1 // SPDX-License-Identifier: GPL-2.0
2 // rc-main.c - Remote Controller core module
4 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 #include <media/rc-core.h>
9 #include <linux/bsearch.h>
10 #include <linux/spinlock.h>
11 #include <linux/delay.h>
12 #include <linux/input.h>
13 #include <linux/leds.h>
14 #include <linux/slab.h>
15 #include <linux/idr.h>
16 #include <linux/device.h>
17 #include <linux/module.h>
18 #include "rc-core-priv.h"
20 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
21 #define IR_TAB_MIN_SIZE 256
22 #define IR_TAB_MAX_SIZE 8192
26 unsigned int repeat_period
;
27 unsigned int scancode_bits
;
29 [RC_PROTO_UNKNOWN
] = { .name
= "unknown", .repeat_period
= 125 },
30 [RC_PROTO_OTHER
] = { .name
= "other", .repeat_period
= 125 },
31 [RC_PROTO_RC5
] = { .name
= "rc-5",
32 .scancode_bits
= 0x1f7f, .repeat_period
= 114 },
33 [RC_PROTO_RC5X_20
] = { .name
= "rc-5x-20",
34 .scancode_bits
= 0x1f7f3f, .repeat_period
= 114 },
35 [RC_PROTO_RC5_SZ
] = { .name
= "rc-5-sz",
36 .scancode_bits
= 0x2fff, .repeat_period
= 114 },
37 [RC_PROTO_JVC
] = { .name
= "jvc",
38 .scancode_bits
= 0xffff, .repeat_period
= 125 },
39 [RC_PROTO_SONY12
] = { .name
= "sony-12",
40 .scancode_bits
= 0x1f007f, .repeat_period
= 100 },
41 [RC_PROTO_SONY15
] = { .name
= "sony-15",
42 .scancode_bits
= 0xff007f, .repeat_period
= 100 },
43 [RC_PROTO_SONY20
] = { .name
= "sony-20",
44 .scancode_bits
= 0x1fff7f, .repeat_period
= 100 },
45 [RC_PROTO_NEC
] = { .name
= "nec",
46 .scancode_bits
= 0xffff, .repeat_period
= 110 },
47 [RC_PROTO_NECX
] = { .name
= "nec-x",
48 .scancode_bits
= 0xffffff, .repeat_period
= 110 },
49 [RC_PROTO_NEC32
] = { .name
= "nec-32",
50 .scancode_bits
= 0xffffffff, .repeat_period
= 110 },
51 [RC_PROTO_SANYO
] = { .name
= "sanyo",
52 .scancode_bits
= 0x1fffff, .repeat_period
= 125 },
53 [RC_PROTO_MCIR2_KBD
] = { .name
= "mcir2-kbd",
54 .scancode_bits
= 0xffffff, .repeat_period
= 100 },
55 [RC_PROTO_MCIR2_MSE
] = { .name
= "mcir2-mse",
56 .scancode_bits
= 0x1fffff, .repeat_period
= 100 },
57 [RC_PROTO_RC6_0
] = { .name
= "rc-6-0",
58 .scancode_bits
= 0xffff, .repeat_period
= 114 },
59 [RC_PROTO_RC6_6A_20
] = { .name
= "rc-6-6a-20",
60 .scancode_bits
= 0xfffff, .repeat_period
= 114 },
61 [RC_PROTO_RC6_6A_24
] = { .name
= "rc-6-6a-24",
62 .scancode_bits
= 0xffffff, .repeat_period
= 114 },
63 [RC_PROTO_RC6_6A_32
] = { .name
= "rc-6-6a-32",
64 .scancode_bits
= 0xffffffff, .repeat_period
= 114 },
65 [RC_PROTO_RC6_MCE
] = { .name
= "rc-6-mce",
66 .scancode_bits
= 0xffff7fff, .repeat_period
= 114 },
67 [RC_PROTO_SHARP
] = { .name
= "sharp",
68 .scancode_bits
= 0x1fff, .repeat_period
= 125 },
69 [RC_PROTO_XMP
] = { .name
= "xmp", .repeat_period
= 125 },
70 [RC_PROTO_CEC
] = { .name
= "cec", .repeat_period
= 0 },
71 [RC_PROTO_IMON
] = { .name
= "imon",
72 .scancode_bits
= 0x7fffffff, .repeat_period
= 114 },
73 [RC_PROTO_RCMM12
] = { .name
= "rc-mm-12",
74 .scancode_bits
= 0x00000fff, .repeat_period
= 114 },
75 [RC_PROTO_RCMM24
] = { .name
= "rc-mm-24",
76 .scancode_bits
= 0x00ffffff, .repeat_period
= 114 },
77 [RC_PROTO_RCMM32
] = { .name
= "rc-mm-32",
78 .scancode_bits
= 0xffffffff, .repeat_period
= 114 },
79 [RC_PROTO_XBOX_DVD
] = { .name
= "xbox-dvd", .repeat_period
= 64 },
82 /* Used to keep track of known keymaps */
83 static LIST_HEAD(rc_map_list
);
84 static DEFINE_SPINLOCK(rc_map_lock
);
85 static struct led_trigger
*led_feedback
;
87 /* Used to keep track of rc devices */
88 static DEFINE_IDA(rc_ida
);
90 static struct rc_map_list
*seek_rc_map(const char *name
)
92 struct rc_map_list
*map
= NULL
;
94 spin_lock(&rc_map_lock
);
95 list_for_each_entry(map
, &rc_map_list
, list
) {
96 if (!strcmp(name
, map
->map
.name
)) {
97 spin_unlock(&rc_map_lock
);
101 spin_unlock(&rc_map_lock
);
106 struct rc_map
*rc_map_get(const char *name
)
109 struct rc_map_list
*map
;
111 map
= seek_rc_map(name
);
112 #ifdef CONFIG_MODULES
114 int rc
= request_module("%s", name
);
116 pr_err("Couldn't load IR keymap %s\n", name
);
119 msleep(20); /* Give some time for IR to register */
121 map
= seek_rc_map(name
);
125 pr_err("IR keymap %s not found\n", name
);
129 printk(KERN_INFO
"Registered IR keymap %s\n", map
->map
.name
);
133 EXPORT_SYMBOL_GPL(rc_map_get
);
135 int rc_map_register(struct rc_map_list
*map
)
137 spin_lock(&rc_map_lock
);
138 list_add_tail(&map
->list
, &rc_map_list
);
139 spin_unlock(&rc_map_lock
);
142 EXPORT_SYMBOL_GPL(rc_map_register
);
144 void rc_map_unregister(struct rc_map_list
*map
)
146 spin_lock(&rc_map_lock
);
147 list_del(&map
->list
);
148 spin_unlock(&rc_map_lock
);
150 EXPORT_SYMBOL_GPL(rc_map_unregister
);
153 static struct rc_map_table empty
[] = {
154 { 0x2a, KEY_COFFEE
},
157 static struct rc_map_list empty_map
= {
160 .size
= ARRAY_SIZE(empty
),
161 .rc_proto
= RC_PROTO_UNKNOWN
, /* Legacy IR type */
162 .name
= RC_MAP_EMPTY
,
167 * ir_create_table() - initializes a scancode table
168 * @dev: the rc_dev device
169 * @rc_map: the rc_map to initialize
170 * @name: name to assign to the table
171 * @rc_proto: ir type to assign to the new table
172 * @size: initial size of the table
174 * This routine will initialize the rc_map and will allocate
175 * memory to hold at least the specified number of elements.
177 * return: zero on success or a negative error code
179 static int ir_create_table(struct rc_dev
*dev
, struct rc_map
*rc_map
,
180 const char *name
, u64 rc_proto
, size_t size
)
182 rc_map
->name
= kstrdup(name
, GFP_KERNEL
);
185 rc_map
->rc_proto
= rc_proto
;
186 rc_map
->alloc
= roundup_pow_of_two(size
* sizeof(struct rc_map_table
));
187 rc_map
->size
= rc_map
->alloc
/ sizeof(struct rc_map_table
);
188 rc_map
->scan
= kmalloc(rc_map
->alloc
, GFP_KERNEL
);
195 dev_dbg(&dev
->dev
, "Allocated space for %u keycode entries (%u bytes)\n",
196 rc_map
->size
, rc_map
->alloc
);
201 * ir_free_table() - frees memory allocated by a scancode table
202 * @rc_map: the table whose mappings need to be freed
204 * This routine will free memory alloctaed for key mappings used by given
207 static void ir_free_table(struct rc_map
*rc_map
)
217 * ir_resize_table() - resizes a scancode table if necessary
218 * @dev: the rc_dev device
219 * @rc_map: the rc_map to resize
220 * @gfp_flags: gfp flags to use when allocating memory
222 * This routine will shrink the rc_map if it has lots of
223 * unused entries and grow it if it is full.
225 * return: zero on success or a negative error code
227 static int ir_resize_table(struct rc_dev
*dev
, struct rc_map
*rc_map
,
230 unsigned int oldalloc
= rc_map
->alloc
;
231 unsigned int newalloc
= oldalloc
;
232 struct rc_map_table
*oldscan
= rc_map
->scan
;
233 struct rc_map_table
*newscan
;
235 if (rc_map
->size
== rc_map
->len
) {
236 /* All entries in use -> grow keytable */
237 if (rc_map
->alloc
>= IR_TAB_MAX_SIZE
)
241 dev_dbg(&dev
->dev
, "Growing table to %u bytes\n", newalloc
);
244 if ((rc_map
->len
* 3 < rc_map
->size
) && (oldalloc
> IR_TAB_MIN_SIZE
)) {
245 /* Less than 1/3 of entries in use -> shrink keytable */
247 dev_dbg(&dev
->dev
, "Shrinking table to %u bytes\n", newalloc
);
250 if (newalloc
== oldalloc
)
253 newscan
= kmalloc(newalloc
, gfp_flags
);
257 memcpy(newscan
, rc_map
->scan
, rc_map
->len
* sizeof(struct rc_map_table
));
258 rc_map
->scan
= newscan
;
259 rc_map
->alloc
= newalloc
;
260 rc_map
->size
= rc_map
->alloc
/ sizeof(struct rc_map_table
);
266 * ir_update_mapping() - set a keycode in the scancode->keycode table
267 * @dev: the struct rc_dev device descriptor
268 * @rc_map: scancode table to be adjusted
269 * @index: index of the mapping that needs to be updated
270 * @new_keycode: the desired keycode
272 * This routine is used to update scancode->keycode mapping at given
275 * return: previous keycode assigned to the mapping
278 static unsigned int ir_update_mapping(struct rc_dev
*dev
,
279 struct rc_map
*rc_map
,
281 unsigned int new_keycode
)
283 int old_keycode
= rc_map
->scan
[index
].keycode
;
286 /* Did the user wish to remove the mapping? */
287 if (new_keycode
== KEY_RESERVED
|| new_keycode
== KEY_UNKNOWN
) {
288 dev_dbg(&dev
->dev
, "#%d: Deleting scan 0x%04x\n",
289 index
, rc_map
->scan
[index
].scancode
);
291 memmove(&rc_map
->scan
[index
], &rc_map
->scan
[index
+ 1],
292 (rc_map
->len
- index
) * sizeof(struct rc_map_table
));
294 dev_dbg(&dev
->dev
, "#%d: %s scan 0x%04x with key 0x%04x\n",
296 old_keycode
== KEY_RESERVED
? "New" : "Replacing",
297 rc_map
->scan
[index
].scancode
, new_keycode
);
298 rc_map
->scan
[index
].keycode
= new_keycode
;
299 __set_bit(new_keycode
, dev
->input_dev
->keybit
);
302 if (old_keycode
!= KEY_RESERVED
) {
303 /* A previous mapping was updated... */
304 __clear_bit(old_keycode
, dev
->input_dev
->keybit
);
305 /* ... but another scancode might use the same keycode */
306 for (i
= 0; i
< rc_map
->len
; i
++) {
307 if (rc_map
->scan
[i
].keycode
== old_keycode
) {
308 __set_bit(old_keycode
, dev
->input_dev
->keybit
);
313 /* Possibly shrink the keytable, failure is not a problem */
314 ir_resize_table(dev
, rc_map
, GFP_ATOMIC
);
321 * ir_establish_scancode() - set a keycode in the scancode->keycode table
322 * @dev: the struct rc_dev device descriptor
323 * @rc_map: scancode table to be searched
324 * @scancode: the desired scancode
325 * @resize: controls whether we allowed to resize the table to
326 * accommodate not yet present scancodes
328 * This routine is used to locate given scancode in rc_map.
329 * If scancode is not yet present the routine will allocate a new slot
332 * return: index of the mapping containing scancode in question
333 * or -1U in case of failure.
335 static unsigned int ir_establish_scancode(struct rc_dev
*dev
,
336 struct rc_map
*rc_map
,
337 unsigned int scancode
,
343 * Unfortunately, some hardware-based IR decoders don't provide
344 * all bits for the complete IR code. In general, they provide only
345 * the command part of the IR code. Yet, as it is possible to replace
346 * the provided IR with another one, it is needed to allow loading
347 * IR tables from other remotes. So, we support specifying a mask to
348 * indicate the valid bits of the scancodes.
350 if (dev
->scancode_mask
)
351 scancode
&= dev
->scancode_mask
;
353 /* First check if we already have a mapping for this ir command */
354 for (i
= 0; i
< rc_map
->len
; i
++) {
355 if (rc_map
->scan
[i
].scancode
== scancode
)
358 /* Keytable is sorted from lowest to highest scancode */
359 if (rc_map
->scan
[i
].scancode
>= scancode
)
363 /* No previous mapping found, we might need to grow the table */
364 if (rc_map
->size
== rc_map
->len
) {
365 if (!resize
|| ir_resize_table(dev
, rc_map
, GFP_ATOMIC
))
369 /* i is the proper index to insert our new keycode */
371 memmove(&rc_map
->scan
[i
+ 1], &rc_map
->scan
[i
],
372 (rc_map
->len
- i
) * sizeof(struct rc_map_table
));
373 rc_map
->scan
[i
].scancode
= scancode
;
374 rc_map
->scan
[i
].keycode
= KEY_RESERVED
;
381 * ir_setkeycode() - set a keycode in the scancode->keycode table
382 * @idev: the struct input_dev device descriptor
383 * @ke: Input keymap entry
384 * @old_keycode: result
386 * This routine is used to handle evdev EVIOCSKEY ioctl.
388 * return: -EINVAL if the keycode could not be inserted, otherwise zero.
390 static int ir_setkeycode(struct input_dev
*idev
,
391 const struct input_keymap_entry
*ke
,
392 unsigned int *old_keycode
)
394 struct rc_dev
*rdev
= input_get_drvdata(idev
);
395 struct rc_map
*rc_map
= &rdev
->rc_map
;
397 unsigned int scancode
;
401 spin_lock_irqsave(&rc_map
->lock
, flags
);
403 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
) {
405 if (index
>= rc_map
->len
) {
410 retval
= input_scancode_to_scalar(ke
, &scancode
);
414 index
= ir_establish_scancode(rdev
, rc_map
, scancode
, true);
415 if (index
>= rc_map
->len
) {
421 *old_keycode
= ir_update_mapping(rdev
, rc_map
, index
, ke
->keycode
);
424 spin_unlock_irqrestore(&rc_map
->lock
, flags
);
429 * ir_setkeytable() - sets several entries in the scancode->keycode table
430 * @dev: the struct rc_dev device descriptor
431 * @from: the struct rc_map to copy entries from
433 * This routine is used to handle table initialization.
435 * return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
437 static int ir_setkeytable(struct rc_dev
*dev
,
438 const struct rc_map
*from
)
440 struct rc_map
*rc_map
= &dev
->rc_map
;
441 unsigned int i
, index
;
444 rc
= ir_create_table(dev
, rc_map
, from
->name
, from
->rc_proto
,
449 for (i
= 0; i
< from
->size
; i
++) {
450 index
= ir_establish_scancode(dev
, rc_map
,
451 from
->scan
[i
].scancode
, false);
452 if (index
>= rc_map
->len
) {
457 ir_update_mapping(dev
, rc_map
, index
,
458 from
->scan
[i
].keycode
);
462 ir_free_table(rc_map
);
467 static int rc_map_cmp(const void *key
, const void *elt
)
469 const unsigned int *scancode
= key
;
470 const struct rc_map_table
*e
= elt
;
472 if (*scancode
< e
->scancode
)
474 else if (*scancode
> e
->scancode
)
480 * ir_lookup_by_scancode() - locate mapping by scancode
481 * @rc_map: the struct rc_map to search
482 * @scancode: scancode to look for in the table
484 * This routine performs binary search in RC keykeymap table for
487 * return: index in the table, -1U if not found
489 static unsigned int ir_lookup_by_scancode(const struct rc_map
*rc_map
,
490 unsigned int scancode
)
492 struct rc_map_table
*res
;
494 res
= bsearch(&scancode
, rc_map
->scan
, rc_map
->len
,
495 sizeof(struct rc_map_table
), rc_map_cmp
);
499 return res
- rc_map
->scan
;
503 * ir_getkeycode() - get a keycode from the scancode->keycode table
504 * @idev: the struct input_dev device descriptor
505 * @ke: Input keymap entry
507 * This routine is used to handle evdev EVIOCGKEY ioctl.
509 * return: always returns zero.
511 static int ir_getkeycode(struct input_dev
*idev
,
512 struct input_keymap_entry
*ke
)
514 struct rc_dev
*rdev
= input_get_drvdata(idev
);
515 struct rc_map
*rc_map
= &rdev
->rc_map
;
516 struct rc_map_table
*entry
;
519 unsigned int scancode
;
522 spin_lock_irqsave(&rc_map
->lock
, flags
);
524 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
) {
527 retval
= input_scancode_to_scalar(ke
, &scancode
);
531 index
= ir_lookup_by_scancode(rc_map
, scancode
);
534 if (index
< rc_map
->len
) {
535 entry
= &rc_map
->scan
[index
];
538 ke
->keycode
= entry
->keycode
;
539 ke
->len
= sizeof(entry
->scancode
);
540 memcpy(ke
->scancode
, &entry
->scancode
, sizeof(entry
->scancode
));
542 } else if (!(ke
->flags
& INPUT_KEYMAP_BY_INDEX
)) {
544 * We do not really know the valid range of scancodes
545 * so let's respond with KEY_RESERVED to anything we
546 * do not have mapping for [yet].
549 ke
->keycode
= KEY_RESERVED
;
558 spin_unlock_irqrestore(&rc_map
->lock
, flags
);
563 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
564 * @dev: the struct rc_dev descriptor of the device
565 * @scancode: the scancode to look for
567 * This routine is used by drivers which need to convert a scancode to a
568 * keycode. Normally it should not be used since drivers should have no
569 * interest in keycodes.
571 * return: the corresponding keycode, or KEY_RESERVED
573 u32
rc_g_keycode_from_table(struct rc_dev
*dev
, u32 scancode
)
575 struct rc_map
*rc_map
= &dev
->rc_map
;
576 unsigned int keycode
;
580 spin_lock_irqsave(&rc_map
->lock
, flags
);
582 index
= ir_lookup_by_scancode(rc_map
, scancode
);
583 keycode
= index
< rc_map
->len
?
584 rc_map
->scan
[index
].keycode
: KEY_RESERVED
;
586 spin_unlock_irqrestore(&rc_map
->lock
, flags
);
588 if (keycode
!= KEY_RESERVED
)
589 dev_dbg(&dev
->dev
, "%s: scancode 0x%04x keycode 0x%02x\n",
590 dev
->device_name
, scancode
, keycode
);
594 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table
);
597 * ir_do_keyup() - internal function to signal the release of a keypress
598 * @dev: the struct rc_dev descriptor of the device
599 * @sync: whether or not to call input_sync
601 * This function is used internally to release a keypress, it must be
602 * called with keylock held.
604 static void ir_do_keyup(struct rc_dev
*dev
, bool sync
)
606 if (!dev
->keypressed
)
609 dev_dbg(&dev
->dev
, "keyup key 0x%04x\n", dev
->last_keycode
);
610 del_timer(&dev
->timer_repeat
);
611 input_report_key(dev
->input_dev
, dev
->last_keycode
, 0);
612 led_trigger_event(led_feedback
, LED_OFF
);
614 input_sync(dev
->input_dev
);
615 dev
->keypressed
= false;
619 * rc_keyup() - signals the release of a keypress
620 * @dev: the struct rc_dev descriptor of the device
622 * This routine is used to signal that a key has been released on the
625 void rc_keyup(struct rc_dev
*dev
)
629 spin_lock_irqsave(&dev
->keylock
, flags
);
630 ir_do_keyup(dev
, true);
631 spin_unlock_irqrestore(&dev
->keylock
, flags
);
633 EXPORT_SYMBOL_GPL(rc_keyup
);
636 * ir_timer_keyup() - generates a keyup event after a timeout
638 * @t: a pointer to the struct timer_list
640 * This routine will generate a keyup event some time after a keydown event
641 * is generated when no further activity has been detected.
643 static void ir_timer_keyup(struct timer_list
*t
)
645 struct rc_dev
*dev
= from_timer(dev
, t
, timer_keyup
);
649 * ir->keyup_jiffies is used to prevent a race condition if a
650 * hardware interrupt occurs at this point and the keyup timer
651 * event is moved further into the future as a result.
653 * The timer will then be reactivated and this function called
654 * again in the future. We need to exit gracefully in that case
655 * to allow the input subsystem to do its auto-repeat magic or
656 * a keyup event might follow immediately after the keydown.
658 spin_lock_irqsave(&dev
->keylock
, flags
);
659 if (time_is_before_eq_jiffies(dev
->keyup_jiffies
))
660 ir_do_keyup(dev
, true);
661 spin_unlock_irqrestore(&dev
->keylock
, flags
);
665 * ir_timer_repeat() - generates a repeat event after a timeout
667 * @t: a pointer to the struct timer_list
669 * This routine will generate a soft repeat event every REP_PERIOD
672 static void ir_timer_repeat(struct timer_list
*t
)
674 struct rc_dev
*dev
= from_timer(dev
, t
, timer_repeat
);
675 struct input_dev
*input
= dev
->input_dev
;
678 spin_lock_irqsave(&dev
->keylock
, flags
);
679 if (dev
->keypressed
) {
680 input_event(input
, EV_KEY
, dev
->last_keycode
, 2);
682 if (input
->rep
[REP_PERIOD
])
683 mod_timer(&dev
->timer_repeat
, jiffies
+
684 msecs_to_jiffies(input
->rep
[REP_PERIOD
]));
686 spin_unlock_irqrestore(&dev
->keylock
, flags
);
689 static unsigned int repeat_period(int protocol
)
691 if (protocol
>= ARRAY_SIZE(protocols
))
694 return protocols
[protocol
].repeat_period
;
698 * rc_repeat() - signals that a key is still pressed
699 * @dev: the struct rc_dev descriptor of the device
701 * This routine is used by IR decoders when a repeat message which does
702 * not include the necessary bits to reproduce the scancode has been
705 void rc_repeat(struct rc_dev
*dev
)
708 unsigned int timeout
= nsecs_to_jiffies(dev
->timeout
) +
709 msecs_to_jiffies(repeat_period(dev
->last_protocol
));
710 struct lirc_scancode sc
= {
711 .scancode
= dev
->last_scancode
, .rc_proto
= dev
->last_protocol
,
712 .keycode
= dev
->keypressed
? dev
->last_keycode
: KEY_RESERVED
,
713 .flags
= LIRC_SCANCODE_FLAG_REPEAT
|
714 (dev
->last_toggle
? LIRC_SCANCODE_FLAG_TOGGLE
: 0)
717 if (dev
->allowed_protocols
!= RC_PROTO_BIT_CEC
)
718 ir_lirc_scancode_event(dev
, &sc
);
720 spin_lock_irqsave(&dev
->keylock
, flags
);
722 input_event(dev
->input_dev
, EV_MSC
, MSC_SCAN
, dev
->last_scancode
);
723 input_sync(dev
->input_dev
);
725 if (dev
->keypressed
) {
726 dev
->keyup_jiffies
= jiffies
+ timeout
;
727 mod_timer(&dev
->timer_keyup
, dev
->keyup_jiffies
);
730 spin_unlock_irqrestore(&dev
->keylock
, flags
);
732 EXPORT_SYMBOL_GPL(rc_repeat
);
735 * ir_do_keydown() - internal function to process a keypress
736 * @dev: the struct rc_dev descriptor of the device
737 * @protocol: the protocol of the keypress
738 * @scancode: the scancode of the keypress
739 * @keycode: the keycode of the keypress
740 * @toggle: the toggle value of the keypress
742 * This function is used internally to register a keypress, it must be
743 * called with keylock held.
745 static void ir_do_keydown(struct rc_dev
*dev
, enum rc_proto protocol
,
746 u32 scancode
, u32 keycode
, u8 toggle
)
748 bool new_event
= (!dev
->keypressed
||
749 dev
->last_protocol
!= protocol
||
750 dev
->last_scancode
!= scancode
||
751 dev
->last_toggle
!= toggle
);
752 struct lirc_scancode sc
= {
753 .scancode
= scancode
, .rc_proto
= protocol
,
754 .flags
= toggle
? LIRC_SCANCODE_FLAG_TOGGLE
: 0,
758 if (dev
->allowed_protocols
!= RC_PROTO_BIT_CEC
)
759 ir_lirc_scancode_event(dev
, &sc
);
761 if (new_event
&& dev
->keypressed
)
762 ir_do_keyup(dev
, false);
764 input_event(dev
->input_dev
, EV_MSC
, MSC_SCAN
, scancode
);
766 dev
->last_protocol
= protocol
;
767 dev
->last_scancode
= scancode
;
768 dev
->last_toggle
= toggle
;
769 dev
->last_keycode
= keycode
;
771 if (new_event
&& keycode
!= KEY_RESERVED
) {
772 /* Register a keypress */
773 dev
->keypressed
= true;
775 dev_dbg(&dev
->dev
, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
776 dev
->device_name
, keycode
, protocol
, scancode
);
777 input_report_key(dev
->input_dev
, keycode
, 1);
779 led_trigger_event(led_feedback
, LED_FULL
);
783 * For CEC, start sending repeat messages as soon as the first
784 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
785 * is non-zero. Otherwise, the input layer will generate repeat
788 if (!new_event
&& keycode
!= KEY_RESERVED
&&
789 dev
->allowed_protocols
== RC_PROTO_BIT_CEC
&&
790 !timer_pending(&dev
->timer_repeat
) &&
791 dev
->input_dev
->rep
[REP_PERIOD
] &&
792 !dev
->input_dev
->rep
[REP_DELAY
]) {
793 input_event(dev
->input_dev
, EV_KEY
, keycode
, 2);
794 mod_timer(&dev
->timer_repeat
, jiffies
+
795 msecs_to_jiffies(dev
->input_dev
->rep
[REP_PERIOD
]));
798 input_sync(dev
->input_dev
);
802 * rc_keydown() - generates input event for a key press
803 * @dev: the struct rc_dev descriptor of the device
804 * @protocol: the protocol for the keypress
805 * @scancode: the scancode for the keypress
806 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
807 * support toggle values, this should be set to zero)
809 * This routine is used to signal that a key has been pressed on the
812 void rc_keydown(struct rc_dev
*dev
, enum rc_proto protocol
, u32 scancode
,
816 u32 keycode
= rc_g_keycode_from_table(dev
, scancode
);
818 spin_lock_irqsave(&dev
->keylock
, flags
);
819 ir_do_keydown(dev
, protocol
, scancode
, keycode
, toggle
);
821 if (dev
->keypressed
) {
822 dev
->keyup_jiffies
= jiffies
+ nsecs_to_jiffies(dev
->timeout
) +
823 msecs_to_jiffies(repeat_period(protocol
));
824 mod_timer(&dev
->timer_keyup
, dev
->keyup_jiffies
);
826 spin_unlock_irqrestore(&dev
->keylock
, flags
);
828 EXPORT_SYMBOL_GPL(rc_keydown
);
831 * rc_keydown_notimeout() - generates input event for a key press without
832 * an automatic keyup event at a later time
833 * @dev: the struct rc_dev descriptor of the device
834 * @protocol: the protocol for the keypress
835 * @scancode: the scancode for the keypress
836 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
837 * support toggle values, this should be set to zero)
839 * This routine is used to signal that a key has been pressed on the
840 * remote control. The driver must manually call rc_keyup() at a later stage.
842 void rc_keydown_notimeout(struct rc_dev
*dev
, enum rc_proto protocol
,
843 u32 scancode
, u8 toggle
)
846 u32 keycode
= rc_g_keycode_from_table(dev
, scancode
);
848 spin_lock_irqsave(&dev
->keylock
, flags
);
849 ir_do_keydown(dev
, protocol
, scancode
, keycode
, toggle
);
850 spin_unlock_irqrestore(&dev
->keylock
, flags
);
852 EXPORT_SYMBOL_GPL(rc_keydown_notimeout
);
855 * rc_validate_scancode() - checks that a scancode is valid for a protocol.
856 * For nec, it should do the opposite of ir_nec_bytes_to_scancode()
858 * @scancode: scancode
860 bool rc_validate_scancode(enum rc_proto proto
, u32 scancode
)
864 * NECX has a 16-bit address; if the lower 8 bits match the upper
865 * 8 bits inverted, then the address would match regular nec.
868 if ((((scancode
>> 16) ^ ~(scancode
>> 8)) & 0xff) == 0)
872 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
873 * of the command match the upper 8 bits inverted, then it would
874 * be either NEC or NECX.
877 if ((((scancode
>> 8) ^ ~scancode
) & 0xff) == 0)
881 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
882 * is regular mode-6a 32 bit
884 case RC_PROTO_RC6_MCE
:
885 if ((scancode
& 0xffff0000) != 0x800f0000)
888 case RC_PROTO_RC6_6A_32
:
889 if ((scancode
& 0xffff0000) == 0x800f0000)
900 * rc_validate_filter() - checks that the scancode and mask are valid and
901 * provides sensible defaults
902 * @dev: the struct rc_dev descriptor of the device
903 * @filter: the scancode and mask
905 * return: 0 or -EINVAL if the filter is not valid
907 static int rc_validate_filter(struct rc_dev
*dev
,
908 struct rc_scancode_filter
*filter
)
910 u32 mask
, s
= filter
->data
;
911 enum rc_proto protocol
= dev
->wakeup_protocol
;
913 if (protocol
>= ARRAY_SIZE(protocols
))
916 mask
= protocols
[protocol
].scancode_bits
;
918 if (!rc_validate_scancode(protocol
, s
))
921 filter
->data
&= mask
;
922 filter
->mask
&= mask
;
925 * If we have to raw encode the IR for wakeup, we cannot have a mask
927 if (dev
->encode_wakeup
&& filter
->mask
!= 0 && filter
->mask
!= mask
)
933 int rc_open(struct rc_dev
*rdev
)
940 mutex_lock(&rdev
->lock
);
942 if (!rdev
->registered
) {
945 if (!rdev
->users
++ && rdev
->open
)
946 rval
= rdev
->open(rdev
);
952 mutex_unlock(&rdev
->lock
);
957 static int ir_open(struct input_dev
*idev
)
959 struct rc_dev
*rdev
= input_get_drvdata(idev
);
961 return rc_open(rdev
);
964 void rc_close(struct rc_dev
*rdev
)
967 mutex_lock(&rdev
->lock
);
969 if (!--rdev
->users
&& rdev
->close
&& rdev
->registered
)
972 mutex_unlock(&rdev
->lock
);
976 static void ir_close(struct input_dev
*idev
)
978 struct rc_dev
*rdev
= input_get_drvdata(idev
);
982 /* class for /sys/class/rc */
983 static char *rc_devnode(struct device
*dev
, umode_t
*mode
)
985 return kasprintf(GFP_KERNEL
, "rc/%s", dev_name(dev
));
988 static struct class rc_class
= {
990 .devnode
= rc_devnode
,
994 * These are the protocol textual descriptions that are
995 * used by the sysfs protocols file. Note that the order
996 * of the entries is relevant.
998 static const struct {
1001 const char *module_name
;
1003 { RC_PROTO_BIT_NONE
, "none", NULL
},
1004 { RC_PROTO_BIT_OTHER
, "other", NULL
},
1005 { RC_PROTO_BIT_UNKNOWN
, "unknown", NULL
},
1006 { RC_PROTO_BIT_RC5
|
1007 RC_PROTO_BIT_RC5X_20
, "rc-5", "ir-rc5-decoder" },
1008 { RC_PROTO_BIT_NEC
|
1010 RC_PROTO_BIT_NEC32
, "nec", "ir-nec-decoder" },
1011 { RC_PROTO_BIT_RC6_0
|
1012 RC_PROTO_BIT_RC6_6A_20
|
1013 RC_PROTO_BIT_RC6_6A_24
|
1014 RC_PROTO_BIT_RC6_6A_32
|
1015 RC_PROTO_BIT_RC6_MCE
, "rc-6", "ir-rc6-decoder" },
1016 { RC_PROTO_BIT_JVC
, "jvc", "ir-jvc-decoder" },
1017 { RC_PROTO_BIT_SONY12
|
1018 RC_PROTO_BIT_SONY15
|
1019 RC_PROTO_BIT_SONY20
, "sony", "ir-sony-decoder" },
1020 { RC_PROTO_BIT_RC5_SZ
, "rc-5-sz", "ir-rc5-decoder" },
1021 { RC_PROTO_BIT_SANYO
, "sanyo", "ir-sanyo-decoder" },
1022 { RC_PROTO_BIT_SHARP
, "sharp", "ir-sharp-decoder" },
1023 { RC_PROTO_BIT_MCIR2_KBD
|
1024 RC_PROTO_BIT_MCIR2_MSE
, "mce_kbd", "ir-mce_kbd-decoder" },
1025 { RC_PROTO_BIT_XMP
, "xmp", "ir-xmp-decoder" },
1026 { RC_PROTO_BIT_CEC
, "cec", NULL
},
1027 { RC_PROTO_BIT_IMON
, "imon", "ir-imon-decoder" },
1028 { RC_PROTO_BIT_RCMM12
|
1029 RC_PROTO_BIT_RCMM24
|
1030 RC_PROTO_BIT_RCMM32
, "rc-mm", "ir-rcmm-decoder" },
1031 { RC_PROTO_BIT_XBOX_DVD
, "xbox-dvd", NULL
},
1035 * struct rc_filter_attribute - Device attribute relating to a filter type.
1036 * @attr: Device attribute.
1037 * @type: Filter type.
1038 * @mask: false for filter value, true for filter mask.
1040 struct rc_filter_attribute
{
1041 struct device_attribute attr
;
1042 enum rc_filter_type type
;
1045 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1047 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
1048 struct rc_filter_attribute dev_attr_##_name = { \
1049 .attr = __ATTR(_name, _mode, _show, _store), \
1055 * show_protocols() - shows the current IR protocol(s)
1056 * @device: the device descriptor
1057 * @mattr: the device attribute struct
1058 * @buf: a pointer to the output buffer
1060 * This routine is a callback routine for input read the IR protocol type(s).
1061 * it is triggered by reading /sys/class/rc/rc?/protocols.
1062 * It returns the protocol names of supported protocols.
1063 * Enabled protocols are printed in brackets.
1065 * dev->lock is taken to guard against races between
1066 * store_protocols and show_protocols.
1068 static ssize_t
show_protocols(struct device
*device
,
1069 struct device_attribute
*mattr
, char *buf
)
1071 struct rc_dev
*dev
= to_rc_dev(device
);
1072 u64 allowed
, enabled
;
1076 mutex_lock(&dev
->lock
);
1078 enabled
= dev
->enabled_protocols
;
1079 allowed
= dev
->allowed_protocols
;
1080 if (dev
->raw
&& !allowed
)
1081 allowed
= ir_raw_get_allowed_protocols();
1083 mutex_unlock(&dev
->lock
);
1085 dev_dbg(&dev
->dev
, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1086 __func__
, (long long)allowed
, (long long)enabled
);
1088 for (i
= 0; i
< ARRAY_SIZE(proto_names
); i
++) {
1089 if (allowed
& enabled
& proto_names
[i
].type
)
1090 tmp
+= sprintf(tmp
, "[%s] ", proto_names
[i
].name
);
1091 else if (allowed
& proto_names
[i
].type
)
1092 tmp
+= sprintf(tmp
, "%s ", proto_names
[i
].name
);
1094 if (allowed
& proto_names
[i
].type
)
1095 allowed
&= ~proto_names
[i
].type
;
1099 if (dev
->driver_type
== RC_DRIVER_IR_RAW
)
1100 tmp
+= sprintf(tmp
, "[lirc] ");
1107 return tmp
+ 1 - buf
;
1111 * parse_protocol_change() - parses a protocol change request
1112 * @dev: rc_dev device
1113 * @protocols: pointer to the bitmask of current protocols
1114 * @buf: pointer to the buffer with a list of changes
1116 * Writing "+proto" will add a protocol to the protocol mask.
1117 * Writing "-proto" will remove a protocol from protocol mask.
1118 * Writing "proto" will enable only "proto".
1119 * Writing "none" will disable all protocols.
1120 * Returns the number of changes performed or a negative error code.
1122 static int parse_protocol_change(struct rc_dev
*dev
, u64
*protocols
,
1127 bool enable
, disable
;
1131 while ((tmp
= strsep((char **)&buf
, " \n")) != NULL
) {
1139 } else if (*tmp
== '-') {
1148 for (i
= 0; i
< ARRAY_SIZE(proto_names
); i
++) {
1149 if (!strcasecmp(tmp
, proto_names
[i
].name
)) {
1150 mask
= proto_names
[i
].type
;
1155 if (i
== ARRAY_SIZE(proto_names
)) {
1156 if (!strcasecmp(tmp
, "lirc"))
1159 dev_dbg(&dev
->dev
, "Unknown protocol: '%s'\n",
1170 *protocols
&= ~mask
;
1176 dev_dbg(&dev
->dev
, "Protocol not specified\n");
1183 void ir_raw_load_modules(u64
*protocols
)
1188 for (i
= 0; i
< ARRAY_SIZE(proto_names
); i
++) {
1189 if (proto_names
[i
].type
== RC_PROTO_BIT_NONE
||
1190 proto_names
[i
].type
& (RC_PROTO_BIT_OTHER
|
1191 RC_PROTO_BIT_UNKNOWN
))
1194 available
= ir_raw_get_allowed_protocols();
1195 if (!(*protocols
& proto_names
[i
].type
& ~available
))
1198 if (!proto_names
[i
].module_name
) {
1199 pr_err("Can't enable IR protocol %s\n",
1200 proto_names
[i
].name
);
1201 *protocols
&= ~proto_names
[i
].type
;
1205 ret
= request_module("%s", proto_names
[i
].module_name
);
1207 pr_err("Couldn't load IR protocol module %s\n",
1208 proto_names
[i
].module_name
);
1209 *protocols
&= ~proto_names
[i
].type
;
1213 available
= ir_raw_get_allowed_protocols();
1214 if (!(*protocols
& proto_names
[i
].type
& ~available
))
1217 pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1218 proto_names
[i
].module_name
,
1219 proto_names
[i
].name
);
1220 *protocols
&= ~proto_names
[i
].type
;
1225 * store_protocols() - changes the current/wakeup IR protocol(s)
1226 * @device: the device descriptor
1227 * @mattr: the device attribute struct
1228 * @buf: a pointer to the input buffer
1229 * @len: length of the input buffer
1231 * This routine is for changing the IR protocol type.
1232 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1233 * See parse_protocol_change() for the valid commands.
1234 * Returns @len on success or a negative error code.
1236 * dev->lock is taken to guard against races between
1237 * store_protocols and show_protocols.
1239 static ssize_t
store_protocols(struct device
*device
,
1240 struct device_attribute
*mattr
,
1241 const char *buf
, size_t len
)
1243 struct rc_dev
*dev
= to_rc_dev(device
);
1244 u64
*current_protocols
;
1245 struct rc_scancode_filter
*filter
;
1246 u64 old_protocols
, new_protocols
;
1249 dev_dbg(&dev
->dev
, "Normal protocol change requested\n");
1250 current_protocols
= &dev
->enabled_protocols
;
1251 filter
= &dev
->scancode_filter
;
1253 if (!dev
->change_protocol
) {
1254 dev_dbg(&dev
->dev
, "Protocol switching not supported\n");
1258 mutex_lock(&dev
->lock
);
1260 old_protocols
= *current_protocols
;
1261 new_protocols
= old_protocols
;
1262 rc
= parse_protocol_change(dev
, &new_protocols
, buf
);
1266 if (dev
->driver_type
== RC_DRIVER_IR_RAW
)
1267 ir_raw_load_modules(&new_protocols
);
1269 rc
= dev
->change_protocol(dev
, &new_protocols
);
1271 dev_dbg(&dev
->dev
, "Error setting protocols to 0x%llx\n",
1272 (long long)new_protocols
);
1276 if (new_protocols
!= old_protocols
) {
1277 *current_protocols
= new_protocols
;
1278 dev_dbg(&dev
->dev
, "Protocols changed to 0x%llx\n",
1279 (long long)new_protocols
);
1283 * If a protocol change was attempted the filter may need updating, even
1284 * if the actual protocol mask hasn't changed (since the driver may have
1285 * cleared the filter).
1286 * Try setting the same filter with the new protocol (if any).
1287 * Fall back to clearing the filter.
1289 if (dev
->s_filter
&& filter
->mask
) {
1291 rc
= dev
->s_filter(dev
, filter
);
1298 dev
->s_filter(dev
, filter
);
1305 mutex_unlock(&dev
->lock
);
1310 * show_filter() - shows the current scancode filter value or mask
1311 * @device: the device descriptor
1312 * @attr: the device attribute struct
1313 * @buf: a pointer to the output buffer
1315 * This routine is a callback routine to read a scancode filter value or mask.
1316 * It is triggered by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1317 * It prints the current scancode filter value or mask of the appropriate filter
1318 * type in hexadecimal into @buf and returns the size of the buffer.
1320 * Bits of the filter value corresponding to set bits in the filter mask are
1321 * compared against input scancodes and non-matching scancodes are discarded.
1323 * dev->lock is taken to guard against races between
1324 * store_filter and show_filter.
1326 static ssize_t
show_filter(struct device
*device
,
1327 struct device_attribute
*attr
,
1330 struct rc_dev
*dev
= to_rc_dev(device
);
1331 struct rc_filter_attribute
*fattr
= to_rc_filter_attr(attr
);
1332 struct rc_scancode_filter
*filter
;
1335 mutex_lock(&dev
->lock
);
1337 if (fattr
->type
== RC_FILTER_NORMAL
)
1338 filter
= &dev
->scancode_filter
;
1340 filter
= &dev
->scancode_wakeup_filter
;
1346 mutex_unlock(&dev
->lock
);
1348 return sprintf(buf
, "%#x\n", val
);
1352 * store_filter() - changes the scancode filter value
1353 * @device: the device descriptor
1354 * @attr: the device attribute struct
1355 * @buf: a pointer to the input buffer
1356 * @len: length of the input buffer
1358 * This routine is for changing a scancode filter value or mask.
1359 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1360 * Returns -EINVAL if an invalid filter value for the current protocol was
1361 * specified or if scancode filtering is not supported by the driver, otherwise
1364 * Bits of the filter value corresponding to set bits in the filter mask are
1365 * compared against input scancodes and non-matching scancodes are discarded.
1367 * dev->lock is taken to guard against races between
1368 * store_filter and show_filter.
1370 static ssize_t
store_filter(struct device
*device
,
1371 struct device_attribute
*attr
,
1372 const char *buf
, size_t len
)
1374 struct rc_dev
*dev
= to_rc_dev(device
);
1375 struct rc_filter_attribute
*fattr
= to_rc_filter_attr(attr
);
1376 struct rc_scancode_filter new_filter
, *filter
;
1379 int (*set_filter
)(struct rc_dev
*dev
, struct rc_scancode_filter
*filter
);
1381 ret
= kstrtoul(buf
, 0, &val
);
1385 if (fattr
->type
== RC_FILTER_NORMAL
) {
1386 set_filter
= dev
->s_filter
;
1387 filter
= &dev
->scancode_filter
;
1389 set_filter
= dev
->s_wakeup_filter
;
1390 filter
= &dev
->scancode_wakeup_filter
;
1396 mutex_lock(&dev
->lock
);
1398 new_filter
= *filter
;
1400 new_filter
.mask
= val
;
1402 new_filter
.data
= val
;
1404 if (fattr
->type
== RC_FILTER_WAKEUP
) {
1406 * Refuse to set a filter unless a protocol is enabled
1407 * and the filter is valid for that protocol
1409 if (dev
->wakeup_protocol
!= RC_PROTO_UNKNOWN
)
1410 ret
= rc_validate_filter(dev
, &new_filter
);
1418 if (fattr
->type
== RC_FILTER_NORMAL
&& !dev
->enabled_protocols
&&
1420 /* refuse to set a filter unless a protocol is enabled */
1425 ret
= set_filter(dev
, &new_filter
);
1429 *filter
= new_filter
;
1432 mutex_unlock(&dev
->lock
);
1433 return (ret
< 0) ? ret
: len
;
1437 * show_wakeup_protocols() - shows the wakeup IR protocol
1438 * @device: the device descriptor
1439 * @mattr: the device attribute struct
1440 * @buf: a pointer to the output buffer
1442 * This routine is a callback routine for input read the IR protocol type(s).
1443 * it is triggered by reading /sys/class/rc/rc?/wakeup_protocols.
1444 * It returns the protocol names of supported protocols.
1445 * The enabled protocols are printed in brackets.
1447 * dev->lock is taken to guard against races between
1448 * store_wakeup_protocols and show_wakeup_protocols.
1450 static ssize_t
show_wakeup_protocols(struct device
*device
,
1451 struct device_attribute
*mattr
,
1454 struct rc_dev
*dev
= to_rc_dev(device
);
1456 enum rc_proto enabled
;
1460 mutex_lock(&dev
->lock
);
1462 allowed
= dev
->allowed_wakeup_protocols
;
1463 enabled
= dev
->wakeup_protocol
;
1465 mutex_unlock(&dev
->lock
);
1467 dev_dbg(&dev
->dev
, "%s: allowed - 0x%llx, enabled - %d\n",
1468 __func__
, (long long)allowed
, enabled
);
1470 for (i
= 0; i
< ARRAY_SIZE(protocols
); i
++) {
1471 if (allowed
& (1ULL << i
)) {
1473 tmp
+= sprintf(tmp
, "[%s] ", protocols
[i
].name
);
1475 tmp
+= sprintf(tmp
, "%s ", protocols
[i
].name
);
1483 return tmp
+ 1 - buf
;
1487 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1488 * @device: the device descriptor
1489 * @mattr: the device attribute struct
1490 * @buf: a pointer to the input buffer
1491 * @len: length of the input buffer
1493 * This routine is for changing the IR protocol type.
1494 * It is triggered by writing to /sys/class/rc/rc?/wakeup_protocols.
1495 * Returns @len on success or a negative error code.
1497 * dev->lock is taken to guard against races between
1498 * store_wakeup_protocols and show_wakeup_protocols.
1500 static ssize_t
store_wakeup_protocols(struct device
*device
,
1501 struct device_attribute
*mattr
,
1502 const char *buf
, size_t len
)
1504 struct rc_dev
*dev
= to_rc_dev(device
);
1505 enum rc_proto protocol
= RC_PROTO_UNKNOWN
;
1510 mutex_lock(&dev
->lock
);
1512 allowed
= dev
->allowed_wakeup_protocols
;
1514 if (!sysfs_streq(buf
, "none")) {
1515 for (i
= 0; i
< ARRAY_SIZE(protocols
); i
++) {
1516 if ((allowed
& (1ULL << i
)) &&
1517 sysfs_streq(buf
, protocols
[i
].name
)) {
1523 if (i
== ARRAY_SIZE(protocols
)) {
1528 if (dev
->encode_wakeup
) {
1529 u64 mask
= 1ULL << protocol
;
1531 ir_raw_load_modules(&mask
);
1539 if (dev
->wakeup_protocol
!= protocol
) {
1540 dev
->wakeup_protocol
= protocol
;
1541 dev_dbg(&dev
->dev
, "Wakeup protocol changed to %d\n", protocol
);
1543 if (protocol
== RC_PROTO_RC6_MCE
)
1544 dev
->scancode_wakeup_filter
.data
= 0x800f0000;
1546 dev
->scancode_wakeup_filter
.data
= 0;
1547 dev
->scancode_wakeup_filter
.mask
= 0;
1549 rc
= dev
->s_wakeup_filter(dev
, &dev
->scancode_wakeup_filter
);
1557 mutex_unlock(&dev
->lock
);
1561 static void rc_dev_release(struct device
*device
)
1563 struct rc_dev
*dev
= to_rc_dev(device
);
1568 #define ADD_HOTPLUG_VAR(fmt, val...) \
1570 int err = add_uevent_var(env, fmt, val); \
1575 static int rc_dev_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
1577 struct rc_dev
*dev
= to_rc_dev(device
);
1579 if (dev
->rc_map
.name
)
1580 ADD_HOTPLUG_VAR("NAME=%s", dev
->rc_map
.name
);
1581 if (dev
->driver_name
)
1582 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev
->driver_name
);
1583 if (dev
->device_name
)
1584 ADD_HOTPLUG_VAR("DEV_NAME=%s", dev
->device_name
);
1590 * Static device attribute struct with the sysfs attributes for IR's
1592 static struct device_attribute dev_attr_ro_protocols
=
1593 __ATTR(protocols
, 0444, show_protocols
, NULL
);
1594 static struct device_attribute dev_attr_rw_protocols
=
1595 __ATTR(protocols
, 0644, show_protocols
, store_protocols
);
1596 static DEVICE_ATTR(wakeup_protocols
, 0644, show_wakeup_protocols
,
1597 store_wakeup_protocols
);
1598 static RC_FILTER_ATTR(filter
, S_IRUGO
|S_IWUSR
,
1599 show_filter
, store_filter
, RC_FILTER_NORMAL
, false);
1600 static RC_FILTER_ATTR(filter_mask
, S_IRUGO
|S_IWUSR
,
1601 show_filter
, store_filter
, RC_FILTER_NORMAL
, true);
1602 static RC_FILTER_ATTR(wakeup_filter
, S_IRUGO
|S_IWUSR
,
1603 show_filter
, store_filter
, RC_FILTER_WAKEUP
, false);
1604 static RC_FILTER_ATTR(wakeup_filter_mask
, S_IRUGO
|S_IWUSR
,
1605 show_filter
, store_filter
, RC_FILTER_WAKEUP
, true);
1607 static struct attribute
*rc_dev_rw_protocol_attrs
[] = {
1608 &dev_attr_rw_protocols
.attr
,
1612 static const struct attribute_group rc_dev_rw_protocol_attr_grp
= {
1613 .attrs
= rc_dev_rw_protocol_attrs
,
1616 static struct attribute
*rc_dev_ro_protocol_attrs
[] = {
1617 &dev_attr_ro_protocols
.attr
,
1621 static const struct attribute_group rc_dev_ro_protocol_attr_grp
= {
1622 .attrs
= rc_dev_ro_protocol_attrs
,
1625 static struct attribute
*rc_dev_filter_attrs
[] = {
1626 &dev_attr_filter
.attr
.attr
,
1627 &dev_attr_filter_mask
.attr
.attr
,
1631 static const struct attribute_group rc_dev_filter_attr_grp
= {
1632 .attrs
= rc_dev_filter_attrs
,
1635 static struct attribute
*rc_dev_wakeup_filter_attrs
[] = {
1636 &dev_attr_wakeup_filter
.attr
.attr
,
1637 &dev_attr_wakeup_filter_mask
.attr
.attr
,
1638 &dev_attr_wakeup_protocols
.attr
,
1642 static const struct attribute_group rc_dev_wakeup_filter_attr_grp
= {
1643 .attrs
= rc_dev_wakeup_filter_attrs
,
1646 static const struct device_type rc_dev_type
= {
1647 .release
= rc_dev_release
,
1648 .uevent
= rc_dev_uevent
,
1651 struct rc_dev
*rc_allocate_device(enum rc_driver_type type
)
1655 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
1659 if (type
!= RC_DRIVER_IR_RAW_TX
) {
1660 dev
->input_dev
= input_allocate_device();
1661 if (!dev
->input_dev
) {
1666 dev
->input_dev
->getkeycode
= ir_getkeycode
;
1667 dev
->input_dev
->setkeycode
= ir_setkeycode
;
1668 input_set_drvdata(dev
->input_dev
, dev
);
1670 dev
->timeout
= IR_DEFAULT_TIMEOUT
;
1671 timer_setup(&dev
->timer_keyup
, ir_timer_keyup
, 0);
1672 timer_setup(&dev
->timer_repeat
, ir_timer_repeat
, 0);
1674 spin_lock_init(&dev
->rc_map
.lock
);
1675 spin_lock_init(&dev
->keylock
);
1677 mutex_init(&dev
->lock
);
1679 dev
->dev
.type
= &rc_dev_type
;
1680 dev
->dev
.class = &rc_class
;
1681 device_initialize(&dev
->dev
);
1683 dev
->driver_type
= type
;
1685 __module_get(THIS_MODULE
);
1688 EXPORT_SYMBOL_GPL(rc_allocate_device
);
1690 void rc_free_device(struct rc_dev
*dev
)
1695 input_free_device(dev
->input_dev
);
1697 put_device(&dev
->dev
);
1699 /* kfree(dev) will be called by the callback function
1702 module_put(THIS_MODULE
);
1704 EXPORT_SYMBOL_GPL(rc_free_device
);
1706 static void devm_rc_alloc_release(struct device
*dev
, void *res
)
1708 rc_free_device(*(struct rc_dev
**)res
);
1711 struct rc_dev
*devm_rc_allocate_device(struct device
*dev
,
1712 enum rc_driver_type type
)
1714 struct rc_dev
**dr
, *rc
;
1716 dr
= devres_alloc(devm_rc_alloc_release
, sizeof(*dr
), GFP_KERNEL
);
1720 rc
= rc_allocate_device(type
);
1726 rc
->dev
.parent
= dev
;
1727 rc
->managed_alloc
= true;
1729 devres_add(dev
, dr
);
1733 EXPORT_SYMBOL_GPL(devm_rc_allocate_device
);
1735 static int rc_prepare_rx_device(struct rc_dev
*dev
)
1738 struct rc_map
*rc_map
;
1744 rc_map
= rc_map_get(dev
->map_name
);
1746 rc_map
= rc_map_get(RC_MAP_EMPTY
);
1747 if (!rc_map
|| !rc_map
->scan
|| rc_map
->size
== 0)
1750 rc
= ir_setkeytable(dev
, rc_map
);
1754 rc_proto
= BIT_ULL(rc_map
->rc_proto
);
1756 if (dev
->driver_type
== RC_DRIVER_SCANCODE
&& !dev
->change_protocol
)
1757 dev
->enabled_protocols
= dev
->allowed_protocols
;
1759 if (dev
->driver_type
== RC_DRIVER_IR_RAW
)
1760 ir_raw_load_modules(&rc_proto
);
1762 if (dev
->change_protocol
) {
1763 rc
= dev
->change_protocol(dev
, &rc_proto
);
1766 dev
->enabled_protocols
= rc_proto
;
1769 /* Keyboard events */
1770 set_bit(EV_KEY
, dev
->input_dev
->evbit
);
1771 set_bit(EV_REP
, dev
->input_dev
->evbit
);
1772 set_bit(EV_MSC
, dev
->input_dev
->evbit
);
1773 set_bit(MSC_SCAN
, dev
->input_dev
->mscbit
);
1775 /* Pointer/mouse events */
1776 set_bit(INPUT_PROP_POINTING_STICK
, dev
->input_dev
->propbit
);
1777 set_bit(EV_REL
, dev
->input_dev
->evbit
);
1778 set_bit(REL_X
, dev
->input_dev
->relbit
);
1779 set_bit(REL_Y
, dev
->input_dev
->relbit
);
1782 dev
->input_dev
->open
= ir_open
;
1784 dev
->input_dev
->close
= ir_close
;
1786 dev
->input_dev
->dev
.parent
= &dev
->dev
;
1787 memcpy(&dev
->input_dev
->id
, &dev
->input_id
, sizeof(dev
->input_id
));
1788 dev
->input_dev
->phys
= dev
->input_phys
;
1789 dev
->input_dev
->name
= dev
->device_name
;
1794 ir_free_table(&dev
->rc_map
);
1799 static int rc_setup_rx_device(struct rc_dev
*dev
)
1803 /* rc_open will be called here */
1804 rc
= input_register_device(dev
->input_dev
);
1809 * Default delay of 250ms is too short for some protocols, especially
1810 * since the timeout is currently set to 250ms. Increase it to 500ms,
1811 * to avoid wrong repetition of the keycodes. Note that this must be
1812 * set after the call to input_register_device().
1814 if (dev
->allowed_protocols
== RC_PROTO_BIT_CEC
)
1815 dev
->input_dev
->rep
[REP_DELAY
] = 0;
1817 dev
->input_dev
->rep
[REP_DELAY
] = 500;
1820 * As a repeat event on protocols like RC-5 and NEC take as long as
1821 * 110/114ms, using 33ms as a repeat period is not the right thing
1824 dev
->input_dev
->rep
[REP_PERIOD
] = 125;
1829 static void rc_free_rx_device(struct rc_dev
*dev
)
1834 if (dev
->input_dev
) {
1835 input_unregister_device(dev
->input_dev
);
1836 dev
->input_dev
= NULL
;
1839 ir_free_table(&dev
->rc_map
);
1842 int rc_register_device(struct rc_dev
*dev
)
1852 minor
= ida_simple_get(&rc_ida
, 0, RC_DEV_MAX
, GFP_KERNEL
);
1857 dev_set_name(&dev
->dev
, "rc%u", dev
->minor
);
1858 dev_set_drvdata(&dev
->dev
, dev
);
1860 dev
->dev
.groups
= dev
->sysfs_groups
;
1861 if (dev
->driver_type
== RC_DRIVER_SCANCODE
&& !dev
->change_protocol
)
1862 dev
->sysfs_groups
[attr
++] = &rc_dev_ro_protocol_attr_grp
;
1863 else if (dev
->driver_type
!= RC_DRIVER_IR_RAW_TX
)
1864 dev
->sysfs_groups
[attr
++] = &rc_dev_rw_protocol_attr_grp
;
1866 dev
->sysfs_groups
[attr
++] = &rc_dev_filter_attr_grp
;
1867 if (dev
->s_wakeup_filter
)
1868 dev
->sysfs_groups
[attr
++] = &rc_dev_wakeup_filter_attr_grp
;
1869 dev
->sysfs_groups
[attr
++] = NULL
;
1871 if (dev
->driver_type
== RC_DRIVER_IR_RAW
) {
1872 rc
= ir_raw_event_prepare(dev
);
1877 if (dev
->driver_type
!= RC_DRIVER_IR_RAW_TX
) {
1878 rc
= rc_prepare_rx_device(dev
);
1883 rc
= device_add(&dev
->dev
);
1887 path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1888 dev_info(&dev
->dev
, "%s as %s\n",
1889 dev
->device_name
?: "Unspecified device", path
?: "N/A");
1892 dev
->registered
= true;
1895 * once the the input device is registered in rc_setup_rx_device,
1896 * userspace can open the input device and rc_open() will be called
1897 * as a result. This results in driver code being allowed to submit
1898 * keycodes with rc_keydown, so lirc must be registered first.
1900 if (dev
->allowed_protocols
!= RC_PROTO_BIT_CEC
) {
1901 rc
= ir_lirc_register(dev
);
1906 if (dev
->driver_type
!= RC_DRIVER_IR_RAW_TX
) {
1907 rc
= rc_setup_rx_device(dev
);
1912 if (dev
->driver_type
== RC_DRIVER_IR_RAW
) {
1913 rc
= ir_raw_event_register(dev
);
1918 dev_dbg(&dev
->dev
, "Registered rc%u (driver: %s)\n", dev
->minor
,
1919 dev
->driver_name
? dev
->driver_name
: "unknown");
1924 rc_free_rx_device(dev
);
1926 if (dev
->allowed_protocols
!= RC_PROTO_BIT_CEC
)
1927 ir_lirc_unregister(dev
);
1929 device_del(&dev
->dev
);
1931 ir_free_table(&dev
->rc_map
);
1933 ir_raw_event_free(dev
);
1935 ida_simple_remove(&rc_ida
, minor
);
1938 EXPORT_SYMBOL_GPL(rc_register_device
);
1940 static void devm_rc_release(struct device
*dev
, void *res
)
1942 rc_unregister_device(*(struct rc_dev
**)res
);
1945 int devm_rc_register_device(struct device
*parent
, struct rc_dev
*dev
)
1950 dr
= devres_alloc(devm_rc_release
, sizeof(*dr
), GFP_KERNEL
);
1954 ret
= rc_register_device(dev
);
1961 devres_add(parent
, dr
);
1965 EXPORT_SYMBOL_GPL(devm_rc_register_device
);
1967 void rc_unregister_device(struct rc_dev
*dev
)
1972 if (dev
->driver_type
== RC_DRIVER_IR_RAW
)
1973 ir_raw_event_unregister(dev
);
1975 del_timer_sync(&dev
->timer_keyup
);
1976 del_timer_sync(&dev
->timer_repeat
);
1978 rc_free_rx_device(dev
);
1980 mutex_lock(&dev
->lock
);
1981 if (dev
->users
&& dev
->close
)
1983 dev
->registered
= false;
1984 mutex_unlock(&dev
->lock
);
1987 * lirc device should be freed with dev->registered = false, so
1988 * that userspace polling will get notified.
1990 if (dev
->allowed_protocols
!= RC_PROTO_BIT_CEC
)
1991 ir_lirc_unregister(dev
);
1993 device_del(&dev
->dev
);
1995 ida_simple_remove(&rc_ida
, dev
->minor
);
1997 if (!dev
->managed_alloc
)
1998 rc_free_device(dev
);
2001 EXPORT_SYMBOL_GPL(rc_unregister_device
);
2004 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
2007 static int __init
rc_core_init(void)
2009 int rc
= class_register(&rc_class
);
2011 pr_err("rc_core: unable to register rc class\n");
2015 rc
= lirc_dev_init();
2017 pr_err("rc_core: unable to init lirc\n");
2018 class_unregister(&rc_class
);
2022 led_trigger_register_simple("rc-feedback", &led_feedback
);
2023 rc_map_register(&empty_map
);
2028 static void __exit
rc_core_exit(void)
2031 class_unregister(&rc_class
);
2032 led_trigger_unregister_simple(led_feedback
);
2033 rc_map_unregister(&empty_map
);
2036 subsys_initcall(rc_core_init
);
2037 module_exit(rc_core_exit
);
2039 MODULE_AUTHOR("Mauro Carvalho Chehab");
2040 MODULE_LICENSE("GPL v2");