1157 u8 apply_gain_immediatly
= 1;
1158 s16 wbd_error
= 0, adc_error
= 0;
1160 if (*tune_state
== CT_AGC_START
) {
1161 state
->agc_freeze
= 0;
1162 dib0090_write_reg(state
, 0x04, 0x0);
1164 #ifdef CONFIG_BAND_SBAND
1165 if (state
->current_band
== BAND_SBAND
) {
1166 dib0090_set_rframp(state
, rf_ramp_sband
);
1167 dib0090_set_bbramp(state
, bb_ramp_boost
);
1170 #ifdef CONFIG_BAND_VHF
1171 if (state
->current_band
== BAND_VHF
&& !state
->identity
.p1g
) {
1172 dib0090_set_rframp(state
, rf_ramp_pwm_vhf
);
1173 dib0090_set_bbramp(state
, bb_ramp_pwm_normal
);
1176 #ifdef CONFIG_BAND_CBAND
1177 if (state
->current_band
== BAND_CBAND
&& !state
->identity
.p1g
) {
1178 dib0090_set_rframp(state
, rf_ramp_pwm_cband
);
1179 dib0090_set_bbramp(state
, bb_ramp_pwm_normal
);
1182 if ((state
->current_band
== BAND_CBAND
|| state
->current_band
== BAND_VHF
) && state
->identity
.p1g
) {
1183 dib0090_set_rframp(state
, rf_ramp_pwm_cband_7090p
);
1184 dib0090_set_bbramp(state
, bb_ramp_pwm_normal_socs
);
1186 dib0090_set_rframp(state
, rf_ramp_pwm_uhf
);
1187 dib0090_set_bbramp(state
, bb_ramp_pwm_normal
);
1190 dib0090_write_reg(state
, 0x32, 0);
1191 dib0090_write_reg(state
, 0x39, 0);
1193 dib0090_wbd_target(state
, state
->current_rf
);
1195 state
->rf_gain_limit
= state
->rf_ramp
[0] << WBD_ALPHA
;
1196 state
->current_gain
= ((state
->rf_ramp
[0] + state
->bb_ramp
[0]) / 2) << GAIN_ALPHA
;
1198 *tune_state
= CT_AGC_STEP_0
;
1199 } else if (!state
->agc_freeze
) {
1200 s16 wbd
= 0, i
, cnt
;
1203 wbd_val
= dib0090_get_slow_adc_val(state
);
1205 if (*tune_state
== CT_AGC_STEP_0
)
1210 for (i
= 0; i
< cnt
; i
++) {
1211 wbd_val
= dib0090_get_slow_adc_val(state
);
1212 wbd
+= dib0090_wbd_to_db(state
, wbd_val
);
1215 wbd_error
= state
->wbd_target
- wbd
;
1217 if (*tune_state
== CT_AGC_STEP_0
) {
1218 if (wbd_error
< 0 && state
->rf_gain_limit
> 0 && !state
->identity
.p1g
) {
1219 #ifdef CONFIG_BAND_CBAND
1220 /* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */
1221 u8 ltg2
= (state
->rf_lt_def
>> 10) & 0x7;
1222 if (state
->current_band
== BAND_CBAND
&& ltg2
) {
1224 state
->rf_lt_def
&= ltg2
<< 10; /* reduce in 3 steps from 7 to 0 */
1228 state
->agc_step
= 0;
1229 *tune_state
= CT_AGC_STEP_1
;
1232 /* calc the adc power */
1233 adc
= state
->config
->get_adc_power(fe
);
1234 adc
= (adc
* ((s32
) 355774) + (((s32
) 1) << 20)) >> 21; /* included in [0:-700] */
1236 adc_error
= (s16
) (((s32
) ADC_TARGET
) - adc
);
1237 #ifdef CONFIG_STANDARD_DAB
1238 if (state
->fe
->dtv_property_cache
.delivery_system
== STANDARD_DAB
)
1241 #ifdef CONFIG_STANDARD_DVBT
1242 if (state
->fe
->dtv_property_cache
.delivery_system
== STANDARD_DVBT
&&
1243 (state
->fe
->dtv_property_cache
.modulation
== QAM_64
|| state
->fe
->dtv_property_cache
.modulation
== QAM_16
))
1246 #ifdef CONFIG_SYS_ISDBT
1247 if ((state
->fe
->dtv_property_cache
.delivery_system
== SYS_ISDBT
) && (((state
->fe
->dtv_property_cache
.layer
[0].segment_count
>
1250 ((state
->fe
->dtv_property_cache
.layer
[0].modulation
==
1252 || (state
->fe
->dtv_property_cache
.
1253 layer
[0].modulation
== QAM_16
)))
1255 ((state
->fe
->dtv_property_cache
.layer
[1].segment_count
>
1258 ((state
->fe
->dtv_property_cache
.layer
[1].modulation
==
1260 || (state
->fe
->dtv_property_cache
.
1261 layer
[1].modulation
== QAM_16
)))
1263 ((state
->fe
->dtv_property_cache
.layer
[2].segment_count
>
1266 ((state
->fe
->dtv_property_cache
.layer
[2].modulation
==
1268 || (state
->fe
->dtv_property_cache
.
1269 layer
[2].modulation
== QAM_16
)))
1275 if (*tune_state
== CT_AGC_STEP_1
) { /* quickly go to the correct range of the ADC power */
1276 if (abs(adc_error
) < 50 || state
->agc_step
++ > 5) {
1278 #ifdef CONFIG_STANDARD_DAB
1279 if (state
->fe
->dtv_property_cache
.delivery_system
== STANDARD_DAB
) {
1280 dib0090_write_reg(state
, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63)); /* cap value = 63 : narrow BB filter : Fc = 1.8MHz */
1281 dib0090_write_reg(state
, 0x04, 0x0);
1285 dib0090_write_reg(state
, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32));
1286 dib0090_write_reg(state
, 0x04, 0x01); /*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */
1289 *tune_state
= CT_AGC_STOP
;
1292 /* everything higher than or equal to CT_AGC_STOP means tracking */
1293 ret
= 100; /* 10ms interval */
1294 apply_gain_immediatly
= 0;
1299 ("tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm",
1300 (u32
) *tune_state
, (u32
) adc
, (u32
) adc_error
, (u32
) wbd
, (u32
) wbd_error
, (u32
) wbd_val
,
1301 (u32
) state
->rf_gain_limit
>> WBD_ALPHA
, (s32
) 200 + adc
- (state
->current_gain
>> GAIN_ALPHA
));
1306 if (!state
->agc_freeze
)
1307 dib0090_gain_apply(state
, adc_error
, wbd_error
, apply_gain_immediatly
);
1311 EXPORT_SYMBOL(dib0090_gain_control
);
1313 void dib0090_get_current_gain(struct dvb_frontend
*fe
, u16
* rf
, u16
* bb
, u16
* rf_gain_limit
, u16
* rflt
)
1315 struct dib0090_state
*state
= fe
->tuner_priv
;
1317 *rf
= state
->gain
[0];
1319 *bb
= state
->gain
[1];
1321 *rf_gain_limit
= state
->rf_gain_limit
;
1323 *rflt
= (state
->rf_lt_def
>> 10) & 0x7;
1326 EXPORT_SYMBOL(dib0090_get_current_gain
);
1328 u16
dib0090_get_wbd_target(struct dvb_frontend
*fe
)
1330 struct dib0090_state
*state
= fe
->tuner_priv
;
1331 u32 f_MHz
= state
->fe
->dtv_property_cache
.frequency
/ 1000000;
1332 s32 current_temp
= state
->temperature
;
1333 s32 wbd_thot
, wbd_tcold
;
1334 const struct dib0090_wbd_slope
*wbd
= state
->current_wbd_table
;
1336 while (f_MHz
> wbd
->max_freq
)
1339 dprintk("using wbd-table-entry with max freq %d\n", wbd
->max_freq
);
1341 if (current_temp
< 0)
1343 if (current_temp
> 128)
1346 state
->wbdmux
&= ~(7 << 13);
1347 if (wbd
->wbd_gain
!= 0)
1348 state
->wbdmux
|= (wbd
->wbd_gain
<< 13);
1350 state
->wbdmux
|= (4 << 13);
1352 dib0090_write_reg(state
, 0x10, state
->wbdmux
);
1354 wbd_thot
= wbd
->offset_hot
- (((u32
) wbd
->slope_hot
* f_MHz
) >> 6);
1355 wbd_tcold
= wbd
->offset_cold
- (((u32
) wbd
->slope_cold
* f_MHz
) >> 6);
1357 wbd_tcold
+= ((wbd_thot
- wbd_tcold
) * current_temp
) >> 7;
1359 state
->wbd_target
= dib0090_wbd_to_db(state
, state
->wbd_offset
+ wbd_tcold
);
1360 dprintk("wbd-target: %d dB\n", (u32
) state
->wbd_target
);
1361 dprintk("wbd offset applied is %d\n", wbd_tcold
);
1363 return state
->wbd_offset
+ wbd_tcold
;
1365 EXPORT_SYMBOL(dib0090_get_wbd_target
);
1367 u16
dib0090_get_wbd_offset(struct dvb_frontend
*fe
)
1369 struct dib0090_state
*state
= fe
->tuner_priv
;
1370 return state
->wbd_offset
;
1372 EXPORT_SYMBOL(dib0090_get_wbd_offset
);
1374 int dib0090_set_switch(struct dvb_frontend
*fe
, u8 sw1
, u8 sw2
, u8 sw3
)
1376 struct dib0090_state
*state
= fe
->tuner_priv
;
1378 dib0090_write_reg(state
, 0x0b, (dib0090_read_reg(state
, 0x0b) & 0xfff8)
1379 | ((sw3
& 1) << 2) | ((sw2
& 1) << 1) | (sw1
& 1));
1383 EXPORT_SYMBOL(dib0090_set_switch
);
1385 int dib0090_set_vga(struct dvb_frontend
*fe
, u8 onoff
)
1387 struct dib0090_state
*state
= fe
->tuner_priv
;
1389 dib0090_write_reg(state
, 0x09, (dib0090_read_reg(state
, 0x09) & 0x7fff)
1390 | ((onoff
& 1) << 15));
1393 EXPORT_SYMBOL(dib0090_set_vga
);
1395 int dib0090_update_rframp_7090(struct dvb_frontend
*fe
, u8 cfg_sensitivity
)
1397 struct dib0090_state
*state
= fe
->tuner_priv
;
1399 if ((!state
->identity
.p1g
) || (!state
->identity
.in_soc
)
1400 || ((state
->identity
.version
!= SOC_7090_P1G_21R1
)
1401 && (state
->identity
.version
!= SOC_7090_P1G_11R1
))) {
1402 dprintk("%s() function can only be used for dib7090P\n", __func__
);
1406 if (cfg_sensitivity
)
1407 state
->rf_ramp
= rf_ramp_pwm_cband_7090e_sensitivity
;
1409 state
->rf_ramp
= rf_ramp_pwm_cband_7090e_aci
;
1410 dib0090_pwm_gain_reset(fe
);
1414 EXPORT_SYMBOL(dib0090_update_rframp_7090
);
1416 static const u16 dib0090_defaults
[] = {
1456 EN_UHF
| EN_CRYSTAL
,
1464 static const u16 dib0090_p1g_additionnal_defaults
[] = {
1479 static void dib0090_set_default_config(struct dib0090_state
*state
, const u16
* n
)
1483 l
= pgm_read_word(n
++);
1485 r
= pgm_read_word(n
++);
1487 dib0090_write_reg(state
, r
, pgm_read_word(n
++));
1490 l
= pgm_read_word(n
++);
1494 #define CAP_VALUE_MIN (u8) 9
1495 #define CAP_VALUE_MAX (u8) 40
1496 #define HR_MIN (u8) 25
1497 #define HR_MAX (u8) 40
1498 #define POLY_MIN (u8) 0
1499 #define POLY_MAX (u8) 8
1501 static void dib0090_set_EFUSE(struct dib0090_state
*state
)
1507 e2
= dib0090_read_reg(state
, 0x26);
1508 e4
= dib0090_read_reg(state
, 0x28);
1510 if ((state
->identity
.version
== P1D_E_F
) ||
1511 (state
->identity
.version
== P1G
) || (e2
== 0xffff)) {
1513 dib0090_write_reg(state
, 0x22, 0x10);
1514 cal
= (dib0090_read_reg(state
, 0x22) >> 6) & 0x3ff;
1516 if ((cal
< 670) || (cal
== 1023))
1518 n
= 165 - ((cal
* 10)>>6) ;
1519 e2
= e4
= (3<<12) | (34<<6) | (n
);
1523 e2
&= e4
; /* Remove the redundancy */
1527 n
= (e2
>> 12) & 0xf;
1528 h
= (e2
>> 6) & 0x3f;
1530 if ((c
>= CAP_VALUE_MAX
) || (c
<= CAP_VALUE_MIN
))
1534 if ((h
>= HR_MAX
) || (h
<= HR_MIN
))
1536 if ((n
>= POLY_MAX
) || (n
<= POLY_MIN
))
1539 dib0090_write_reg(state
, 0x13, (h
<< 10));
1540 e2
= (n
<< 11) | ((h
>> 2)<<6) | c
;
1541 dib0090_write_reg(state
, 0x2, e2
); /* Load the BB_2 */
1545 static int dib0090_reset(struct dvb_frontend
*fe
)
1547 struct dib0090_state
*state
= fe
->tuner_priv
;
1549 dib0090_reset_digital(fe
, state
->config
);
1550 if (dib0090_identify(fe
) < 0)
1553 #ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT
1554 if (!(state
->identity
.version
& 0x1)) /* it is P1B - reset is already done */
1558 if (!state
->identity
.in_soc
) {
1559 if ((dib0090_read_reg(state
, 0x1a) >> 5) & 0x2)
1560 dib0090_write_reg(state
, 0x1b, (EN_IQADC
| EN_BB
| EN_BIAS
| EN_DIGCLK
| EN_PLL
| EN_CRYSTAL
));
1562 dib0090_write_reg(state
, 0x1b, (EN_DIGCLK
| EN_PLL
| EN_CRYSTAL
));
1565 dib0090_set_default_config(state
, dib0090_defaults
);
1567 if (state
->identity
.in_soc
)
1568 dib0090_write_reg(state
, 0x18, 0x2910); /* charge pump current = 0 */
1570 if (state
->identity
.p1g
)
1571 dib0090_set_default_config(state
, dib0090_p1g_additionnal_defaults
);
1573 /* Update the efuse : Only available for KROSUS > P1C and SOC as well*/
1574 if (((state
->identity
.version
& 0x1f) >= P1D_E_F
) || (state
->identity
.in_soc
))
1575 dib0090_set_EFUSE(state
);
1577 /* Congigure in function of the crystal */
1578 if (state
->config
->force_crystal_mode
!= 0)
1579 dib0090_write_reg(state
, 0x14,
1580 state
->config
->force_crystal_mode
& 3);
1581 else if (state
->config
->io
.clock_khz
>= 24000)
1582 dib0090_write_reg(state
, 0x14, 1);
1584 dib0090_write_reg(state
, 0x14, 2);
1585 dprintk("Pll lock : %d\n", (dib0090_read_reg(state
, 0x1a) >> 11) & 0x1);
1587 state
->calibrate
= DC_CAL
| WBD_CAL
| TEMP_CAL
; /* enable iq-offset-calibration and wbd-calibration when tuning next time */
1592 #define steps(u) (((u) > 15) ? ((u)-16) : (u))
1593 #define INTERN_WAIT 10
1594 static int dib0090_get_offset(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
1596 int ret
= INTERN_WAIT
* 10;
1598 switch (*tune_state
) {
1599 case CT_TUNER_STEP_2
:
1600 /* Turns to positive */
1601 dib0090_write_reg(state
, 0x1f, 0x7);
1602 *tune_state
= CT_TUNER_STEP_3
;
1605 case CT_TUNER_STEP_3
:
1606 state
->adc_diff
= dib0090_read_reg(state
, 0x1d);
1608 /* Turns to negative */
1609 dib0090_write_reg(state
, 0x1f, 0x4);
1610 *tune_state
= CT_TUNER_STEP_4
;
1613 case CT_TUNER_STEP_4
:
1614 state
->adc_diff
-= dib0090_read_reg(state
, 0x1d);
1615 *tune_state
= CT_TUNER_STEP_5
;
1626 struct dc_calibration
{
1634 static const struct dc_calibration dc_table
[] = {
1635 /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
1636 {0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1},
1637 {0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0},
1638 /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
1639 {0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1},
1640 {0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0},
1644 static const struct dc_calibration dc_p1g_table
[] = {
1645 /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
1646 /* addr ; trim reg offset ; pga ; CTRL_BB1 value ; i or q */
1647 {0x06, 5, 1, (1 << 13) | (0 << 8) | (15 << 3), 1},
1648 {0x07, 11, 1, (1 << 13) | (0 << 8) | (15 << 3), 0},
1649 /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
1650 {0x06, 0, 0, (1 << 13) | (29 << 8) | (15 << 3), 1},
1651 {0x06, 10, 0, (1 << 13) | (29 << 8) | (15 << 3), 0},
1655 static void dib0090_set_trim(struct dib0090_state
*state
)
1659 if (state
->dc
->addr
== 0x07)
1664 *val
&= ~(0x1f << state
->dc
->offset
);
1665 *val
|= state
->step
<< state
->dc
->offset
;
1667 dib0090_write_reg(state
, state
->dc
->addr
, *val
);
1670 static int dib0090_dc_offset_calibration(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
1675 switch (*tune_state
) {
1676 case CT_TUNER_START
:
1677 dprintk("Start DC offset calibration");
1679 /* force vcm2 = 0.8V */
1681 state
->bb7
= 0x040d;
1683 /* the LNA AND LO are off */
1684 reg
= dib0090_read_reg(state
, 0x24) & 0x0ffb; /* shutdown lna and lo */
1685 dib0090_write_reg(state
, 0x24, reg
);
1687 state
->wbdmux
= dib0090_read_reg(state
, 0x10);
1688 dib0090_write_reg(state
, 0x10, (state
->wbdmux
& ~(0xff << 3)) | (0x7 << 3) | 0x3);
1689 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) & ~(1 << 14));
1691 state
->dc
= dc_table
;
1693 if (state
->identity
.p1g
)
1694 state
->dc
= dc_p1g_table
;
1697 case CT_TUNER_STEP_0
:
1698 dprintk("Start/continue DC calibration for %s path\n",
1699 (state
->dc
->i
== 1) ? "I" : "Q");
1700 dib0090_write_reg(state
, 0x01, state
->dc
->bb1
);
1701 dib0090_write_reg(state
, 0x07, state
->bb7
| (state
->dc
->i
<< 7));
1704 state
->min_adc_diff
= 1023;
1705 *tune_state
= CT_TUNER_STEP_1
;
1709 case CT_TUNER_STEP_1
:
1710 dib0090_set_trim(state
);
1711 *tune_state
= CT_TUNER_STEP_2
;
1714 case CT_TUNER_STEP_2
:
1715 case CT_TUNER_STEP_3
:
1716 case CT_TUNER_STEP_4
:
1717 ret
= dib0090_get_offset(state
, tune_state
);
1720 case CT_TUNER_STEP_5
: /* found an offset */
1721 dprintk("adc_diff = %d, current step= %d\n", (u32
) state
->adc_diff
, state
->step
);
1722 if (state
->step
== 0 && state
->adc_diff
< 0) {
1723 state
->min_adc_diff
= -1023;
1724 dprintk("Change of sign of the minimum adc diff\n");
1727 dprintk("adc_diff = %d, min_adc_diff = %d current_step = %d\n", state
->adc_diff
, state
->min_adc_diff
, state
->step
);
1729 /* first turn for this frequency */
1730 if (state
->step
== 0) {
1731 if (state
->dc
->pga
&& state
->adc_diff
< 0)
1733 if (state
->dc
->pga
== 0 && state
->adc_diff
> 0)
1737 /* Look for a change of Sign in the Adc_diff.min_adc_diff is used to STORE the setp N-1 */
1738 if ((state
->adc_diff
& 0x8000) == (state
->min_adc_diff
& 0x8000) && steps(state
->step
) < 15) {
1739 /* stop search when the delta the sign is changing and Steps =15 and Step=0 is force for continuance */
1741 state
->min_adc_diff
= state
->adc_diff
;
1742 *tune_state
= CT_TUNER_STEP_1
;
1744 /* the minimum was what we have seen in the step before */
1745 if (abs(state
->adc_diff
) > abs(state
->min_adc_diff
)) {
1746 dprintk("Since adc_diff N = %d > adc_diff step N-1 = %d, Come back one step\n", state
->adc_diff
, state
->min_adc_diff
);
1750 dib0090_set_trim(state
);
1751 dprintk("BB Offset Cal, BBreg=%u,Offset=%d,Value Set=%d\n",
1752 state
->dc
->addr
, state
->adc_diff
, state
->step
);
1755 if (state
->dc
->addr
== 0) /* done */
1756 *tune_state
= CT_TUNER_STEP_6
;
1758 *tune_state
= CT_TUNER_STEP_0
;
1763 case CT_TUNER_STEP_6
:
1764 dib0090_write_reg(state
, 0x07, state
->bb7
& ~0x0008);
1765 dib0090_write_reg(state
, 0x1f, 0x7);
1766 *tune_state
= CT_TUNER_START
; /* reset done -> real tuning can now begin */
1767 state
->calibrate
&= ~DC_CAL
;
1774 static int dib0090_wbd_calibration(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
1777 const struct dib0090_wbd_slope
*wbd
= state
->current_wbd_table
;
1779 switch (*tune_state
) {
1780 case CT_TUNER_START
:
1781 while (state
->current_rf
/ 1000 > wbd
->max_freq
)
1783 if (wbd
->wbd_gain
!= 0)
1784 wbd_gain
= wbd
->wbd_gain
;
1787 #if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND)
1788 if ((state
->current_band
== BAND_LBAND
) || (state
->current_band
== BAND_SBAND
))
1793 if (wbd_gain
== state
->wbd_calibration_gain
) { /* the WBD calibration has already been done */
1794 *tune_state
= CT_TUNER_START
;
1795 state
->calibrate
&= ~WBD_CAL
;
1799 dib0090_write_reg(state
, 0x10, 0x1b81 | (1 << 10) | (wbd_gain
<< 13) | (1 << 3));
1801 dib0090_write_reg(state
, 0x24, ((EN_UHF
& 0x0fff) | (1 << 1)));
1802 *tune_state
= CT_TUNER_STEP_0
;
1803 state
->wbd_calibration_gain
= wbd_gain
;
1804 return 90; /* wait for the WBDMUX to switch and for the ADC to sample */
1806 case CT_TUNER_STEP_0
:
1807 state
->wbd_offset
= dib0090_get_slow_adc_val(state
);
1808 dprintk("WBD calibration offset = %d\n", state
->wbd_offset
);
1809 *tune_state
= CT_TUNER_START
; /* reset done -> real tuning can now begin */
1810 state
->calibrate
&= ~WBD_CAL
;
1819 static void dib0090_set_bandwidth(struct dib0090_state
*state
)
1823 if (state
->fe
->dtv_property_cache
.bandwidth_hz
/ 1000 <= 5000)
1825 else if (state
->fe
->dtv_property_cache
.bandwidth_hz
/ 1000 <= 6000)
1827 else if (state
->fe
->dtv_property_cache
.bandwidth_hz
/ 1000 <= 7000)
1832 state
->bb_1_def
&= 0x3fff;
1833 state
->bb_1_def
|= tmp
;
1835 dib0090_write_reg(state
, 0x01, state
->bb_1_def
); /* be sure that we have the right bb-filter */
1837 dib0090_write_reg(state
, 0x03, 0x6008); /* = 0x6008 : vcm3_trim = 1 ; filter2_gm1_trim = 8 ; filter2_cutoff_freq = 0 */
1838 dib0090_write_reg(state
, 0x04, 0x1); /* 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast */
1839 if (state
->identity
.in_soc
) {
1840 dib0090_write_reg(state
, 0x05, 0x9bcf); /* attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 1 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 15 */
1842 dib0090_write_reg(state
, 0x02, (5 << 11) | (8 << 6) | (22 & 0x3f)); /* 22 = cap_value */
1843 dib0090_write_reg(state
, 0x05, 0xabcd); /* = 0xabcd : attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 2 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 13 */
1847 static const struct dib0090_pll dib0090_pll_table
[] = {
1848 #ifdef CONFIG_BAND_CBAND
1849 {56000, 0, 9, 48, 6},
1850 {70000, 1, 9, 48, 6},
1851 {87000, 0, 8, 32, 4},
1852 {105000, 1, 8, 32, 4},
1853 {115000, 0, 7, 24, 6},
1854 {140000, 1, 7, 24, 6},
1855 {170000, 0, 6, 16, 4},
1857 #ifdef CONFIG_BAND_VHF
1858 {200000, 1, 6, 16, 4},
1859 {230000, 0, 5, 12, 6},
1860 {280000, 1, 5, 12, 6},
1861 {340000, 0, 4, 8, 4},
1862 {380000, 1, 4, 8, 4},
1863 {450000, 0, 3, 6, 6},
1865 #ifdef CONFIG_BAND_UHF
1866 {580000, 1, 3, 6, 6},
1867 {700000, 0, 2, 4, 4},
1868 {860000, 1, 2, 4, 4},
1870 #ifdef CONFIG_BAND_LBAND
1871 {1800000, 1, 0, 2, 4},
1873 #ifdef CONFIG_BAND_SBAND
1874 {2900000, 0, 14, 1, 4},
1878 static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband
[] = {
1880 #ifdef CONFIG_BAND_CBAND
1881 {184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1882 {227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1883 {380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1885 #ifdef CONFIG_BAND_UHF
1886 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1887 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1888 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1889 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1890 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1891 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1893 #ifdef CONFIG_BAND_LBAND
1894 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1895 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1896 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1898 #ifdef CONFIG_BAND_SBAND
1899 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD
},
1900 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD
},
1904 static const struct dib0090_tuning dib0090_tuning_table
[] = {
1906 #ifdef CONFIG_BAND_CBAND
1907 {170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1909 #ifdef CONFIG_BAND_VHF
1910 {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1911 {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1912 {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1914 #ifdef CONFIG_BAND_UHF
1915 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1916 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1917 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1918 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1919 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1920 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1922 #ifdef CONFIG_BAND_LBAND
1923 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1924 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1925 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1927 #ifdef CONFIG_BAND_SBAND
1928 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD
},
1929 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD
},
1933 static const struct dib0090_tuning dib0090_p1g_tuning_table
[] = {
1934 #ifdef CONFIG_BAND_CBAND
1935 {170000, 4, 1, 0x820f, 0x300, 0x2d22, 0x82cb, EN_CAB
},
1937 #ifdef CONFIG_BAND_VHF
1938 {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1939 {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1940 {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1942 #ifdef CONFIG_BAND_UHF
1943 {510000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1944 {540000, 2, 1, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1945 {600000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1946 {630000, 2, 4, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1947 {680000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1948 {720000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1949 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1951 #ifdef CONFIG_BAND_LBAND
1952 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1953 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1954 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1956 #ifdef CONFIG_BAND_SBAND
1957 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD
},
1958 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD
},
1962 static const struct dib0090_pll dib0090_p1g_pll_table
[] = {
1963 #ifdef CONFIG_BAND_CBAND
1964 {57000, 0, 11, 48, 6},
1965 {70000, 1, 11, 48, 6},
1966 {86000, 0, 10, 32, 4},
1967 {105000, 1, 10, 32, 4},
1968 {115000, 0, 9, 24, 6},
1969 {140000, 1, 9, 24, 6},
1970 {170000, 0, 8, 16, 4},
1972 #ifdef CONFIG_BAND_VHF
1973 {200000, 1, 8, 16, 4},
1974 {230000, 0, 7, 12, 6},
1975 {280000, 1, 7, 12, 6},
1976 {340000, 0, 6, 8, 4},
1977 {380000, 1, 6, 8, 4},
1978 {455000, 0, 5, 6, 6},
1980 #ifdef CONFIG_BAND_UHF
1981 {580000, 1, 5, 6, 6},
1982 {680000, 0, 4, 4, 4},
1983 {860000, 1, 4, 4, 4},
1985 #ifdef CONFIG_BAND_LBAND
1986 {1800000, 1, 2, 2, 4},
1988 #ifdef CONFIG_BAND_SBAND
1989 {2900000, 0, 1, 1, 6},
1993 static const struct dib0090_tuning dib0090_p1g_tuning_table_fm_vhf_on_cband
[] = {
1994 #ifdef CONFIG_BAND_CBAND
1995 {184000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB
},
1996 {227000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB
},
1997 {380000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB
},
1999 #ifdef CONFIG_BAND_UHF
2000 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
2001 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
2002 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
2003 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
2004 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
2005 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
2007 #ifdef CONFIG_BAND_LBAND
2008 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
2009 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
2010 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
2012 #ifdef CONFIG_BAND_SBAND
2013 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD
},
2014 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD
},
2018 static const struct dib0090_tuning dib0090_tuning_table_cband_7090
[] = {
2019 #ifdef CONFIG_BAND_CBAND
2020 {300000, 4, 3, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB
},
2021 {380000, 4, 10, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB
},
2022 {570000, 4, 10, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB
},
2023 {858000, 4, 5, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB
},
2027 static const struct dib0090_tuning dib0090_tuning_table_cband_7090e_sensitivity
[] = {
2028 #ifdef CONFIG_BAND_CBAND
2029 { 300000, 0 , 3, 0x8105, 0x2c0, 0x2d12, 0xb84e, EN_CAB
},
2030 { 380000, 0 , 10, 0x810F, 0x2c0, 0x2d12, 0xb84e, EN_CAB
},
2031 { 600000, 0 , 10, 0x815E, 0x280, 0x2d12, 0xb84e, EN_CAB
},
2032 { 660000, 0 , 5, 0x85E3, 0x280, 0x2d12, 0xb84e, EN_CAB
},
2033 { 720000, 0 , 5, 0x852E, 0x280, 0x2d12, 0xb84e, EN_CAB
},
2034 { 860000, 0 , 4, 0x85E5, 0x280, 0x2d12, 0xb84e, EN_CAB
},
2038 int dib0090_update_tuning_table_7090(struct dvb_frontend
*fe
,
2041 struct dib0090_state
*state
= fe
->tuner_priv
;
2042 const struct dib0090_tuning
*tune
=
2043 dib0090_tuning_table_cband_7090e_sensitivity
;
2044 static const struct dib0090_tuning dib0090_tuning_table_cband_7090e_aci
[] = {
2045 { 300000, 0 , 3, 0x8165, 0x2c0, 0x2d12, 0xb84e, EN_CAB
},
2046 { 650000, 0 , 4, 0x815B, 0x280, 0x2d12, 0xb84e, EN_CAB
},
2047 { 860000, 0 , 5, 0x84EF, 0x280, 0x2d12, 0xb84e, EN_CAB
},
2050 if ((!state
->identity
.p1g
) || (!state
->identity
.in_soc
)
2051 || ((state
->identity
.version
!= SOC_7090_P1G_21R1
)
2052 && (state
->identity
.version
!= SOC_7090_P1G_11R1
))) {
2053 dprintk("%s() function can only be used for dib7090\n", __func__
);
2057 if (cfg_sensitivity
)
2058 tune
= dib0090_tuning_table_cband_7090e_sensitivity
;
2060 tune
= dib0090_tuning_table_cband_7090e_aci
;
2062 while (state
->rf_request
> tune
->max_freq
)
2065 dib0090_write_reg(state
, 0x09, (dib0090_read_reg(state
, 0x09) & 0x8000)
2066 | (tune
->lna_bias
& 0x7fff));
2067 dib0090_write_reg(state
, 0x0b, (dib0090_read_reg(state
, 0x0b) & 0xf83f)
2068 | ((tune
->lna_tune
<< 6) & 0x07c0));
2071 EXPORT_SYMBOL(dib0090_update_tuning_table_7090
);
2073 static int dib0090_captrim_search(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
2081 u8 force_soft_search
= 0;
2083 if (state
->identity
.version
== SOC_8090_P1G_11R1
|| state
->identity
.version
== SOC_8090_P1G_21R1
)
2084 force_soft_search
= 1;
2086 if (*tune_state
== CT_TUNER_START
) {
2087 dprintk("Start Captrim search : %s\n",
2088 (force_soft_search
== 1) ? "FORCE SOFT SEARCH" : "AUTO");
2089 dib0090_write_reg(state
, 0x10, 0x2B1);
2090 dib0090_write_reg(state
, 0x1e, 0x0032);
2092 if (!state
->tuner_is_tuned
) {
2093 /* prepare a complete captrim */
2094 if (!state
->identity
.p1g
|| force_soft_search
)
2095 state
->step
= state
->captrim
= state
->fcaptrim
= 64;
2097 state
->current_rf
= state
->rf_request
;
2098 } else { /* we are already tuned to this frequency - the configuration is correct */
2099 if (!state
->identity
.p1g
|| force_soft_search
) {
2100 /* do a minimal captrim even if the frequency has not changed */
2102 state
->captrim
= state
->fcaptrim
= dib0090_read_reg(state
, 0x18) & 0x7f;
2105 state
->adc_diff
= 3000;
2106 *tune_state
= CT_TUNER_STEP_0
;
2108 } else if (*tune_state
== CT_TUNER_STEP_0
) {
2109 if (state
->identity
.p1g
&& !force_soft_search
) {
2112 dib0090_write_reg(state
, 0x40, (3 << 7) | (ratio
<< 2) | (1 << 1) | 1);
2113 dib0090_read_reg(state
, 0x40);
2117 dib0090_write_reg(state
, 0x18, lo4
| state
->captrim
);
2119 if (state
->identity
.in_soc
)
2122 *tune_state
= CT_TUNER_STEP_1
;
2124 } else if (*tune_state
== CT_TUNER_STEP_1
) {
2125 if (state
->identity
.p1g
&& !force_soft_search
) {
2126 dib0090_write_reg(state
, 0x40, 0x18c | (0 << 1) | 0);
2127 dib0090_read_reg(state
, 0x40);
2129 state
->fcaptrim
= dib0090_read_reg(state
, 0x18) & 0x7F;
2130 dprintk("***Final Captrim= 0x%x\n", state
->fcaptrim
);
2131 *tune_state
= CT_TUNER_STEP_3
;
2134 /* MERGE for all krosus before P1G */
2135 adc
= dib0090_get_slow_adc_val(state
);
2136 dprintk("CAPTRIM=%d; ADC = %d (ADC) & %dmV\n", (u32
) state
->captrim
, (u32
) adc
, (u32
) (adc
) * (u32
) 1800 / (u32
) 1024);
2138 if (state
->rest
== 0 || state
->identity
.in_soc
) { /* Just for 8090P SOCS where auto captrim HW bug : TO CHECK IN ACI for SOCS !!! if 400 for 8090p SOC => tune issue !!! */
2143 if (adc
>= adc_target
) {
2147 adc
= adc_target
- adc
;
2151 if (adc
< state
->adc_diff
) {
2152 dprintk("CAPTRIM=%d is closer to target (%d/%d)\n", (u32
) state
->captrim
, (u32
) adc
, (u32
) state
->adc_diff
);
2153 state
->adc_diff
= adc
;
2154 state
->fcaptrim
= state
->captrim
;
2157 state
->captrim
+= step_sign
* state
->step
;
2158 if (state
->step
>= 1)
2159 *tune_state
= CT_TUNER_STEP_0
;
2161 *tune_state
= CT_TUNER_STEP_2
;
2165 } else if (*tune_state
== CT_TUNER_STEP_2
) { /* this step is only used by krosus < P1G */
2166 /*write the final cptrim config */
2167 dib0090_write_reg(state
, 0x18, lo4
| state
->fcaptrim
);
2169 *tune_state
= CT_TUNER_STEP_3
;
2171 } else if (*tune_state
== CT_TUNER_STEP_3
) {
2172 state
->calibrate
&= ~CAPTRIM_CAL
;
2173 *tune_state
= CT_TUNER_STEP_0
;
2179 static int dib0090_get_temperature(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
2184 switch (*tune_state
) {
2185 case CT_TUNER_START
:
2186 state
->wbdmux
= dib0090_read_reg(state
, 0x10);
2187 dib0090_write_reg(state
, 0x10, (state
->wbdmux
& ~(0xff << 3)) | (0x8 << 3));
2189 state
->bias
= dib0090_read_reg(state
, 0x13);
2190 dib0090_write_reg(state
, 0x13, state
->bias
| (0x3 << 8));
2192 *tune_state
= CT_TUNER_STEP_0
;
2193 /* wait for the WBDMUX to switch and for the ADC to sample */
2196 case CT_TUNER_STEP_0
:
2197 state
->adc_diff
= dib0090_get_slow_adc_val(state
);
2198 dib0090_write_reg(state
, 0x13, (state
->bias
& ~(0x3 << 8)) | (0x2 << 8));
2199 *tune_state
= CT_TUNER_STEP_1
;
2202 case CT_TUNER_STEP_1
:
2203 val
= dib0090_get_slow_adc_val(state
);
2204 state
->temperature
= ((s16
) ((val
- state
->adc_diff
) * 180) >> 8) + 55;
2206 dprintk("temperature: %d C\n", state
->temperature
- 30);
2208 *tune_state
= CT_TUNER_STEP_2
;
2211 case CT_TUNER_STEP_2
:
2212 dib0090_write_reg(state
, 0x13, state
->bias
);
2213 dib0090_write_reg(state
, 0x10, state
->wbdmux
); /* write back original WBDMUX */
2215 *tune_state
= CT_TUNER_START
;
2216 state
->calibrate
&= ~TEMP_CAL
;
2217 if (state
->config
->analog_output
== 0)
2218 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) | (1 << 14));
2229 #define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */
2230 static int dib0090_tune(struct dvb_frontend
*fe
)
2232 struct dib0090_state
*state
= fe
->tuner_priv
;
2233 const struct dib0090_tuning
*tune
= state
->current_tune_table_index
;
2234 const struct dib0090_pll
*pll
= state
->current_pll_table_index
;
2235 enum frontend_tune_state
*tune_state
= &state
->tune_state
;
2237 u16 lo5
, lo6
, Den
, tmp
;
2238 u32 FBDiv
, Rest
, FREF
, VCOF_kHz
= 0;
2239 int ret
= 10; /* 1ms is the default delay most of the time */
2242 /************************* VCO ***************************/
2243 /* Default values for FG */
2244 /* from these are needed : */
2245 /* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv */
2247 /* in any case we first need to do a calibration if needed */
2248 if (*tune_state
== CT_TUNER_START
) {
2249 /* deactivate DataTX before some calibrations */
2250 if (state
->calibrate
& (DC_CAL
| TEMP_CAL
| WBD_CAL
))
2251 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) & ~(1 << 14));
2253 /* Activate DataTX in case a calibration has been done before */
2254 if (state
->config
->analog_output
== 0)
2255 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) | (1 << 14));
2258 if (state
->calibrate
& DC_CAL
)
2259 return dib0090_dc_offset_calibration(state
, tune_state
);
2260 else if (state
->calibrate
& WBD_CAL
) {
2261 if (state
->current_rf
== 0)
2262 state
->current_rf
= state
->fe
->dtv_property_cache
.frequency
/ 1000;
2263 return dib0090_wbd_calibration(state
, tune_state
);
2264 } else if (state
->calibrate
& TEMP_CAL
)
2265 return dib0090_get_temperature(state
, tune_state
);
2266 else if (state
->calibrate
& CAPTRIM_CAL
)
2267 return dib0090_captrim_search(state
, tune_state
);
2269 if (*tune_state
== CT_TUNER_START
) {
2270 /* if soc and AGC pwm control, disengage mux to be able to R/W access to 0x01 register to set the right filter (cutoff_freq_select) during the tune sequence, otherwise, SOC SERPAR error when accessing to 0x01 */
2271 if (state
->config
->use_pwm_agc
&& state
->identity
.in_soc
) {
2272 tmp
= dib0090_read_reg(state
, 0x39);
2273 if ((tmp
>> 10) & 0x1)
2274 dib0090_write_reg(state
, 0x39, tmp
& ~(1 << 10));
2277 state
->current_band
= (u8
) BAND_OF_FREQUENCY(state
->fe
->dtv_property_cache
.frequency
/ 1000);
2279 state
->fe
->dtv_property_cache
.frequency
/ 1000 + (state
->current_band
==
2280 BAND_UHF
? state
->config
->freq_offset_khz_uhf
: state
->config
->
2281 freq_offset_khz_vhf
);
2283 /* in ISDB-T 1seg we shift tuning frequency */
2284 if ((state
->fe
->dtv_property_cache
.delivery_system
== SYS_ISDBT
&& state
->fe
->dtv_property_cache
.isdbt_sb_mode
== 1
2285 && state
->fe
->dtv_property_cache
.isdbt_partial_reception
== 0)) {
2286 const struct dib0090_low_if_offset_table
*LUT_offset
= state
->config
->low_if
;
2287 u8 found_offset
= 0;
2288 u32 margin_khz
= 100;
2290 if (LUT_offset
!= NULL
) {
2291 while (LUT_offset
->RF_freq
!= 0xffff) {
2292 if (((state
->rf_request
> (LUT_offset
->RF_freq
- margin_khz
))
2293 && (state
->rf_request
< (LUT_offset
->RF_freq
+ margin_khz
)))
2294 && LUT_offset
->std
== state
->fe
->dtv_property_cache
.delivery_system
) {
2295 state
->rf_request
+= LUT_offset
->offset_khz
;
2303 if (found_offset
== 0)
2304 state
->rf_request
+= 400;
2306 if (state
->current_rf
!= state
->rf_request
|| (state
->current_standard
!= state
->fe
->dtv_property_cache
.delivery_system
)) {
2307 state
->tuner_is_tuned
= 0;
2308 state
->current_rf
= 0;
2309 state
->current_standard
= 0;
2311 tune
= dib0090_tuning_table
;
2312 if (state
->identity
.p1g
)
2313 tune
= dib0090_p1g_tuning_table
;
2315 tmp
= (state
->identity
.version
>> 5) & 0x7;
2317 if (state
->identity
.in_soc
) {
2318 if (state
->config
->force_cband_input
) { /* Use the CBAND input for all band */
2319 if (state
->current_band
& BAND_CBAND
|| state
->current_band
& BAND_FM
|| state
->current_band
& BAND_VHF
2320 || state
->current_band
& BAND_UHF
) {
2321 state
->current_band
= BAND_CBAND
;
2322 if (state
->config
->is_dib7090e
)
2323 tune
= dib0090_tuning_table_cband_7090e_sensitivity
;
2325 tune
= dib0090_tuning_table_cband_7090
;
2327 } else { /* Use the CBAND input for all band under UHF */
2328 if (state
->current_band
& BAND_CBAND
|| state
->current_band
& BAND_FM
|| state
->current_band
& BAND_VHF
) {
2329 state
->current_band
= BAND_CBAND
;
2330 if (state
->config
->is_dib7090e
)
2331 tune
= dib0090_tuning_table_cband_7090e_sensitivity
;
2333 tune
= dib0090_tuning_table_cband_7090
;
2337 if (tmp
== 0x4 || tmp
== 0x7) {
2338 /* CBAND tuner version for VHF */
2339 if (state
->current_band
== BAND_FM
|| state
->current_band
== BAND_CBAND
|| state
->current_band
== BAND_VHF
) {
2340 state
->current_band
= BAND_CBAND
; /* Force CBAND */
2342 tune
= dib0090_tuning_table_fm_vhf_on_cband
;
2343 if (state
->identity
.p1g
)
2344 tune
= dib0090_p1g_tuning_table_fm_vhf_on_cband
;
2348 pll
= dib0090_pll_table
;
2349 if (state
->identity
.p1g
)
2350 pll
= dib0090_p1g_pll_table
;
2352 /* Look for the interval */
2353 while (state
->rf_request
> tune
->max_freq
)
2355 while (state
->rf_request
> pll
->max_freq
)
2358 state
->current_tune_table_index
= tune
;
2359 state
->current_pll_table_index
= pll
;
2361 dib0090_write_reg(state
, 0x0b, 0xb800 | (tune
->switch_trim
));
2363 VCOF_kHz
= (pll
->hfdiv
* state
->rf_request
) * 2;
2365 FREF
= state
->config
->io
.clock_khz
;
2366 if (state
->config
->fref_clock_ratio
!= 0)
2367 FREF
/= state
->config
->fref_clock_ratio
;
2369 FBDiv
= (VCOF_kHz
/ pll
->topresc
/ FREF
);
2370 Rest
= (VCOF_kHz
/ pll
->topresc
) - FBDiv
* FREF
;
2374 else if (Rest
< 2 * LPF
)
2376 else if (Rest
> (FREF
- LPF
)) {
2379 } else if (Rest
> (FREF
- 2 * LPF
))
2380 Rest
= FREF
- 2 * LPF
;
2381 Rest
= (Rest
* 6528) / (FREF
/ 10);
2384 /* external loop filter, otherwise:
2385 * lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4;
2396 else if (state
->config
->analog_output
)
2402 if (state
->identity
.p1g
) { /* Bias is done automatically in P1G */
2403 if (state
->identity
.in_soc
) {
2404 if (state
->identity
.version
== SOC_8090_P1G_11R1
)
2412 lo5
|= (pll
->hfdiv_code
<< 11) | (pll
->vco_band
<< 7); /* bit 15 is the split to the slave, we do not do it here */
2414 if (!state
->config
->io
.pll_int_loop_filt
) {
2415 if (state
->identity
.in_soc
)
2417 else if (state
->identity
.p1g
|| (Rest
== 0))
2422 lo6
= (state
->config
->io
.pll_int_loop_filt
<< 3);
2427 lo6
|= (1 << 2) | 2;
2430 dib0090_write_reg(state
, 0x15, (u16
) FBDiv
);
2431 if (state
->config
->fref_clock_ratio
!= 0)
2432 dib0090_write_reg(state
, 0x16, (Den
<< 8) | state
->config
->fref_clock_ratio
);
2434 dib0090_write_reg(state
, 0x16, (Den
<< 8) | 1);
2435 dib0090_write_reg(state
, 0x17, (u16
) Rest
);
2436 dib0090_write_reg(state
, 0x19, lo5
);
2437 dib0090_write_reg(state
, 0x1c, lo6
);
2439 lo6
= tune
->tuner_enable
;
2440 if (state
->config
->analog_output
)
2441 lo6
= (lo6
& 0xff9f) | 0x2;
2443 dib0090_write_reg(state
, 0x24, lo6
| EN_LO
| state
->config
->use_pwm_agc
* EN_CRYSTAL
);
2447 state
->current_rf
= state
->rf_request
;
2448 state
->current_standard
= state
->fe
->dtv_property_cache
.delivery_system
;
2451 state
->calibrate
= CAPTRIM_CAL
; /* captrim search now */
2454 else if (*tune_state
== CT_TUNER_STEP_0
) { /* Warning : because of captrim cal, if you change this step, change it also in _cal.c file because it is the step following captrim cal state machine */
2455 const struct dib0090_wbd_slope
*wbd
= state
->current_wbd_table
;
2457 while (state
->current_rf
/ 1000 > wbd
->max_freq
)
2460 dib0090_write_reg(state
, 0x1e, 0x07ff);
2461 dprintk("Final Captrim: %d\n", (u32
) state
->fcaptrim
);
2462 dprintk("HFDIV code: %d\n", (u32
) pll
->hfdiv_code
);
2463 dprintk("VCO = %d\n", (u32
) pll
->vco_band
);
2464 dprintk("VCOF in kHz: %d ((%d*%d) << 1))\n", (u32
) ((pll
->hfdiv
* state
->rf_request
) * 2), (u32
) pll
->hfdiv
, (u32
) state
->rf_request
);
2465 dprintk("REFDIV: %d, FREF: %d\n", (u32
) 1, (u32
) state
->config
->io
.clock_khz
);
2466 dprintk("FBDIV: %d, Rest: %d\n", (u32
) dib0090_read_reg(state
, 0x15), (u32
) dib0090_read_reg(state
, 0x17));
2467 dprintk("Num: %d, Den: %d, SD: %d\n", (u32
) dib0090_read_reg(state
, 0x17), (u32
) (dib0090_read_reg(state
, 0x16) >> 8),
2468 (u32
) dib0090_read_reg(state
, 0x1c) & 0x3);
2470 #define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */
2474 if (wbd
->wbd_gain
!= 0)
2477 state
->wbdmux
= (c
<< 13) | (i
<< 11) | (WBD
| (state
->config
->use_pwm_agc
<< 1));
2478 dib0090_write_reg(state
, 0x10, state
->wbdmux
);
2480 if ((tune
->tuner_enable
== EN_CAB
) && state
->identity
.p1g
) {
2481 dprintk("P1G : The cable band is selected and lna_tune = %d\n", tune
->lna_tune
);
2482 dib0090_write_reg(state
, 0x09, tune
->lna_bias
);
2483 dib0090_write_reg(state
, 0x0b, 0xb800 | (tune
->lna_tune
<< 6) | (tune
->switch_trim
));
2485 dib0090_write_reg(state
, 0x09, (tune
->lna_tune
<< 5) | tune
->lna_bias
);
2487 dib0090_write_reg(state
, 0x0c, tune
->v2i
);
2488 dib0090_write_reg(state
, 0x0d, tune
->mix
);
2489 dib0090_write_reg(state
, 0x0e, tune
->load
);
2490 *tune_state
= CT_TUNER_STEP_1
;
2492 } else if (*tune_state
== CT_TUNER_STEP_1
) {
2493 /* initialize the lt gain register */
2494 state
->rf_lt_def
= 0x7c00;
2496 dib0090_set_bandwidth(state
);
2497 state
->tuner_is_tuned
= 1;
2499 state
->calibrate
|= WBD_CAL
;
2500 state
->calibrate
|= TEMP_CAL
;
2501 *tune_state
= CT_TUNER_STOP
;
2503 ret
= FE_CALLBACK_TIME_NEVER
;
2507 static void dib0090_release(struct dvb_frontend
*fe
)
2509 kfree(fe
->tuner_priv
);
2510 fe
->tuner_priv
= NULL
;
2513 enum frontend_tune_state
dib0090_get_tune_state(struct dvb_frontend
*fe
)
2515 struct dib0090_state
*state
= fe
->tuner_priv
;
2517 return state
->tune_state
;
2520 EXPORT_SYMBOL(dib0090_get_tune_state
);
2522 int dib0090_set_tune_state(struct dvb_frontend
*fe
, enum frontend_tune_state tune_state
)
2524 struct dib0090_state
*state
= fe
->tuner_priv
;
2526 state
->tune_state
= tune_state
;
2530 EXPORT_SYMBOL(dib0090_set_tune_state
);
2532 static int dib0090_get_frequency(struct dvb_frontend
*fe
, u32
* frequency
)
2534 struct dib0090_state
*state
= fe
->tuner_priv
;
2536 *frequency
= 1000 * state
->current_rf
;
2540 static int dib0090_set_params(struct dvb_frontend
*fe
)
2542 struct dib0090_state
*state
= fe
->tuner_priv
;
2545 state
->tune_state
= CT_TUNER_START
;
2548 ret
= dib0090_tune(fe
);
2549 if (ret
== FE_CALLBACK_TIME_NEVER
)
2553 * Despite dib0090_tune returns time at a 0.1 ms range,
2554 * the actual sleep time depends on CONFIG_HZ. The worse case
2555 * is when CONFIG_HZ=100. In such case, the minimum granularity
2556 * is 10ms. On some real field tests, the tuner sometimes don't
2557 * lock when this timer is lower than 10ms. So, enforce a 10ms
2558 * granularity and use usleep_range() instead of msleep().
2560 ret
= 10 * (ret
+ 99)/100;
2561 usleep_range(ret
* 1000, (ret
+ 1) * 1000);
2562 } while (state
->tune_state
!= CT_TUNER_STOP
);
2567 static const struct dvb_tuner_ops dib0090_ops
= {
2569 .name
= "DiBcom DiB0090",
2570 .frequency_min_hz
= 45 * MHz
,
2571 .frequency_max_hz
= 860 * MHz
,
2572 .frequency_step_hz
= 1 * kHz
,
2574 .release
= dib0090_release
,
2576 .init
= dib0090_wakeup
,
2577 .sleep
= dib0090_sleep
,
2578 .set_params
= dib0090_set_params
,
2579 .get_frequency
= dib0090_get_frequency
,
2582 static const struct dvb_tuner_ops dib0090_fw_ops
= {
2584 .name
= "DiBcom DiB0090",
2585 .frequency_min_hz
= 45 * MHz
,
2586 .frequency_max_hz
= 860 * MHz
,
2587 .frequency_step_hz
= 1 * kHz
,
2589 .release
= dib0090_release
,
2594 .get_frequency
= NULL
,
2597 static const struct dib0090_wbd_slope dib0090_wbd_table_default
[] = {
2598 {470, 0, 250, 0, 100, 4},
2599 {860, 51, 866, 21, 375, 4},
2600 {1700, 0, 800, 0, 850, 4},
2601 {2900, 0, 250, 0, 100, 6},
2602 {0xFFFF, 0, 0, 0, 0, 0},
2605 struct dvb_frontend
*dib0090_register(struct dvb_frontend
*fe
, struct i2c_adapter
*i2c
, const struct dib0090_config
*config
)
2607 struct dib0090_state
*st
= kzalloc(sizeof(struct dib0090_state
), GFP_KERNEL
);
2611 st
->config
= config
;
2614 mutex_init(&st
->i2c_buffer_lock
);
2615 fe
->tuner_priv
= st
;
2617 if (config
->wbd
== NULL
)
2618 st
->current_wbd_table
= dib0090_wbd_table_default
;
2620 st
->current_wbd_table
= config
->wbd
;
2622 if (dib0090_reset(fe
) != 0)
2625 pr_info("DiB0090: successfully identified\n");
2626 memcpy(&fe
->ops
.tuner_ops
, &dib0090_ops
, sizeof(struct dvb_tuner_ops
));
2631 fe
->tuner_priv
= NULL
;
2635 EXPORT_SYMBOL(dib0090_register
);
2637 struct dvb_frontend
*dib0090_fw_register(struct dvb_frontend
*fe
, struct i2c_adapter
*i2c
, const struct dib0090_config
*config
)
2639 struct dib0090_fw_state
*st
= kzalloc(sizeof(struct dib0090_fw_state
), GFP_KERNEL
);
2643 st
->config
= config
;
2646 mutex_init(&st
->i2c_buffer_lock
);
2647 fe
->tuner_priv
= st
;
2649 if (dib0090_fw_reset_digital(fe
, st
->config
) != 0)
2652 dprintk("DiB0090 FW: successfully identified\n");
2653 memcpy(&fe
->ops
.tuner_ops
, &dib0090_fw_ops
, sizeof(struct dvb_tuner_ops
));
2658 fe
->tuner_priv
= NULL
;
2661 EXPORT_SYMBOL(dib0090_fw_register
);
2663 MODULE_AUTHOR("Patrick Boettcher <patrick.boettcher@posteo.de>");
2664 MODULE_AUTHOR("Olivier Grenie <olivier.grenie@parrot.com>");
2665 MODULE_DESCRIPTION("Driver for the DiBcom 0090 base-band RF Tuner");
2666 MODULE_LICENSE("GPL");