1 // SPDX-License-Identifier: GPL-2.0+
3 * vsp1_video.c -- R-Car VSP1 Video Node
5 * Copyright (C) 2013-2015 Renesas Electronics Corporation
7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
10 #include <linux/list.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/slab.h>
14 #include <linux/v4l2-mediabus.h>
15 #include <linux/videodev2.h>
16 #include <linux/wait.h>
18 #include <media/media-entity.h>
19 #include <media/v4l2-dev.h>
20 #include <media/v4l2-fh.h>
21 #include <media/v4l2-ioctl.h>
22 #include <media/v4l2-subdev.h>
23 #include <media/videobuf2-v4l2.h>
24 #include <media/videobuf2-dma-contig.h>
29 #include "vsp1_entity.h"
32 #include "vsp1_pipe.h"
33 #include "vsp1_rwpf.h"
35 #include "vsp1_video.h"
37 #define VSP1_VIDEO_DEF_FORMAT V4L2_PIX_FMT_YUYV
38 #define VSP1_VIDEO_DEF_WIDTH 1024
39 #define VSP1_VIDEO_DEF_HEIGHT 768
41 #define VSP1_VIDEO_MAX_WIDTH 8190U
42 #define VSP1_VIDEO_MAX_HEIGHT 8190U
44 /* -----------------------------------------------------------------------------
48 static struct v4l2_subdev
*
49 vsp1_video_remote_subdev(struct media_pad
*local
, u32
*pad
)
51 struct media_pad
*remote
;
53 remote
= media_entity_remote_pad(local
);
54 if (!remote
|| !is_media_entity_v4l2_subdev(remote
->entity
))
60 return media_entity_to_v4l2_subdev(remote
->entity
);
63 static int vsp1_video_verify_format(struct vsp1_video
*video
)
65 struct v4l2_subdev_format fmt
;
66 struct v4l2_subdev
*subdev
;
69 subdev
= vsp1_video_remote_subdev(&video
->pad
, &fmt
.pad
);
73 fmt
.which
= V4L2_SUBDEV_FORMAT_ACTIVE
;
74 ret
= v4l2_subdev_call(subdev
, pad
, get_fmt
, NULL
, &fmt
);
76 return ret
== -ENOIOCTLCMD
? -EINVAL
: ret
;
78 if (video
->rwpf
->fmtinfo
->mbus
!= fmt
.format
.code
||
79 video
->rwpf
->format
.height
!= fmt
.format
.height
||
80 video
->rwpf
->format
.width
!= fmt
.format
.width
)
86 static int __vsp1_video_try_format(struct vsp1_video
*video
,
87 struct v4l2_pix_format_mplane
*pix
,
88 const struct vsp1_format_info
**fmtinfo
)
90 static const u32 xrgb_formats
[][2] = {
91 { V4L2_PIX_FMT_RGB444
, V4L2_PIX_FMT_XRGB444
},
92 { V4L2_PIX_FMT_RGB555
, V4L2_PIX_FMT_XRGB555
},
93 { V4L2_PIX_FMT_BGR32
, V4L2_PIX_FMT_XBGR32
},
94 { V4L2_PIX_FMT_RGB32
, V4L2_PIX_FMT_XRGB32
},
97 const struct vsp1_format_info
*info
;
98 unsigned int width
= pix
->width
;
99 unsigned int height
= pix
->height
;
103 * Backward compatibility: replace deprecated RGB formats by their XRGB
104 * equivalent. This selects the format older userspace applications want
105 * while still exposing the new format.
107 for (i
= 0; i
< ARRAY_SIZE(xrgb_formats
); ++i
) {
108 if (xrgb_formats
[i
][0] == pix
->pixelformat
) {
109 pix
->pixelformat
= xrgb_formats
[i
][1];
115 * Retrieve format information and select the default format if the
116 * requested format isn't supported.
118 info
= vsp1_get_format_info(video
->vsp1
, pix
->pixelformat
);
120 info
= vsp1_get_format_info(video
->vsp1
, VSP1_VIDEO_DEF_FORMAT
);
122 pix
->pixelformat
= info
->fourcc
;
123 pix
->colorspace
= V4L2_COLORSPACE_SRGB
;
124 pix
->field
= V4L2_FIELD_NONE
;
126 if (info
->fourcc
== V4L2_PIX_FMT_HSV24
||
127 info
->fourcc
== V4L2_PIX_FMT_HSV32
)
128 pix
->hsv_enc
= V4L2_HSV_ENC_256
;
130 memset(pix
->reserved
, 0, sizeof(pix
->reserved
));
132 /* Align the width and height for YUV 4:2:2 and 4:2:0 formats. */
133 width
= round_down(width
, info
->hsub
);
134 height
= round_down(height
, info
->vsub
);
136 /* Clamp the width and height. */
137 pix
->width
= clamp(width
, info
->hsub
, VSP1_VIDEO_MAX_WIDTH
);
138 pix
->height
= clamp(height
, info
->vsub
, VSP1_VIDEO_MAX_HEIGHT
);
141 * Compute and clamp the stride and image size. While not documented in
142 * the datasheet, strides not aligned to a multiple of 128 bytes result
143 * in image corruption.
145 for (i
= 0; i
< min(info
->planes
, 2U); ++i
) {
146 unsigned int hsub
= i
> 0 ? info
->hsub
: 1;
147 unsigned int vsub
= i
> 0 ? info
->vsub
: 1;
148 unsigned int align
= 128;
151 bpl
= clamp_t(unsigned int, pix
->plane_fmt
[i
].bytesperline
,
152 pix
->width
/ hsub
* info
->bpp
[i
] / 8,
153 round_down(65535U, align
));
155 pix
->plane_fmt
[i
].bytesperline
= round_up(bpl
, align
);
156 pix
->plane_fmt
[i
].sizeimage
= pix
->plane_fmt
[i
].bytesperline
157 * pix
->height
/ vsub
;
160 if (info
->planes
== 3) {
161 /* The second and third planes must have the same stride. */
162 pix
->plane_fmt
[2].bytesperline
= pix
->plane_fmt
[1].bytesperline
;
163 pix
->plane_fmt
[2].sizeimage
= pix
->plane_fmt
[1].sizeimage
;
166 pix
->num_planes
= info
->planes
;
174 /* -----------------------------------------------------------------------------
175 * VSP1 Partition Algorithm support
179 * vsp1_video_calculate_partition - Calculate the active partition output window
181 * @pipe: the pipeline
182 * @partition: partition that will hold the calculated values
183 * @div_size: pre-determined maximum partition division size
184 * @index: partition index
186 static void vsp1_video_calculate_partition(struct vsp1_pipeline
*pipe
,
187 struct vsp1_partition
*partition
,
188 unsigned int div_size
,
191 const struct v4l2_mbus_framefmt
*format
;
192 struct vsp1_partition_window window
;
193 unsigned int modulus
;
196 * Partitions are computed on the size before rotation, use the format
199 format
= vsp1_entity_get_pad_format(&pipe
->output
->entity
,
200 pipe
->output
->entity
.config
,
203 /* A single partition simply processes the output size in full. */
204 if (pipe
->partitions
<= 1) {
206 window
.width
= format
->width
;
208 vsp1_pipeline_propagate_partition(pipe
, partition
, index
,
213 /* Initialise the partition with sane starting conditions. */
214 window
.left
= index
* div_size
;
215 window
.width
= div_size
;
217 modulus
= format
->width
% div_size
;
220 * We need to prevent the last partition from being smaller than the
221 * *minimum* width of the hardware capabilities.
223 * If the modulus is less than half of the partition size,
224 * the penultimate partition is reduced to half, which is added
225 * to the final partition: |1234|1234|1234|12|341|
226 * to prevent this: |1234|1234|1234|1234|1|.
230 * pipe->partitions is 1 based, whilst index is a 0 based index.
231 * Normalise this locally.
233 unsigned int partitions
= pipe
->partitions
- 1;
235 if (modulus
< div_size
/ 2) {
236 if (index
== partitions
- 1) {
237 /* Halve the penultimate partition. */
238 window
.width
= div_size
/ 2;
239 } else if (index
== partitions
) {
240 /* Increase the final partition. */
241 window
.width
= (div_size
/ 2) + modulus
;
242 window
.left
-= div_size
/ 2;
244 } else if (index
== partitions
) {
245 window
.width
= modulus
;
249 vsp1_pipeline_propagate_partition(pipe
, partition
, index
, &window
);
252 static int vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline
*pipe
)
254 struct vsp1_device
*vsp1
= pipe
->output
->entity
.vsp1
;
255 const struct v4l2_mbus_framefmt
*format
;
256 struct vsp1_entity
*entity
;
257 unsigned int div_size
;
261 * Partitions are computed on the size before rotation, use the format
264 format
= vsp1_entity_get_pad_format(&pipe
->output
->entity
,
265 pipe
->output
->entity
.config
,
267 div_size
= format
->width
;
270 * Only Gen3 hardware requires image partitioning, Gen2 will operate
271 * with a single partition that covers the whole output.
273 if (vsp1
->info
->gen
== 3) {
274 list_for_each_entry(entity
, &pipe
->entities
, list_pipe
) {
275 unsigned int entity_max
;
277 if (!entity
->ops
->max_width
)
280 entity_max
= entity
->ops
->max_width(entity
, pipe
);
282 div_size
= min(div_size
, entity_max
);
286 pipe
->partitions
= DIV_ROUND_UP(format
->width
, div_size
);
287 pipe
->part_table
= kcalloc(pipe
->partitions
, sizeof(*pipe
->part_table
),
289 if (!pipe
->part_table
)
292 for (i
= 0; i
< pipe
->partitions
; ++i
)
293 vsp1_video_calculate_partition(pipe
, &pipe
->part_table
[i
],
299 /* -----------------------------------------------------------------------------
300 * Pipeline Management
304 * vsp1_video_complete_buffer - Complete the current buffer
305 * @video: the video node
307 * This function completes the current buffer by filling its sequence number,
308 * time stamp and payload size, and hands it back to the videobuf core.
310 * Return the next queued buffer or NULL if the queue is empty.
312 static struct vsp1_vb2_buffer
*
313 vsp1_video_complete_buffer(struct vsp1_video
*video
)
315 struct vsp1_pipeline
*pipe
= video
->rwpf
->entity
.pipe
;
316 struct vsp1_vb2_buffer
*next
= NULL
;
317 struct vsp1_vb2_buffer
*done
;
321 spin_lock_irqsave(&video
->irqlock
, flags
);
323 if (list_empty(&video
->irqqueue
)) {
324 spin_unlock_irqrestore(&video
->irqlock
, flags
);
328 done
= list_first_entry(&video
->irqqueue
,
329 struct vsp1_vb2_buffer
, queue
);
331 list_del(&done
->queue
);
333 if (!list_empty(&video
->irqqueue
))
334 next
= list_first_entry(&video
->irqqueue
,
335 struct vsp1_vb2_buffer
, queue
);
337 spin_unlock_irqrestore(&video
->irqlock
, flags
);
339 done
->buf
.sequence
= pipe
->sequence
;
340 done
->buf
.vb2_buf
.timestamp
= ktime_get_ns();
341 for (i
= 0; i
< done
->buf
.vb2_buf
.num_planes
; ++i
)
342 vb2_set_plane_payload(&done
->buf
.vb2_buf
, i
,
343 vb2_plane_size(&done
->buf
.vb2_buf
, i
));
344 vb2_buffer_done(&done
->buf
.vb2_buf
, VB2_BUF_STATE_DONE
);
349 static void vsp1_video_frame_end(struct vsp1_pipeline
*pipe
,
350 struct vsp1_rwpf
*rwpf
)
352 struct vsp1_video
*video
= rwpf
->video
;
353 struct vsp1_vb2_buffer
*buf
;
355 buf
= vsp1_video_complete_buffer(video
);
359 video
->rwpf
->mem
= buf
->mem
;
360 pipe
->buffers_ready
|= 1 << video
->pipe_index
;
363 static void vsp1_video_pipeline_run_partition(struct vsp1_pipeline
*pipe
,
364 struct vsp1_dl_list
*dl
,
365 unsigned int partition
)
367 struct vsp1_dl_body
*dlb
= vsp1_dl_list_get_body0(dl
);
368 struct vsp1_entity
*entity
;
370 pipe
->partition
= &pipe
->part_table
[partition
];
372 list_for_each_entry(entity
, &pipe
->entities
, list_pipe
)
373 vsp1_entity_configure_partition(entity
, pipe
, dl
, dlb
);
376 static void vsp1_video_pipeline_run(struct vsp1_pipeline
*pipe
)
378 struct vsp1_device
*vsp1
= pipe
->output
->entity
.vsp1
;
379 struct vsp1_entity
*entity
;
380 struct vsp1_dl_body
*dlb
;
381 struct vsp1_dl_list
*dl
;
382 unsigned int partition
;
384 dl
= vsp1_dl_list_get(pipe
->output
->dlm
);
387 * If the VSP hardware isn't configured yet (which occurs either when
388 * processing the first frame or after a system suspend/resume), add the
389 * cached stream configuration to the display list to perform a full
392 if (!pipe
->configured
)
393 vsp1_dl_list_add_body(dl
, pipe
->stream_config
);
395 dlb
= vsp1_dl_list_get_body0(dl
);
397 list_for_each_entry(entity
, &pipe
->entities
, list_pipe
)
398 vsp1_entity_configure_frame(entity
, pipe
, dl
, dlb
);
400 /* Run the first partition. */
401 vsp1_video_pipeline_run_partition(pipe
, dl
, 0);
403 /* Process consecutive partitions as necessary. */
404 for (partition
= 1; partition
< pipe
->partitions
; ++partition
) {
405 struct vsp1_dl_list
*dl_next
;
407 dl_next
= vsp1_dl_list_get(pipe
->output
->dlm
);
410 * An incomplete chain will still function, but output only
411 * the partitions that had a dl available. The frame end
412 * interrupt will be marked on the last dl in the chain.
415 dev_err(vsp1
->dev
, "Failed to obtain a dl list. Frame will be incomplete\n");
419 vsp1_video_pipeline_run_partition(pipe
, dl_next
, partition
);
420 vsp1_dl_list_add_chain(dl
, dl_next
);
423 /* Complete, and commit the head display list. */
424 vsp1_dl_list_commit(dl
, 0);
425 pipe
->configured
= true;
427 vsp1_pipeline_run(pipe
);
430 static void vsp1_video_pipeline_frame_end(struct vsp1_pipeline
*pipe
,
431 unsigned int completion
)
433 struct vsp1_device
*vsp1
= pipe
->output
->entity
.vsp1
;
434 enum vsp1_pipeline_state state
;
438 /* M2M Pipelines should never call here with an incomplete frame. */
439 WARN_ON_ONCE(!(completion
& VSP1_DL_FRAME_END_COMPLETED
));
441 spin_lock_irqsave(&pipe
->irqlock
, flags
);
443 /* Complete buffers on all video nodes. */
444 for (i
= 0; i
< vsp1
->info
->rpf_count
; ++i
) {
445 if (!pipe
->inputs
[i
])
448 vsp1_video_frame_end(pipe
, pipe
->inputs
[i
]);
451 vsp1_video_frame_end(pipe
, pipe
->output
);
454 pipe
->state
= VSP1_PIPELINE_STOPPED
;
457 * If a stop has been requested, mark the pipeline as stopped and
458 * return. Otherwise restart the pipeline if ready.
460 if (state
== VSP1_PIPELINE_STOPPING
)
462 else if (vsp1_pipeline_ready(pipe
))
463 vsp1_video_pipeline_run(pipe
);
465 spin_unlock_irqrestore(&pipe
->irqlock
, flags
);
468 static int vsp1_video_pipeline_build_branch(struct vsp1_pipeline
*pipe
,
469 struct vsp1_rwpf
*input
,
470 struct vsp1_rwpf
*output
)
472 struct media_entity_enum ent_enum
;
473 struct vsp1_entity
*entity
;
474 struct media_pad
*pad
;
475 struct vsp1_brx
*brx
= NULL
;
478 ret
= media_entity_enum_init(&ent_enum
, &input
->entity
.vsp1
->media_dev
);
483 * The main data path doesn't include the HGO or HGT, use
484 * vsp1_entity_remote_pad() to traverse the graph.
487 pad
= vsp1_entity_remote_pad(&input
->entity
.pads
[RWPF_PAD_SOURCE
]);
495 /* We've reached a video node, that shouldn't have happened. */
496 if (!is_media_entity_v4l2_subdev(pad
->entity
)) {
501 entity
= to_vsp1_entity(
502 media_entity_to_v4l2_subdev(pad
->entity
));
505 * A BRU or BRS is present in the pipeline, store its input pad
506 * number in the input RPF for use when configuring the RPF.
508 if (entity
->type
== VSP1_ENTITY_BRU
||
509 entity
->type
== VSP1_ENTITY_BRS
) {
510 /* BRU and BRS can't be chained. */
516 brx
= to_brx(&entity
->subdev
);
517 brx
->inputs
[pad
->index
].rpf
= input
;
518 input
->brx_input
= pad
->index
;
521 /* We've reached the WPF, we're done. */
522 if (entity
->type
== VSP1_ENTITY_WPF
)
525 /* Ensure the branch has no loop. */
526 if (media_entity_enum_test_and_set(&ent_enum
,
527 &entity
->subdev
.entity
)) {
532 /* UDS can't be chained. */
533 if (entity
->type
== VSP1_ENTITY_UDS
) {
540 pipe
->uds_input
= brx
? &brx
->entity
: &input
->entity
;
543 /* Follow the source link, ignoring any HGO or HGT. */
544 pad
= &entity
->pads
[entity
->source_pad
];
545 pad
= vsp1_entity_remote_pad(pad
);
548 /* The last entity must be the output WPF. */
549 if (entity
!= &output
->entity
)
553 media_entity_enum_cleanup(&ent_enum
);
558 static int vsp1_video_pipeline_build(struct vsp1_pipeline
*pipe
,
559 struct vsp1_video
*video
)
561 struct media_graph graph
;
562 struct media_entity
*entity
= &video
->video
.entity
;
563 struct media_device
*mdev
= entity
->graph_obj
.mdev
;
567 /* Walk the graph to locate the entities and video nodes. */
568 ret
= media_graph_walk_init(&graph
, mdev
);
572 media_graph_walk_start(&graph
, entity
);
574 while ((entity
= media_graph_walk_next(&graph
))) {
575 struct v4l2_subdev
*subdev
;
576 struct vsp1_rwpf
*rwpf
;
577 struct vsp1_entity
*e
;
579 if (!is_media_entity_v4l2_subdev(entity
))
582 subdev
= media_entity_to_v4l2_subdev(entity
);
583 e
= to_vsp1_entity(subdev
);
584 list_add_tail(&e
->list_pipe
, &pipe
->entities
);
588 case VSP1_ENTITY_RPF
:
589 rwpf
= to_rwpf(subdev
);
590 pipe
->inputs
[rwpf
->entity
.index
] = rwpf
;
591 rwpf
->video
->pipe_index
= ++pipe
->num_inputs
;
594 case VSP1_ENTITY_WPF
:
595 rwpf
= to_rwpf(subdev
);
597 rwpf
->video
->pipe_index
= 0;
600 case VSP1_ENTITY_LIF
:
604 case VSP1_ENTITY_BRU
:
605 case VSP1_ENTITY_BRS
:
609 case VSP1_ENTITY_HGO
:
613 case VSP1_ENTITY_HGT
:
622 media_graph_walk_cleanup(&graph
);
624 /* We need one output and at least one input. */
625 if (pipe
->num_inputs
== 0 || !pipe
->output
)
629 * Follow links downstream for each input and make sure the graph
630 * contains no loop and that all branches end at the output WPF.
632 for (i
= 0; i
< video
->vsp1
->info
->rpf_count
; ++i
) {
633 if (!pipe
->inputs
[i
])
636 ret
= vsp1_video_pipeline_build_branch(pipe
, pipe
->inputs
[i
],
645 static int vsp1_video_pipeline_init(struct vsp1_pipeline
*pipe
,
646 struct vsp1_video
*video
)
648 vsp1_pipeline_init(pipe
);
650 pipe
->frame_end
= vsp1_video_pipeline_frame_end
;
652 return vsp1_video_pipeline_build(pipe
, video
);
655 static struct vsp1_pipeline
*vsp1_video_pipeline_get(struct vsp1_video
*video
)
657 struct vsp1_pipeline
*pipe
;
661 * Get a pipeline object for the video node. If a pipeline has already
662 * been allocated just increment its reference count and return it.
663 * Otherwise allocate a new pipeline and initialize it, it will be freed
664 * when the last reference is released.
666 if (!video
->rwpf
->entity
.pipe
) {
667 pipe
= kzalloc(sizeof(*pipe
), GFP_KERNEL
);
669 return ERR_PTR(-ENOMEM
);
671 ret
= vsp1_video_pipeline_init(pipe
, video
);
673 vsp1_pipeline_reset(pipe
);
678 pipe
= video
->rwpf
->entity
.pipe
;
679 kref_get(&pipe
->kref
);
685 static void vsp1_video_pipeline_release(struct kref
*kref
)
687 struct vsp1_pipeline
*pipe
= container_of(kref
, typeof(*pipe
), kref
);
689 vsp1_pipeline_reset(pipe
);
693 static void vsp1_video_pipeline_put(struct vsp1_pipeline
*pipe
)
695 struct media_device
*mdev
= &pipe
->output
->entity
.vsp1
->media_dev
;
697 mutex_lock(&mdev
->graph_mutex
);
698 kref_put(&pipe
->kref
, vsp1_video_pipeline_release
);
699 mutex_unlock(&mdev
->graph_mutex
);
702 /* -----------------------------------------------------------------------------
703 * videobuf2 Queue Operations
707 vsp1_video_queue_setup(struct vb2_queue
*vq
,
708 unsigned int *nbuffers
, unsigned int *nplanes
,
709 unsigned int sizes
[], struct device
*alloc_devs
[])
711 struct vsp1_video
*video
= vb2_get_drv_priv(vq
);
712 const struct v4l2_pix_format_mplane
*format
= &video
->rwpf
->format
;
716 if (*nplanes
!= format
->num_planes
)
719 for (i
= 0; i
< *nplanes
; i
++)
720 if (sizes
[i
] < format
->plane_fmt
[i
].sizeimage
)
725 *nplanes
= format
->num_planes
;
727 for (i
= 0; i
< format
->num_planes
; ++i
)
728 sizes
[i
] = format
->plane_fmt
[i
].sizeimage
;
733 static int vsp1_video_buffer_prepare(struct vb2_buffer
*vb
)
735 struct vb2_v4l2_buffer
*vbuf
= to_vb2_v4l2_buffer(vb
);
736 struct vsp1_video
*video
= vb2_get_drv_priv(vb
->vb2_queue
);
737 struct vsp1_vb2_buffer
*buf
= to_vsp1_vb2_buffer(vbuf
);
738 const struct v4l2_pix_format_mplane
*format
= &video
->rwpf
->format
;
741 if (vb
->num_planes
< format
->num_planes
)
744 for (i
= 0; i
< vb
->num_planes
; ++i
) {
745 buf
->mem
.addr
[i
] = vb2_dma_contig_plane_dma_addr(vb
, i
);
747 if (vb2_plane_size(vb
, i
) < format
->plane_fmt
[i
].sizeimage
)
752 buf
->mem
.addr
[i
] = 0;
757 static void vsp1_video_buffer_queue(struct vb2_buffer
*vb
)
759 struct vb2_v4l2_buffer
*vbuf
= to_vb2_v4l2_buffer(vb
);
760 struct vsp1_video
*video
= vb2_get_drv_priv(vb
->vb2_queue
);
761 struct vsp1_pipeline
*pipe
= video
->rwpf
->entity
.pipe
;
762 struct vsp1_vb2_buffer
*buf
= to_vsp1_vb2_buffer(vbuf
);
766 spin_lock_irqsave(&video
->irqlock
, flags
);
767 empty
= list_empty(&video
->irqqueue
);
768 list_add_tail(&buf
->queue
, &video
->irqqueue
);
769 spin_unlock_irqrestore(&video
->irqlock
, flags
);
774 spin_lock_irqsave(&pipe
->irqlock
, flags
);
776 video
->rwpf
->mem
= buf
->mem
;
777 pipe
->buffers_ready
|= 1 << video
->pipe_index
;
779 if (vb2_is_streaming(&video
->queue
) &&
780 vsp1_pipeline_ready(pipe
))
781 vsp1_video_pipeline_run(pipe
);
783 spin_unlock_irqrestore(&pipe
->irqlock
, flags
);
786 static int vsp1_video_setup_pipeline(struct vsp1_pipeline
*pipe
)
788 struct vsp1_entity
*entity
;
791 /* Determine this pipelines sizes for image partitioning support. */
792 ret
= vsp1_video_pipeline_setup_partitions(pipe
);
797 struct vsp1_uds
*uds
= to_uds(&pipe
->uds
->subdev
);
800 * If a BRU or BRS is present in the pipeline before the UDS,
801 * the alpha component doesn't need to be scaled as the BRU and
802 * BRS output alpha value is fixed to 255. Otherwise we need to
803 * scale the alpha component only when available at the input
806 if (pipe
->uds_input
->type
== VSP1_ENTITY_BRU
||
807 pipe
->uds_input
->type
== VSP1_ENTITY_BRS
) {
808 uds
->scale_alpha
= false;
810 struct vsp1_rwpf
*rpf
=
811 to_rwpf(&pipe
->uds_input
->subdev
);
813 uds
->scale_alpha
= rpf
->fmtinfo
->alpha
;
818 * Compute and cache the stream configuration into a body. The cached
819 * body will be added to the display list by vsp1_video_pipeline_run()
820 * whenever the pipeline needs to be fully reconfigured.
822 pipe
->stream_config
= vsp1_dlm_dl_body_get(pipe
->output
->dlm
);
823 if (!pipe
->stream_config
)
826 list_for_each_entry(entity
, &pipe
->entities
, list_pipe
) {
827 vsp1_entity_route_setup(entity
, pipe
, pipe
->stream_config
);
828 vsp1_entity_configure_stream(entity
, pipe
, NULL
,
829 pipe
->stream_config
);
835 static void vsp1_video_release_buffers(struct vsp1_video
*video
)
837 struct vsp1_vb2_buffer
*buffer
;
840 /* Remove all buffers from the IRQ queue. */
841 spin_lock_irqsave(&video
->irqlock
, flags
);
842 list_for_each_entry(buffer
, &video
->irqqueue
, queue
)
843 vb2_buffer_done(&buffer
->buf
.vb2_buf
, VB2_BUF_STATE_ERROR
);
844 INIT_LIST_HEAD(&video
->irqqueue
);
845 spin_unlock_irqrestore(&video
->irqlock
, flags
);
848 static void vsp1_video_cleanup_pipeline(struct vsp1_pipeline
*pipe
)
850 lockdep_assert_held(&pipe
->lock
);
852 /* Release any cached configuration from our output video. */
853 vsp1_dl_body_put(pipe
->stream_config
);
854 pipe
->stream_config
= NULL
;
855 pipe
->configured
= false;
857 /* Release our partition table allocation. */
858 kfree(pipe
->part_table
);
859 pipe
->part_table
= NULL
;
862 static int vsp1_video_start_streaming(struct vb2_queue
*vq
, unsigned int count
)
864 struct vsp1_video
*video
= vb2_get_drv_priv(vq
);
865 struct vsp1_pipeline
*pipe
= video
->rwpf
->entity
.pipe
;
866 bool start_pipeline
= false;
870 mutex_lock(&pipe
->lock
);
871 if (pipe
->stream_count
== pipe
->num_inputs
) {
872 ret
= vsp1_video_setup_pipeline(pipe
);
874 vsp1_video_release_buffers(video
);
875 vsp1_video_cleanup_pipeline(pipe
);
876 mutex_unlock(&pipe
->lock
);
880 start_pipeline
= true;
883 pipe
->stream_count
++;
884 mutex_unlock(&pipe
->lock
);
887 * vsp1_pipeline_ready() is not sufficient to establish that all streams
888 * are prepared and the pipeline is configured, as multiple streams
889 * can race through streamon with buffers already queued; Therefore we
890 * don't even attempt to start the pipeline until the last stream has
891 * called through here.
896 spin_lock_irqsave(&pipe
->irqlock
, flags
);
897 if (vsp1_pipeline_ready(pipe
))
898 vsp1_video_pipeline_run(pipe
);
899 spin_unlock_irqrestore(&pipe
->irqlock
, flags
);
904 static void vsp1_video_stop_streaming(struct vb2_queue
*vq
)
906 struct vsp1_video
*video
= vb2_get_drv_priv(vq
);
907 struct vsp1_pipeline
*pipe
= video
->rwpf
->entity
.pipe
;
912 * Clear the buffers ready flag to make sure the device won't be started
913 * by a QBUF on the video node on the other side of the pipeline.
915 spin_lock_irqsave(&video
->irqlock
, flags
);
916 pipe
->buffers_ready
&= ~(1 << video
->pipe_index
);
917 spin_unlock_irqrestore(&video
->irqlock
, flags
);
919 mutex_lock(&pipe
->lock
);
920 if (--pipe
->stream_count
== pipe
->num_inputs
) {
921 /* Stop the pipeline. */
922 ret
= vsp1_pipeline_stop(pipe
);
923 if (ret
== -ETIMEDOUT
)
924 dev_err(video
->vsp1
->dev
, "pipeline stop timeout\n");
926 vsp1_video_cleanup_pipeline(pipe
);
928 mutex_unlock(&pipe
->lock
);
930 media_pipeline_stop(&video
->video
.entity
);
931 vsp1_video_release_buffers(video
);
932 vsp1_video_pipeline_put(pipe
);
935 static const struct vb2_ops vsp1_video_queue_qops
= {
936 .queue_setup
= vsp1_video_queue_setup
,
937 .buf_prepare
= vsp1_video_buffer_prepare
,
938 .buf_queue
= vsp1_video_buffer_queue
,
939 .wait_prepare
= vb2_ops_wait_prepare
,
940 .wait_finish
= vb2_ops_wait_finish
,
941 .start_streaming
= vsp1_video_start_streaming
,
942 .stop_streaming
= vsp1_video_stop_streaming
,
945 /* -----------------------------------------------------------------------------
950 vsp1_video_querycap(struct file
*file
, void *fh
, struct v4l2_capability
*cap
)
952 struct v4l2_fh
*vfh
= file
->private_data
;
953 struct vsp1_video
*video
= to_vsp1_video(vfh
->vdev
);
955 cap
->capabilities
= V4L2_CAP_DEVICE_CAPS
| V4L2_CAP_STREAMING
956 | V4L2_CAP_VIDEO_CAPTURE_MPLANE
957 | V4L2_CAP_VIDEO_OUTPUT_MPLANE
;
960 strscpy(cap
->driver
, "vsp1", sizeof(cap
->driver
));
961 strscpy(cap
->card
, video
->video
.name
, sizeof(cap
->card
));
962 snprintf(cap
->bus_info
, sizeof(cap
->bus_info
), "platform:%s",
963 dev_name(video
->vsp1
->dev
));
969 vsp1_video_get_format(struct file
*file
, void *fh
, struct v4l2_format
*format
)
971 struct v4l2_fh
*vfh
= file
->private_data
;
972 struct vsp1_video
*video
= to_vsp1_video(vfh
->vdev
);
974 if (format
->type
!= video
->queue
.type
)
977 mutex_lock(&video
->lock
);
978 format
->fmt
.pix_mp
= video
->rwpf
->format
;
979 mutex_unlock(&video
->lock
);
985 vsp1_video_try_format(struct file
*file
, void *fh
, struct v4l2_format
*format
)
987 struct v4l2_fh
*vfh
= file
->private_data
;
988 struct vsp1_video
*video
= to_vsp1_video(vfh
->vdev
);
990 if (format
->type
!= video
->queue
.type
)
993 return __vsp1_video_try_format(video
, &format
->fmt
.pix_mp
, NULL
);
997 vsp1_video_set_format(struct file
*file
, void *fh
, struct v4l2_format
*format
)
999 struct v4l2_fh
*vfh
= file
->private_data
;
1000 struct vsp1_video
*video
= to_vsp1_video(vfh
->vdev
);
1001 const struct vsp1_format_info
*info
;
1004 if (format
->type
!= video
->queue
.type
)
1007 ret
= __vsp1_video_try_format(video
, &format
->fmt
.pix_mp
, &info
);
1011 mutex_lock(&video
->lock
);
1013 if (vb2_is_busy(&video
->queue
)) {
1018 video
->rwpf
->format
= format
->fmt
.pix_mp
;
1019 video
->rwpf
->fmtinfo
= info
;
1022 mutex_unlock(&video
->lock
);
1027 vsp1_video_streamon(struct file
*file
, void *fh
, enum v4l2_buf_type type
)
1029 struct v4l2_fh
*vfh
= file
->private_data
;
1030 struct vsp1_video
*video
= to_vsp1_video(vfh
->vdev
);
1031 struct media_device
*mdev
= &video
->vsp1
->media_dev
;
1032 struct vsp1_pipeline
*pipe
;
1035 if (video
->queue
.owner
&& video
->queue
.owner
!= file
->private_data
)
1039 * Get a pipeline for the video node and start streaming on it. No link
1040 * touching an entity in the pipeline can be activated or deactivated
1041 * once streaming is started.
1043 mutex_lock(&mdev
->graph_mutex
);
1045 pipe
= vsp1_video_pipeline_get(video
);
1047 mutex_unlock(&mdev
->graph_mutex
);
1048 return PTR_ERR(pipe
);
1051 ret
= __media_pipeline_start(&video
->video
.entity
, &pipe
->pipe
);
1053 mutex_unlock(&mdev
->graph_mutex
);
1057 mutex_unlock(&mdev
->graph_mutex
);
1060 * Verify that the configured format matches the output of the connected
1063 ret
= vsp1_video_verify_format(video
);
1067 /* Start the queue. */
1068 ret
= vb2_streamon(&video
->queue
, type
);
1075 media_pipeline_stop(&video
->video
.entity
);
1077 vsp1_video_pipeline_put(pipe
);
1081 static const struct v4l2_ioctl_ops vsp1_video_ioctl_ops
= {
1082 .vidioc_querycap
= vsp1_video_querycap
,
1083 .vidioc_g_fmt_vid_cap_mplane
= vsp1_video_get_format
,
1084 .vidioc_s_fmt_vid_cap_mplane
= vsp1_video_set_format
,
1085 .vidioc_try_fmt_vid_cap_mplane
= vsp1_video_try_format
,
1086 .vidioc_g_fmt_vid_out_mplane
= vsp1_video_get_format
,
1087 .vidioc_s_fmt_vid_out_mplane
= vsp1_video_set_format
,
1088 .vidioc_try_fmt_vid_out_mplane
= vsp1_video_try_format
,
1089 .vidioc_reqbufs
= vb2_ioctl_reqbufs
,
1090 .vidioc_querybuf
= vb2_ioctl_querybuf
,
1091 .vidioc_qbuf
= vb2_ioctl_qbuf
,
1092 .vidioc_dqbuf
= vb2_ioctl_dqbuf
,
1093 .vidioc_expbuf
= vb2_ioctl_expbuf
,
1094 .vidioc_create_bufs
= vb2_ioctl_create_bufs
,
1095 .vidioc_prepare_buf
= vb2_ioctl_prepare_buf
,
1096 .vidioc_streamon
= vsp1_video_streamon
,
1097 .vidioc_streamoff
= vb2_ioctl_streamoff
,
1100 /* -----------------------------------------------------------------------------
1101 * V4L2 File Operations
1104 static int vsp1_video_open(struct file
*file
)
1106 struct vsp1_video
*video
= video_drvdata(file
);
1107 struct v4l2_fh
*vfh
;
1110 vfh
= kzalloc(sizeof(*vfh
), GFP_KERNEL
);
1114 v4l2_fh_init(vfh
, &video
->video
);
1117 file
->private_data
= vfh
;
1119 ret
= vsp1_device_get(video
->vsp1
);
1129 static int vsp1_video_release(struct file
*file
)
1131 struct vsp1_video
*video
= video_drvdata(file
);
1132 struct v4l2_fh
*vfh
= file
->private_data
;
1134 mutex_lock(&video
->lock
);
1135 if (video
->queue
.owner
== vfh
) {
1136 vb2_queue_release(&video
->queue
);
1137 video
->queue
.owner
= NULL
;
1139 mutex_unlock(&video
->lock
);
1141 vsp1_device_put(video
->vsp1
);
1143 v4l2_fh_release(file
);
1145 file
->private_data
= NULL
;
1150 static const struct v4l2_file_operations vsp1_video_fops
= {
1151 .owner
= THIS_MODULE
,
1152 .unlocked_ioctl
= video_ioctl2
,
1153 .open
= vsp1_video_open
,
1154 .release
= vsp1_video_release
,
1155 .poll
= vb2_fop_poll
,
1156 .mmap
= vb2_fop_mmap
,
1159 /* -----------------------------------------------------------------------------
1160 * Suspend and Resume
1163 void vsp1_video_suspend(struct vsp1_device
*vsp1
)
1165 unsigned long flags
;
1170 * To avoid increasing the system suspend time needlessly, loop over the
1171 * pipelines twice, first to set them all to the stopping state, and
1172 * then to wait for the stop to complete.
1174 for (i
= 0; i
< vsp1
->info
->wpf_count
; ++i
) {
1175 struct vsp1_rwpf
*wpf
= vsp1
->wpf
[i
];
1176 struct vsp1_pipeline
*pipe
;
1181 pipe
= wpf
->entity
.pipe
;
1185 spin_lock_irqsave(&pipe
->irqlock
, flags
);
1186 if (pipe
->state
== VSP1_PIPELINE_RUNNING
)
1187 pipe
->state
= VSP1_PIPELINE_STOPPING
;
1188 spin_unlock_irqrestore(&pipe
->irqlock
, flags
);
1191 for (i
= 0; i
< vsp1
->info
->wpf_count
; ++i
) {
1192 struct vsp1_rwpf
*wpf
= vsp1
->wpf
[i
];
1193 struct vsp1_pipeline
*pipe
;
1198 pipe
= wpf
->entity
.pipe
;
1202 ret
= wait_event_timeout(pipe
->wq
, vsp1_pipeline_stopped(pipe
),
1203 msecs_to_jiffies(500));
1205 dev_warn(vsp1
->dev
, "pipeline %u stop timeout\n",
1210 void vsp1_video_resume(struct vsp1_device
*vsp1
)
1212 unsigned long flags
;
1215 /* Resume all running pipelines. */
1216 for (i
= 0; i
< vsp1
->info
->wpf_count
; ++i
) {
1217 struct vsp1_rwpf
*wpf
= vsp1
->wpf
[i
];
1218 struct vsp1_pipeline
*pipe
;
1223 pipe
= wpf
->entity
.pipe
;
1228 * The hardware may have been reset during a suspend and will
1229 * need a full reconfiguration.
1231 pipe
->configured
= false;
1233 spin_lock_irqsave(&pipe
->irqlock
, flags
);
1234 if (vsp1_pipeline_ready(pipe
))
1235 vsp1_video_pipeline_run(pipe
);
1236 spin_unlock_irqrestore(&pipe
->irqlock
, flags
);
1240 /* -----------------------------------------------------------------------------
1241 * Initialization and Cleanup
1244 struct vsp1_video
*vsp1_video_create(struct vsp1_device
*vsp1
,
1245 struct vsp1_rwpf
*rwpf
)
1247 struct vsp1_video
*video
;
1248 const char *direction
;
1251 video
= devm_kzalloc(vsp1
->dev
, sizeof(*video
), GFP_KERNEL
);
1253 return ERR_PTR(-ENOMEM
);
1255 rwpf
->video
= video
;
1260 if (rwpf
->entity
.type
== VSP1_ENTITY_RPF
) {
1261 direction
= "input";
1262 video
->type
= V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
;
1263 video
->pad
.flags
= MEDIA_PAD_FL_SOURCE
;
1264 video
->video
.vfl_dir
= VFL_DIR_TX
;
1265 video
->video
.device_caps
= V4L2_CAP_VIDEO_OUTPUT_MPLANE
|
1268 direction
= "output";
1269 video
->type
= V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE
;
1270 video
->pad
.flags
= MEDIA_PAD_FL_SINK
;
1271 video
->video
.vfl_dir
= VFL_DIR_RX
;
1272 video
->video
.device_caps
= V4L2_CAP_VIDEO_CAPTURE_MPLANE
|
1276 mutex_init(&video
->lock
);
1277 spin_lock_init(&video
->irqlock
);
1278 INIT_LIST_HEAD(&video
->irqqueue
);
1280 /* Initialize the media entity... */
1281 ret
= media_entity_pads_init(&video
->video
.entity
, 1, &video
->pad
);
1283 return ERR_PTR(ret
);
1285 /* ... and the format ... */
1286 rwpf
->format
.pixelformat
= VSP1_VIDEO_DEF_FORMAT
;
1287 rwpf
->format
.width
= VSP1_VIDEO_DEF_WIDTH
;
1288 rwpf
->format
.height
= VSP1_VIDEO_DEF_HEIGHT
;
1289 __vsp1_video_try_format(video
, &rwpf
->format
, &rwpf
->fmtinfo
);
1291 /* ... and the video node... */
1292 video
->video
.v4l2_dev
= &video
->vsp1
->v4l2_dev
;
1293 video
->video
.fops
= &vsp1_video_fops
;
1294 snprintf(video
->video
.name
, sizeof(video
->video
.name
), "%s %s",
1295 rwpf
->entity
.subdev
.name
, direction
);
1296 video
->video
.vfl_type
= VFL_TYPE_GRABBER
;
1297 video
->video
.release
= video_device_release_empty
;
1298 video
->video
.ioctl_ops
= &vsp1_video_ioctl_ops
;
1300 video_set_drvdata(&video
->video
, video
);
1302 video
->queue
.type
= video
->type
;
1303 video
->queue
.io_modes
= VB2_MMAP
| VB2_USERPTR
| VB2_DMABUF
;
1304 video
->queue
.lock
= &video
->lock
;
1305 video
->queue
.drv_priv
= video
;
1306 video
->queue
.buf_struct_size
= sizeof(struct vsp1_vb2_buffer
);
1307 video
->queue
.ops
= &vsp1_video_queue_qops
;
1308 video
->queue
.mem_ops
= &vb2_dma_contig_memops
;
1309 video
->queue
.timestamp_flags
= V4L2_BUF_FLAG_TIMESTAMP_COPY
;
1310 video
->queue
.dev
= video
->vsp1
->bus_master
;
1311 ret
= vb2_queue_init(&video
->queue
);
1313 dev_err(video
->vsp1
->dev
, "failed to initialize vb2 queue\n");
1317 /* ... and register the video device. */
1318 video
->video
.queue
= &video
->queue
;
1319 ret
= video_register_device(&video
->video
, VFL_TYPE_GRABBER
, -1);
1321 dev_err(video
->vsp1
->dev
, "failed to register video device\n");
1328 vsp1_video_cleanup(video
);
1329 return ERR_PTR(ret
);
1332 void vsp1_video_cleanup(struct vsp1_video
*video
)
1334 if (video_is_registered(&video
->video
))
1335 video_unregister_device(&video
->video
);
1337 media_entity_cleanup(&video
->video
.entity
);