treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / media / pci / cx18 / cx18-av-audio.c
blobee2b802d2895997a211e28732c08dfd5d049c499
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * cx18 ADEC audio functions
5 * Derived from cx25840-audio.c
7 * Copyright (C) 2007 Hans Verkuil <hverkuil@xs4all.nl>
8 * Copyright (C) 2008 Andy Walls <awalls@md.metrocast.net>
9 */
11 #include "cx18-driver.h"
13 static int set_audclk_freq(struct cx18 *cx, u32 freq)
15 struct cx18_av_state *state = &cx->av_state;
17 if (freq != 32000 && freq != 44100 && freq != 48000)
18 return -EINVAL;
21 * The PLL parameters are based on the external crystal frequency that
22 * would ideally be:
24 * NTSC Color subcarrier freq * 8 =
25 * 4.5 MHz/286 * 455/2 * 8 = 28.63636363... MHz
27 * The accidents of history and rationale that explain from where this
28 * combination of magic numbers originate can be found in:
30 * [1] Abrahams, I. C., "Choice of Chrominance Subcarrier Frequency in
31 * the NTSC Standards", Proceedings of the I-R-E, January 1954, pp 79-80
33 * [2] Abrahams, I. C., "The 'Frequency Interleaving' Principle in the
34 * NTSC Standards", Proceedings of the I-R-E, January 1954, pp 81-83
36 * As Mike Bradley has rightly pointed out, it's not the exact crystal
37 * frequency that matters, only that all parts of the driver and
38 * firmware are using the same value (close to the ideal value).
40 * Since I have a strong suspicion that, if the firmware ever assumes a
41 * crystal value at all, it will assume 28.636360 MHz, the crystal
42 * freq used in calculations in this driver will be:
44 * xtal_freq = 28.636360 MHz
46 * an error of less than 0.13 ppm which is way, way better than any off
47 * the shelf crystal will have for accuracy anyway.
49 * Below I aim to run the PLLs' VCOs near 400 MHz to minimze error.
51 * Many thanks to Jeff Campbell and Mike Bradley for their extensive
52 * investigation, experimentation, testing, and suggested solutions of
53 * of audio/video sync problems with SVideo and CVBS captures.
56 if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
57 switch (freq) {
58 case 32000:
60 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
61 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
63 cx18_av_write4(cx, 0x108, 0x200d040f);
65 /* VID_PLL Fraction = 0x2be2fe */
66 /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
67 cx18_av_write4(cx, 0x10c, 0x002be2fe);
69 /* AUX_PLL Fraction = 0x176740c */
70 /* xtal * 0xd.bb3a060/0x20 = 32000 * 384: 393 MHz p-pd*/
71 cx18_av_write4(cx, 0x110, 0x0176740c);
73 /* src3/4/6_ctl */
74 /* 0x1.f77f = (4 * xtal/8*2/455) / 32000 */
75 cx18_av_write4(cx, 0x900, 0x0801f77f);
76 cx18_av_write4(cx, 0x904, 0x0801f77f);
77 cx18_av_write4(cx, 0x90c, 0x0801f77f);
79 /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
80 cx18_av_write(cx, 0x127, 0x60);
82 /* AUD_COUNT = 0x2fff = 8 samples * 4 * 384 - 1 */
83 cx18_av_write4(cx, 0x12c, 0x11202fff);
86 * EN_AV_LOCK = 0
87 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
88 * ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
90 cx18_av_write4(cx, 0x128, 0xa00d2ef8);
91 break;
93 case 44100:
95 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
96 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x18
98 cx18_av_write4(cx, 0x108, 0x180e040f);
100 /* VID_PLL Fraction = 0x2be2fe */
101 /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
102 cx18_av_write4(cx, 0x10c, 0x002be2fe);
104 /* AUX_PLL Fraction = 0x062a1f2 */
105 /* xtal * 0xe.3150f90/0x18 = 44100 * 384: 406 MHz p-pd*/
106 cx18_av_write4(cx, 0x110, 0x0062a1f2);
108 /* src3/4/6_ctl */
109 /* 0x1.6d59 = (4 * xtal/8*2/455) / 44100 */
110 cx18_av_write4(cx, 0x900, 0x08016d59);
111 cx18_av_write4(cx, 0x904, 0x08016d59);
112 cx18_av_write4(cx, 0x90c, 0x08016d59);
114 /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x18 */
115 cx18_av_write(cx, 0x127, 0x58);
117 /* AUD_COUNT = 0x92ff = 49 samples * 2 * 384 - 1 */
118 cx18_av_write4(cx, 0x12c, 0x112092ff);
121 * EN_AV_LOCK = 0
122 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
123 * ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
125 cx18_av_write4(cx, 0x128, 0xa01d4bf8);
126 break;
128 case 48000:
130 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
131 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x16
133 cx18_av_write4(cx, 0x108, 0x160e040f);
135 /* VID_PLL Fraction = 0x2be2fe */
136 /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
137 cx18_av_write4(cx, 0x10c, 0x002be2fe);
139 /* AUX_PLL Fraction = 0x05227ad */
140 /* xtal * 0xe.2913d68/0x16 = 48000 * 384: 406 MHz p-pd*/
141 cx18_av_write4(cx, 0x110, 0x005227ad);
143 /* src3/4/6_ctl */
144 /* 0x1.4faa = (4 * xtal/8*2/455) / 48000 */
145 cx18_av_write4(cx, 0x900, 0x08014faa);
146 cx18_av_write4(cx, 0x904, 0x08014faa);
147 cx18_av_write4(cx, 0x90c, 0x08014faa);
149 /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x16 */
150 cx18_av_write(cx, 0x127, 0x56);
152 /* AUD_COUNT = 0x5fff = 4 samples * 16 * 384 - 1 */
153 cx18_av_write4(cx, 0x12c, 0x11205fff);
156 * EN_AV_LOCK = 0
157 * VID_COUNT = 0x1193f8 = 143999.000 * 8 =
158 * ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
160 cx18_av_write4(cx, 0x128, 0xa01193f8);
161 break;
163 } else {
164 switch (freq) {
165 case 32000:
167 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
168 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x30
170 cx18_av_write4(cx, 0x108, 0x300d040f);
172 /* VID_PLL Fraction = 0x2be2fe */
173 /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
174 cx18_av_write4(cx, 0x10c, 0x002be2fe);
176 /* AUX_PLL Fraction = 0x176740c */
177 /* xtal * 0xd.bb3a060/0x30 = 32000 * 256: 393 MHz p-pd*/
178 cx18_av_write4(cx, 0x110, 0x0176740c);
180 /* src1_ctl */
181 /* 0x1.0000 = 32000/32000 */
182 cx18_av_write4(cx, 0x8f8, 0x08010000);
184 /* src3/4/6_ctl */
185 /* 0x2.0000 = 2 * (32000/32000) */
186 cx18_av_write4(cx, 0x900, 0x08020000);
187 cx18_av_write4(cx, 0x904, 0x08020000);
188 cx18_av_write4(cx, 0x90c, 0x08020000);
190 /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x30 */
191 cx18_av_write(cx, 0x127, 0x70);
193 /* AUD_COUNT = 0x1fff = 8 samples * 4 * 256 - 1 */
194 cx18_av_write4(cx, 0x12c, 0x11201fff);
197 * EN_AV_LOCK = 0
198 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
199 * ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
201 cx18_av_write4(cx, 0x128, 0xa00d2ef8);
202 break;
204 case 44100:
206 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
207 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x24
209 cx18_av_write4(cx, 0x108, 0x240e040f);
211 /* VID_PLL Fraction = 0x2be2fe */
212 /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
213 cx18_av_write4(cx, 0x10c, 0x002be2fe);
215 /* AUX_PLL Fraction = 0x062a1f2 */
216 /* xtal * 0xe.3150f90/0x24 = 44100 * 256: 406 MHz p-pd*/
217 cx18_av_write4(cx, 0x110, 0x0062a1f2);
219 /* src1_ctl */
220 /* 0x1.60cd = 44100/32000 */
221 cx18_av_write4(cx, 0x8f8, 0x080160cd);
223 /* src3/4/6_ctl */
224 /* 0x1.7385 = 2 * (32000/44100) */
225 cx18_av_write4(cx, 0x900, 0x08017385);
226 cx18_av_write4(cx, 0x904, 0x08017385);
227 cx18_av_write4(cx, 0x90c, 0x08017385);
229 /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x24 */
230 cx18_av_write(cx, 0x127, 0x64);
232 /* AUD_COUNT = 0x61ff = 49 samples * 2 * 256 - 1 */
233 cx18_av_write4(cx, 0x12c, 0x112061ff);
236 * EN_AV_LOCK = 0
237 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
238 * ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
240 cx18_av_write4(cx, 0x128, 0xa01d4bf8);
241 break;
243 case 48000:
245 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
246 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
248 cx18_av_write4(cx, 0x108, 0x200d040f);
250 /* VID_PLL Fraction = 0x2be2fe */
251 /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
252 cx18_av_write4(cx, 0x10c, 0x002be2fe);
254 /* AUX_PLL Fraction = 0x176740c */
255 /* xtal * 0xd.bb3a060/0x20 = 48000 * 256: 393 MHz p-pd*/
256 cx18_av_write4(cx, 0x110, 0x0176740c);
258 /* src1_ctl */
259 /* 0x1.8000 = 48000/32000 */
260 cx18_av_write4(cx, 0x8f8, 0x08018000);
262 /* src3/4/6_ctl */
263 /* 0x1.5555 = 2 * (32000/48000) */
264 cx18_av_write4(cx, 0x900, 0x08015555);
265 cx18_av_write4(cx, 0x904, 0x08015555);
266 cx18_av_write4(cx, 0x90c, 0x08015555);
268 /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
269 cx18_av_write(cx, 0x127, 0x60);
271 /* AUD_COUNT = 0x3fff = 4 samples * 16 * 256 - 1 */
272 cx18_av_write4(cx, 0x12c, 0x11203fff);
275 * EN_AV_LOCK = 0
276 * VID_COUNT = 0x1193f8 = 143999.000 * 8 =
277 * ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
279 cx18_av_write4(cx, 0x128, 0xa01193f8);
280 break;
284 state->audclk_freq = freq;
286 return 0;
289 void cx18_av_audio_set_path(struct cx18 *cx)
291 struct cx18_av_state *state = &cx->av_state;
292 u8 v;
294 /* stop microcontroller */
295 v = cx18_av_read(cx, 0x803) & ~0x10;
296 cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
298 /* assert soft reset */
299 v = cx18_av_read(cx, 0x810) | 0x01;
300 cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
302 /* Mute everything to prevent the PFFT! */
303 cx18_av_write(cx, 0x8d3, 0x1f);
305 if (state->aud_input <= CX18_AV_AUDIO_SERIAL2) {
306 /* Set Path1 to Serial Audio Input */
307 cx18_av_write4(cx, 0x8d0, 0x01011012);
309 /* The microcontroller should not be started for the
310 * non-tuner inputs: autodetection is specific for
311 * TV audio. */
312 } else {
313 /* Set Path1 to Analog Demod Main Channel */
314 cx18_av_write4(cx, 0x8d0, 0x1f063870);
317 set_audclk_freq(cx, state->audclk_freq);
319 /* deassert soft reset */
320 v = cx18_av_read(cx, 0x810) & ~0x01;
321 cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
323 if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
324 /* When the microcontroller detects the
325 * audio format, it will unmute the lines */
326 v = cx18_av_read(cx, 0x803) | 0x10;
327 cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
331 static void set_volume(struct cx18 *cx, int volume)
333 /* First convert the volume to msp3400 values (0-127) */
334 int vol = volume >> 9;
335 /* now scale it up to cx18_av values
336 * -114dB to -96dB maps to 0
337 * this should be 19, but in my testing that was 4dB too loud */
338 if (vol <= 23)
339 vol = 0;
340 else
341 vol -= 23;
343 /* PATH1_VOLUME */
344 cx18_av_write(cx, 0x8d4, 228 - (vol * 2));
347 static void set_bass(struct cx18 *cx, int bass)
349 /* PATH1_EQ_BASS_VOL */
350 cx18_av_and_or(cx, 0x8d9, ~0x3f, 48 - (bass * 48 / 0xffff));
353 static void set_treble(struct cx18 *cx, int treble)
355 /* PATH1_EQ_TREBLE_VOL */
356 cx18_av_and_or(cx, 0x8db, ~0x3f, 48 - (treble * 48 / 0xffff));
359 static void set_balance(struct cx18 *cx, int balance)
361 int bal = balance >> 8;
362 if (bal > 0x80) {
363 /* PATH1_BAL_LEFT */
364 cx18_av_and_or(cx, 0x8d5, 0x7f, 0x80);
365 /* PATH1_BAL_LEVEL */
366 cx18_av_and_or(cx, 0x8d5, ~0x7f, bal & 0x7f);
367 } else {
368 /* PATH1_BAL_LEFT */
369 cx18_av_and_or(cx, 0x8d5, 0x7f, 0x00);
370 /* PATH1_BAL_LEVEL */
371 cx18_av_and_or(cx, 0x8d5, ~0x7f, 0x80 - bal);
375 static void set_mute(struct cx18 *cx, int mute)
377 struct cx18_av_state *state = &cx->av_state;
378 u8 v;
380 if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
381 /* Must turn off microcontroller in order to mute sound.
382 * Not sure if this is the best method, but it does work.
383 * If the microcontroller is running, then it will undo any
384 * changes to the mute register. */
385 v = cx18_av_read(cx, 0x803);
386 if (mute) {
387 /* disable microcontroller */
388 v &= ~0x10;
389 cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
390 cx18_av_write(cx, 0x8d3, 0x1f);
391 } else {
392 /* enable microcontroller */
393 v |= 0x10;
394 cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
396 } else {
397 /* SRC1_MUTE_EN */
398 cx18_av_and_or(cx, 0x8d3, ~0x2, mute ? 0x02 : 0x00);
402 int cx18_av_s_clock_freq(struct v4l2_subdev *sd, u32 freq)
404 struct cx18 *cx = v4l2_get_subdevdata(sd);
405 struct cx18_av_state *state = &cx->av_state;
406 int retval;
407 u8 v;
409 if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
410 v = cx18_av_read(cx, 0x803) & ~0x10;
411 cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
412 cx18_av_write(cx, 0x8d3, 0x1f);
414 v = cx18_av_read(cx, 0x810) | 0x1;
415 cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
417 retval = set_audclk_freq(cx, freq);
419 v = cx18_av_read(cx, 0x810) & ~0x1;
420 cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
421 if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
422 v = cx18_av_read(cx, 0x803) | 0x10;
423 cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
425 return retval;
428 static int cx18_av_audio_s_ctrl(struct v4l2_ctrl *ctrl)
430 struct v4l2_subdev *sd = to_sd(ctrl);
431 struct cx18 *cx = v4l2_get_subdevdata(sd);
433 switch (ctrl->id) {
434 case V4L2_CID_AUDIO_VOLUME:
435 set_volume(cx, ctrl->val);
436 break;
437 case V4L2_CID_AUDIO_BASS:
438 set_bass(cx, ctrl->val);
439 break;
440 case V4L2_CID_AUDIO_TREBLE:
441 set_treble(cx, ctrl->val);
442 break;
443 case V4L2_CID_AUDIO_BALANCE:
444 set_balance(cx, ctrl->val);
445 break;
446 case V4L2_CID_AUDIO_MUTE:
447 set_mute(cx, ctrl->val);
448 break;
449 default:
450 return -EINVAL;
452 return 0;
455 const struct v4l2_ctrl_ops cx18_av_audio_ctrl_ops = {
456 .s_ctrl = cx18_av_audio_s_ctrl,