treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / media / platform / exynos4-is / fimc-core.c
blobcde60fbb23a88d02493ab785e47db077be3ca50b
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Samsung S5P/EXYNOS4 SoC series FIMC (CAMIF) driver
5 * Copyright (C) 2010-2012 Samsung Electronics Co., Ltd.
6 * Sylwester Nawrocki <s.nawrocki@samsung.com>
7 */
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/errno.h>
13 #include <linux/bug.h>
14 #include <linux/interrupt.h>
15 #include <linux/device.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/list.h>
19 #include <linux/mfd/syscon.h>
20 #include <linux/io.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/slab.h>
24 #include <linux/clk.h>
25 #include <media/v4l2-ioctl.h>
26 #include <media/videobuf2-v4l2.h>
27 #include <media/videobuf2-dma-contig.h>
29 #include "fimc-core.h"
30 #include "fimc-reg.h"
31 #include "media-dev.h"
33 static char *fimc_clocks[MAX_FIMC_CLOCKS] = {
34 "sclk_fimc", "fimc"
37 static struct fimc_fmt fimc_formats[] = {
39 .fourcc = V4L2_PIX_FMT_RGB565,
40 .depth = { 16 },
41 .color = FIMC_FMT_RGB565,
42 .memplanes = 1,
43 .colplanes = 1,
44 .flags = FMT_FLAGS_M2M,
45 }, {
46 .fourcc = V4L2_PIX_FMT_BGR666,
47 .depth = { 32 },
48 .color = FIMC_FMT_RGB666,
49 .memplanes = 1,
50 .colplanes = 1,
51 .flags = FMT_FLAGS_M2M,
52 }, {
53 .fourcc = V4L2_PIX_FMT_BGR32,
54 .depth = { 32 },
55 .color = FIMC_FMT_RGB888,
56 .memplanes = 1,
57 .colplanes = 1,
58 .flags = FMT_FLAGS_M2M | FMT_HAS_ALPHA,
59 }, {
60 .fourcc = V4L2_PIX_FMT_RGB555,
61 .depth = { 16 },
62 .color = FIMC_FMT_RGB555,
63 .memplanes = 1,
64 .colplanes = 1,
65 .flags = FMT_FLAGS_M2M_OUT | FMT_HAS_ALPHA,
66 }, {
67 .fourcc = V4L2_PIX_FMT_RGB444,
68 .depth = { 16 },
69 .color = FIMC_FMT_RGB444,
70 .memplanes = 1,
71 .colplanes = 1,
72 .flags = FMT_FLAGS_M2M_OUT | FMT_HAS_ALPHA,
73 }, {
74 .mbus_code = MEDIA_BUS_FMT_YUV10_1X30,
75 .flags = FMT_FLAGS_WRITEBACK,
76 }, {
77 .fourcc = V4L2_PIX_FMT_YUYV,
78 .depth = { 16 },
79 .color = FIMC_FMT_YCBYCR422,
80 .memplanes = 1,
81 .colplanes = 1,
82 .mbus_code = MEDIA_BUS_FMT_YUYV8_2X8,
83 .flags = FMT_FLAGS_M2M | FMT_FLAGS_CAM,
84 }, {
85 .fourcc = V4L2_PIX_FMT_UYVY,
86 .depth = { 16 },
87 .color = FIMC_FMT_CBYCRY422,
88 .memplanes = 1,
89 .colplanes = 1,
90 .mbus_code = MEDIA_BUS_FMT_UYVY8_2X8,
91 .flags = FMT_FLAGS_M2M | FMT_FLAGS_CAM,
92 }, {
93 .fourcc = V4L2_PIX_FMT_VYUY,
94 .depth = { 16 },
95 .color = FIMC_FMT_CRYCBY422,
96 .memplanes = 1,
97 .colplanes = 1,
98 .mbus_code = MEDIA_BUS_FMT_VYUY8_2X8,
99 .flags = FMT_FLAGS_M2M | FMT_FLAGS_CAM,
100 }, {
101 .fourcc = V4L2_PIX_FMT_YVYU,
102 .depth = { 16 },
103 .color = FIMC_FMT_YCRYCB422,
104 .memplanes = 1,
105 .colplanes = 1,
106 .mbus_code = MEDIA_BUS_FMT_YVYU8_2X8,
107 .flags = FMT_FLAGS_M2M | FMT_FLAGS_CAM,
108 }, {
109 .fourcc = V4L2_PIX_FMT_YUV422P,
110 .depth = { 16 },
111 .color = FIMC_FMT_YCBYCR422,
112 .memplanes = 1,
113 .colplanes = 3,
114 .flags = FMT_FLAGS_M2M,
115 }, {
116 .fourcc = V4L2_PIX_FMT_NV16,
117 .depth = { 16 },
118 .color = FIMC_FMT_YCBYCR422,
119 .memplanes = 1,
120 .colplanes = 2,
121 .flags = FMT_FLAGS_M2M,
122 }, {
123 .fourcc = V4L2_PIX_FMT_NV61,
124 .depth = { 16 },
125 .color = FIMC_FMT_YCRYCB422,
126 .memplanes = 1,
127 .colplanes = 2,
128 .flags = FMT_FLAGS_M2M,
129 }, {
130 .fourcc = V4L2_PIX_FMT_YUV420,
131 .depth = { 12 },
132 .color = FIMC_FMT_YCBCR420,
133 .memplanes = 1,
134 .colplanes = 3,
135 .flags = FMT_FLAGS_M2M,
136 }, {
137 .fourcc = V4L2_PIX_FMT_NV12,
138 .depth = { 12 },
139 .color = FIMC_FMT_YCBCR420,
140 .memplanes = 1,
141 .colplanes = 2,
142 .flags = FMT_FLAGS_M2M,
143 }, {
144 .fourcc = V4L2_PIX_FMT_NV12M,
145 .color = FIMC_FMT_YCBCR420,
146 .depth = { 8, 4 },
147 .memplanes = 2,
148 .colplanes = 2,
149 .flags = FMT_FLAGS_M2M,
150 }, {
151 .fourcc = V4L2_PIX_FMT_YUV420M,
152 .color = FIMC_FMT_YCBCR420,
153 .depth = { 8, 2, 2 },
154 .memplanes = 3,
155 .colplanes = 3,
156 .flags = FMT_FLAGS_M2M,
157 }, {
158 .fourcc = V4L2_PIX_FMT_NV12MT,
159 .color = FIMC_FMT_YCBCR420,
160 .depth = { 8, 4 },
161 .memplanes = 2,
162 .colplanes = 2,
163 .flags = FMT_FLAGS_M2M,
164 }, {
165 .fourcc = V4L2_PIX_FMT_JPEG,
166 .color = FIMC_FMT_JPEG,
167 .depth = { 8 },
168 .memplanes = 1,
169 .colplanes = 1,
170 .mbus_code = MEDIA_BUS_FMT_JPEG_1X8,
171 .flags = FMT_FLAGS_CAM | FMT_FLAGS_COMPRESSED,
172 }, {
173 .fourcc = V4L2_PIX_FMT_S5C_UYVY_JPG,
174 .color = FIMC_FMT_YUYV_JPEG,
175 .depth = { 8 },
176 .memplanes = 2,
177 .colplanes = 1,
178 .mdataplanes = 0x2, /* plane 1 holds frame meta data */
179 .mbus_code = MEDIA_BUS_FMT_S5C_UYVY_JPEG_1X8,
180 .flags = FMT_FLAGS_CAM | FMT_FLAGS_COMPRESSED,
184 struct fimc_fmt *fimc_get_format(unsigned int index)
186 if (index >= ARRAY_SIZE(fimc_formats))
187 return NULL;
189 return &fimc_formats[index];
192 int fimc_check_scaler_ratio(struct fimc_ctx *ctx, int sw, int sh,
193 int dw, int dh, int rotation)
195 if (rotation == 90 || rotation == 270)
196 swap(dw, dh);
198 if (!ctx->scaler.enabled)
199 return (sw == dw && sh == dh) ? 0 : -EINVAL;
201 if ((sw >= SCALER_MAX_HRATIO * dw) || (sh >= SCALER_MAX_VRATIO * dh))
202 return -EINVAL;
204 return 0;
207 static int fimc_get_scaler_factor(u32 src, u32 tar, u32 *ratio, u32 *shift)
209 u32 sh = 6;
211 if (src >= 64 * tar)
212 return -EINVAL;
214 while (sh--) {
215 u32 tmp = 1 << sh;
216 if (src >= tar * tmp) {
217 *shift = sh, *ratio = tmp;
218 return 0;
221 *shift = 0, *ratio = 1;
222 return 0;
225 int fimc_set_scaler_info(struct fimc_ctx *ctx)
227 const struct fimc_variant *variant = ctx->fimc_dev->variant;
228 struct device *dev = &ctx->fimc_dev->pdev->dev;
229 struct fimc_scaler *sc = &ctx->scaler;
230 struct fimc_frame *s_frame = &ctx->s_frame;
231 struct fimc_frame *d_frame = &ctx->d_frame;
232 int tx, ty, sx, sy;
233 int ret;
235 if (ctx->rotation == 90 || ctx->rotation == 270) {
236 ty = d_frame->width;
237 tx = d_frame->height;
238 } else {
239 tx = d_frame->width;
240 ty = d_frame->height;
242 if (tx <= 0 || ty <= 0) {
243 dev_err(dev, "Invalid target size: %dx%d\n", tx, ty);
244 return -EINVAL;
247 sx = s_frame->width;
248 sy = s_frame->height;
249 if (sx <= 0 || sy <= 0) {
250 dev_err(dev, "Invalid source size: %dx%d\n", sx, sy);
251 return -EINVAL;
253 sc->real_width = sx;
254 sc->real_height = sy;
256 ret = fimc_get_scaler_factor(sx, tx, &sc->pre_hratio, &sc->hfactor);
257 if (ret)
258 return ret;
260 ret = fimc_get_scaler_factor(sy, ty, &sc->pre_vratio, &sc->vfactor);
261 if (ret)
262 return ret;
264 sc->pre_dst_width = sx / sc->pre_hratio;
265 sc->pre_dst_height = sy / sc->pre_vratio;
267 if (variant->has_mainscaler_ext) {
268 sc->main_hratio = (sx << 14) / (tx << sc->hfactor);
269 sc->main_vratio = (sy << 14) / (ty << sc->vfactor);
270 } else {
271 sc->main_hratio = (sx << 8) / (tx << sc->hfactor);
272 sc->main_vratio = (sy << 8) / (ty << sc->vfactor);
276 sc->scaleup_h = (tx >= sx) ? 1 : 0;
277 sc->scaleup_v = (ty >= sy) ? 1 : 0;
279 /* check to see if input and output size/format differ */
280 if (s_frame->fmt->color == d_frame->fmt->color
281 && s_frame->width == d_frame->width
282 && s_frame->height == d_frame->height)
283 sc->copy_mode = 1;
284 else
285 sc->copy_mode = 0;
287 return 0;
290 static irqreturn_t fimc_irq_handler(int irq, void *priv)
292 struct fimc_dev *fimc = priv;
293 struct fimc_ctx *ctx;
295 fimc_hw_clear_irq(fimc);
297 spin_lock(&fimc->slock);
299 if (test_and_clear_bit(ST_M2M_PEND, &fimc->state)) {
300 if (test_and_clear_bit(ST_M2M_SUSPENDING, &fimc->state)) {
301 set_bit(ST_M2M_SUSPENDED, &fimc->state);
302 wake_up(&fimc->irq_queue);
303 goto out;
305 ctx = v4l2_m2m_get_curr_priv(fimc->m2m.m2m_dev);
306 if (ctx != NULL) {
307 spin_unlock(&fimc->slock);
308 fimc_m2m_job_finish(ctx, VB2_BUF_STATE_DONE);
310 if (ctx->state & FIMC_CTX_SHUT) {
311 ctx->state &= ~FIMC_CTX_SHUT;
312 wake_up(&fimc->irq_queue);
314 return IRQ_HANDLED;
316 } else if (test_bit(ST_CAPT_PEND, &fimc->state)) {
317 int last_buf = test_bit(ST_CAPT_JPEG, &fimc->state) &&
318 fimc->vid_cap.reqbufs_count == 1;
319 fimc_capture_irq_handler(fimc, !last_buf);
321 out:
322 spin_unlock(&fimc->slock);
323 return IRQ_HANDLED;
326 /* The color format (colplanes, memplanes) must be already configured. */
327 int fimc_prepare_addr(struct fimc_ctx *ctx, struct vb2_buffer *vb,
328 struct fimc_frame *frame, struct fimc_addr *paddr)
330 int ret = 0;
331 u32 pix_size;
333 if (vb == NULL || frame == NULL)
334 return -EINVAL;
336 pix_size = frame->width * frame->height;
338 dbg("memplanes= %d, colplanes= %d, pix_size= %d",
339 frame->fmt->memplanes, frame->fmt->colplanes, pix_size);
341 paddr->y = vb2_dma_contig_plane_dma_addr(vb, 0);
343 if (frame->fmt->memplanes == 1) {
344 switch (frame->fmt->colplanes) {
345 case 1:
346 paddr->cb = 0;
347 paddr->cr = 0;
348 break;
349 case 2:
350 /* decompose Y into Y/Cb */
351 paddr->cb = (u32)(paddr->y + pix_size);
352 paddr->cr = 0;
353 break;
354 case 3:
355 paddr->cb = (u32)(paddr->y + pix_size);
356 /* decompose Y into Y/Cb/Cr */
357 if (FIMC_FMT_YCBCR420 == frame->fmt->color)
358 paddr->cr = (u32)(paddr->cb
359 + (pix_size >> 2));
360 else /* 422 */
361 paddr->cr = (u32)(paddr->cb
362 + (pix_size >> 1));
363 break;
364 default:
365 return -EINVAL;
367 } else if (!frame->fmt->mdataplanes) {
368 if (frame->fmt->memplanes >= 2)
369 paddr->cb = vb2_dma_contig_plane_dma_addr(vb, 1);
371 if (frame->fmt->memplanes == 3)
372 paddr->cr = vb2_dma_contig_plane_dma_addr(vb, 2);
375 dbg("PHYS_ADDR: y= 0x%X cb= 0x%X cr= 0x%X ret= %d",
376 paddr->y, paddr->cb, paddr->cr, ret);
378 return ret;
381 /* Set order for 1 and 2 plane YCBCR 4:2:2 formats. */
382 void fimc_set_yuv_order(struct fimc_ctx *ctx)
384 /* The one only mode supported in SoC. */
385 ctx->in_order_2p = FIMC_REG_CIOCTRL_ORDER422_2P_LSB_CRCB;
386 ctx->out_order_2p = FIMC_REG_CIOCTRL_ORDER422_2P_LSB_CRCB;
388 /* Set order for 1 plane input formats. */
389 switch (ctx->s_frame.fmt->color) {
390 case FIMC_FMT_YCRYCB422:
391 ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_YCRYCB;
392 break;
393 case FIMC_FMT_CBYCRY422:
394 ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_CBYCRY;
395 break;
396 case FIMC_FMT_CRYCBY422:
397 ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_CRYCBY;
398 break;
399 case FIMC_FMT_YCBYCR422:
400 default:
401 ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_YCBYCR;
402 break;
404 dbg("ctx->in_order_1p= %d", ctx->in_order_1p);
406 switch (ctx->d_frame.fmt->color) {
407 case FIMC_FMT_YCRYCB422:
408 ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_YCRYCB;
409 break;
410 case FIMC_FMT_CBYCRY422:
411 ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_CBYCRY;
412 break;
413 case FIMC_FMT_CRYCBY422:
414 ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_CRYCBY;
415 break;
416 case FIMC_FMT_YCBYCR422:
417 default:
418 ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_YCBYCR;
419 break;
421 dbg("ctx->out_order_1p= %d", ctx->out_order_1p);
424 void fimc_prepare_dma_offset(struct fimc_ctx *ctx, struct fimc_frame *f)
426 bool pix_hoff = ctx->fimc_dev->drv_data->dma_pix_hoff;
427 u32 i, depth = 0;
429 for (i = 0; i < f->fmt->memplanes; i++)
430 depth += f->fmt->depth[i];
432 f->dma_offset.y_h = f->offs_h;
433 if (!pix_hoff)
434 f->dma_offset.y_h *= (depth >> 3);
436 f->dma_offset.y_v = f->offs_v;
438 f->dma_offset.cb_h = f->offs_h;
439 f->dma_offset.cb_v = f->offs_v;
441 f->dma_offset.cr_h = f->offs_h;
442 f->dma_offset.cr_v = f->offs_v;
444 if (!pix_hoff) {
445 if (f->fmt->colplanes == 3) {
446 f->dma_offset.cb_h >>= 1;
447 f->dma_offset.cr_h >>= 1;
449 if (f->fmt->color == FIMC_FMT_YCBCR420) {
450 f->dma_offset.cb_v >>= 1;
451 f->dma_offset.cr_v >>= 1;
455 dbg("in_offset: color= %d, y_h= %d, y_v= %d",
456 f->fmt->color, f->dma_offset.y_h, f->dma_offset.y_v);
459 static int fimc_set_color_effect(struct fimc_ctx *ctx, enum v4l2_colorfx colorfx)
461 struct fimc_effect *effect = &ctx->effect;
463 switch (colorfx) {
464 case V4L2_COLORFX_NONE:
465 effect->type = FIMC_REG_CIIMGEFF_FIN_BYPASS;
466 break;
467 case V4L2_COLORFX_BW:
468 effect->type = FIMC_REG_CIIMGEFF_FIN_ARBITRARY;
469 effect->pat_cb = 128;
470 effect->pat_cr = 128;
471 break;
472 case V4L2_COLORFX_SEPIA:
473 effect->type = FIMC_REG_CIIMGEFF_FIN_ARBITRARY;
474 effect->pat_cb = 115;
475 effect->pat_cr = 145;
476 break;
477 case V4L2_COLORFX_NEGATIVE:
478 effect->type = FIMC_REG_CIIMGEFF_FIN_NEGATIVE;
479 break;
480 case V4L2_COLORFX_EMBOSS:
481 effect->type = FIMC_REG_CIIMGEFF_FIN_EMBOSSING;
482 break;
483 case V4L2_COLORFX_ART_FREEZE:
484 effect->type = FIMC_REG_CIIMGEFF_FIN_ARTFREEZE;
485 break;
486 case V4L2_COLORFX_SILHOUETTE:
487 effect->type = FIMC_REG_CIIMGEFF_FIN_SILHOUETTE;
488 break;
489 case V4L2_COLORFX_SET_CBCR:
490 effect->type = FIMC_REG_CIIMGEFF_FIN_ARBITRARY;
491 effect->pat_cb = ctx->ctrls.colorfx_cbcr->val >> 8;
492 effect->pat_cr = ctx->ctrls.colorfx_cbcr->val & 0xff;
493 break;
494 default:
495 return -EINVAL;
498 return 0;
502 * V4L2 controls handling
504 #define ctrl_to_ctx(__ctrl) \
505 container_of((__ctrl)->handler, struct fimc_ctx, ctrls.handler)
507 static int __fimc_s_ctrl(struct fimc_ctx *ctx, struct v4l2_ctrl *ctrl)
509 struct fimc_dev *fimc = ctx->fimc_dev;
510 const struct fimc_variant *variant = fimc->variant;
511 int ret = 0;
513 if (ctrl->flags & V4L2_CTRL_FLAG_INACTIVE)
514 return 0;
516 switch (ctrl->id) {
517 case V4L2_CID_HFLIP:
518 ctx->hflip = ctrl->val;
519 break;
521 case V4L2_CID_VFLIP:
522 ctx->vflip = ctrl->val;
523 break;
525 case V4L2_CID_ROTATE:
526 if (fimc_capture_pending(fimc)) {
527 ret = fimc_check_scaler_ratio(ctx, ctx->s_frame.width,
528 ctx->s_frame.height, ctx->d_frame.width,
529 ctx->d_frame.height, ctrl->val);
530 if (ret)
531 return -EINVAL;
533 if ((ctrl->val == 90 || ctrl->val == 270) &&
534 !variant->has_out_rot)
535 return -EINVAL;
537 ctx->rotation = ctrl->val;
538 break;
540 case V4L2_CID_ALPHA_COMPONENT:
541 ctx->d_frame.alpha = ctrl->val;
542 break;
544 case V4L2_CID_COLORFX:
545 ret = fimc_set_color_effect(ctx, ctrl->val);
546 if (ret)
547 return ret;
548 break;
551 ctx->state |= FIMC_PARAMS;
552 set_bit(ST_CAPT_APPLY_CFG, &fimc->state);
553 return 0;
556 static int fimc_s_ctrl(struct v4l2_ctrl *ctrl)
558 struct fimc_ctx *ctx = ctrl_to_ctx(ctrl);
559 unsigned long flags;
560 int ret;
562 spin_lock_irqsave(&ctx->fimc_dev->slock, flags);
563 ret = __fimc_s_ctrl(ctx, ctrl);
564 spin_unlock_irqrestore(&ctx->fimc_dev->slock, flags);
566 return ret;
569 static const struct v4l2_ctrl_ops fimc_ctrl_ops = {
570 .s_ctrl = fimc_s_ctrl,
573 int fimc_ctrls_create(struct fimc_ctx *ctx)
575 unsigned int max_alpha = fimc_get_alpha_mask(ctx->d_frame.fmt);
576 struct fimc_ctrls *ctrls = &ctx->ctrls;
577 struct v4l2_ctrl_handler *handler = &ctrls->handler;
579 if (ctx->ctrls.ready)
580 return 0;
582 v4l2_ctrl_handler_init(handler, 6);
584 ctrls->rotate = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
585 V4L2_CID_ROTATE, 0, 270, 90, 0);
586 ctrls->hflip = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
587 V4L2_CID_HFLIP, 0, 1, 1, 0);
588 ctrls->vflip = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
589 V4L2_CID_VFLIP, 0, 1, 1, 0);
591 if (ctx->fimc_dev->drv_data->alpha_color)
592 ctrls->alpha = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
593 V4L2_CID_ALPHA_COMPONENT,
594 0, max_alpha, 1, 0);
595 else
596 ctrls->alpha = NULL;
598 ctrls->colorfx = v4l2_ctrl_new_std_menu(handler, &fimc_ctrl_ops,
599 V4L2_CID_COLORFX, V4L2_COLORFX_SET_CBCR,
600 ~0x983f, V4L2_COLORFX_NONE);
602 ctrls->colorfx_cbcr = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
603 V4L2_CID_COLORFX_CBCR, 0, 0xffff, 1, 0);
605 ctx->effect.type = FIMC_REG_CIIMGEFF_FIN_BYPASS;
607 if (!handler->error) {
608 v4l2_ctrl_cluster(2, &ctrls->colorfx);
609 ctrls->ready = true;
612 return handler->error;
615 void fimc_ctrls_delete(struct fimc_ctx *ctx)
617 struct fimc_ctrls *ctrls = &ctx->ctrls;
619 if (ctrls->ready) {
620 v4l2_ctrl_handler_free(&ctrls->handler);
621 ctrls->ready = false;
622 ctrls->alpha = NULL;
626 void fimc_ctrls_activate(struct fimc_ctx *ctx, bool active)
628 unsigned int has_alpha = ctx->d_frame.fmt->flags & FMT_HAS_ALPHA;
629 struct fimc_ctrls *ctrls = &ctx->ctrls;
631 if (!ctrls->ready)
632 return;
634 mutex_lock(ctrls->handler.lock);
635 v4l2_ctrl_activate(ctrls->rotate, active);
636 v4l2_ctrl_activate(ctrls->hflip, active);
637 v4l2_ctrl_activate(ctrls->vflip, active);
638 v4l2_ctrl_activate(ctrls->colorfx, active);
639 if (ctrls->alpha)
640 v4l2_ctrl_activate(ctrls->alpha, active && has_alpha);
642 if (active) {
643 fimc_set_color_effect(ctx, ctrls->colorfx->cur.val);
644 ctx->rotation = ctrls->rotate->val;
645 ctx->hflip = ctrls->hflip->val;
646 ctx->vflip = ctrls->vflip->val;
647 } else {
648 ctx->effect.type = FIMC_REG_CIIMGEFF_FIN_BYPASS;
649 ctx->rotation = 0;
650 ctx->hflip = 0;
651 ctx->vflip = 0;
653 mutex_unlock(ctrls->handler.lock);
656 /* Update maximum value of the alpha color control */
657 void fimc_alpha_ctrl_update(struct fimc_ctx *ctx)
659 struct fimc_dev *fimc = ctx->fimc_dev;
660 struct v4l2_ctrl *ctrl = ctx->ctrls.alpha;
662 if (ctrl == NULL || !fimc->drv_data->alpha_color)
663 return;
665 v4l2_ctrl_lock(ctrl);
666 ctrl->maximum = fimc_get_alpha_mask(ctx->d_frame.fmt);
668 if (ctrl->cur.val > ctrl->maximum)
669 ctrl->cur.val = ctrl->maximum;
671 v4l2_ctrl_unlock(ctrl);
674 void __fimc_get_format(struct fimc_frame *frame, struct v4l2_format *f)
676 struct v4l2_pix_format_mplane *pixm = &f->fmt.pix_mp;
677 int i;
679 pixm->width = frame->o_width;
680 pixm->height = frame->o_height;
681 pixm->field = V4L2_FIELD_NONE;
682 pixm->pixelformat = frame->fmt->fourcc;
683 pixm->colorspace = V4L2_COLORSPACE_JPEG;
684 pixm->num_planes = frame->fmt->memplanes;
686 for (i = 0; i < pixm->num_planes; ++i) {
687 pixm->plane_fmt[i].bytesperline = frame->bytesperline[i];
688 pixm->plane_fmt[i].sizeimage = frame->payload[i];
693 * fimc_adjust_mplane_format - adjust bytesperline/sizeimage for each plane
694 * @fmt: fimc pixel format description (input)
695 * @width: requested pixel width
696 * @height: requested pixel height
697 * @pix: multi-plane format to adjust
699 void fimc_adjust_mplane_format(struct fimc_fmt *fmt, u32 width, u32 height,
700 struct v4l2_pix_format_mplane *pix)
702 u32 bytesperline = 0;
703 int i;
705 pix->colorspace = V4L2_COLORSPACE_JPEG;
706 pix->field = V4L2_FIELD_NONE;
707 pix->num_planes = fmt->memplanes;
708 pix->pixelformat = fmt->fourcc;
709 pix->height = height;
710 pix->width = width;
712 for (i = 0; i < pix->num_planes; ++i) {
713 struct v4l2_plane_pix_format *plane_fmt = &pix->plane_fmt[i];
714 u32 bpl = plane_fmt->bytesperline;
715 u32 sizeimage;
717 if (fmt->colplanes > 1 && (bpl == 0 || bpl < pix->width))
718 bpl = pix->width; /* Planar */
720 if (fmt->colplanes == 1 && /* Packed */
721 (bpl == 0 || ((bpl * 8) / fmt->depth[i]) < pix->width))
722 bpl = (pix->width * fmt->depth[0]) / 8;
724 * Currently bytesperline for each plane is same, except
725 * V4L2_PIX_FMT_YUV420M format. This calculation may need
726 * to be changed when other multi-planar formats are added
727 * to the fimc_formats[] array.
729 if (i == 0)
730 bytesperline = bpl;
731 else if (i == 1 && fmt->memplanes == 3)
732 bytesperline /= 2;
734 plane_fmt->bytesperline = bytesperline;
735 sizeimage = pix->width * pix->height * fmt->depth[i] / 8;
737 /* Ensure full last row for tiled formats */
738 if (tiled_fmt(fmt)) {
739 /* 64 * 32 * plane_fmt->bytesperline / 64 */
740 u32 row_size = plane_fmt->bytesperline * 32;
742 sizeimage = roundup(sizeimage, row_size);
745 plane_fmt->sizeimage = max(sizeimage, plane_fmt->sizeimage);
750 * fimc_find_format - lookup fimc color format by fourcc or media bus format
751 * @pixelformat: fourcc to match, ignored if null
752 * @mbus_code: media bus code to match, ignored if null
753 * @mask: the color flags to match
754 * @index: offset in the fimc_formats array, ignored if negative
756 struct fimc_fmt *fimc_find_format(const u32 *pixelformat, const u32 *mbus_code,
757 unsigned int mask, int index)
759 struct fimc_fmt *fmt, *def_fmt = NULL;
760 unsigned int i;
761 int id = 0;
763 if (index >= (int)ARRAY_SIZE(fimc_formats))
764 return NULL;
766 for (i = 0; i < ARRAY_SIZE(fimc_formats); ++i) {
767 fmt = &fimc_formats[i];
768 if (!(fmt->flags & mask))
769 continue;
770 if (pixelformat && fmt->fourcc == *pixelformat)
771 return fmt;
772 if (mbus_code && fmt->mbus_code == *mbus_code)
773 return fmt;
774 if (index == id)
775 def_fmt = fmt;
776 id++;
778 return def_fmt;
781 static void fimc_clk_put(struct fimc_dev *fimc)
783 int i;
784 for (i = 0; i < MAX_FIMC_CLOCKS; i++) {
785 if (IS_ERR(fimc->clock[i]))
786 continue;
787 clk_unprepare(fimc->clock[i]);
788 clk_put(fimc->clock[i]);
789 fimc->clock[i] = ERR_PTR(-EINVAL);
793 static int fimc_clk_get(struct fimc_dev *fimc)
795 int i, ret;
797 for (i = 0; i < MAX_FIMC_CLOCKS; i++)
798 fimc->clock[i] = ERR_PTR(-EINVAL);
800 for (i = 0; i < MAX_FIMC_CLOCKS; i++) {
801 fimc->clock[i] = clk_get(&fimc->pdev->dev, fimc_clocks[i]);
802 if (IS_ERR(fimc->clock[i])) {
803 ret = PTR_ERR(fimc->clock[i]);
804 goto err;
806 ret = clk_prepare(fimc->clock[i]);
807 if (ret < 0) {
808 clk_put(fimc->clock[i]);
809 fimc->clock[i] = ERR_PTR(-EINVAL);
810 goto err;
813 return 0;
814 err:
815 fimc_clk_put(fimc);
816 dev_err(&fimc->pdev->dev, "failed to get clock: %s\n",
817 fimc_clocks[i]);
818 return -ENXIO;
821 #ifdef CONFIG_PM
822 static int fimc_m2m_suspend(struct fimc_dev *fimc)
824 unsigned long flags;
825 int timeout;
827 spin_lock_irqsave(&fimc->slock, flags);
828 if (!fimc_m2m_pending(fimc)) {
829 spin_unlock_irqrestore(&fimc->slock, flags);
830 return 0;
832 clear_bit(ST_M2M_SUSPENDED, &fimc->state);
833 set_bit(ST_M2M_SUSPENDING, &fimc->state);
834 spin_unlock_irqrestore(&fimc->slock, flags);
836 timeout = wait_event_timeout(fimc->irq_queue,
837 test_bit(ST_M2M_SUSPENDED, &fimc->state),
838 FIMC_SHUTDOWN_TIMEOUT);
840 clear_bit(ST_M2M_SUSPENDING, &fimc->state);
841 return timeout == 0 ? -EAGAIN : 0;
844 static int fimc_m2m_resume(struct fimc_dev *fimc)
846 struct fimc_ctx *ctx;
847 unsigned long flags;
849 spin_lock_irqsave(&fimc->slock, flags);
850 /* Clear for full H/W setup in first run after resume */
851 ctx = fimc->m2m.ctx;
852 fimc->m2m.ctx = NULL;
853 spin_unlock_irqrestore(&fimc->slock, flags);
855 if (test_and_clear_bit(ST_M2M_SUSPENDED, &fimc->state))
856 fimc_m2m_job_finish(ctx, VB2_BUF_STATE_ERROR);
858 return 0;
860 #endif /* CONFIG_PM */
862 static const struct of_device_id fimc_of_match[];
864 static int fimc_parse_dt(struct fimc_dev *fimc, u32 *clk_freq)
866 struct device *dev = &fimc->pdev->dev;
867 struct device_node *node = dev->of_node;
868 const struct of_device_id *of_id;
869 struct fimc_variant *v;
870 struct fimc_pix_limit *lim;
871 u32 args[FIMC_PIX_LIMITS_MAX];
872 int ret;
874 if (of_property_read_bool(node, "samsung,lcd-wb"))
875 return -ENODEV;
877 v = devm_kzalloc(dev, sizeof(*v) + sizeof(*lim), GFP_KERNEL);
878 if (!v)
879 return -ENOMEM;
881 of_id = of_match_node(fimc_of_match, node);
882 if (!of_id)
883 return -EINVAL;
884 fimc->drv_data = of_id->data;
885 ret = of_property_read_u32_array(node, "samsung,pix-limits",
886 args, FIMC_PIX_LIMITS_MAX);
887 if (ret < 0)
888 return ret;
890 lim = (struct fimc_pix_limit *)&v[1];
892 lim->scaler_en_w = args[0];
893 lim->scaler_dis_w = args[1];
894 lim->out_rot_en_w = args[2];
895 lim->out_rot_dis_w = args[3];
896 v->pix_limit = lim;
898 ret = of_property_read_u32_array(node, "samsung,min-pix-sizes",
899 args, 2);
900 v->min_inp_pixsize = ret ? FIMC_DEF_MIN_SIZE : args[0];
901 v->min_out_pixsize = ret ? FIMC_DEF_MIN_SIZE : args[1];
902 ret = of_property_read_u32_array(node, "samsung,min-pix-alignment",
903 args, 2);
904 v->min_vsize_align = ret ? FIMC_DEF_HEIGHT_ALIGN : args[0];
905 v->hor_offs_align = ret ? FIMC_DEF_HOR_OFFS_ALIGN : args[1];
907 ret = of_property_read_u32(node, "samsung,rotators", &args[1]);
908 v->has_inp_rot = ret ? 1 : args[1] & 0x01;
909 v->has_out_rot = ret ? 1 : args[1] & 0x10;
910 v->has_mainscaler_ext = of_property_read_bool(node,
911 "samsung,mainscaler-ext");
913 v->has_isp_wb = of_property_read_bool(node, "samsung,isp-wb");
914 v->has_cam_if = of_property_read_bool(node, "samsung,cam-if");
915 of_property_read_u32(node, "clock-frequency", clk_freq);
916 fimc->id = of_alias_get_id(node, "fimc");
918 fimc->variant = v;
919 return 0;
922 static int fimc_probe(struct platform_device *pdev)
924 struct device *dev = &pdev->dev;
925 u32 lclk_freq = 0;
926 struct fimc_dev *fimc;
927 struct resource *res;
928 int ret = 0;
930 fimc = devm_kzalloc(dev, sizeof(*fimc), GFP_KERNEL);
931 if (!fimc)
932 return -ENOMEM;
934 fimc->pdev = pdev;
936 if (dev->of_node) {
937 ret = fimc_parse_dt(fimc, &lclk_freq);
938 if (ret < 0)
939 return ret;
940 } else {
941 fimc->drv_data = fimc_get_drvdata(pdev);
942 fimc->id = pdev->id;
944 if (!fimc->drv_data || fimc->id >= fimc->drv_data->num_entities ||
945 fimc->id < 0) {
946 dev_err(dev, "Invalid driver data or device id (%d)\n",
947 fimc->id);
948 return -EINVAL;
950 if (!dev->of_node)
951 fimc->variant = fimc->drv_data->variant[fimc->id];
953 init_waitqueue_head(&fimc->irq_queue);
954 spin_lock_init(&fimc->slock);
955 mutex_init(&fimc->lock);
957 fimc->sysreg = fimc_get_sysreg_regmap(dev->of_node);
958 if (IS_ERR(fimc->sysreg))
959 return PTR_ERR(fimc->sysreg);
961 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
962 fimc->regs = devm_ioremap_resource(dev, res);
963 if (IS_ERR(fimc->regs))
964 return PTR_ERR(fimc->regs);
966 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
967 if (res == NULL) {
968 dev_err(dev, "Failed to get IRQ resource\n");
969 return -ENXIO;
972 ret = fimc_clk_get(fimc);
973 if (ret)
974 return ret;
976 if (lclk_freq == 0)
977 lclk_freq = fimc->drv_data->lclk_frequency;
979 ret = clk_set_rate(fimc->clock[CLK_BUS], lclk_freq);
980 if (ret < 0)
981 return ret;
983 ret = clk_enable(fimc->clock[CLK_BUS]);
984 if (ret < 0)
985 return ret;
987 ret = devm_request_irq(dev, res->start, fimc_irq_handler,
988 0, dev_name(dev), fimc);
989 if (ret < 0) {
990 dev_err(dev, "failed to install irq (%d)\n", ret);
991 goto err_sclk;
994 ret = fimc_initialize_capture_subdev(fimc);
995 if (ret < 0)
996 goto err_sclk;
998 platform_set_drvdata(pdev, fimc);
999 pm_runtime_enable(dev);
1001 if (!pm_runtime_enabled(dev)) {
1002 ret = clk_enable(fimc->clock[CLK_GATE]);
1003 if (ret < 0)
1004 goto err_sd;
1007 vb2_dma_contig_set_max_seg_size(dev, DMA_BIT_MASK(32));
1009 dev_dbg(dev, "FIMC.%d registered successfully\n", fimc->id);
1010 return 0;
1012 err_sd:
1013 fimc_unregister_capture_subdev(fimc);
1014 err_sclk:
1015 clk_disable(fimc->clock[CLK_BUS]);
1016 fimc_clk_put(fimc);
1017 return ret;
1020 #ifdef CONFIG_PM
1021 static int fimc_runtime_resume(struct device *dev)
1023 struct fimc_dev *fimc = dev_get_drvdata(dev);
1025 dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
1027 /* Enable clocks and perform basic initialization */
1028 clk_enable(fimc->clock[CLK_GATE]);
1029 fimc_hw_reset(fimc);
1031 /* Resume the capture or mem-to-mem device */
1032 if (fimc_capture_busy(fimc))
1033 return fimc_capture_resume(fimc);
1035 return fimc_m2m_resume(fimc);
1038 static int fimc_runtime_suspend(struct device *dev)
1040 struct fimc_dev *fimc = dev_get_drvdata(dev);
1041 int ret = 0;
1043 if (fimc_capture_busy(fimc))
1044 ret = fimc_capture_suspend(fimc);
1045 else
1046 ret = fimc_m2m_suspend(fimc);
1047 if (!ret)
1048 clk_disable(fimc->clock[CLK_GATE]);
1050 dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
1051 return ret;
1053 #endif
1055 #ifdef CONFIG_PM_SLEEP
1056 static int fimc_resume(struct device *dev)
1058 struct fimc_dev *fimc = dev_get_drvdata(dev);
1059 unsigned long flags;
1061 dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
1063 /* Do not resume if the device was idle before system suspend */
1064 spin_lock_irqsave(&fimc->slock, flags);
1065 if (!test_and_clear_bit(ST_LPM, &fimc->state) ||
1066 (!fimc_m2m_active(fimc) && !fimc_capture_busy(fimc))) {
1067 spin_unlock_irqrestore(&fimc->slock, flags);
1068 return 0;
1070 fimc_hw_reset(fimc);
1071 spin_unlock_irqrestore(&fimc->slock, flags);
1073 if (fimc_capture_busy(fimc))
1074 return fimc_capture_resume(fimc);
1076 return fimc_m2m_resume(fimc);
1079 static int fimc_suspend(struct device *dev)
1081 struct fimc_dev *fimc = dev_get_drvdata(dev);
1083 dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
1085 if (test_and_set_bit(ST_LPM, &fimc->state))
1086 return 0;
1087 if (fimc_capture_busy(fimc))
1088 return fimc_capture_suspend(fimc);
1090 return fimc_m2m_suspend(fimc);
1092 #endif /* CONFIG_PM_SLEEP */
1094 static int fimc_remove(struct platform_device *pdev)
1096 struct fimc_dev *fimc = platform_get_drvdata(pdev);
1098 pm_runtime_disable(&pdev->dev);
1099 if (!pm_runtime_status_suspended(&pdev->dev))
1100 clk_disable(fimc->clock[CLK_GATE]);
1101 pm_runtime_set_suspended(&pdev->dev);
1103 fimc_unregister_capture_subdev(fimc);
1104 vb2_dma_contig_clear_max_seg_size(&pdev->dev);
1106 clk_disable(fimc->clock[CLK_BUS]);
1107 fimc_clk_put(fimc);
1109 dev_info(&pdev->dev, "driver unloaded\n");
1110 return 0;
1113 /* Image pixel limits, similar across several FIMC HW revisions. */
1114 static const struct fimc_pix_limit s5p_pix_limit[4] = {
1115 [0] = {
1116 .scaler_en_w = 3264,
1117 .scaler_dis_w = 8192,
1118 .out_rot_en_w = 1920,
1119 .out_rot_dis_w = 4224,
1121 [1] = {
1122 .scaler_en_w = 4224,
1123 .scaler_dis_w = 8192,
1124 .out_rot_en_w = 1920,
1125 .out_rot_dis_w = 4224,
1127 [2] = {
1128 .scaler_en_w = 1920,
1129 .scaler_dis_w = 8192,
1130 .out_rot_en_w = 1280,
1131 .out_rot_dis_w = 1920,
1135 static const struct fimc_variant fimc0_variant_s5pv210 = {
1136 .has_inp_rot = 1,
1137 .has_out_rot = 1,
1138 .has_cam_if = 1,
1139 .min_inp_pixsize = 16,
1140 .min_out_pixsize = 16,
1141 .hor_offs_align = 8,
1142 .min_vsize_align = 16,
1143 .pix_limit = &s5p_pix_limit[1],
1146 static const struct fimc_variant fimc1_variant_s5pv210 = {
1147 .has_inp_rot = 1,
1148 .has_out_rot = 1,
1149 .has_cam_if = 1,
1150 .has_mainscaler_ext = 1,
1151 .min_inp_pixsize = 16,
1152 .min_out_pixsize = 16,
1153 .hor_offs_align = 1,
1154 .min_vsize_align = 1,
1155 .pix_limit = &s5p_pix_limit[2],
1158 static const struct fimc_variant fimc2_variant_s5pv210 = {
1159 .has_cam_if = 1,
1160 .min_inp_pixsize = 16,
1161 .min_out_pixsize = 16,
1162 .hor_offs_align = 8,
1163 .min_vsize_align = 16,
1164 .pix_limit = &s5p_pix_limit[2],
1167 /* S5PV210, S5PC110 */
1168 static const struct fimc_drvdata fimc_drvdata_s5pv210 = {
1169 .variant = {
1170 [0] = &fimc0_variant_s5pv210,
1171 [1] = &fimc1_variant_s5pv210,
1172 [2] = &fimc2_variant_s5pv210,
1174 .num_entities = 3,
1175 .lclk_frequency = 166000000UL,
1176 .out_buf_count = 4,
1177 .dma_pix_hoff = 1,
1180 /* EXYNOS4210, S5PV310, S5PC210 */
1181 static const struct fimc_drvdata fimc_drvdata_exynos4210 = {
1182 .num_entities = 4,
1183 .lclk_frequency = 166000000UL,
1184 .dma_pix_hoff = 1,
1185 .cistatus2 = 1,
1186 .alpha_color = 1,
1187 .out_buf_count = 32,
1190 /* EXYNOS4412 */
1191 static const struct fimc_drvdata fimc_drvdata_exynos4x12 = {
1192 .num_entities = 4,
1193 .lclk_frequency = 166000000UL,
1194 .dma_pix_hoff = 1,
1195 .cistatus2 = 1,
1196 .alpha_color = 1,
1197 .out_buf_count = 32,
1200 static const struct of_device_id fimc_of_match[] = {
1202 .compatible = "samsung,s5pv210-fimc",
1203 .data = &fimc_drvdata_s5pv210,
1204 }, {
1205 .compatible = "samsung,exynos4210-fimc",
1206 .data = &fimc_drvdata_exynos4210,
1207 }, {
1208 .compatible = "samsung,exynos4212-fimc",
1209 .data = &fimc_drvdata_exynos4x12,
1211 { /* sentinel */ },
1214 static const struct dev_pm_ops fimc_pm_ops = {
1215 SET_SYSTEM_SLEEP_PM_OPS(fimc_suspend, fimc_resume)
1216 SET_RUNTIME_PM_OPS(fimc_runtime_suspend, fimc_runtime_resume, NULL)
1219 static struct platform_driver fimc_driver = {
1220 .probe = fimc_probe,
1221 .remove = fimc_remove,
1222 .driver = {
1223 .of_match_table = fimc_of_match,
1224 .name = FIMC_DRIVER_NAME,
1225 .pm = &fimc_pm_ops,
1229 int __init fimc_register_driver(void)
1231 return platform_driver_register(&fimc_driver);
1234 void __exit fimc_unregister_driver(void)
1236 platform_driver_unregister(&fimc_driver);