1 // SPDX-License-Identifier: GPL-2.0-only
7 * Copyright (C) 2006-2010 Nokia Corporation
8 * Copyright (C) 2007-2009 Texas Instruments, Inc.
10 * Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
11 * Sakari Ailus <sakari.ailus@iki.fi>
14 * Laurent Pinchart <laurent.pinchart@ideasonboard.com>
15 * Sakari Ailus <sakari.ailus@iki.fi>
16 * David Cohen <dacohen@gmail.com>
17 * Stanimir Varbanov <svarbanov@mm-sol.com>
18 * Vimarsh Zutshi <vimarsh.zutshi@gmail.com>
19 * Tuukka Toivonen <tuukkat76@gmail.com>
20 * Sergio Aguirre <saaguirre@ti.com>
21 * Antti Koskipaa <akoskipa@gmail.com>
22 * Ivan T. Ivanov <iivanov@mm-sol.com>
23 * RaniSuneela <r-m@ti.com>
24 * Atanas Filipov <afilipov@mm-sol.com>
25 * Gjorgji Rosikopulos <grosikopulos@mm-sol.com>
26 * Hiroshi DOYU <hiroshi.doyu@nokia.com>
27 * Nayden Kanchev <nkanchev@mm-sol.com>
28 * Phil Carmody <ext-phil.2.carmody@nokia.com>
29 * Artem Bityutskiy <artem.bityutskiy@nokia.com>
30 * Dominic Curran <dcurran@ti.com>
31 * Ilkka Myllyperkio <ilkka.myllyperkio@sofica.fi>
32 * Pallavi Kulkarni <p-kulkarni@ti.com>
33 * Vaibhav Hiremath <hvaibhav@ti.com>
34 * Mohit Jalori <mjalori@ti.com>
35 * Sameer Venkatraman <sameerv@ti.com>
36 * Senthilvadivu Guruswamy <svadivu@ti.com>
37 * Thara Gopinath <thara@ti.com>
38 * Toni Leinonen <toni.leinonen@nokia.com>
39 * Troy Laramy <t-laramy@ti.com>
42 #include <asm/cacheflush.h>
44 #include <linux/clk.h>
45 #include <linux/clkdev.h>
46 #include <linux/delay.h>
47 #include <linux/device.h>
48 #include <linux/dma-mapping.h>
49 #include <linux/i2c.h>
50 #include <linux/interrupt.h>
51 #include <linux/mfd/syscon.h>
52 #include <linux/module.h>
53 #include <linux/omap-iommu.h>
54 #include <linux/platform_device.h>
55 #include <linux/property.h>
56 #include <linux/regulator/consumer.h>
57 #include <linux/slab.h>
58 #include <linux/sched.h>
59 #include <linux/vmalloc.h>
61 #ifdef CONFIG_ARM_DMA_USE_IOMMU
62 #include <asm/dma-iommu.h>
65 #include <media/v4l2-common.h>
66 #include <media/v4l2-fwnode.h>
67 #include <media/v4l2-device.h>
68 #include <media/v4l2-mc.h>
73 #include "isppreview.h"
74 #include "ispresizer.h"
80 static unsigned int autoidle
;
81 module_param(autoidle
, int, 0444);
82 MODULE_PARM_DESC(autoidle
, "Enable OMAP3ISP AUTOIDLE support");
84 static void isp_save_ctx(struct isp_device
*isp
);
86 static void isp_restore_ctx(struct isp_device
*isp
);
88 static const struct isp_res_mapping isp_res_maps
[] = {
90 .isp_rev
= ISP_REVISION_2_0
,
93 0x0000, /* base, len 0x0070 */
94 0x0400, /* ccp2, len 0x01f0 */
95 0x0600, /* ccdc, len 0x00a8 */
96 0x0a00, /* hist, len 0x0048 */
97 0x0c00, /* h3a, len 0x0060 */
98 0x0e00, /* preview, len 0x00a0 */
99 0x1000, /* resizer, len 0x00ac */
100 0x1200, /* sbl, len 0x00fc */
101 /* second MMIO area */
102 0x0000, /* csi2a, len 0x0170 */
103 0x0170, /* csiphy2, len 0x000c */
105 .phy_type
= ISP_PHY_TYPE_3430
,
108 .isp_rev
= ISP_REVISION_15_0
,
110 /* first MMIO area */
111 0x0000, /* base, len 0x0070 */
112 0x0400, /* ccp2, len 0x01f0 */
113 0x0600, /* ccdc, len 0x00a8 */
114 0x0a00, /* hist, len 0x0048 */
115 0x0c00, /* h3a, len 0x0060 */
116 0x0e00, /* preview, len 0x00a0 */
117 0x1000, /* resizer, len 0x00ac */
118 0x1200, /* sbl, len 0x00fc */
119 /* second MMIO area */
120 0x0000, /* csi2a, len 0x0170 (1st area) */
121 0x0170, /* csiphy2, len 0x000c */
122 0x01c0, /* csi2a, len 0x0040 (2nd area) */
123 0x0400, /* csi2c, len 0x0170 (1st area) */
124 0x0570, /* csiphy1, len 0x000c */
125 0x05c0, /* csi2c, len 0x0040 (2nd area) */
127 .phy_type
= ISP_PHY_TYPE_3630
,
131 /* Structure for saving/restoring ISP module registers */
132 static struct isp_reg isp_reg_list
[] = {
133 {OMAP3_ISP_IOMEM_MAIN
, ISP_SYSCONFIG
, 0},
134 {OMAP3_ISP_IOMEM_MAIN
, ISP_CTRL
, 0},
135 {OMAP3_ISP_IOMEM_MAIN
, ISP_TCTRL_CTRL
, 0},
140 * omap3isp_flush - Post pending L3 bus writes by doing a register readback
141 * @isp: OMAP3 ISP device
143 * In order to force posting of pending writes, we need to write and
144 * readback the same register, in this case the revision register.
146 * See this link for reference:
147 * http://www.mail-archive.com/linux-omap@vger.kernel.org/msg08149.html
149 void omap3isp_flush(struct isp_device
*isp
)
151 isp_reg_writel(isp
, 0, OMAP3_ISP_IOMEM_MAIN
, ISP_REVISION
);
152 isp_reg_readl(isp
, OMAP3_ISP_IOMEM_MAIN
, ISP_REVISION
);
155 /* -----------------------------------------------------------------------------
159 #define to_isp_xclk(_hw) container_of(_hw, struct isp_xclk, hw)
161 static void isp_xclk_update(struct isp_xclk
*xclk
, u32 divider
)
165 isp_reg_clr_set(xclk
->isp
, OMAP3_ISP_IOMEM_MAIN
, ISP_TCTRL_CTRL
,
166 ISPTCTRL_CTRL_DIVA_MASK
,
167 divider
<< ISPTCTRL_CTRL_DIVA_SHIFT
);
170 isp_reg_clr_set(xclk
->isp
, OMAP3_ISP_IOMEM_MAIN
, ISP_TCTRL_CTRL
,
171 ISPTCTRL_CTRL_DIVB_MASK
,
172 divider
<< ISPTCTRL_CTRL_DIVB_SHIFT
);
177 static int isp_xclk_prepare(struct clk_hw
*hw
)
179 struct isp_xclk
*xclk
= to_isp_xclk(hw
);
181 omap3isp_get(xclk
->isp
);
186 static void isp_xclk_unprepare(struct clk_hw
*hw
)
188 struct isp_xclk
*xclk
= to_isp_xclk(hw
);
190 omap3isp_put(xclk
->isp
);
193 static int isp_xclk_enable(struct clk_hw
*hw
)
195 struct isp_xclk
*xclk
= to_isp_xclk(hw
);
198 spin_lock_irqsave(&xclk
->lock
, flags
);
199 isp_xclk_update(xclk
, xclk
->divider
);
200 xclk
->enabled
= true;
201 spin_unlock_irqrestore(&xclk
->lock
, flags
);
206 static void isp_xclk_disable(struct clk_hw
*hw
)
208 struct isp_xclk
*xclk
= to_isp_xclk(hw
);
211 spin_lock_irqsave(&xclk
->lock
, flags
);
212 isp_xclk_update(xclk
, 0);
213 xclk
->enabled
= false;
214 spin_unlock_irqrestore(&xclk
->lock
, flags
);
217 static unsigned long isp_xclk_recalc_rate(struct clk_hw
*hw
,
218 unsigned long parent_rate
)
220 struct isp_xclk
*xclk
= to_isp_xclk(hw
);
222 return parent_rate
/ xclk
->divider
;
225 static u32
isp_xclk_calc_divider(unsigned long *rate
, unsigned long parent_rate
)
229 if (*rate
>= parent_rate
) {
231 return ISPTCTRL_CTRL_DIV_BYPASS
;
237 divider
= DIV_ROUND_CLOSEST(parent_rate
, *rate
);
238 if (divider
>= ISPTCTRL_CTRL_DIV_BYPASS
)
239 divider
= ISPTCTRL_CTRL_DIV_BYPASS
- 1;
241 *rate
= parent_rate
/ divider
;
245 static long isp_xclk_round_rate(struct clk_hw
*hw
, unsigned long rate
,
246 unsigned long *parent_rate
)
248 isp_xclk_calc_divider(&rate
, *parent_rate
);
252 static int isp_xclk_set_rate(struct clk_hw
*hw
, unsigned long rate
,
253 unsigned long parent_rate
)
255 struct isp_xclk
*xclk
= to_isp_xclk(hw
);
259 divider
= isp_xclk_calc_divider(&rate
, parent_rate
);
261 spin_lock_irqsave(&xclk
->lock
, flags
);
263 xclk
->divider
= divider
;
265 isp_xclk_update(xclk
, divider
);
267 spin_unlock_irqrestore(&xclk
->lock
, flags
);
269 dev_dbg(xclk
->isp
->dev
, "%s: cam_xclk%c set to %lu Hz (div %u)\n",
270 __func__
, xclk
->id
== ISP_XCLK_A
? 'a' : 'b', rate
, divider
);
274 static const struct clk_ops isp_xclk_ops
= {
275 .prepare
= isp_xclk_prepare
,
276 .unprepare
= isp_xclk_unprepare
,
277 .enable
= isp_xclk_enable
,
278 .disable
= isp_xclk_disable
,
279 .recalc_rate
= isp_xclk_recalc_rate
,
280 .round_rate
= isp_xclk_round_rate
,
281 .set_rate
= isp_xclk_set_rate
,
284 static const char *isp_xclk_parent_name
= "cam_mclk";
286 static struct clk
*isp_xclk_src_get(struct of_phandle_args
*clkspec
, void *data
)
288 unsigned int idx
= clkspec
->args
[0];
289 struct isp_device
*isp
= data
;
291 if (idx
>= ARRAY_SIZE(isp
->xclks
))
292 return ERR_PTR(-ENOENT
);
294 return isp
->xclks
[idx
].clk
;
297 static int isp_xclk_init(struct isp_device
*isp
)
299 struct device_node
*np
= isp
->dev
->of_node
;
300 struct clk_init_data init
= {};
303 for (i
= 0; i
< ARRAY_SIZE(isp
->xclks
); ++i
)
304 isp
->xclks
[i
].clk
= ERR_PTR(-EINVAL
);
306 for (i
= 0; i
< ARRAY_SIZE(isp
->xclks
); ++i
) {
307 struct isp_xclk
*xclk
= &isp
->xclks
[i
];
310 xclk
->id
= i
== 0 ? ISP_XCLK_A
: ISP_XCLK_B
;
312 spin_lock_init(&xclk
->lock
);
314 init
.name
= i
== 0 ? "cam_xclka" : "cam_xclkb";
315 init
.ops
= &isp_xclk_ops
;
316 init
.parent_names
= &isp_xclk_parent_name
;
317 init
.num_parents
= 1;
319 xclk
->hw
.init
= &init
;
321 * The first argument is NULL in order to avoid circular
322 * reference, as this driver takes reference on the
323 * sensor subdevice modules and the sensors would take
324 * reference on this module through clk_get().
326 xclk
->clk
= clk_register(NULL
, &xclk
->hw
);
327 if (IS_ERR(xclk
->clk
))
328 return PTR_ERR(xclk
->clk
);
332 of_clk_add_provider(np
, isp_xclk_src_get
, isp
);
337 static void isp_xclk_cleanup(struct isp_device
*isp
)
339 struct device_node
*np
= isp
->dev
->of_node
;
343 of_clk_del_provider(np
);
345 for (i
= 0; i
< ARRAY_SIZE(isp
->xclks
); ++i
) {
346 struct isp_xclk
*xclk
= &isp
->xclks
[i
];
348 if (!IS_ERR(xclk
->clk
))
349 clk_unregister(xclk
->clk
);
353 /* -----------------------------------------------------------------------------
358 * isp_enable_interrupts - Enable ISP interrupts.
359 * @isp: OMAP3 ISP device
361 static void isp_enable_interrupts(struct isp_device
*isp
)
363 static const u32 irq
= IRQ0ENABLE_CSIA_IRQ
364 | IRQ0ENABLE_CSIB_IRQ
365 | IRQ0ENABLE_CCDC_LSC_PREF_ERR_IRQ
366 | IRQ0ENABLE_CCDC_LSC_DONE_IRQ
367 | IRQ0ENABLE_CCDC_VD0_IRQ
368 | IRQ0ENABLE_CCDC_VD1_IRQ
369 | IRQ0ENABLE_HS_VS_IRQ
370 | IRQ0ENABLE_HIST_DONE_IRQ
371 | IRQ0ENABLE_H3A_AWB_DONE_IRQ
372 | IRQ0ENABLE_H3A_AF_DONE_IRQ
373 | IRQ0ENABLE_PRV_DONE_IRQ
374 | IRQ0ENABLE_RSZ_DONE_IRQ
;
376 isp_reg_writel(isp
, irq
, OMAP3_ISP_IOMEM_MAIN
, ISP_IRQ0STATUS
);
377 isp_reg_writel(isp
, irq
, OMAP3_ISP_IOMEM_MAIN
, ISP_IRQ0ENABLE
);
381 * isp_disable_interrupts - Disable ISP interrupts.
382 * @isp: OMAP3 ISP device
384 static void isp_disable_interrupts(struct isp_device
*isp
)
386 isp_reg_writel(isp
, 0, OMAP3_ISP_IOMEM_MAIN
, ISP_IRQ0ENABLE
);
390 * isp_core_init - ISP core settings
391 * @isp: OMAP3 ISP device
392 * @idle: Consider idle state.
394 * Set the power settings for the ISP and SBL bus and configure the HS/VS
397 * We need to configure the HS/VS interrupt source before interrupts get
398 * enabled, as the sensor might be free-running and the ISP default setting
399 * (HS edge) would put an unnecessary burden on the CPU.
401 static void isp_core_init(struct isp_device
*isp
, int idle
)
404 ((idle
? ISP_SYSCONFIG_MIDLEMODE_SMARTSTANDBY
:
405 ISP_SYSCONFIG_MIDLEMODE_FORCESTANDBY
) <<
406 ISP_SYSCONFIG_MIDLEMODE_SHIFT
) |
407 ((isp
->revision
== ISP_REVISION_15_0
) ?
408 ISP_SYSCONFIG_AUTOIDLE
: 0),
409 OMAP3_ISP_IOMEM_MAIN
, ISP_SYSCONFIG
);
412 (isp
->autoidle
? ISPCTRL_SBL_AUTOIDLE
: 0) |
413 ISPCTRL_SYNC_DETECT_VSRISE
,
414 OMAP3_ISP_IOMEM_MAIN
, ISP_CTRL
);
418 * Configure the bridge and lane shifter. Valid inputs are
420 * CCDC_INPUT_PARALLEL: Parallel interface
421 * CCDC_INPUT_CSI2A: CSI2a receiver
422 * CCDC_INPUT_CCP2B: CCP2b receiver
423 * CCDC_INPUT_CSI2C: CSI2c receiver
425 * The bridge and lane shifter are configured according to the selected input
426 * and the ISP platform data.
428 void omap3isp_configure_bridge(struct isp_device
*isp
,
429 enum ccdc_input_entity input
,
430 const struct isp_parallel_cfg
*parcfg
,
431 unsigned int shift
, unsigned int bridge
)
435 ispctrl_val
= isp_reg_readl(isp
, OMAP3_ISP_IOMEM_MAIN
, ISP_CTRL
);
436 ispctrl_val
&= ~ISPCTRL_SHIFT_MASK
;
437 ispctrl_val
&= ~ISPCTRL_PAR_CLK_POL_INV
;
438 ispctrl_val
&= ~ISPCTRL_PAR_SER_CLK_SEL_MASK
;
439 ispctrl_val
&= ~ISPCTRL_PAR_BRIDGE_MASK
;
440 ispctrl_val
|= bridge
;
443 case CCDC_INPUT_PARALLEL
:
444 ispctrl_val
|= ISPCTRL_PAR_SER_CLK_SEL_PARALLEL
;
445 ispctrl_val
|= parcfg
->clk_pol
<< ISPCTRL_PAR_CLK_POL_SHIFT
;
446 shift
+= parcfg
->data_lane_shift
;
449 case CCDC_INPUT_CSI2A
:
450 ispctrl_val
|= ISPCTRL_PAR_SER_CLK_SEL_CSIA
;
453 case CCDC_INPUT_CCP2B
:
454 ispctrl_val
|= ISPCTRL_PAR_SER_CLK_SEL_CSIB
;
457 case CCDC_INPUT_CSI2C
:
458 ispctrl_val
|= ISPCTRL_PAR_SER_CLK_SEL_CSIC
;
465 ispctrl_val
|= ((shift
/2) << ISPCTRL_SHIFT_SHIFT
) & ISPCTRL_SHIFT_MASK
;
467 isp_reg_writel(isp
, ispctrl_val
, OMAP3_ISP_IOMEM_MAIN
, ISP_CTRL
);
470 void omap3isp_hist_dma_done(struct isp_device
*isp
)
472 if (omap3isp_ccdc_busy(&isp
->isp_ccdc
) ||
473 omap3isp_stat_pcr_busy(&isp
->isp_hist
)) {
474 /* Histogram cannot be enabled in this frame anymore */
475 atomic_set(&isp
->isp_hist
.buf_err
, 1);
477 "hist: Out of synchronization with CCDC. Ignoring next buffer.\n");
481 static inline void isp_isr_dbg(struct isp_device
*isp
, u32 irqstatus
)
483 static const char *name
[] = {
502 "CCDC_LSC_PREFETCH_COMPLETED",
503 "CCDC_LSC_PREFETCH_ERROR",
519 dev_dbg(isp
->dev
, "ISP IRQ: ");
521 for (i
= 0; i
< ARRAY_SIZE(name
); i
++) {
522 if ((1 << i
) & irqstatus
)
523 printk(KERN_CONT
"%s ", name
[i
]);
525 printk(KERN_CONT
"\n");
528 static void isp_isr_sbl(struct isp_device
*isp
)
530 struct device
*dev
= isp
->dev
;
531 struct isp_pipeline
*pipe
;
535 * Handle shared buffer logic overflows for video buffers.
536 * ISPSBL_PCR_CCDCPRV_2_RSZ_OVF can be safely ignored.
538 sbl_pcr
= isp_reg_readl(isp
, OMAP3_ISP_IOMEM_SBL
, ISPSBL_PCR
);
539 isp_reg_writel(isp
, sbl_pcr
, OMAP3_ISP_IOMEM_SBL
, ISPSBL_PCR
);
540 sbl_pcr
&= ~ISPSBL_PCR_CCDCPRV_2_RSZ_OVF
;
543 dev_dbg(dev
, "SBL overflow (PCR = 0x%08x)\n", sbl_pcr
);
545 if (sbl_pcr
& ISPSBL_PCR_CSIB_WBL_OVF
) {
546 pipe
= to_isp_pipeline(&isp
->isp_ccp2
.subdev
.entity
);
551 if (sbl_pcr
& ISPSBL_PCR_CSIA_WBL_OVF
) {
552 pipe
= to_isp_pipeline(&isp
->isp_csi2a
.subdev
.entity
);
557 if (sbl_pcr
& ISPSBL_PCR_CCDC_WBL_OVF
) {
558 pipe
= to_isp_pipeline(&isp
->isp_ccdc
.subdev
.entity
);
563 if (sbl_pcr
& ISPSBL_PCR_PRV_WBL_OVF
) {
564 pipe
= to_isp_pipeline(&isp
->isp_prev
.subdev
.entity
);
569 if (sbl_pcr
& (ISPSBL_PCR_RSZ1_WBL_OVF
570 | ISPSBL_PCR_RSZ2_WBL_OVF
571 | ISPSBL_PCR_RSZ3_WBL_OVF
572 | ISPSBL_PCR_RSZ4_WBL_OVF
)) {
573 pipe
= to_isp_pipeline(&isp
->isp_res
.subdev
.entity
);
578 if (sbl_pcr
& ISPSBL_PCR_H3A_AF_WBL_OVF
)
579 omap3isp_stat_sbl_overflow(&isp
->isp_af
);
581 if (sbl_pcr
& ISPSBL_PCR_H3A_AEAWB_WBL_OVF
)
582 omap3isp_stat_sbl_overflow(&isp
->isp_aewb
);
586 * isp_isr - Interrupt Service Routine for Camera ISP module.
587 * @irq: Not used currently.
588 * @_isp: Pointer to the OMAP3 ISP device
590 * Handles the corresponding callback if plugged in.
592 static irqreturn_t
isp_isr(int irq
, void *_isp
)
594 static const u32 ccdc_events
= IRQ0STATUS_CCDC_LSC_PREF_ERR_IRQ
|
595 IRQ0STATUS_CCDC_LSC_DONE_IRQ
|
596 IRQ0STATUS_CCDC_VD0_IRQ
|
597 IRQ0STATUS_CCDC_VD1_IRQ
|
598 IRQ0STATUS_HS_VS_IRQ
;
599 struct isp_device
*isp
= _isp
;
602 irqstatus
= isp_reg_readl(isp
, OMAP3_ISP_IOMEM_MAIN
, ISP_IRQ0STATUS
);
603 isp_reg_writel(isp
, irqstatus
, OMAP3_ISP_IOMEM_MAIN
, ISP_IRQ0STATUS
);
607 if (irqstatus
& IRQ0STATUS_CSIA_IRQ
)
608 omap3isp_csi2_isr(&isp
->isp_csi2a
);
610 if (irqstatus
& IRQ0STATUS_CSIB_IRQ
)
611 omap3isp_ccp2_isr(&isp
->isp_ccp2
);
613 if (irqstatus
& IRQ0STATUS_CCDC_VD0_IRQ
) {
614 if (isp
->isp_ccdc
.output
& CCDC_OUTPUT_PREVIEW
)
615 omap3isp_preview_isr_frame_sync(&isp
->isp_prev
);
616 if (isp
->isp_ccdc
.output
& CCDC_OUTPUT_RESIZER
)
617 omap3isp_resizer_isr_frame_sync(&isp
->isp_res
);
618 omap3isp_stat_isr_frame_sync(&isp
->isp_aewb
);
619 omap3isp_stat_isr_frame_sync(&isp
->isp_af
);
620 omap3isp_stat_isr_frame_sync(&isp
->isp_hist
);
623 if (irqstatus
& ccdc_events
)
624 omap3isp_ccdc_isr(&isp
->isp_ccdc
, irqstatus
& ccdc_events
);
626 if (irqstatus
& IRQ0STATUS_PRV_DONE_IRQ
) {
627 if (isp
->isp_prev
.output
& PREVIEW_OUTPUT_RESIZER
)
628 omap3isp_resizer_isr_frame_sync(&isp
->isp_res
);
629 omap3isp_preview_isr(&isp
->isp_prev
);
632 if (irqstatus
& IRQ0STATUS_RSZ_DONE_IRQ
)
633 omap3isp_resizer_isr(&isp
->isp_res
);
635 if (irqstatus
& IRQ0STATUS_H3A_AWB_DONE_IRQ
)
636 omap3isp_stat_isr(&isp
->isp_aewb
);
638 if (irqstatus
& IRQ0STATUS_H3A_AF_DONE_IRQ
)
639 omap3isp_stat_isr(&isp
->isp_af
);
641 if (irqstatus
& IRQ0STATUS_HIST_DONE_IRQ
)
642 omap3isp_stat_isr(&isp
->isp_hist
);
646 #if defined(DEBUG) && defined(ISP_ISR_DEBUG)
647 isp_isr_dbg(isp
, irqstatus
);
653 static const struct media_device_ops isp_media_ops
= {
654 .link_notify
= v4l2_pipeline_link_notify
,
657 /* -----------------------------------------------------------------------------
658 * Pipeline stream management
662 * isp_pipeline_enable - Enable streaming on a pipeline
663 * @pipe: ISP pipeline
664 * @mode: Stream mode (single shot or continuous)
666 * Walk the entities chain starting at the pipeline output video node and start
667 * all modules in the chain in the given mode.
669 * Return 0 if successful, or the return value of the failed video::s_stream
670 * operation otherwise.
672 static int isp_pipeline_enable(struct isp_pipeline
*pipe
,
673 enum isp_pipeline_stream_state mode
)
675 struct isp_device
*isp
= pipe
->output
->isp
;
676 struct media_entity
*entity
;
677 struct media_pad
*pad
;
678 struct v4l2_subdev
*subdev
;
682 /* Refuse to start streaming if an entity included in the pipeline has
683 * crashed. This check must be performed before the loop below to avoid
684 * starting entities if the pipeline won't start anyway (those entities
685 * would then likely fail to stop, making the problem worse).
687 if (media_entity_enum_intersects(&pipe
->ent_enum
, &isp
->crashed
))
690 spin_lock_irqsave(&pipe
->lock
, flags
);
691 pipe
->state
&= ~(ISP_PIPELINE_IDLE_INPUT
| ISP_PIPELINE_IDLE_OUTPUT
);
692 spin_unlock_irqrestore(&pipe
->lock
, flags
);
694 pipe
->do_propagation
= false;
696 entity
= &pipe
->output
->video
.entity
;
698 pad
= &entity
->pads
[0];
699 if (!(pad
->flags
& MEDIA_PAD_FL_SINK
))
702 pad
= media_entity_remote_pad(pad
);
703 if (!pad
|| !is_media_entity_v4l2_subdev(pad
->entity
))
706 entity
= pad
->entity
;
707 subdev
= media_entity_to_v4l2_subdev(entity
);
709 ret
= v4l2_subdev_call(subdev
, video
, s_stream
, mode
);
710 if (ret
< 0 && ret
!= -ENOIOCTLCMD
)
713 if (subdev
== &isp
->isp_ccdc
.subdev
) {
714 v4l2_subdev_call(&isp
->isp_aewb
.subdev
, video
,
716 v4l2_subdev_call(&isp
->isp_af
.subdev
, video
,
718 v4l2_subdev_call(&isp
->isp_hist
.subdev
, video
,
720 pipe
->do_propagation
= true;
723 /* Stop at the first external sub-device. */
724 if (subdev
->dev
!= isp
->dev
)
731 static int isp_pipeline_wait_resizer(struct isp_device
*isp
)
733 return omap3isp_resizer_busy(&isp
->isp_res
);
736 static int isp_pipeline_wait_preview(struct isp_device
*isp
)
738 return omap3isp_preview_busy(&isp
->isp_prev
);
741 static int isp_pipeline_wait_ccdc(struct isp_device
*isp
)
743 return omap3isp_stat_busy(&isp
->isp_af
)
744 || omap3isp_stat_busy(&isp
->isp_aewb
)
745 || omap3isp_stat_busy(&isp
->isp_hist
)
746 || omap3isp_ccdc_busy(&isp
->isp_ccdc
);
749 #define ISP_STOP_TIMEOUT msecs_to_jiffies(1000)
751 static int isp_pipeline_wait(struct isp_device
*isp
,
752 int(*busy
)(struct isp_device
*isp
))
754 unsigned long timeout
= jiffies
+ ISP_STOP_TIMEOUT
;
756 while (!time_after(jiffies
, timeout
)) {
765 * isp_pipeline_disable - Disable streaming on a pipeline
766 * @pipe: ISP pipeline
768 * Walk the entities chain starting at the pipeline output video node and stop
769 * all modules in the chain. Wait synchronously for the modules to be stopped if
772 * Return 0 if all modules have been properly stopped, or -ETIMEDOUT if a module
773 * can't be stopped (in which case a software reset of the ISP is probably
776 static int isp_pipeline_disable(struct isp_pipeline
*pipe
)
778 struct isp_device
*isp
= pipe
->output
->isp
;
779 struct media_entity
*entity
;
780 struct media_pad
*pad
;
781 struct v4l2_subdev
*subdev
;
786 * We need to stop all the modules after CCDC first or they'll
787 * never stop since they may not get a full frame from CCDC.
789 entity
= &pipe
->output
->video
.entity
;
791 pad
= &entity
->pads
[0];
792 if (!(pad
->flags
& MEDIA_PAD_FL_SINK
))
795 pad
= media_entity_remote_pad(pad
);
796 if (!pad
|| !is_media_entity_v4l2_subdev(pad
->entity
))
799 entity
= pad
->entity
;
800 subdev
= media_entity_to_v4l2_subdev(entity
);
802 if (subdev
== &isp
->isp_ccdc
.subdev
) {
803 v4l2_subdev_call(&isp
->isp_aewb
.subdev
,
805 v4l2_subdev_call(&isp
->isp_af
.subdev
,
807 v4l2_subdev_call(&isp
->isp_hist
.subdev
,
811 ret
= v4l2_subdev_call(subdev
, video
, s_stream
, 0);
813 /* Stop at the first external sub-device. */
814 if (subdev
->dev
!= isp
->dev
)
817 if (subdev
== &isp
->isp_res
.subdev
)
818 ret
|= isp_pipeline_wait(isp
, isp_pipeline_wait_resizer
);
819 else if (subdev
== &isp
->isp_prev
.subdev
)
820 ret
|= isp_pipeline_wait(isp
, isp_pipeline_wait_preview
);
821 else if (subdev
== &isp
->isp_ccdc
.subdev
)
822 ret
|= isp_pipeline_wait(isp
, isp_pipeline_wait_ccdc
);
824 /* Handle stop failures. An entity that fails to stop can
825 * usually just be restarted. Flag the stop failure nonetheless
826 * to trigger an ISP reset the next time the device is released,
829 * The preview engine is a special case. A failure to stop can
830 * mean a hardware crash. When that happens the preview engine
831 * won't respond to read/write operations on the L4 bus anymore,
832 * resulting in a bus fault and a kernel oops next time it gets
833 * accessed. Mark it as crashed to prevent pipelines including
834 * it from being started.
837 dev_info(isp
->dev
, "Unable to stop %s\n", subdev
->name
);
838 isp
->stop_failure
= true;
839 if (subdev
== &isp
->isp_prev
.subdev
)
840 media_entity_enum_set(&isp
->crashed
,
842 failure
= -ETIMEDOUT
;
850 * omap3isp_pipeline_set_stream - Enable/disable streaming on a pipeline
851 * @pipe: ISP pipeline
852 * @state: Stream state (stopped, single shot or continuous)
854 * Set the pipeline to the given stream state. Pipelines can be started in
855 * single-shot or continuous mode.
857 * Return 0 if successful, or the return value of the failed video::s_stream
858 * operation otherwise. The pipeline state is not updated when the operation
859 * fails, except when stopping the pipeline.
861 int omap3isp_pipeline_set_stream(struct isp_pipeline
*pipe
,
862 enum isp_pipeline_stream_state state
)
866 if (state
== ISP_PIPELINE_STREAM_STOPPED
)
867 ret
= isp_pipeline_disable(pipe
);
869 ret
= isp_pipeline_enable(pipe
, state
);
871 if (ret
== 0 || state
== ISP_PIPELINE_STREAM_STOPPED
)
872 pipe
->stream_state
= state
;
878 * omap3isp_pipeline_cancel_stream - Cancel stream on a pipeline
879 * @pipe: ISP pipeline
881 * Cancelling a stream mark all buffers on all video nodes in the pipeline as
882 * erroneous and makes sure no new buffer can be queued. This function is called
883 * when a fatal error that prevents any further operation on the pipeline
886 void omap3isp_pipeline_cancel_stream(struct isp_pipeline
*pipe
)
889 omap3isp_video_cancel_stream(pipe
->input
);
891 omap3isp_video_cancel_stream(pipe
->output
);
895 * isp_pipeline_resume - Resume streaming on a pipeline
896 * @pipe: ISP pipeline
898 * Resume video output and input and re-enable pipeline.
900 static void isp_pipeline_resume(struct isp_pipeline
*pipe
)
902 int singleshot
= pipe
->stream_state
== ISP_PIPELINE_STREAM_SINGLESHOT
;
904 omap3isp_video_resume(pipe
->output
, !singleshot
);
906 omap3isp_video_resume(pipe
->input
, 0);
907 isp_pipeline_enable(pipe
, pipe
->stream_state
);
911 * isp_pipeline_suspend - Suspend streaming on a pipeline
912 * @pipe: ISP pipeline
916 static void isp_pipeline_suspend(struct isp_pipeline
*pipe
)
918 isp_pipeline_disable(pipe
);
922 * isp_pipeline_is_last - Verify if entity has an enabled link to the output
924 * @me: ISP module's media entity
926 * Returns 1 if the entity has an enabled link to the output video node or 0
927 * otherwise. It's true only while pipeline can have no more than one output
930 static int isp_pipeline_is_last(struct media_entity
*me
)
932 struct isp_pipeline
*pipe
;
933 struct media_pad
*pad
;
937 pipe
= to_isp_pipeline(me
);
938 if (pipe
->stream_state
== ISP_PIPELINE_STREAM_STOPPED
)
940 pad
= media_entity_remote_pad(&pipe
->output
->pad
);
941 return pad
->entity
== me
;
945 * isp_suspend_module_pipeline - Suspend pipeline to which belongs the module
946 * @me: ISP module's media entity
948 * Suspend the whole pipeline if module's entity has an enabled link to the
949 * output video node. It works only while pipeline can have no more than one
952 static void isp_suspend_module_pipeline(struct media_entity
*me
)
954 if (isp_pipeline_is_last(me
))
955 isp_pipeline_suspend(to_isp_pipeline(me
));
959 * isp_resume_module_pipeline - Resume pipeline to which belongs the module
960 * @me: ISP module's media entity
962 * Resume the whole pipeline if module's entity has an enabled link to the
963 * output video node. It works only while pipeline can have no more than one
966 static void isp_resume_module_pipeline(struct media_entity
*me
)
968 if (isp_pipeline_is_last(me
))
969 isp_pipeline_resume(to_isp_pipeline(me
));
973 * isp_suspend_modules - Suspend ISP submodules.
974 * @isp: OMAP3 ISP device
976 * Returns 0 if suspend left in idle state all the submodules properly,
977 * or returns 1 if a general Reset is required to suspend the submodules.
979 static int __maybe_unused
isp_suspend_modules(struct isp_device
*isp
)
981 unsigned long timeout
;
983 omap3isp_stat_suspend(&isp
->isp_aewb
);
984 omap3isp_stat_suspend(&isp
->isp_af
);
985 omap3isp_stat_suspend(&isp
->isp_hist
);
986 isp_suspend_module_pipeline(&isp
->isp_res
.subdev
.entity
);
987 isp_suspend_module_pipeline(&isp
->isp_prev
.subdev
.entity
);
988 isp_suspend_module_pipeline(&isp
->isp_ccdc
.subdev
.entity
);
989 isp_suspend_module_pipeline(&isp
->isp_csi2a
.subdev
.entity
);
990 isp_suspend_module_pipeline(&isp
->isp_ccp2
.subdev
.entity
);
992 timeout
= jiffies
+ ISP_STOP_TIMEOUT
;
993 while (omap3isp_stat_busy(&isp
->isp_af
)
994 || omap3isp_stat_busy(&isp
->isp_aewb
)
995 || omap3isp_stat_busy(&isp
->isp_hist
)
996 || omap3isp_preview_busy(&isp
->isp_prev
)
997 || omap3isp_resizer_busy(&isp
->isp_res
)
998 || omap3isp_ccdc_busy(&isp
->isp_ccdc
)) {
999 if (time_after(jiffies
, timeout
)) {
1000 dev_info(isp
->dev
, "can't stop modules.\n");
1010 * isp_resume_modules - Resume ISP submodules.
1011 * @isp: OMAP3 ISP device
1013 static void __maybe_unused
isp_resume_modules(struct isp_device
*isp
)
1015 omap3isp_stat_resume(&isp
->isp_aewb
);
1016 omap3isp_stat_resume(&isp
->isp_af
);
1017 omap3isp_stat_resume(&isp
->isp_hist
);
1018 isp_resume_module_pipeline(&isp
->isp_res
.subdev
.entity
);
1019 isp_resume_module_pipeline(&isp
->isp_prev
.subdev
.entity
);
1020 isp_resume_module_pipeline(&isp
->isp_ccdc
.subdev
.entity
);
1021 isp_resume_module_pipeline(&isp
->isp_csi2a
.subdev
.entity
);
1022 isp_resume_module_pipeline(&isp
->isp_ccp2
.subdev
.entity
);
1026 * isp_reset - Reset ISP with a timeout wait for idle.
1027 * @isp: OMAP3 ISP device
1029 static int isp_reset(struct isp_device
*isp
)
1031 unsigned long timeout
= 0;
1034 isp_reg_readl(isp
, OMAP3_ISP_IOMEM_MAIN
, ISP_SYSCONFIG
)
1035 | ISP_SYSCONFIG_SOFTRESET
,
1036 OMAP3_ISP_IOMEM_MAIN
, ISP_SYSCONFIG
);
1037 while (!(isp_reg_readl(isp
, OMAP3_ISP_IOMEM_MAIN
,
1038 ISP_SYSSTATUS
) & 0x1)) {
1039 if (timeout
++ > 10000) {
1040 dev_alert(isp
->dev
, "cannot reset ISP\n");
1046 isp
->stop_failure
= false;
1047 media_entity_enum_zero(&isp
->crashed
);
1052 * isp_save_context - Saves the values of the ISP module registers.
1053 * @isp: OMAP3 ISP device
1054 * @reg_list: Structure containing pairs of register address and value to
1058 isp_save_context(struct isp_device
*isp
, struct isp_reg
*reg_list
)
1060 struct isp_reg
*next
= reg_list
;
1062 for (; next
->reg
!= ISP_TOK_TERM
; next
++)
1063 next
->val
= isp_reg_readl(isp
, next
->mmio_range
, next
->reg
);
1067 * isp_restore_context - Restores the values of the ISP module registers.
1068 * @isp: OMAP3 ISP device
1069 * @reg_list: Structure containing pairs of register address and value to
1073 isp_restore_context(struct isp_device
*isp
, struct isp_reg
*reg_list
)
1075 struct isp_reg
*next
= reg_list
;
1077 for (; next
->reg
!= ISP_TOK_TERM
; next
++)
1078 isp_reg_writel(isp
, next
->val
, next
->mmio_range
, next
->reg
);
1082 * isp_save_ctx - Saves ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1083 * @isp: OMAP3 ISP device
1085 * Routine for saving the context of each module in the ISP.
1086 * CCDC, HIST, H3A, PREV, RESZ and MMU.
1088 static void isp_save_ctx(struct isp_device
*isp
)
1090 isp_save_context(isp
, isp_reg_list
);
1091 omap_iommu_save_ctx(isp
->dev
);
1095 * isp_restore_ctx - Restores ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1096 * @isp: OMAP3 ISP device
1098 * Routine for restoring the context of each module in the ISP.
1099 * CCDC, HIST, H3A, PREV, RESZ and MMU.
1101 static void isp_restore_ctx(struct isp_device
*isp
)
1103 isp_restore_context(isp
, isp_reg_list
);
1104 omap_iommu_restore_ctx(isp
->dev
);
1105 omap3isp_ccdc_restore_context(isp
);
1106 omap3isp_preview_restore_context(isp
);
1109 /* -----------------------------------------------------------------------------
1110 * SBL resources management
1112 #define OMAP3_ISP_SBL_READ (OMAP3_ISP_SBL_CSI1_READ | \
1113 OMAP3_ISP_SBL_CCDC_LSC_READ | \
1114 OMAP3_ISP_SBL_PREVIEW_READ | \
1115 OMAP3_ISP_SBL_RESIZER_READ)
1116 #define OMAP3_ISP_SBL_WRITE (OMAP3_ISP_SBL_CSI1_WRITE | \
1117 OMAP3_ISP_SBL_CSI2A_WRITE | \
1118 OMAP3_ISP_SBL_CSI2C_WRITE | \
1119 OMAP3_ISP_SBL_CCDC_WRITE | \
1120 OMAP3_ISP_SBL_PREVIEW_WRITE)
1122 void omap3isp_sbl_enable(struct isp_device
*isp
, enum isp_sbl_resource res
)
1126 isp
->sbl_resources
|= res
;
1128 if (isp
->sbl_resources
& OMAP3_ISP_SBL_CSI1_READ
)
1129 sbl
|= ISPCTRL_SBL_SHARED_RPORTA
;
1131 if (isp
->sbl_resources
& OMAP3_ISP_SBL_CCDC_LSC_READ
)
1132 sbl
|= ISPCTRL_SBL_SHARED_RPORTB
;
1134 if (isp
->sbl_resources
& OMAP3_ISP_SBL_CSI2C_WRITE
)
1135 sbl
|= ISPCTRL_SBL_SHARED_WPORTC
;
1137 if (isp
->sbl_resources
& OMAP3_ISP_SBL_RESIZER_WRITE
)
1138 sbl
|= ISPCTRL_SBL_WR0_RAM_EN
;
1140 if (isp
->sbl_resources
& OMAP3_ISP_SBL_WRITE
)
1141 sbl
|= ISPCTRL_SBL_WR1_RAM_EN
;
1143 if (isp
->sbl_resources
& OMAP3_ISP_SBL_READ
)
1144 sbl
|= ISPCTRL_SBL_RD_RAM_EN
;
1146 isp_reg_set(isp
, OMAP3_ISP_IOMEM_MAIN
, ISP_CTRL
, sbl
);
1149 void omap3isp_sbl_disable(struct isp_device
*isp
, enum isp_sbl_resource res
)
1153 isp
->sbl_resources
&= ~res
;
1155 if (!(isp
->sbl_resources
& OMAP3_ISP_SBL_CSI1_READ
))
1156 sbl
|= ISPCTRL_SBL_SHARED_RPORTA
;
1158 if (!(isp
->sbl_resources
& OMAP3_ISP_SBL_CCDC_LSC_READ
))
1159 sbl
|= ISPCTRL_SBL_SHARED_RPORTB
;
1161 if (!(isp
->sbl_resources
& OMAP3_ISP_SBL_CSI2C_WRITE
))
1162 sbl
|= ISPCTRL_SBL_SHARED_WPORTC
;
1164 if (!(isp
->sbl_resources
& OMAP3_ISP_SBL_RESIZER_WRITE
))
1165 sbl
|= ISPCTRL_SBL_WR0_RAM_EN
;
1167 if (!(isp
->sbl_resources
& OMAP3_ISP_SBL_WRITE
))
1168 sbl
|= ISPCTRL_SBL_WR1_RAM_EN
;
1170 if (!(isp
->sbl_resources
& OMAP3_ISP_SBL_READ
))
1171 sbl
|= ISPCTRL_SBL_RD_RAM_EN
;
1173 isp_reg_clr(isp
, OMAP3_ISP_IOMEM_MAIN
, ISP_CTRL
, sbl
);
1177 * isp_module_sync_idle - Helper to sync module with its idle state
1178 * @me: ISP submodule's media entity
1179 * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1180 * @stopping: flag which tells module wants to stop
1182 * This function checks if ISP submodule needs to wait for next interrupt. If
1183 * yes, makes the caller to sleep while waiting for such event.
1185 int omap3isp_module_sync_idle(struct media_entity
*me
, wait_queue_head_t
*wait
,
1188 struct isp_pipeline
*pipe
= to_isp_pipeline(me
);
1190 if (pipe
->stream_state
== ISP_PIPELINE_STREAM_STOPPED
||
1191 (pipe
->stream_state
== ISP_PIPELINE_STREAM_SINGLESHOT
&&
1192 !isp_pipeline_ready(pipe
)))
1196 * atomic_set() doesn't include memory barrier on ARM platform for SMP
1197 * scenario. We'll call it here to avoid race conditions.
1199 atomic_set(stopping
, 1);
1203 * If module is the last one, it's writing to memory. In this case,
1204 * it's necessary to check if the module is already paused due to
1205 * DMA queue underrun or if it has to wait for next interrupt to be
1207 * If it isn't the last one, the function won't sleep but *stopping
1208 * will still be set to warn next submodule caller's interrupt the
1209 * module wants to be idle.
1211 if (isp_pipeline_is_last(me
)) {
1212 struct isp_video
*video
= pipe
->output
;
1213 unsigned long flags
;
1214 spin_lock_irqsave(&video
->irqlock
, flags
);
1215 if (video
->dmaqueue_flags
& ISP_VIDEO_DMAQUEUE_UNDERRUN
) {
1216 spin_unlock_irqrestore(&video
->irqlock
, flags
);
1217 atomic_set(stopping
, 0);
1221 spin_unlock_irqrestore(&video
->irqlock
, flags
);
1222 if (!wait_event_timeout(*wait
, !atomic_read(stopping
),
1223 msecs_to_jiffies(1000))) {
1224 atomic_set(stopping
, 0);
1234 * omap3isp_module_sync_is_stopping - Helper to verify if module was stopping
1235 * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1236 * @stopping: flag which tells module wants to stop
1238 * This function checks if ISP submodule was stopping. In case of yes, it
1239 * notices the caller by setting stopping to 0 and waking up the wait queue.
1240 * Returns 1 if it was stopping or 0 otherwise.
1242 int omap3isp_module_sync_is_stopping(wait_queue_head_t
*wait
,
1245 if (atomic_cmpxchg(stopping
, 1, 0)) {
1253 /* --------------------------------------------------------------------------
1257 #define ISPCTRL_CLKS_MASK (ISPCTRL_H3A_CLK_EN | \
1258 ISPCTRL_HIST_CLK_EN | \
1259 ISPCTRL_RSZ_CLK_EN | \
1260 (ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN) | \
1261 (ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN))
1263 static void __isp_subclk_update(struct isp_device
*isp
)
1267 /* AEWB and AF share the same clock. */
1268 if (isp
->subclk_resources
&
1269 (OMAP3_ISP_SUBCLK_AEWB
| OMAP3_ISP_SUBCLK_AF
))
1270 clk
|= ISPCTRL_H3A_CLK_EN
;
1272 if (isp
->subclk_resources
& OMAP3_ISP_SUBCLK_HIST
)
1273 clk
|= ISPCTRL_HIST_CLK_EN
;
1275 if (isp
->subclk_resources
& OMAP3_ISP_SUBCLK_RESIZER
)
1276 clk
|= ISPCTRL_RSZ_CLK_EN
;
1278 /* NOTE: For CCDC & Preview submodules, we need to affect internal
1281 if (isp
->subclk_resources
& OMAP3_ISP_SUBCLK_CCDC
)
1282 clk
|= ISPCTRL_CCDC_CLK_EN
| ISPCTRL_CCDC_RAM_EN
;
1284 if (isp
->subclk_resources
& OMAP3_ISP_SUBCLK_PREVIEW
)
1285 clk
|= ISPCTRL_PREV_CLK_EN
| ISPCTRL_PREV_RAM_EN
;
1287 isp_reg_clr_set(isp
, OMAP3_ISP_IOMEM_MAIN
, ISP_CTRL
,
1288 ISPCTRL_CLKS_MASK
, clk
);
1291 void omap3isp_subclk_enable(struct isp_device
*isp
,
1292 enum isp_subclk_resource res
)
1294 isp
->subclk_resources
|= res
;
1296 __isp_subclk_update(isp
);
1299 void omap3isp_subclk_disable(struct isp_device
*isp
,
1300 enum isp_subclk_resource res
)
1302 isp
->subclk_resources
&= ~res
;
1304 __isp_subclk_update(isp
);
1308 * isp_enable_clocks - Enable ISP clocks
1309 * @isp: OMAP3 ISP device
1311 * Return 0 if successful, or clk_prepare_enable return value if any of them
1314 static int isp_enable_clocks(struct isp_device
*isp
)
1319 r
= clk_prepare_enable(isp
->clock
[ISP_CLK_CAM_ICK
]);
1321 dev_err(isp
->dev
, "failed to enable cam_ick clock\n");
1322 goto out_clk_enable_ick
;
1324 r
= clk_set_rate(isp
->clock
[ISP_CLK_CAM_MCLK
], CM_CAM_MCLK_HZ
);
1326 dev_err(isp
->dev
, "clk_set_rate for cam_mclk failed\n");
1327 goto out_clk_enable_mclk
;
1329 r
= clk_prepare_enable(isp
->clock
[ISP_CLK_CAM_MCLK
]);
1331 dev_err(isp
->dev
, "failed to enable cam_mclk clock\n");
1332 goto out_clk_enable_mclk
;
1334 rate
= clk_get_rate(isp
->clock
[ISP_CLK_CAM_MCLK
]);
1335 if (rate
!= CM_CAM_MCLK_HZ
)
1336 dev_warn(isp
->dev
, "unexpected cam_mclk rate:\n"
1338 " actual : %ld\n", CM_CAM_MCLK_HZ
, rate
);
1339 r
= clk_prepare_enable(isp
->clock
[ISP_CLK_CSI2_FCK
]);
1341 dev_err(isp
->dev
, "failed to enable csi2_fck clock\n");
1342 goto out_clk_enable_csi2_fclk
;
1346 out_clk_enable_csi2_fclk
:
1347 clk_disable_unprepare(isp
->clock
[ISP_CLK_CAM_MCLK
]);
1348 out_clk_enable_mclk
:
1349 clk_disable_unprepare(isp
->clock
[ISP_CLK_CAM_ICK
]);
1355 * isp_disable_clocks - Disable ISP clocks
1356 * @isp: OMAP3 ISP device
1358 static void isp_disable_clocks(struct isp_device
*isp
)
1360 clk_disable_unprepare(isp
->clock
[ISP_CLK_CAM_ICK
]);
1361 clk_disable_unprepare(isp
->clock
[ISP_CLK_CAM_MCLK
]);
1362 clk_disable_unprepare(isp
->clock
[ISP_CLK_CSI2_FCK
]);
1365 static const char *isp_clocks
[] = {
1372 static int isp_get_clocks(struct isp_device
*isp
)
1377 for (i
= 0; i
< ARRAY_SIZE(isp_clocks
); ++i
) {
1378 clk
= devm_clk_get(isp
->dev
, isp_clocks
[i
]);
1380 dev_err(isp
->dev
, "clk_get %s failed\n", isp_clocks
[i
]);
1381 return PTR_ERR(clk
);
1384 isp
->clock
[i
] = clk
;
1391 * omap3isp_get - Acquire the ISP resource.
1393 * Initializes the clocks for the first acquire.
1395 * Increment the reference count on the ISP. If the first reference is taken,
1396 * enable clocks and power-up all submodules.
1398 * Return a pointer to the ISP device structure, or NULL if an error occurred.
1400 static struct isp_device
*__omap3isp_get(struct isp_device
*isp
, bool irq
)
1402 struct isp_device
*__isp
= isp
;
1407 mutex_lock(&isp
->isp_mutex
);
1408 if (isp
->ref_count
> 0)
1411 if (isp_enable_clocks(isp
) < 0) {
1416 /* We don't want to restore context before saving it! */
1417 if (isp
->has_context
)
1418 isp_restore_ctx(isp
);
1421 isp_enable_interrupts(isp
);
1426 mutex_unlock(&isp
->isp_mutex
);
1431 struct isp_device
*omap3isp_get(struct isp_device
*isp
)
1433 return __omap3isp_get(isp
, true);
1437 * omap3isp_put - Release the ISP
1439 * Decrement the reference count on the ISP. If the last reference is released,
1440 * power-down all submodules, disable clocks and free temporary buffers.
1442 static void __omap3isp_put(struct isp_device
*isp
, bool save_ctx
)
1447 mutex_lock(&isp
->isp_mutex
);
1448 BUG_ON(isp
->ref_count
== 0);
1449 if (--isp
->ref_count
== 0) {
1450 isp_disable_interrupts(isp
);
1453 isp
->has_context
= 1;
1455 /* Reset the ISP if an entity has failed to stop. This is the
1456 * only way to recover from such conditions.
1458 if (!media_entity_enum_empty(&isp
->crashed
) ||
1461 isp_disable_clocks(isp
);
1463 mutex_unlock(&isp
->isp_mutex
);
1466 void omap3isp_put(struct isp_device
*isp
)
1468 __omap3isp_put(isp
, true);
1471 /* --------------------------------------------------------------------------
1472 * Platform device driver
1476 * omap3isp_print_status - Prints the values of the ISP Control Module registers
1477 * @isp: OMAP3 ISP device
1479 #define ISP_PRINT_REGISTER(isp, name)\
1480 dev_dbg(isp->dev, "###ISP " #name "=0x%08x\n", \
1481 isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_##name))
1482 #define SBL_PRINT_REGISTER(isp, name)\
1483 dev_dbg(isp->dev, "###SBL " #name "=0x%08x\n", \
1484 isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_##name))
1486 void omap3isp_print_status(struct isp_device
*isp
)
1488 dev_dbg(isp
->dev
, "-------------ISP Register dump--------------\n");
1490 ISP_PRINT_REGISTER(isp
, SYSCONFIG
);
1491 ISP_PRINT_REGISTER(isp
, SYSSTATUS
);
1492 ISP_PRINT_REGISTER(isp
, IRQ0ENABLE
);
1493 ISP_PRINT_REGISTER(isp
, IRQ0STATUS
);
1494 ISP_PRINT_REGISTER(isp
, TCTRL_GRESET_LENGTH
);
1495 ISP_PRINT_REGISTER(isp
, TCTRL_PSTRB_REPLAY
);
1496 ISP_PRINT_REGISTER(isp
, CTRL
);
1497 ISP_PRINT_REGISTER(isp
, TCTRL_CTRL
);
1498 ISP_PRINT_REGISTER(isp
, TCTRL_FRAME
);
1499 ISP_PRINT_REGISTER(isp
, TCTRL_PSTRB_DELAY
);
1500 ISP_PRINT_REGISTER(isp
, TCTRL_STRB_DELAY
);
1501 ISP_PRINT_REGISTER(isp
, TCTRL_SHUT_DELAY
);
1502 ISP_PRINT_REGISTER(isp
, TCTRL_PSTRB_LENGTH
);
1503 ISP_PRINT_REGISTER(isp
, TCTRL_STRB_LENGTH
);
1504 ISP_PRINT_REGISTER(isp
, TCTRL_SHUT_LENGTH
);
1506 SBL_PRINT_REGISTER(isp
, PCR
);
1507 SBL_PRINT_REGISTER(isp
, SDR_REQ_EXP
);
1509 dev_dbg(isp
->dev
, "--------------------------------------------\n");
1515 * Power management support.
1517 * As the ISP can't properly handle an input video stream interruption on a non
1518 * frame boundary, the ISP pipelines need to be stopped before sensors get
1519 * suspended. However, as suspending the sensors can require a running clock,
1520 * which can be provided by the ISP, the ISP can't be completely suspended
1521 * before the sensor.
1523 * To solve this problem power management support is split into prepare/complete
1524 * and suspend/resume operations. The pipelines are stopped in prepare() and the
1525 * ISP clocks get disabled in suspend(). Similarly, the clocks are re-enabled in
1526 * resume(), and the the pipelines are restarted in complete().
1528 * TODO: PM dependencies between the ISP and sensors are not modelled explicitly
1531 static int isp_pm_prepare(struct device
*dev
)
1533 struct isp_device
*isp
= dev_get_drvdata(dev
);
1536 WARN_ON(mutex_is_locked(&isp
->isp_mutex
));
1538 if (isp
->ref_count
== 0)
1541 reset
= isp_suspend_modules(isp
);
1542 isp_disable_interrupts(isp
);
1550 static int isp_pm_suspend(struct device
*dev
)
1552 struct isp_device
*isp
= dev_get_drvdata(dev
);
1554 WARN_ON(mutex_is_locked(&isp
->isp_mutex
));
1557 isp_disable_clocks(isp
);
1562 static int isp_pm_resume(struct device
*dev
)
1564 struct isp_device
*isp
= dev_get_drvdata(dev
);
1566 if (isp
->ref_count
== 0)
1569 return isp_enable_clocks(isp
);
1572 static void isp_pm_complete(struct device
*dev
)
1574 struct isp_device
*isp
= dev_get_drvdata(dev
);
1576 if (isp
->ref_count
== 0)
1579 isp_restore_ctx(isp
);
1580 isp_enable_interrupts(isp
);
1581 isp_resume_modules(isp
);
1586 #define isp_pm_prepare NULL
1587 #define isp_pm_suspend NULL
1588 #define isp_pm_resume NULL
1589 #define isp_pm_complete NULL
1591 #endif /* CONFIG_PM */
1593 static void isp_unregister_entities(struct isp_device
*isp
)
1595 media_device_unregister(&isp
->media_dev
);
1597 omap3isp_csi2_unregister_entities(&isp
->isp_csi2a
);
1598 omap3isp_ccp2_unregister_entities(&isp
->isp_ccp2
);
1599 omap3isp_ccdc_unregister_entities(&isp
->isp_ccdc
);
1600 omap3isp_preview_unregister_entities(&isp
->isp_prev
);
1601 omap3isp_resizer_unregister_entities(&isp
->isp_res
);
1602 omap3isp_stat_unregister_entities(&isp
->isp_aewb
);
1603 omap3isp_stat_unregister_entities(&isp
->isp_af
);
1604 omap3isp_stat_unregister_entities(&isp
->isp_hist
);
1606 v4l2_device_unregister(&isp
->v4l2_dev
);
1607 media_device_cleanup(&isp
->media_dev
);
1610 static int isp_link_entity(
1611 struct isp_device
*isp
, struct media_entity
*entity
,
1612 enum isp_interface_type interface
)
1614 struct media_entity
*input
;
1619 /* Connect the sensor to the correct interface module.
1620 * Parallel sensors are connected directly to the CCDC, while
1621 * serial sensors are connected to the CSI2a, CCP2b or CSI2c
1622 * receiver through CSIPHY1 or CSIPHY2.
1624 switch (interface
) {
1625 case ISP_INTERFACE_PARALLEL
:
1626 input
= &isp
->isp_ccdc
.subdev
.entity
;
1627 pad
= CCDC_PAD_SINK
;
1631 case ISP_INTERFACE_CSI2A_PHY2
:
1632 input
= &isp
->isp_csi2a
.subdev
.entity
;
1633 pad
= CSI2_PAD_SINK
;
1634 flags
= MEDIA_LNK_FL_IMMUTABLE
| MEDIA_LNK_FL_ENABLED
;
1637 case ISP_INTERFACE_CCP2B_PHY1
:
1638 case ISP_INTERFACE_CCP2B_PHY2
:
1639 input
= &isp
->isp_ccp2
.subdev
.entity
;
1640 pad
= CCP2_PAD_SINK
;
1644 case ISP_INTERFACE_CSI2C_PHY1
:
1645 input
= &isp
->isp_csi2c
.subdev
.entity
;
1646 pad
= CSI2_PAD_SINK
;
1647 flags
= MEDIA_LNK_FL_IMMUTABLE
| MEDIA_LNK_FL_ENABLED
;
1651 dev_err(isp
->dev
, "%s: invalid interface type %u\n", __func__
,
1657 * Not all interfaces are available on all revisions of the
1658 * ISP. The sub-devices of those interfaces aren't initialised
1659 * in such a case. Check this by ensuring the num_pads is
1662 if (!input
->num_pads
) {
1663 dev_err(isp
->dev
, "%s: invalid input %u\n", entity
->name
,
1668 for (i
= 0; i
< entity
->num_pads
; i
++) {
1669 if (entity
->pads
[i
].flags
& MEDIA_PAD_FL_SOURCE
)
1672 if (i
== entity
->num_pads
) {
1673 dev_err(isp
->dev
, "%s: no source pad in external entity %s\n",
1674 __func__
, entity
->name
);
1678 return media_create_pad_link(entity
, i
, input
, pad
, flags
);
1681 static int isp_register_entities(struct isp_device
*isp
)
1685 isp
->media_dev
.dev
= isp
->dev
;
1686 strscpy(isp
->media_dev
.model
, "TI OMAP3 ISP",
1687 sizeof(isp
->media_dev
.model
));
1688 isp
->media_dev
.hw_revision
= isp
->revision
;
1689 isp
->media_dev
.ops
= &isp_media_ops
;
1690 media_device_init(&isp
->media_dev
);
1692 isp
->v4l2_dev
.mdev
= &isp
->media_dev
;
1693 ret
= v4l2_device_register(isp
->dev
, &isp
->v4l2_dev
);
1695 dev_err(isp
->dev
, "%s: V4L2 device registration failed (%d)\n",
1700 /* Register internal entities */
1701 ret
= omap3isp_ccp2_register_entities(&isp
->isp_ccp2
, &isp
->v4l2_dev
);
1705 ret
= omap3isp_csi2_register_entities(&isp
->isp_csi2a
, &isp
->v4l2_dev
);
1709 ret
= omap3isp_ccdc_register_entities(&isp
->isp_ccdc
, &isp
->v4l2_dev
);
1713 ret
= omap3isp_preview_register_entities(&isp
->isp_prev
,
1718 ret
= omap3isp_resizer_register_entities(&isp
->isp_res
, &isp
->v4l2_dev
);
1722 ret
= omap3isp_stat_register_entities(&isp
->isp_aewb
, &isp
->v4l2_dev
);
1726 ret
= omap3isp_stat_register_entities(&isp
->isp_af
, &isp
->v4l2_dev
);
1730 ret
= omap3isp_stat_register_entities(&isp
->isp_hist
, &isp
->v4l2_dev
);
1736 isp_unregister_entities(isp
);
1742 * isp_create_links() - Create links for internal and external ISP entities
1743 * @isp : Pointer to ISP device
1745 * This function creates all links between ISP internal and external entities.
1747 * Return: A negative error code on failure or zero on success. Possible error
1748 * codes are those returned by media_create_pad_link().
1750 static int isp_create_links(struct isp_device
*isp
)
1754 /* Create links between entities and video nodes. */
1755 ret
= media_create_pad_link(
1756 &isp
->isp_csi2a
.subdev
.entity
, CSI2_PAD_SOURCE
,
1757 &isp
->isp_csi2a
.video_out
.video
.entity
, 0, 0);
1761 ret
= media_create_pad_link(
1762 &isp
->isp_ccp2
.video_in
.video
.entity
, 0,
1763 &isp
->isp_ccp2
.subdev
.entity
, CCP2_PAD_SINK
, 0);
1767 ret
= media_create_pad_link(
1768 &isp
->isp_ccdc
.subdev
.entity
, CCDC_PAD_SOURCE_OF
,
1769 &isp
->isp_ccdc
.video_out
.video
.entity
, 0, 0);
1773 ret
= media_create_pad_link(
1774 &isp
->isp_prev
.video_in
.video
.entity
, 0,
1775 &isp
->isp_prev
.subdev
.entity
, PREV_PAD_SINK
, 0);
1779 ret
= media_create_pad_link(
1780 &isp
->isp_prev
.subdev
.entity
, PREV_PAD_SOURCE
,
1781 &isp
->isp_prev
.video_out
.video
.entity
, 0, 0);
1785 ret
= media_create_pad_link(
1786 &isp
->isp_res
.video_in
.video
.entity
, 0,
1787 &isp
->isp_res
.subdev
.entity
, RESZ_PAD_SINK
, 0);
1791 ret
= media_create_pad_link(
1792 &isp
->isp_res
.subdev
.entity
, RESZ_PAD_SOURCE
,
1793 &isp
->isp_res
.video_out
.video
.entity
, 0, 0);
1798 /* Create links between entities. */
1799 ret
= media_create_pad_link(
1800 &isp
->isp_csi2a
.subdev
.entity
, CSI2_PAD_SOURCE
,
1801 &isp
->isp_ccdc
.subdev
.entity
, CCDC_PAD_SINK
, 0);
1805 ret
= media_create_pad_link(
1806 &isp
->isp_ccp2
.subdev
.entity
, CCP2_PAD_SOURCE
,
1807 &isp
->isp_ccdc
.subdev
.entity
, CCDC_PAD_SINK
, 0);
1811 ret
= media_create_pad_link(
1812 &isp
->isp_ccdc
.subdev
.entity
, CCDC_PAD_SOURCE_VP
,
1813 &isp
->isp_prev
.subdev
.entity
, PREV_PAD_SINK
, 0);
1817 ret
= media_create_pad_link(
1818 &isp
->isp_ccdc
.subdev
.entity
, CCDC_PAD_SOURCE_OF
,
1819 &isp
->isp_res
.subdev
.entity
, RESZ_PAD_SINK
, 0);
1823 ret
= media_create_pad_link(
1824 &isp
->isp_prev
.subdev
.entity
, PREV_PAD_SOURCE
,
1825 &isp
->isp_res
.subdev
.entity
, RESZ_PAD_SINK
, 0);
1829 ret
= media_create_pad_link(
1830 &isp
->isp_ccdc
.subdev
.entity
, CCDC_PAD_SOURCE_VP
,
1831 &isp
->isp_aewb
.subdev
.entity
, 0,
1832 MEDIA_LNK_FL_ENABLED
| MEDIA_LNK_FL_IMMUTABLE
);
1836 ret
= media_create_pad_link(
1837 &isp
->isp_ccdc
.subdev
.entity
, CCDC_PAD_SOURCE_VP
,
1838 &isp
->isp_af
.subdev
.entity
, 0,
1839 MEDIA_LNK_FL_ENABLED
| MEDIA_LNK_FL_IMMUTABLE
);
1843 ret
= media_create_pad_link(
1844 &isp
->isp_ccdc
.subdev
.entity
, CCDC_PAD_SOURCE_VP
,
1845 &isp
->isp_hist
.subdev
.entity
, 0,
1846 MEDIA_LNK_FL_ENABLED
| MEDIA_LNK_FL_IMMUTABLE
);
1853 static void isp_cleanup_modules(struct isp_device
*isp
)
1855 omap3isp_h3a_aewb_cleanup(isp
);
1856 omap3isp_h3a_af_cleanup(isp
);
1857 omap3isp_hist_cleanup(isp
);
1858 omap3isp_resizer_cleanup(isp
);
1859 omap3isp_preview_cleanup(isp
);
1860 omap3isp_ccdc_cleanup(isp
);
1861 omap3isp_ccp2_cleanup(isp
);
1862 omap3isp_csi2_cleanup(isp
);
1863 omap3isp_csiphy_cleanup(isp
);
1866 static int isp_initialize_modules(struct isp_device
*isp
)
1870 ret
= omap3isp_csiphy_init(isp
);
1872 dev_err(isp
->dev
, "CSI PHY initialization failed\n");
1876 ret
= omap3isp_csi2_init(isp
);
1878 dev_err(isp
->dev
, "CSI2 initialization failed\n");
1882 ret
= omap3isp_ccp2_init(isp
);
1884 if (ret
!= -EPROBE_DEFER
)
1885 dev_err(isp
->dev
, "CCP2 initialization failed\n");
1889 ret
= omap3isp_ccdc_init(isp
);
1891 dev_err(isp
->dev
, "CCDC initialization failed\n");
1895 ret
= omap3isp_preview_init(isp
);
1897 dev_err(isp
->dev
, "Preview initialization failed\n");
1901 ret
= omap3isp_resizer_init(isp
);
1903 dev_err(isp
->dev
, "Resizer initialization failed\n");
1907 ret
= omap3isp_hist_init(isp
);
1909 dev_err(isp
->dev
, "Histogram initialization failed\n");
1913 ret
= omap3isp_h3a_aewb_init(isp
);
1915 dev_err(isp
->dev
, "H3A AEWB initialization failed\n");
1916 goto error_h3a_aewb
;
1919 ret
= omap3isp_h3a_af_init(isp
);
1921 dev_err(isp
->dev
, "H3A AF initialization failed\n");
1928 omap3isp_h3a_aewb_cleanup(isp
);
1930 omap3isp_hist_cleanup(isp
);
1932 omap3isp_resizer_cleanup(isp
);
1934 omap3isp_preview_cleanup(isp
);
1936 omap3isp_ccdc_cleanup(isp
);
1938 omap3isp_ccp2_cleanup(isp
);
1940 omap3isp_csi2_cleanup(isp
);
1942 omap3isp_csiphy_cleanup(isp
);
1947 static void isp_detach_iommu(struct isp_device
*isp
)
1949 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1950 arm_iommu_detach_device(isp
->dev
);
1951 arm_iommu_release_mapping(isp
->mapping
);
1952 isp
->mapping
= NULL
;
1956 static int isp_attach_iommu(struct isp_device
*isp
)
1958 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1959 struct dma_iommu_mapping
*mapping
;
1963 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
1964 * VAs. This will allocate a corresponding IOMMU domain.
1966 mapping
= arm_iommu_create_mapping(&platform_bus_type
, SZ_1G
, SZ_2G
);
1967 if (IS_ERR(mapping
)) {
1968 dev_err(isp
->dev
, "failed to create ARM IOMMU mapping\n");
1969 return PTR_ERR(mapping
);
1972 isp
->mapping
= mapping
;
1974 /* Attach the ARM VA mapping to the device. */
1975 ret
= arm_iommu_attach_device(isp
->dev
, mapping
);
1977 dev_err(isp
->dev
, "failed to attach device to VA mapping\n");
1984 arm_iommu_release_mapping(isp
->mapping
);
1985 isp
->mapping
= NULL
;
1993 * isp_remove - Remove ISP platform device
1994 * @pdev: Pointer to ISP platform device
1998 static int isp_remove(struct platform_device
*pdev
)
2000 struct isp_device
*isp
= platform_get_drvdata(pdev
);
2002 v4l2_async_notifier_unregister(&isp
->notifier
);
2003 isp_unregister_entities(isp
);
2004 isp_cleanup_modules(isp
);
2005 isp_xclk_cleanup(isp
);
2007 __omap3isp_get(isp
, false);
2008 isp_detach_iommu(isp
);
2009 __omap3isp_put(isp
, false);
2011 media_entity_enum_cleanup(&isp
->crashed
);
2012 v4l2_async_notifier_cleanup(&isp
->notifier
);
2020 ISP_OF_PHY_PARALLEL
= 0,
2025 static int isp_subdev_notifier_complete(struct v4l2_async_notifier
*async
)
2027 struct isp_device
*isp
= container_of(async
, struct isp_device
,
2029 struct v4l2_device
*v4l2_dev
= &isp
->v4l2_dev
;
2030 struct v4l2_subdev
*sd
;
2033 ret
= media_entity_enum_init(&isp
->crashed
, &isp
->media_dev
);
2037 list_for_each_entry(sd
, &v4l2_dev
->subdevs
, list
) {
2038 if (sd
->notifier
!= &isp
->notifier
)
2041 ret
= isp_link_entity(isp
, &sd
->entity
,
2042 v4l2_subdev_to_bus_cfg(sd
)->interface
);
2047 ret
= v4l2_device_register_subdev_nodes(&isp
->v4l2_dev
);
2051 return media_device_register(&isp
->media_dev
);
2054 static void isp_parse_of_parallel_endpoint(struct device
*dev
,
2055 struct v4l2_fwnode_endpoint
*vep
,
2056 struct isp_bus_cfg
*buscfg
)
2058 buscfg
->interface
= ISP_INTERFACE_PARALLEL
;
2059 buscfg
->bus
.parallel
.data_lane_shift
= vep
->bus
.parallel
.data_shift
;
2060 buscfg
->bus
.parallel
.clk_pol
=
2061 !!(vep
->bus
.parallel
.flags
& V4L2_MBUS_PCLK_SAMPLE_FALLING
);
2062 buscfg
->bus
.parallel
.hs_pol
=
2063 !!(vep
->bus
.parallel
.flags
& V4L2_MBUS_VSYNC_ACTIVE_LOW
);
2064 buscfg
->bus
.parallel
.vs_pol
=
2065 !!(vep
->bus
.parallel
.flags
& V4L2_MBUS_HSYNC_ACTIVE_LOW
);
2066 buscfg
->bus
.parallel
.fld_pol
=
2067 !!(vep
->bus
.parallel
.flags
& V4L2_MBUS_FIELD_EVEN_LOW
);
2068 buscfg
->bus
.parallel
.data_pol
=
2069 !!(vep
->bus
.parallel
.flags
& V4L2_MBUS_DATA_ACTIVE_LOW
);
2070 buscfg
->bus
.parallel
.bt656
= vep
->bus_type
== V4L2_MBUS_BT656
;
2073 static void isp_parse_of_csi2_endpoint(struct device
*dev
,
2074 struct v4l2_fwnode_endpoint
*vep
,
2075 struct isp_bus_cfg
*buscfg
)
2079 buscfg
->bus
.csi2
.lanecfg
.clk
.pos
= vep
->bus
.mipi_csi2
.clock_lane
;
2080 buscfg
->bus
.csi2
.lanecfg
.clk
.pol
=
2081 vep
->bus
.mipi_csi2
.lane_polarities
[0];
2082 dev_dbg(dev
, "clock lane polarity %u, pos %u\n",
2083 buscfg
->bus
.csi2
.lanecfg
.clk
.pol
,
2084 buscfg
->bus
.csi2
.lanecfg
.clk
.pos
);
2086 buscfg
->bus
.csi2
.num_data_lanes
= vep
->bus
.mipi_csi2
.num_data_lanes
;
2088 for (i
= 0; i
< buscfg
->bus
.csi2
.num_data_lanes
; i
++) {
2089 buscfg
->bus
.csi2
.lanecfg
.data
[i
].pos
=
2090 vep
->bus
.mipi_csi2
.data_lanes
[i
];
2091 buscfg
->bus
.csi2
.lanecfg
.data
[i
].pol
=
2092 vep
->bus
.mipi_csi2
.lane_polarities
[i
+ 1];
2094 "data lane %u polarity %u, pos %u\n", i
,
2095 buscfg
->bus
.csi2
.lanecfg
.data
[i
].pol
,
2096 buscfg
->bus
.csi2
.lanecfg
.data
[i
].pos
);
2099 * FIXME: now we assume the CRC is always there. Implement a way to
2100 * obtain this information from the sensor. Frame descriptors, perhaps?
2102 buscfg
->bus
.csi2
.crc
= 1;
2105 static void isp_parse_of_csi1_endpoint(struct device
*dev
,
2106 struct v4l2_fwnode_endpoint
*vep
,
2107 struct isp_bus_cfg
*buscfg
)
2109 buscfg
->bus
.ccp2
.lanecfg
.clk
.pos
= vep
->bus
.mipi_csi1
.clock_lane
;
2110 buscfg
->bus
.ccp2
.lanecfg
.clk
.pol
= vep
->bus
.mipi_csi1
.lane_polarity
[0];
2111 dev_dbg(dev
, "clock lane polarity %u, pos %u\n",
2112 buscfg
->bus
.ccp2
.lanecfg
.clk
.pol
,
2113 buscfg
->bus
.ccp2
.lanecfg
.clk
.pos
);
2115 buscfg
->bus
.ccp2
.lanecfg
.data
[0].pos
= vep
->bus
.mipi_csi1
.data_lane
;
2116 buscfg
->bus
.ccp2
.lanecfg
.data
[0].pol
=
2117 vep
->bus
.mipi_csi1
.lane_polarity
[1];
2119 dev_dbg(dev
, "data lane polarity %u, pos %u\n",
2120 buscfg
->bus
.ccp2
.lanecfg
.data
[0].pol
,
2121 buscfg
->bus
.ccp2
.lanecfg
.data
[0].pos
);
2123 buscfg
->bus
.ccp2
.strobe_clk_pol
= vep
->bus
.mipi_csi1
.clock_inv
;
2124 buscfg
->bus
.ccp2
.phy_layer
= vep
->bus
.mipi_csi1
.strobe
;
2125 buscfg
->bus
.ccp2
.ccp2_mode
= vep
->bus_type
== V4L2_MBUS_CCP2
;
2126 buscfg
->bus
.ccp2
.vp_clk_pol
= 1;
2128 buscfg
->bus
.ccp2
.crc
= 1;
2131 static int isp_alloc_isd(struct isp_async_subdev
**isd
,
2132 struct isp_bus_cfg
**buscfg
)
2134 struct isp_async_subdev
*__isd
;
2136 __isd
= kzalloc(sizeof(*__isd
), GFP_KERNEL
);
2141 *buscfg
= &__isd
->bus
;
2150 } isp_bus_interfaces
[2] = {
2151 { ISP_OF_PHY_CSIPHY1
,
2152 ISP_INTERFACE_CSI2C_PHY1
, ISP_INTERFACE_CCP2B_PHY1
},
2153 { ISP_OF_PHY_CSIPHY2
,
2154 ISP_INTERFACE_CSI2A_PHY2
, ISP_INTERFACE_CCP2B_PHY2
},
2157 static int isp_parse_of_endpoints(struct isp_device
*isp
)
2159 struct fwnode_handle
*ep
;
2160 struct isp_async_subdev
*isd
= NULL
;
2161 struct isp_bus_cfg
*buscfg
;
2164 ep
= fwnode_graph_get_endpoint_by_id(
2165 dev_fwnode(isp
->dev
), ISP_OF_PHY_PARALLEL
, 0,
2166 FWNODE_GRAPH_ENDPOINT_NEXT
);
2169 struct v4l2_fwnode_endpoint vep
= {
2170 .bus_type
= V4L2_MBUS_PARALLEL
2174 dev_dbg(isp
->dev
, "parsing parallel interface\n");
2176 ret
= v4l2_fwnode_endpoint_parse(ep
, &vep
);
2179 ret
= isp_alloc_isd(&isd
, &buscfg
);
2185 isp_parse_of_parallel_endpoint(isp
->dev
, &vep
, buscfg
);
2186 ret
= v4l2_async_notifier_add_fwnode_remote_subdev(
2187 &isp
->notifier
, ep
, &isd
->asd
);
2190 fwnode_handle_put(ep
);
2195 for (i
= 0; i
< ARRAY_SIZE(isp_bus_interfaces
); i
++) {
2196 struct v4l2_fwnode_endpoint vep
= {
2197 .bus_type
= V4L2_MBUS_CSI2_DPHY
2201 ep
= fwnode_graph_get_endpoint_by_id(
2202 dev_fwnode(isp
->dev
), isp_bus_interfaces
[i
].phy
, 0,
2203 FWNODE_GRAPH_ENDPOINT_NEXT
);
2208 dev_dbg(isp
->dev
, "parsing serial interface %u, node %pOF\n", i
,
2211 ret
= isp_alloc_isd(&isd
, &buscfg
);
2215 ret
= v4l2_fwnode_endpoint_parse(ep
, &vep
);
2217 buscfg
->interface
= isp_bus_interfaces
[i
].csi2_if
;
2218 isp_parse_of_csi2_endpoint(isp
->dev
, &vep
, buscfg
);
2219 } else if (ret
== -ENXIO
) {
2220 vep
= (struct v4l2_fwnode_endpoint
)
2221 { .bus_type
= V4L2_MBUS_CSI1
};
2222 ret
= v4l2_fwnode_endpoint_parse(ep
, &vep
);
2224 if (ret
== -ENXIO
) {
2225 vep
= (struct v4l2_fwnode_endpoint
)
2226 { .bus_type
= V4L2_MBUS_CCP2
};
2227 ret
= v4l2_fwnode_endpoint_parse(ep
, &vep
);
2231 isp_bus_interfaces
[i
].csi1_if
;
2232 isp_parse_of_csi1_endpoint(isp
->dev
, &vep
,
2238 ret
= v4l2_async_notifier_add_fwnode_remote_subdev(
2239 &isp
->notifier
, ep
, &isd
->asd
);
2241 fwnode_handle_put(ep
);
2249 static const struct v4l2_async_notifier_operations isp_subdev_notifier_ops
= {
2250 .complete
= isp_subdev_notifier_complete
,
2254 * isp_probe - Probe ISP platform device
2255 * @pdev: Pointer to ISP platform device
2257 * Returns 0 if successful,
2258 * -ENOMEM if no memory available,
2259 * -ENODEV if no platform device resources found
2260 * or no space for remapping registers,
2261 * -EINVAL if couldn't install ISR,
2262 * or clk_get return error value.
2264 static int isp_probe(struct platform_device
*pdev
)
2266 struct isp_device
*isp
;
2267 struct resource
*mem
;
2271 isp
= kzalloc(sizeof(*isp
), GFP_KERNEL
);
2273 dev_err(&pdev
->dev
, "could not allocate memory\n");
2277 ret
= fwnode_property_read_u32(of_fwnode_handle(pdev
->dev
.of_node
),
2278 "ti,phy-type", &isp
->phy_type
);
2280 goto error_release_isp
;
2282 isp
->syscon
= syscon_regmap_lookup_by_phandle(pdev
->dev
.of_node
,
2284 if (IS_ERR(isp
->syscon
)) {
2285 ret
= PTR_ERR(isp
->syscon
);
2286 goto error_release_isp
;
2289 ret
= of_property_read_u32_index(pdev
->dev
.of_node
,
2290 "syscon", 1, &isp
->syscon_offset
);
2292 goto error_release_isp
;
2294 isp
->autoidle
= autoidle
;
2296 mutex_init(&isp
->isp_mutex
);
2297 spin_lock_init(&isp
->stat_lock
);
2298 v4l2_async_notifier_init(&isp
->notifier
);
2299 isp
->dev
= &pdev
->dev
;
2301 ret
= isp_parse_of_endpoints(isp
);
2307 ret
= dma_coerce_mask_and_coherent(isp
->dev
, DMA_BIT_MASK(32));
2311 platform_set_drvdata(pdev
, isp
);
2314 isp
->isp_csiphy1
.vdd
= devm_regulator_get(&pdev
->dev
, "vdd-csiphy1");
2315 isp
->isp_csiphy2
.vdd
= devm_regulator_get(&pdev
->dev
, "vdd-csiphy2");
2319 * The ISP clock tree is revision-dependent. We thus need to enable ICLK
2320 * manually to read the revision before calling __omap3isp_get().
2322 * Start by mapping the ISP MMIO area, which is in two pieces.
2323 * The ISP IOMMU is in between. Map both now, and fill in the
2324 * ISP revision specific portions a little later in the
2327 for (i
= 0; i
< 2; i
++) {
2328 unsigned int map_idx
= i
? OMAP3_ISP_IOMEM_CSI2A_REGS1
: 0;
2330 mem
= platform_get_resource(pdev
, IORESOURCE_MEM
, i
);
2331 isp
->mmio_base
[map_idx
] =
2332 devm_ioremap_resource(isp
->dev
, mem
);
2333 if (IS_ERR(isp
->mmio_base
[map_idx
]))
2334 return PTR_ERR(isp
->mmio_base
[map_idx
]);
2337 ret
= isp_get_clocks(isp
);
2341 ret
= clk_enable(isp
->clock
[ISP_CLK_CAM_ICK
]);
2345 isp
->revision
= isp_reg_readl(isp
, OMAP3_ISP_IOMEM_MAIN
, ISP_REVISION
);
2346 dev_info(isp
->dev
, "Revision %d.%d found\n",
2347 (isp
->revision
& 0xf0) >> 4, isp
->revision
& 0x0f);
2349 clk_disable(isp
->clock
[ISP_CLK_CAM_ICK
]);
2351 if (__omap3isp_get(isp
, false) == NULL
) {
2356 ret
= isp_reset(isp
);
2360 ret
= isp_xclk_init(isp
);
2364 /* Memory resources */
2365 for (m
= 0; m
< ARRAY_SIZE(isp_res_maps
); m
++)
2366 if (isp
->revision
== isp_res_maps
[m
].isp_rev
)
2369 if (m
== ARRAY_SIZE(isp_res_maps
)) {
2370 dev_err(isp
->dev
, "No resource map found for ISP rev %d.%d\n",
2371 (isp
->revision
& 0xf0) >> 4, isp
->revision
& 0xf);
2376 for (i
= 1; i
< OMAP3_ISP_IOMEM_CSI2A_REGS1
; i
++)
2378 isp
->mmio_base
[0] + isp_res_maps
[m
].offset
[i
];
2380 for (i
= OMAP3_ISP_IOMEM_CSIPHY2
; i
< OMAP3_ISP_IOMEM_LAST
; i
++)
2382 isp
->mmio_base
[OMAP3_ISP_IOMEM_CSI2A_REGS1
]
2383 + isp_res_maps
[m
].offset
[i
];
2385 isp
->mmio_hist_base_phys
=
2386 mem
->start
+ isp_res_maps
[m
].offset
[OMAP3_ISP_IOMEM_HIST
];
2389 ret
= isp_attach_iommu(isp
);
2391 dev_err(&pdev
->dev
, "unable to attach to IOMMU\n");
2396 ret
= platform_get_irq(pdev
, 0);
2403 if (devm_request_irq(isp
->dev
, isp
->irq_num
, isp_isr
, IRQF_SHARED
,
2404 "OMAP3 ISP", isp
)) {
2405 dev_err(isp
->dev
, "Unable to request IRQ\n");
2411 ret
= isp_initialize_modules(isp
);
2415 ret
= isp_register_entities(isp
);
2419 ret
= isp_create_links(isp
);
2421 goto error_register_entities
;
2423 isp
->notifier
.ops
= &isp_subdev_notifier_ops
;
2425 ret
= v4l2_async_notifier_register(&isp
->v4l2_dev
, &isp
->notifier
);
2427 goto error_register_entities
;
2429 isp_core_init(isp
, 1);
2434 error_register_entities
:
2435 isp_unregister_entities(isp
);
2437 isp_cleanup_modules(isp
);
2439 isp_detach_iommu(isp
);
2441 isp_xclk_cleanup(isp
);
2442 __omap3isp_put(isp
, false);
2444 v4l2_async_notifier_cleanup(&isp
->notifier
);
2445 mutex_destroy(&isp
->isp_mutex
);
2452 static const struct dev_pm_ops omap3isp_pm_ops
= {
2453 .prepare
= isp_pm_prepare
,
2454 .suspend
= isp_pm_suspend
,
2455 .resume
= isp_pm_resume
,
2456 .complete
= isp_pm_complete
,
2459 static const struct platform_device_id omap3isp_id_table
[] = {
2463 MODULE_DEVICE_TABLE(platform
, omap3isp_id_table
);
2465 static const struct of_device_id omap3isp_of_table
[] = {
2466 { .compatible
= "ti,omap3-isp" },
2469 MODULE_DEVICE_TABLE(of
, omap3isp_of_table
);
2471 static struct platform_driver omap3isp_driver
= {
2473 .remove
= isp_remove
,
2474 .id_table
= omap3isp_id_table
,
2477 .pm
= &omap3isp_pm_ops
,
2478 .of_match_table
= omap3isp_of_table
,
2482 module_platform_driver(omap3isp_driver
);
2484 MODULE_AUTHOR("Nokia Corporation");
2485 MODULE_DESCRIPTION("TI OMAP3 ISP driver");
2486 MODULE_LICENSE("GPL");
2487 MODULE_VERSION(ISP_VIDEO_DRIVER_VERSION
);