treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / media / usb / gspca / ov519.c
blobf417dfc0b87290539732dc73bbe8de7309e37d43
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * OV519 driver
5 * Copyright (C) 2008-2011 Jean-François Moine <moinejf@free.fr>
6 * Copyright (C) 2009 Hans de Goede <hdegoede@redhat.com>
8 * This module is adapted from the ov51x-jpeg package, which itself
9 * was adapted from the ov511 driver.
11 * Original copyright for the ov511 driver is:
13 * Copyright (c) 1999-2006 Mark W. McClelland
14 * Support for OV519, OV8610 Copyright (c) 2003 Joerg Heckenbach
15 * Many improvements by Bret Wallach <bwallac1@san.rr.com>
16 * Color fixes by by Orion Sky Lawlor <olawlor@acm.org> (2/26/2000)
17 * OV7620 fixes by Charl P. Botha <cpbotha@ieee.org>
18 * Changes by Claudio Matsuoka <claudio@conectiva.com>
20 * ov51x-jpeg original copyright is:
22 * Copyright (c) 2004-2007 Romain Beauxis <toots@rastageeks.org>
23 * Support for OV7670 sensors was contributed by Sam Skipsey <aoanla@yahoo.com>
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28 #define MODULE_NAME "ov519"
30 #include <linux/input.h>
31 #include "gspca.h"
33 /* The jpeg_hdr is used by w996Xcf only */
34 /* The CONEX_CAM define for jpeg.h needs renaming, now its used here too */
35 #define CONEX_CAM
36 #include "jpeg.h"
38 MODULE_AUTHOR("Jean-Francois Moine <http://moinejf.free.fr>");
39 MODULE_DESCRIPTION("OV519 USB Camera Driver");
40 MODULE_LICENSE("GPL");
42 /* global parameters */
43 static int frame_rate;
45 /* Number of times to retry a failed I2C transaction. Increase this if you
46 * are getting "Failed to read sensor ID..." */
47 static int i2c_detect_tries = 10;
49 /* ov519 device descriptor */
50 struct sd {
51 struct gspca_dev gspca_dev; /* !! must be the first item */
53 struct v4l2_ctrl *jpegqual;
54 struct v4l2_ctrl *freq;
55 struct { /* h/vflip control cluster */
56 struct v4l2_ctrl *hflip;
57 struct v4l2_ctrl *vflip;
59 struct { /* autobrightness/brightness control cluster */
60 struct v4l2_ctrl *autobright;
61 struct v4l2_ctrl *brightness;
64 u8 revision;
66 u8 packet_nr;
68 char bridge;
69 #define BRIDGE_OV511 0
70 #define BRIDGE_OV511PLUS 1
71 #define BRIDGE_OV518 2
72 #define BRIDGE_OV518PLUS 3
73 #define BRIDGE_OV519 4 /* = ov530 */
74 #define BRIDGE_OVFX2 5
75 #define BRIDGE_W9968CF 6
76 #define BRIDGE_MASK 7
78 char invert_led;
79 #define BRIDGE_INVERT_LED 8
81 char snapshot_pressed;
82 char snapshot_needs_reset;
84 /* Determined by sensor type */
85 u8 sif;
87 #define QUALITY_MIN 50
88 #define QUALITY_MAX 70
89 #define QUALITY_DEF 50
91 u8 stopped; /* Streaming is temporarily paused */
92 u8 first_frame;
94 u8 frame_rate; /* current Framerate */
95 u8 clockdiv; /* clockdiv override */
97 s8 sensor; /* Type of image sensor chip (SEN_*) */
99 u8 sensor_addr;
100 u16 sensor_width;
101 u16 sensor_height;
102 s16 sensor_reg_cache[256];
104 u8 jpeg_hdr[JPEG_HDR_SZ];
106 enum sensors {
107 SEN_OV2610,
108 SEN_OV2610AE,
109 SEN_OV3610,
110 SEN_OV6620,
111 SEN_OV6630,
112 SEN_OV66308AF,
113 SEN_OV7610,
114 SEN_OV7620,
115 SEN_OV7620AE,
116 SEN_OV7640,
117 SEN_OV7648,
118 SEN_OV7660,
119 SEN_OV7670,
120 SEN_OV76BE,
121 SEN_OV8610,
122 SEN_OV9600,
125 /* Note this is a bit of a hack, but the w9968cf driver needs the code for all
126 the ov sensors which is already present here. When we have the time we
127 really should move the sensor drivers to v4l2 sub drivers. */
128 #include "w996Xcf.c"
130 /* table of the disabled controls */
131 struct ctrl_valid {
132 unsigned int has_brightness:1;
133 unsigned int has_contrast:1;
134 unsigned int has_exposure:1;
135 unsigned int has_autogain:1;
136 unsigned int has_sat:1;
137 unsigned int has_hvflip:1;
138 unsigned int has_autobright:1;
139 unsigned int has_freq:1;
142 static const struct ctrl_valid valid_controls[] = {
143 [SEN_OV2610] = {
144 .has_exposure = 1,
145 .has_autogain = 1,
147 [SEN_OV2610AE] = {
148 .has_exposure = 1,
149 .has_autogain = 1,
151 [SEN_OV3610] = {
152 /* No controls */
154 [SEN_OV6620] = {
155 .has_brightness = 1,
156 .has_contrast = 1,
157 .has_sat = 1,
158 .has_autobright = 1,
159 .has_freq = 1,
161 [SEN_OV6630] = {
162 .has_brightness = 1,
163 .has_contrast = 1,
164 .has_sat = 1,
165 .has_autobright = 1,
166 .has_freq = 1,
168 [SEN_OV66308AF] = {
169 .has_brightness = 1,
170 .has_contrast = 1,
171 .has_sat = 1,
172 .has_autobright = 1,
173 .has_freq = 1,
175 [SEN_OV7610] = {
176 .has_brightness = 1,
177 .has_contrast = 1,
178 .has_sat = 1,
179 .has_autobright = 1,
180 .has_freq = 1,
182 [SEN_OV7620] = {
183 .has_brightness = 1,
184 .has_contrast = 1,
185 .has_sat = 1,
186 .has_autobright = 1,
187 .has_freq = 1,
189 [SEN_OV7620AE] = {
190 .has_brightness = 1,
191 .has_contrast = 1,
192 .has_sat = 1,
193 .has_autobright = 1,
194 .has_freq = 1,
196 [SEN_OV7640] = {
197 .has_brightness = 1,
198 .has_sat = 1,
199 .has_freq = 1,
201 [SEN_OV7648] = {
202 .has_brightness = 1,
203 .has_sat = 1,
204 .has_freq = 1,
206 [SEN_OV7660] = {
207 .has_brightness = 1,
208 .has_contrast = 1,
209 .has_sat = 1,
210 .has_hvflip = 1,
211 .has_freq = 1,
213 [SEN_OV7670] = {
214 .has_brightness = 1,
215 .has_contrast = 1,
216 .has_hvflip = 1,
217 .has_freq = 1,
219 [SEN_OV76BE] = {
220 .has_brightness = 1,
221 .has_contrast = 1,
222 .has_sat = 1,
223 .has_autobright = 1,
224 .has_freq = 1,
226 [SEN_OV8610] = {
227 .has_brightness = 1,
228 .has_contrast = 1,
229 .has_sat = 1,
230 .has_autobright = 1,
232 [SEN_OV9600] = {
233 .has_exposure = 1,
234 .has_autogain = 1,
238 static const struct v4l2_pix_format ov519_vga_mode[] = {
239 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
240 .bytesperline = 320,
241 .sizeimage = 320 * 240 * 3 / 8 + 590,
242 .colorspace = V4L2_COLORSPACE_JPEG,
243 .priv = 1},
244 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
245 .bytesperline = 640,
246 .sizeimage = 640 * 480 * 3 / 8 + 590,
247 .colorspace = V4L2_COLORSPACE_JPEG,
248 .priv = 0},
250 static const struct v4l2_pix_format ov519_sif_mode[] = {
251 {160, 120, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
252 .bytesperline = 160,
253 .sizeimage = 160 * 120 * 3 / 8 + 590,
254 .colorspace = V4L2_COLORSPACE_JPEG,
255 .priv = 3},
256 {176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
257 .bytesperline = 176,
258 .sizeimage = 176 * 144 * 3 / 8 + 590,
259 .colorspace = V4L2_COLORSPACE_JPEG,
260 .priv = 1},
261 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
262 .bytesperline = 320,
263 .sizeimage = 320 * 240 * 3 / 8 + 590,
264 .colorspace = V4L2_COLORSPACE_JPEG,
265 .priv = 2},
266 {352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
267 .bytesperline = 352,
268 .sizeimage = 352 * 288 * 3 / 8 + 590,
269 .colorspace = V4L2_COLORSPACE_JPEG,
270 .priv = 0},
273 /* Note some of the sizeimage values for the ov511 / ov518 may seem
274 larger then necessary, however they need to be this big as the ov511 /
275 ov518 always fills the entire isoc frame, using 0 padding bytes when
276 it doesn't have any data. So with low framerates the amount of data
277 transferred can become quite large (libv4l will remove all the 0 padding
278 in userspace). */
279 static const struct v4l2_pix_format ov518_vga_mode[] = {
280 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
281 .bytesperline = 320,
282 .sizeimage = 320 * 240 * 3,
283 .colorspace = V4L2_COLORSPACE_JPEG,
284 .priv = 1},
285 {640, 480, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
286 .bytesperline = 640,
287 .sizeimage = 640 * 480 * 2,
288 .colorspace = V4L2_COLORSPACE_JPEG,
289 .priv = 0},
291 static const struct v4l2_pix_format ov518_sif_mode[] = {
292 {160, 120, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
293 .bytesperline = 160,
294 .sizeimage = 70000,
295 .colorspace = V4L2_COLORSPACE_JPEG,
296 .priv = 3},
297 {176, 144, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
298 .bytesperline = 176,
299 .sizeimage = 70000,
300 .colorspace = V4L2_COLORSPACE_JPEG,
301 .priv = 1},
302 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
303 .bytesperline = 320,
304 .sizeimage = 320 * 240 * 3,
305 .colorspace = V4L2_COLORSPACE_JPEG,
306 .priv = 2},
307 {352, 288, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
308 .bytesperline = 352,
309 .sizeimage = 352 * 288 * 3,
310 .colorspace = V4L2_COLORSPACE_JPEG,
311 .priv = 0},
314 static const struct v4l2_pix_format ov511_vga_mode[] = {
315 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
316 .bytesperline = 320,
317 .sizeimage = 320 * 240 * 3,
318 .colorspace = V4L2_COLORSPACE_JPEG,
319 .priv = 1},
320 {640, 480, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
321 .bytesperline = 640,
322 .sizeimage = 640 * 480 * 2,
323 .colorspace = V4L2_COLORSPACE_JPEG,
324 .priv = 0},
326 static const struct v4l2_pix_format ov511_sif_mode[] = {
327 {160, 120, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
328 .bytesperline = 160,
329 .sizeimage = 70000,
330 .colorspace = V4L2_COLORSPACE_JPEG,
331 .priv = 3},
332 {176, 144, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
333 .bytesperline = 176,
334 .sizeimage = 70000,
335 .colorspace = V4L2_COLORSPACE_JPEG,
336 .priv = 1},
337 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
338 .bytesperline = 320,
339 .sizeimage = 320 * 240 * 3,
340 .colorspace = V4L2_COLORSPACE_JPEG,
341 .priv = 2},
342 {352, 288, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
343 .bytesperline = 352,
344 .sizeimage = 352 * 288 * 3,
345 .colorspace = V4L2_COLORSPACE_JPEG,
346 .priv = 0},
349 static const struct v4l2_pix_format ovfx2_ov2610_mode[] = {
350 {800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
351 .bytesperline = 800,
352 .sizeimage = 800 * 600,
353 .colorspace = V4L2_COLORSPACE_SRGB,
354 .priv = 1},
355 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
356 .bytesperline = 1600,
357 .sizeimage = 1600 * 1200,
358 .colorspace = V4L2_COLORSPACE_SRGB},
360 static const struct v4l2_pix_format ovfx2_ov3610_mode[] = {
361 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
362 .bytesperline = 640,
363 .sizeimage = 640 * 480,
364 .colorspace = V4L2_COLORSPACE_SRGB,
365 .priv = 1},
366 {800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
367 .bytesperline = 800,
368 .sizeimage = 800 * 600,
369 .colorspace = V4L2_COLORSPACE_SRGB,
370 .priv = 1},
371 {1024, 768, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
372 .bytesperline = 1024,
373 .sizeimage = 1024 * 768,
374 .colorspace = V4L2_COLORSPACE_SRGB,
375 .priv = 1},
376 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
377 .bytesperline = 1600,
378 .sizeimage = 1600 * 1200,
379 .colorspace = V4L2_COLORSPACE_SRGB,
380 .priv = 0},
381 {2048, 1536, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
382 .bytesperline = 2048,
383 .sizeimage = 2048 * 1536,
384 .colorspace = V4L2_COLORSPACE_SRGB,
385 .priv = 0},
387 static const struct v4l2_pix_format ovfx2_ov9600_mode[] = {
388 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
389 .bytesperline = 640,
390 .sizeimage = 640 * 480,
391 .colorspace = V4L2_COLORSPACE_SRGB,
392 .priv = 1},
393 {1280, 1024, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
394 .bytesperline = 1280,
395 .sizeimage = 1280 * 1024,
396 .colorspace = V4L2_COLORSPACE_SRGB},
399 /* Registers common to OV511 / OV518 */
400 #define R51x_FIFO_PSIZE 0x30 /* 2 bytes wide w/ OV518(+) */
401 #define R51x_SYS_RESET 0x50
402 /* Reset type flags */
403 #define OV511_RESET_OMNICE 0x08
404 #define R51x_SYS_INIT 0x53
405 #define R51x_SYS_SNAP 0x52
406 #define R51x_SYS_CUST_ID 0x5f
407 #define R51x_COMP_LUT_BEGIN 0x80
409 /* OV511 Camera interface register numbers */
410 #define R511_CAM_DELAY 0x10
411 #define R511_CAM_EDGE 0x11
412 #define R511_CAM_PXCNT 0x12
413 #define R511_CAM_LNCNT 0x13
414 #define R511_CAM_PXDIV 0x14
415 #define R511_CAM_LNDIV 0x15
416 #define R511_CAM_UV_EN 0x16
417 #define R511_CAM_LINE_MODE 0x17
418 #define R511_CAM_OPTS 0x18
420 #define R511_SNAP_FRAME 0x19
421 #define R511_SNAP_PXCNT 0x1a
422 #define R511_SNAP_LNCNT 0x1b
423 #define R511_SNAP_PXDIV 0x1c
424 #define R511_SNAP_LNDIV 0x1d
425 #define R511_SNAP_UV_EN 0x1e
426 #define R511_SNAP_OPTS 0x1f
428 #define R511_DRAM_FLOW_CTL 0x20
429 #define R511_FIFO_OPTS 0x31
430 #define R511_I2C_CTL 0x40
431 #define R511_SYS_LED_CTL 0x55 /* OV511+ only */
432 #define R511_COMP_EN 0x78
433 #define R511_COMP_LUT_EN 0x79
435 /* OV518 Camera interface register numbers */
436 #define R518_GPIO_OUT 0x56 /* OV518(+) only */
437 #define R518_GPIO_CTL 0x57 /* OV518(+) only */
439 /* OV519 Camera interface register numbers */
440 #define OV519_R10_H_SIZE 0x10
441 #define OV519_R11_V_SIZE 0x11
442 #define OV519_R12_X_OFFSETL 0x12
443 #define OV519_R13_X_OFFSETH 0x13
444 #define OV519_R14_Y_OFFSETL 0x14
445 #define OV519_R15_Y_OFFSETH 0x15
446 #define OV519_R16_DIVIDER 0x16
447 #define OV519_R20_DFR 0x20
448 #define OV519_R25_FORMAT 0x25
450 /* OV519 System Controller register numbers */
451 #define OV519_R51_RESET1 0x51
452 #define OV519_R54_EN_CLK1 0x54
453 #define OV519_R57_SNAPSHOT 0x57
455 #define OV519_GPIO_DATA_OUT0 0x71
456 #define OV519_GPIO_IO_CTRL0 0x72
458 /*#define OV511_ENDPOINT_ADDRESS 1 * Isoc endpoint number */
461 * The FX2 chip does not give us a zero length read at end of frame.
462 * It does, however, give a short read at the end of a frame, if
463 * necessary, rather than run two frames together.
465 * By choosing the right bulk transfer size, we are guaranteed to always
466 * get a short read for the last read of each frame. Frame sizes are
467 * always a composite number (width * height, or a multiple) so if we
468 * choose a prime number, we are guaranteed that the last read of a
469 * frame will be short.
471 * But it isn't that easy: the 2.6 kernel requires a multiple of 4KB,
472 * otherwise EOVERFLOW "babbling" errors occur. I have not been able
473 * to figure out why. [PMiller]
475 * The constant (13 * 4096) is the largest "prime enough" number less than 64KB.
477 * It isn't enough to know the number of bytes per frame, in case we
478 * have data dropouts or buffer overruns (even though the FX2 double
479 * buffers, there are some pretty strict real time constraints for
480 * isochronous transfer for larger frame sizes).
482 /*jfm: this value does not work for 800x600 - see isoc_init */
483 #define OVFX2_BULK_SIZE (13 * 4096)
485 /* I2C registers */
486 #define R51x_I2C_W_SID 0x41
487 #define R51x_I2C_SADDR_3 0x42
488 #define R51x_I2C_SADDR_2 0x43
489 #define R51x_I2C_R_SID 0x44
490 #define R51x_I2C_DATA 0x45
491 #define R518_I2C_CTL 0x47 /* OV518(+) only */
492 #define OVFX2_I2C_ADDR 0x00
494 /* I2C ADDRESSES */
495 #define OV7xx0_SID 0x42
496 #define OV_HIRES_SID 0x60 /* OV9xxx / OV2xxx / OV3xxx */
497 #define OV8xx0_SID 0xa0
498 #define OV6xx0_SID 0xc0
500 /* OV7610 registers */
501 #define OV7610_REG_GAIN 0x00 /* gain setting (5:0) */
502 #define OV7610_REG_BLUE 0x01 /* blue channel balance */
503 #define OV7610_REG_RED 0x02 /* red channel balance */
504 #define OV7610_REG_SAT 0x03 /* saturation */
505 #define OV8610_REG_HUE 0x04 /* 04 reserved */
506 #define OV7610_REG_CNT 0x05 /* Y contrast */
507 #define OV7610_REG_BRT 0x06 /* Y brightness */
508 #define OV7610_REG_COM_C 0x14 /* misc common regs */
509 #define OV7610_REG_ID_HIGH 0x1c /* manufacturer ID MSB */
510 #define OV7610_REG_ID_LOW 0x1d /* manufacturer ID LSB */
511 #define OV7610_REG_COM_I 0x29 /* misc settings */
513 /* OV7660 and OV7670 registers */
514 #define OV7670_R00_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */
515 #define OV7670_R01_BLUE 0x01 /* blue gain */
516 #define OV7670_R02_RED 0x02 /* red gain */
517 #define OV7670_R03_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */
518 #define OV7670_R04_COM1 0x04 /* Control 1 */
519 /*#define OV7670_R07_AECHH 0x07 * AEC MS 5 bits */
520 #define OV7670_R0C_COM3 0x0c /* Control 3 */
521 #define OV7670_R0D_COM4 0x0d /* Control 4 */
522 #define OV7670_R0E_COM5 0x0e /* All "reserved" */
523 #define OV7670_R0F_COM6 0x0f /* Control 6 */
524 #define OV7670_R10_AECH 0x10 /* More bits of AEC value */
525 #define OV7670_R11_CLKRC 0x11 /* Clock control */
526 #define OV7670_R12_COM7 0x12 /* Control 7 */
527 #define OV7670_COM7_FMT_VGA 0x00
528 /*#define OV7670_COM7_YUV 0x00 * YUV */
529 #define OV7670_COM7_FMT_QVGA 0x10 /* QVGA format */
530 #define OV7670_COM7_FMT_MASK 0x38
531 #define OV7670_COM7_RESET 0x80 /* Register reset */
532 #define OV7670_R13_COM8 0x13 /* Control 8 */
533 #define OV7670_COM8_AEC 0x01 /* Auto exposure enable */
534 #define OV7670_COM8_AWB 0x02 /* White balance enable */
535 #define OV7670_COM8_AGC 0x04 /* Auto gain enable */
536 #define OV7670_COM8_BFILT 0x20 /* Band filter enable */
537 #define OV7670_COM8_AECSTEP 0x40 /* Unlimited AEC step size */
538 #define OV7670_COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */
539 #define OV7670_R14_COM9 0x14 /* Control 9 - gain ceiling */
540 #define OV7670_R15_COM10 0x15 /* Control 10 */
541 #define OV7670_R17_HSTART 0x17 /* Horiz start high bits */
542 #define OV7670_R18_HSTOP 0x18 /* Horiz stop high bits */
543 #define OV7670_R19_VSTART 0x19 /* Vert start high bits */
544 #define OV7670_R1A_VSTOP 0x1a /* Vert stop high bits */
545 #define OV7670_R1E_MVFP 0x1e /* Mirror / vflip */
546 #define OV7670_MVFP_VFLIP 0x10 /* vertical flip */
547 #define OV7670_MVFP_MIRROR 0x20 /* Mirror image */
548 #define OV7670_R24_AEW 0x24 /* AGC upper limit */
549 #define OV7670_R25_AEB 0x25 /* AGC lower limit */
550 #define OV7670_R26_VPT 0x26 /* AGC/AEC fast mode op region */
551 #define OV7670_R32_HREF 0x32 /* HREF pieces */
552 #define OV7670_R3A_TSLB 0x3a /* lots of stuff */
553 #define OV7670_R3B_COM11 0x3b /* Control 11 */
554 #define OV7670_COM11_EXP 0x02
555 #define OV7670_COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */
556 #define OV7670_R3C_COM12 0x3c /* Control 12 */
557 #define OV7670_R3D_COM13 0x3d /* Control 13 */
558 #define OV7670_COM13_GAMMA 0x80 /* Gamma enable */
559 #define OV7670_COM13_UVSAT 0x40 /* UV saturation auto adjustment */
560 #define OV7670_R3E_COM14 0x3e /* Control 14 */
561 #define OV7670_R3F_EDGE 0x3f /* Edge enhancement factor */
562 #define OV7670_R40_COM15 0x40 /* Control 15 */
563 /*#define OV7670_COM15_R00FF 0xc0 * 00 to FF */
564 #define OV7670_R41_COM16 0x41 /* Control 16 */
565 #define OV7670_COM16_AWBGAIN 0x08 /* AWB gain enable */
566 /* end of ov7660 common registers */
567 #define OV7670_R55_BRIGHT 0x55 /* Brightness */
568 #define OV7670_R56_CONTRAS 0x56 /* Contrast control */
569 #define OV7670_R69_GFIX 0x69 /* Fix gain control */
570 /*#define OV7670_R8C_RGB444 0x8c * RGB 444 control */
571 #define OV7670_R9F_HAECC1 0x9f /* Hist AEC/AGC control 1 */
572 #define OV7670_RA0_HAECC2 0xa0 /* Hist AEC/AGC control 2 */
573 #define OV7670_RA5_BD50MAX 0xa5 /* 50hz banding step limit */
574 #define OV7670_RA6_HAECC3 0xa6 /* Hist AEC/AGC control 3 */
575 #define OV7670_RA7_HAECC4 0xa7 /* Hist AEC/AGC control 4 */
576 #define OV7670_RA8_HAECC5 0xa8 /* Hist AEC/AGC control 5 */
577 #define OV7670_RA9_HAECC6 0xa9 /* Hist AEC/AGC control 6 */
578 #define OV7670_RAA_HAECC7 0xaa /* Hist AEC/AGC control 7 */
579 #define OV7670_RAB_BD60MAX 0xab /* 60hz banding step limit */
581 struct ov_regvals {
582 u8 reg;
583 u8 val;
585 struct ov_i2c_regvals {
586 u8 reg;
587 u8 val;
590 /* Settings for OV2610 camera chip */
591 static const struct ov_i2c_regvals norm_2610[] = {
592 { 0x12, 0x80 }, /* reset */
595 static const struct ov_i2c_regvals norm_2610ae[] = {
596 {0x12, 0x80}, /* reset */
597 {0x13, 0xcd},
598 {0x09, 0x01},
599 {0x0d, 0x00},
600 {0x11, 0x80},
601 {0x12, 0x20}, /* 1600x1200 */
602 {0x33, 0x0c},
603 {0x35, 0x90},
604 {0x36, 0x37},
605 /* ms-win traces */
606 {0x11, 0x83}, /* clock / 3 ? */
607 {0x2d, 0x00}, /* 60 Hz filter */
608 {0x24, 0xb0}, /* normal colors */
609 {0x25, 0x90},
610 {0x10, 0x43},
613 static const struct ov_i2c_regvals norm_3620b[] = {
615 * From the datasheet: "Note that after writing to register COMH
616 * (0x12) to change the sensor mode, registers related to the
617 * sensor’s cropping window will be reset back to their default
618 * values."
620 * "wait 4096 external clock ... to make sure the sensor is
621 * stable and ready to access registers" i.e. 160us at 24MHz
623 { 0x12, 0x80 }, /* COMH reset */
624 { 0x12, 0x00 }, /* QXGA, master */
627 * 11 CLKRC "Clock Rate Control"
628 * [7] internal frequency doublers: on
629 * [6] video port mode: master
630 * [5:0] clock divider: 1
632 { 0x11, 0x80 },
635 * 13 COMI "Common Control I"
636 * = 192 (0xC0) 11000000
637 * COMI[7] "AEC speed selection"
638 * = 1 (0x01) 1....... "Faster AEC correction"
639 * COMI[6] "AEC speed step selection"
640 * = 1 (0x01) .1...... "Big steps, fast"
641 * COMI[5] "Banding filter on off"
642 * = 0 (0x00) ..0..... "Off"
643 * COMI[4] "Banding filter option"
644 * = 0 (0x00) ...0.... "Main clock is 48 MHz and
645 * the PLL is ON"
646 * COMI[3] "Reserved"
647 * = 0 (0x00) ....0...
648 * COMI[2] "AGC auto manual control selection"
649 * = 0 (0x00) .....0.. "Manual"
650 * COMI[1] "AWB auto manual control selection"
651 * = 0 (0x00) ......0. "Manual"
652 * COMI[0] "Exposure control"
653 * = 0 (0x00) .......0 "Manual"
655 { 0x13, 0xc0 },
658 * 09 COMC "Common Control C"
659 * = 8 (0x08) 00001000
660 * COMC[7:5] "Reserved"
661 * = 0 (0x00) 000.....
662 * COMC[4] "Sleep Mode Enable"
663 * = 0 (0x00) ...0.... "Normal mode"
664 * COMC[3:2] "Sensor sampling reset timing selection"
665 * = 2 (0x02) ....10.. "Longer reset time"
666 * COMC[1:0] "Output drive current select"
667 * = 0 (0x00) ......00 "Weakest"
669 { 0x09, 0x08 },
672 * 0C COMD "Common Control D"
673 * = 8 (0x08) 00001000
674 * COMD[7] "Reserved"
675 * = 0 (0x00) 0.......
676 * COMD[6] "Swap MSB and LSB at the output port"
677 * = 0 (0x00) .0...... "False"
678 * COMD[5:3] "Reserved"
679 * = 1 (0x01) ..001...
680 * COMD[2] "Output Average On Off"
681 * = 0 (0x00) .....0.. "Output Normal"
682 * COMD[1] "Sensor precharge voltage selection"
683 * = 0 (0x00) ......0. "Selects internal
684 * reference precharge
685 * voltage"
686 * COMD[0] "Snapshot option"
687 * = 0 (0x00) .......0 "Enable live video output
688 * after snapshot sequence"
690 { 0x0c, 0x08 },
693 * 0D COME "Common Control E"
694 * = 161 (0xA1) 10100001
695 * COME[7] "Output average option"
696 * = 1 (0x01) 1....... "Output average of 4 pixels"
697 * COME[6] "Anti-blooming control"
698 * = 0 (0x00) .0...... "Off"
699 * COME[5:3] "Reserved"
700 * = 4 (0x04) ..100...
701 * COME[2] "Clock output power down pin status"
702 * = 0 (0x00) .....0.. "Tri-state data output pin
703 * on power down"
704 * COME[1] "Data output pin status selection at power down"
705 * = 0 (0x00) ......0. "Tri-state VSYNC, PCLK,
706 * HREF, and CHSYNC pins on
707 * power down"
708 * COME[0] "Auto zero circuit select"
709 * = 1 (0x01) .......1 "On"
711 { 0x0d, 0xa1 },
714 * 0E COMF "Common Control F"
715 * = 112 (0x70) 01110000
716 * COMF[7] "System clock selection"
717 * = 0 (0x00) 0....... "Use 24 MHz system clock"
718 * COMF[6:4] "Reserved"
719 * = 7 (0x07) .111....
720 * COMF[3] "Manual auto negative offset canceling selection"
721 * = 0 (0x00) ....0... "Auto detect negative
722 * offset and cancel it"
723 * COMF[2:0] "Reserved"
724 * = 0 (0x00) .....000
726 { 0x0e, 0x70 },
729 * 0F COMG "Common Control G"
730 * = 66 (0x42) 01000010
731 * COMG[7] "Optical black output selection"
732 * = 0 (0x00) 0....... "Disable"
733 * COMG[6] "Black level calibrate selection"
734 * = 1 (0x01) .1...... "Use optical black pixels
735 * to calibrate"
736 * COMG[5:4] "Reserved"
737 * = 0 (0x00) ..00....
738 * COMG[3] "Channel offset adjustment"
739 * = 0 (0x00) ....0... "Disable offset adjustment"
740 * COMG[2] "ADC black level calibration option"
741 * = 0 (0x00) .....0.. "Use B/G line and G/R
742 * line to calibrate each
743 * channel's black level"
744 * COMG[1] "Reserved"
745 * = 1 (0x01) ......1.
746 * COMG[0] "ADC black level calibration enable"
747 * = 0 (0x00) .......0 "Disable"
749 { 0x0f, 0x42 },
752 * 14 COMJ "Common Control J"
753 * = 198 (0xC6) 11000110
754 * COMJ[7:6] "AGC gain ceiling"
755 * = 3 (0x03) 11...... "8x"
756 * COMJ[5:4] "Reserved"
757 * = 0 (0x00) ..00....
758 * COMJ[3] "Auto banding filter"
759 * = 0 (0x00) ....0... "Banding filter is always
760 * on off depending on
761 * COMI[5] setting"
762 * COMJ[2] "VSYNC drop option"
763 * = 1 (0x01) .....1.. "SYNC is dropped if frame
764 * data is dropped"
765 * COMJ[1] "Frame data drop"
766 * = 1 (0x01) ......1. "Drop frame data if
767 * exposure is not within
768 * tolerance. In AEC mode,
769 * data is normally dropped
770 * when data is out of
771 * range."
772 * COMJ[0] "Reserved"
773 * = 0 (0x00) .......0
775 { 0x14, 0xc6 },
778 * 15 COMK "Common Control K"
779 * = 2 (0x02) 00000010
780 * COMK[7] "CHSYNC pin output swap"
781 * = 0 (0x00) 0....... "CHSYNC"
782 * COMK[6] "HREF pin output swap"
783 * = 0 (0x00) .0...... "HREF"
784 * COMK[5] "PCLK output selection"
785 * = 0 (0x00) ..0..... "PCLK always output"
786 * COMK[4] "PCLK edge selection"
787 * = 0 (0x00) ...0.... "Data valid on falling edge"
788 * COMK[3] "HREF output polarity"
789 * = 0 (0x00) ....0... "positive"
790 * COMK[2] "Reserved"
791 * = 0 (0x00) .....0..
792 * COMK[1] "VSYNC polarity"
793 * = 1 (0x01) ......1. "negative"
794 * COMK[0] "HSYNC polarity"
795 * = 0 (0x00) .......0 "positive"
797 { 0x15, 0x02 },
800 * 33 CHLF "Current Control"
801 * = 9 (0x09) 00001001
802 * CHLF[7:6] "Sensor current control"
803 * = 0 (0x00) 00......
804 * CHLF[5] "Sensor current range control"
805 * = 0 (0x00) ..0..... "normal range"
806 * CHLF[4] "Sensor current"
807 * = 0 (0x00) ...0.... "normal current"
808 * CHLF[3] "Sensor buffer current control"
809 * = 1 (0x01) ....1... "half current"
810 * CHLF[2] "Column buffer current control"
811 * = 0 (0x00) .....0.. "normal current"
812 * CHLF[1] "Analog DSP current control"
813 * = 0 (0x00) ......0. "normal current"
814 * CHLF[1] "ADC current control"
815 * = 0 (0x00) ......0. "normal current"
817 { 0x33, 0x09 },
820 * 34 VBLM "Blooming Control"
821 * = 80 (0x50) 01010000
822 * VBLM[7] "Hard soft reset switch"
823 * = 0 (0x00) 0....... "Hard reset"
824 * VBLM[6:4] "Blooming voltage selection"
825 * = 5 (0x05) .101....
826 * VBLM[3:0] "Sensor current control"
827 * = 0 (0x00) ....0000
829 { 0x34, 0x50 },
832 * 36 VCHG "Sensor Precharge Voltage Control"
833 * = 0 (0x00) 00000000
834 * VCHG[7] "Reserved"
835 * = 0 (0x00) 0.......
836 * VCHG[6:4] "Sensor precharge voltage control"
837 * = 0 (0x00) .000....
838 * VCHG[3:0] "Sensor array common reference"
839 * = 0 (0x00) ....0000
841 { 0x36, 0x00 },
844 * 37 ADC "ADC Reference Control"
845 * = 4 (0x04) 00000100
846 * ADC[7:4] "Reserved"
847 * = 0 (0x00) 0000....
848 * ADC[3] "ADC input signal range"
849 * = 0 (0x00) ....0... "Input signal 1.0x"
850 * ADC[2:0] "ADC range control"
851 * = 4 (0x04) .....100
853 { 0x37, 0x04 },
856 * 38 ACOM "Analog Common Ground"
857 * = 82 (0x52) 01010010
858 * ACOM[7] "Analog gain control"
859 * = 0 (0x00) 0....... "Gain 1x"
860 * ACOM[6] "Analog black level calibration"
861 * = 1 (0x01) .1...... "On"
862 * ACOM[5:0] "Reserved"
863 * = 18 (0x12) ..010010
865 { 0x38, 0x52 },
868 * 3A FREFA "Internal Reference Adjustment"
869 * = 0 (0x00) 00000000
870 * FREFA[7:0] "Range"
871 * = 0 (0x00) 00000000
873 { 0x3a, 0x00 },
876 * 3C FVOPT "Internal Reference Adjustment"
877 * = 31 (0x1F) 00011111
878 * FVOPT[7:0] "Range"
879 * = 31 (0x1F) 00011111
881 { 0x3c, 0x1f },
884 * 44 Undocumented = 0 (0x00) 00000000
885 * 44[7:0] "It's a secret"
886 * = 0 (0x00) 00000000
888 { 0x44, 0x00 },
891 * 40 Undocumented = 0 (0x00) 00000000
892 * 40[7:0] "It's a secret"
893 * = 0 (0x00) 00000000
895 { 0x40, 0x00 },
898 * 41 Undocumented = 0 (0x00) 00000000
899 * 41[7:0] "It's a secret"
900 * = 0 (0x00) 00000000
902 { 0x41, 0x00 },
905 * 42 Undocumented = 0 (0x00) 00000000
906 * 42[7:0] "It's a secret"
907 * = 0 (0x00) 00000000
909 { 0x42, 0x00 },
912 * 43 Undocumented = 0 (0x00) 00000000
913 * 43[7:0] "It's a secret"
914 * = 0 (0x00) 00000000
916 { 0x43, 0x00 },
919 * 45 Undocumented = 128 (0x80) 10000000
920 * 45[7:0] "It's a secret"
921 * = 128 (0x80) 10000000
923 { 0x45, 0x80 },
926 * 48 Undocumented = 192 (0xC0) 11000000
927 * 48[7:0] "It's a secret"
928 * = 192 (0xC0) 11000000
930 { 0x48, 0xc0 },
933 * 49 Undocumented = 25 (0x19) 00011001
934 * 49[7:0] "It's a secret"
935 * = 25 (0x19) 00011001
937 { 0x49, 0x19 },
940 * 4B Undocumented = 128 (0x80) 10000000
941 * 4B[7:0] "It's a secret"
942 * = 128 (0x80) 10000000
944 { 0x4b, 0x80 },
947 * 4D Undocumented = 196 (0xC4) 11000100
948 * 4D[7:0] "It's a secret"
949 * = 196 (0xC4) 11000100
951 { 0x4d, 0xc4 },
954 * 35 VREF "Reference Voltage Control"
955 * = 76 (0x4c) 01001100
956 * VREF[7:5] "Column high reference control"
957 * = 2 (0x02) 010..... "higher voltage"
958 * VREF[4:2] "Column low reference control"
959 * = 3 (0x03) ...011.. "Highest voltage"
960 * VREF[1:0] "Reserved"
961 * = 0 (0x00) ......00
963 { 0x35, 0x4c },
966 * 3D Undocumented = 0 (0x00) 00000000
967 * 3D[7:0] "It's a secret"
968 * = 0 (0x00) 00000000
970 { 0x3d, 0x00 },
973 * 3E Undocumented = 0 (0x00) 00000000
974 * 3E[7:0] "It's a secret"
975 * = 0 (0x00) 00000000
977 { 0x3e, 0x00 },
980 * 3B FREFB "Internal Reference Adjustment"
981 * = 24 (0x18) 00011000
982 * FREFB[7:0] "Range"
983 * = 24 (0x18) 00011000
985 { 0x3b, 0x18 },
988 * 33 CHLF "Current Control"
989 * = 25 (0x19) 00011001
990 * CHLF[7:6] "Sensor current control"
991 * = 0 (0x00) 00......
992 * CHLF[5] "Sensor current range control"
993 * = 0 (0x00) ..0..... "normal range"
994 * CHLF[4] "Sensor current"
995 * = 1 (0x01) ...1.... "double current"
996 * CHLF[3] "Sensor buffer current control"
997 * = 1 (0x01) ....1... "half current"
998 * CHLF[2] "Column buffer current control"
999 * = 0 (0x00) .....0.. "normal current"
1000 * CHLF[1] "Analog DSP current control"
1001 * = 0 (0x00) ......0. "normal current"
1002 * CHLF[1] "ADC current control"
1003 * = 0 (0x00) ......0. "normal current"
1005 { 0x33, 0x19 },
1008 * 34 VBLM "Blooming Control"
1009 * = 90 (0x5A) 01011010
1010 * VBLM[7] "Hard soft reset switch"
1011 * = 0 (0x00) 0....... "Hard reset"
1012 * VBLM[6:4] "Blooming voltage selection"
1013 * = 5 (0x05) .101....
1014 * VBLM[3:0] "Sensor current control"
1015 * = 10 (0x0A) ....1010
1017 { 0x34, 0x5a },
1020 * 3B FREFB "Internal Reference Adjustment"
1021 * = 0 (0x00) 00000000
1022 * FREFB[7:0] "Range"
1023 * = 0 (0x00) 00000000
1025 { 0x3b, 0x00 },
1028 * 33 CHLF "Current Control"
1029 * = 9 (0x09) 00001001
1030 * CHLF[7:6] "Sensor current control"
1031 * = 0 (0x00) 00......
1032 * CHLF[5] "Sensor current range control"
1033 * = 0 (0x00) ..0..... "normal range"
1034 * CHLF[4] "Sensor current"
1035 * = 0 (0x00) ...0.... "normal current"
1036 * CHLF[3] "Sensor buffer current control"
1037 * = 1 (0x01) ....1... "half current"
1038 * CHLF[2] "Column buffer current control"
1039 * = 0 (0x00) .....0.. "normal current"
1040 * CHLF[1] "Analog DSP current control"
1041 * = 0 (0x00) ......0. "normal current"
1042 * CHLF[1] "ADC current control"
1043 * = 0 (0x00) ......0. "normal current"
1045 { 0x33, 0x09 },
1048 * 34 VBLM "Blooming Control"
1049 * = 80 (0x50) 01010000
1050 * VBLM[7] "Hard soft reset switch"
1051 * = 0 (0x00) 0....... "Hard reset"
1052 * VBLM[6:4] "Blooming voltage selection"
1053 * = 5 (0x05) .101....
1054 * VBLM[3:0] "Sensor current control"
1055 * = 0 (0x00) ....0000
1057 { 0x34, 0x50 },
1060 * 12 COMH "Common Control H"
1061 * = 64 (0x40) 01000000
1062 * COMH[7] "SRST"
1063 * = 0 (0x00) 0....... "No-op"
1064 * COMH[6:4] "Resolution selection"
1065 * = 4 (0x04) .100.... "XGA"
1066 * COMH[3] "Master slave selection"
1067 * = 0 (0x00) ....0... "Master mode"
1068 * COMH[2] "Internal B/R channel option"
1069 * = 0 (0x00) .....0.. "B/R use same channel"
1070 * COMH[1] "Color bar test pattern"
1071 * = 0 (0x00) ......0. "Off"
1072 * COMH[0] "Reserved"
1073 * = 0 (0x00) .......0
1075 { 0x12, 0x40 },
1078 * 17 HREFST "Horizontal window start"
1079 * = 31 (0x1F) 00011111
1080 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1081 * = 31 (0x1F) 00011111
1083 { 0x17, 0x1f },
1086 * 18 HREFEND "Horizontal window end"
1087 * = 95 (0x5F) 01011111
1088 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1089 * = 95 (0x5F) 01011111
1091 { 0x18, 0x5f },
1094 * 19 VSTRT "Vertical window start"
1095 * = 0 (0x00) 00000000
1096 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1097 * = 0 (0x00) 00000000
1099 { 0x19, 0x00 },
1102 * 1A VEND "Vertical window end"
1103 * = 96 (0x60) 01100000
1104 * VEND[7:0] "Vertical Window End, 8 MSBs"
1105 * = 96 (0x60) 01100000
1107 { 0x1a, 0x60 },
1110 * 32 COMM "Common Control M"
1111 * = 18 (0x12) 00010010
1112 * COMM[7:6] "Pixel clock divide option"
1113 * = 0 (0x00) 00...... "/1"
1114 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1115 * = 2 (0x02) ..010...
1116 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1117 * = 2 (0x02) .....010
1119 { 0x32, 0x12 },
1122 * 03 COMA "Common Control A"
1123 * = 74 (0x4A) 01001010
1124 * COMA[7:4] "AWB Update Threshold"
1125 * = 4 (0x04) 0100....
1126 * COMA[3:2] "Vertical window end line control 2 LSBs"
1127 * = 2 (0x02) ....10..
1128 * COMA[1:0] "Vertical window start line control 2 LSBs"
1129 * = 2 (0x02) ......10
1131 { 0x03, 0x4a },
1134 * 11 CLKRC "Clock Rate Control"
1135 * = 128 (0x80) 10000000
1136 * CLKRC[7] "Internal frequency doublers on off seclection"
1137 * = 1 (0x01) 1....... "On"
1138 * CLKRC[6] "Digital video master slave selection"
1139 * = 0 (0x00) .0...... "Master mode, sensor
1140 * provides PCLK"
1141 * CLKRC[5:0] "Clock divider { CLK = PCLK/(1+CLKRC[5:0]) }"
1142 * = 0 (0x00) ..000000
1144 { 0x11, 0x80 },
1147 * 12 COMH "Common Control H"
1148 * = 0 (0x00) 00000000
1149 * COMH[7] "SRST"
1150 * = 0 (0x00) 0....... "No-op"
1151 * COMH[6:4] "Resolution selection"
1152 * = 0 (0x00) .000.... "QXGA"
1153 * COMH[3] "Master slave selection"
1154 * = 0 (0x00) ....0... "Master mode"
1155 * COMH[2] "Internal B/R channel option"
1156 * = 0 (0x00) .....0.. "B/R use same channel"
1157 * COMH[1] "Color bar test pattern"
1158 * = 0 (0x00) ......0. "Off"
1159 * COMH[0] "Reserved"
1160 * = 0 (0x00) .......0
1162 { 0x12, 0x00 },
1165 * 12 COMH "Common Control H"
1166 * = 64 (0x40) 01000000
1167 * COMH[7] "SRST"
1168 * = 0 (0x00) 0....... "No-op"
1169 * COMH[6:4] "Resolution selection"
1170 * = 4 (0x04) .100.... "XGA"
1171 * COMH[3] "Master slave selection"
1172 * = 0 (0x00) ....0... "Master mode"
1173 * COMH[2] "Internal B/R channel option"
1174 * = 0 (0x00) .....0.. "B/R use same channel"
1175 * COMH[1] "Color bar test pattern"
1176 * = 0 (0x00) ......0. "Off"
1177 * COMH[0] "Reserved"
1178 * = 0 (0x00) .......0
1180 { 0x12, 0x40 },
1183 * 17 HREFST "Horizontal window start"
1184 * = 31 (0x1F) 00011111
1185 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1186 * = 31 (0x1F) 00011111
1188 { 0x17, 0x1f },
1191 * 18 HREFEND "Horizontal window end"
1192 * = 95 (0x5F) 01011111
1193 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1194 * = 95 (0x5F) 01011111
1196 { 0x18, 0x5f },
1199 * 19 VSTRT "Vertical window start"
1200 * = 0 (0x00) 00000000
1201 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1202 * = 0 (0x00) 00000000
1204 { 0x19, 0x00 },
1207 * 1A VEND "Vertical window end"
1208 * = 96 (0x60) 01100000
1209 * VEND[7:0] "Vertical Window End, 8 MSBs"
1210 * = 96 (0x60) 01100000
1212 { 0x1a, 0x60 },
1215 * 32 COMM "Common Control M"
1216 * = 18 (0x12) 00010010
1217 * COMM[7:6] "Pixel clock divide option"
1218 * = 0 (0x00) 00...... "/1"
1219 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1220 * = 2 (0x02) ..010...
1221 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1222 * = 2 (0x02) .....010
1224 { 0x32, 0x12 },
1227 * 03 COMA "Common Control A"
1228 * = 74 (0x4A) 01001010
1229 * COMA[7:4] "AWB Update Threshold"
1230 * = 4 (0x04) 0100....
1231 * COMA[3:2] "Vertical window end line control 2 LSBs"
1232 * = 2 (0x02) ....10..
1233 * COMA[1:0] "Vertical window start line control 2 LSBs"
1234 * = 2 (0x02) ......10
1236 { 0x03, 0x4a },
1239 * 02 RED "Red Gain Control"
1240 * = 175 (0xAF) 10101111
1241 * RED[7] "Action"
1242 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1243 * RED[6:0] "Value"
1244 * = 47 (0x2F) .0101111
1246 { 0x02, 0xaf },
1249 * 2D ADDVSL "VSYNC Pulse Width"
1250 * = 210 (0xD2) 11010010
1251 * ADDVSL[7:0] "VSYNC pulse width, LSB"
1252 * = 210 (0xD2) 11010010
1254 { 0x2d, 0xd2 },
1257 * 00 GAIN = 24 (0x18) 00011000
1258 * GAIN[7:6] "Reserved"
1259 * = 0 (0x00) 00......
1260 * GAIN[5] "Double"
1261 * = 0 (0x00) ..0..... "False"
1262 * GAIN[4] "Double"
1263 * = 1 (0x01) ...1.... "True"
1264 * GAIN[3:0] "Range"
1265 * = 8 (0x08) ....1000
1267 { 0x00, 0x18 },
1270 * 01 BLUE "Blue Gain Control"
1271 * = 240 (0xF0) 11110000
1272 * BLUE[7] "Action"
1273 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1274 * BLUE[6:0] "Value"
1275 * = 112 (0x70) .1110000
1277 { 0x01, 0xf0 },
1280 * 10 AEC "Automatic Exposure Control"
1281 * = 10 (0x0A) 00001010
1282 * AEC[7:0] "Automatic Exposure Control, 8 MSBs"
1283 * = 10 (0x0A) 00001010
1285 { 0x10, 0x0a },
1287 { 0xe1, 0x67 },
1288 { 0xe3, 0x03 },
1289 { 0xe4, 0x26 },
1290 { 0xe5, 0x3e },
1291 { 0xf8, 0x01 },
1292 { 0xff, 0x01 },
1295 static const struct ov_i2c_regvals norm_6x20[] = {
1296 { 0x12, 0x80 }, /* reset */
1297 { 0x11, 0x01 },
1298 { 0x03, 0x60 },
1299 { 0x05, 0x7f }, /* For when autoadjust is off */
1300 { 0x07, 0xa8 },
1301 /* The ratio of 0x0c and 0x0d controls the white point */
1302 { 0x0c, 0x24 },
1303 { 0x0d, 0x24 },
1304 { 0x0f, 0x15 }, /* COMS */
1305 { 0x10, 0x75 }, /* AEC Exposure time */
1306 { 0x12, 0x24 }, /* Enable AGC */
1307 { 0x14, 0x04 },
1308 /* 0x16: 0x06 helps frame stability with moving objects */
1309 { 0x16, 0x06 },
1310 /* { 0x20, 0x30 }, * Aperture correction enable */
1311 { 0x26, 0xb2 }, /* BLC enable */
1312 /* 0x28: 0x05 Selects RGB format if RGB on */
1313 { 0x28, 0x05 },
1314 { 0x2a, 0x04 }, /* Disable framerate adjust */
1315 /* { 0x2b, 0xac }, * Framerate; Set 2a[7] first */
1316 { 0x2d, 0x85 },
1317 { 0x33, 0xa0 }, /* Color Processing Parameter */
1318 { 0x34, 0xd2 }, /* Max A/D range */
1319 { 0x38, 0x8b },
1320 { 0x39, 0x40 },
1322 { 0x3c, 0x39 }, /* Enable AEC mode changing */
1323 { 0x3c, 0x3c }, /* Change AEC mode */
1324 { 0x3c, 0x24 }, /* Disable AEC mode changing */
1326 { 0x3d, 0x80 },
1327 /* These next two registers (0x4a, 0x4b) are undocumented.
1328 * They control the color balance */
1329 { 0x4a, 0x80 },
1330 { 0x4b, 0x80 },
1331 { 0x4d, 0xd2 }, /* This reduces noise a bit */
1332 { 0x4e, 0xc1 },
1333 { 0x4f, 0x04 },
1334 /* Do 50-53 have any effect? */
1335 /* Toggle 0x12[2] off and on here? */
1338 static const struct ov_i2c_regvals norm_6x30[] = {
1339 { 0x12, 0x80 }, /* Reset */
1340 { 0x00, 0x1f }, /* Gain */
1341 { 0x01, 0x99 }, /* Blue gain */
1342 { 0x02, 0x7c }, /* Red gain */
1343 { 0x03, 0xc0 }, /* Saturation */
1344 { 0x05, 0x0a }, /* Contrast */
1345 { 0x06, 0x95 }, /* Brightness */
1346 { 0x07, 0x2d }, /* Sharpness */
1347 { 0x0c, 0x20 },
1348 { 0x0d, 0x20 },
1349 { 0x0e, 0xa0 }, /* Was 0x20, bit7 enables a 2x gain which we need */
1350 { 0x0f, 0x05 },
1351 { 0x10, 0x9a },
1352 { 0x11, 0x00 }, /* Pixel clock = fastest */
1353 { 0x12, 0x24 }, /* Enable AGC and AWB */
1354 { 0x13, 0x21 },
1355 { 0x14, 0x80 },
1356 { 0x15, 0x01 },
1357 { 0x16, 0x03 },
1358 { 0x17, 0x38 },
1359 { 0x18, 0xea },
1360 { 0x19, 0x04 },
1361 { 0x1a, 0x93 },
1362 { 0x1b, 0x00 },
1363 { 0x1e, 0xc4 },
1364 { 0x1f, 0x04 },
1365 { 0x20, 0x20 },
1366 { 0x21, 0x10 },
1367 { 0x22, 0x88 },
1368 { 0x23, 0xc0 }, /* Crystal circuit power level */
1369 { 0x25, 0x9a }, /* Increase AEC black ratio */
1370 { 0x26, 0xb2 }, /* BLC enable */
1371 { 0x27, 0xa2 },
1372 { 0x28, 0x00 },
1373 { 0x29, 0x00 },
1374 { 0x2a, 0x84 }, /* 60 Hz power */
1375 { 0x2b, 0xa8 }, /* 60 Hz power */
1376 { 0x2c, 0xa0 },
1377 { 0x2d, 0x95 }, /* Enable auto-brightness */
1378 { 0x2e, 0x88 },
1379 { 0x33, 0x26 },
1380 { 0x34, 0x03 },
1381 { 0x36, 0x8f },
1382 { 0x37, 0x80 },
1383 { 0x38, 0x83 },
1384 { 0x39, 0x80 },
1385 { 0x3a, 0x0f },
1386 { 0x3b, 0x3c },
1387 { 0x3c, 0x1a },
1388 { 0x3d, 0x80 },
1389 { 0x3e, 0x80 },
1390 { 0x3f, 0x0e },
1391 { 0x40, 0x00 }, /* White bal */
1392 { 0x41, 0x00 }, /* White bal */
1393 { 0x42, 0x80 },
1394 { 0x43, 0x3f }, /* White bal */
1395 { 0x44, 0x80 },
1396 { 0x45, 0x20 },
1397 { 0x46, 0x20 },
1398 { 0x47, 0x80 },
1399 { 0x48, 0x7f },
1400 { 0x49, 0x00 },
1401 { 0x4a, 0x00 },
1402 { 0x4b, 0x80 },
1403 { 0x4c, 0xd0 },
1404 { 0x4d, 0x10 }, /* U = 0.563u, V = 0.714v */
1405 { 0x4e, 0x40 },
1406 { 0x4f, 0x07 }, /* UV avg., col. killer: max */
1407 { 0x50, 0xff },
1408 { 0x54, 0x23 }, /* Max AGC gain: 18dB */
1409 { 0x55, 0xff },
1410 { 0x56, 0x12 },
1411 { 0x57, 0x81 },
1412 { 0x58, 0x75 },
1413 { 0x59, 0x01 }, /* AGC dark current comp.: +1 */
1414 { 0x5a, 0x2c },
1415 { 0x5b, 0x0f }, /* AWB chrominance levels */
1416 { 0x5c, 0x10 },
1417 { 0x3d, 0x80 },
1418 { 0x27, 0xa6 },
1419 { 0x12, 0x20 }, /* Toggle AWB */
1420 { 0x12, 0x24 },
1423 /* Lawrence Glaister <lg@jfm.bc.ca> reports:
1425 * Register 0x0f in the 7610 has the following effects:
1427 * 0x85 (AEC method 1): Best overall, good contrast range
1428 * 0x45 (AEC method 2): Very overexposed
1429 * 0xa5 (spec sheet default): Ok, but the black level is
1430 * shifted resulting in loss of contrast
1431 * 0x05 (old driver setting): very overexposed, too much
1432 * contrast
1434 static const struct ov_i2c_regvals norm_7610[] = {
1435 { 0x10, 0xff },
1436 { 0x16, 0x06 },
1437 { 0x28, 0x24 },
1438 { 0x2b, 0xac },
1439 { 0x12, 0x00 },
1440 { 0x38, 0x81 },
1441 { 0x28, 0x24 }, /* 0c */
1442 { 0x0f, 0x85 }, /* lg's setting */
1443 { 0x15, 0x01 },
1444 { 0x20, 0x1c },
1445 { 0x23, 0x2a },
1446 { 0x24, 0x10 },
1447 { 0x25, 0x8a },
1448 { 0x26, 0xa2 },
1449 { 0x27, 0xc2 },
1450 { 0x2a, 0x04 },
1451 { 0x2c, 0xfe },
1452 { 0x2d, 0x93 },
1453 { 0x30, 0x71 },
1454 { 0x31, 0x60 },
1455 { 0x32, 0x26 },
1456 { 0x33, 0x20 },
1457 { 0x34, 0x48 },
1458 { 0x12, 0x24 },
1459 { 0x11, 0x01 },
1460 { 0x0c, 0x24 },
1461 { 0x0d, 0x24 },
1464 static const struct ov_i2c_regvals norm_7620[] = {
1465 { 0x12, 0x80 }, /* reset */
1466 { 0x00, 0x00 }, /* gain */
1467 { 0x01, 0x80 }, /* blue gain */
1468 { 0x02, 0x80 }, /* red gain */
1469 { 0x03, 0xc0 }, /* OV7670_R03_VREF */
1470 { 0x06, 0x60 },
1471 { 0x07, 0x00 },
1472 { 0x0c, 0x24 },
1473 { 0x0c, 0x24 },
1474 { 0x0d, 0x24 },
1475 { 0x11, 0x01 },
1476 { 0x12, 0x24 },
1477 { 0x13, 0x01 },
1478 { 0x14, 0x84 },
1479 { 0x15, 0x01 },
1480 { 0x16, 0x03 },
1481 { 0x17, 0x2f },
1482 { 0x18, 0xcf },
1483 { 0x19, 0x06 },
1484 { 0x1a, 0xf5 },
1485 { 0x1b, 0x00 },
1486 { 0x20, 0x18 },
1487 { 0x21, 0x80 },
1488 { 0x22, 0x80 },
1489 { 0x23, 0x00 },
1490 { 0x26, 0xa2 },
1491 { 0x27, 0xea },
1492 { 0x28, 0x22 }, /* Was 0x20, bit1 enables a 2x gain which we need */
1493 { 0x29, 0x00 },
1494 { 0x2a, 0x10 },
1495 { 0x2b, 0x00 },
1496 { 0x2c, 0x88 },
1497 { 0x2d, 0x91 },
1498 { 0x2e, 0x80 },
1499 { 0x2f, 0x44 },
1500 { 0x60, 0x27 },
1501 { 0x61, 0x02 },
1502 { 0x62, 0x5f },
1503 { 0x63, 0xd5 },
1504 { 0x64, 0x57 },
1505 { 0x65, 0x83 },
1506 { 0x66, 0x55 },
1507 { 0x67, 0x92 },
1508 { 0x68, 0xcf },
1509 { 0x69, 0x76 },
1510 { 0x6a, 0x22 },
1511 { 0x6b, 0x00 },
1512 { 0x6c, 0x02 },
1513 { 0x6d, 0x44 },
1514 { 0x6e, 0x80 },
1515 { 0x6f, 0x1d },
1516 { 0x70, 0x8b },
1517 { 0x71, 0x00 },
1518 { 0x72, 0x14 },
1519 { 0x73, 0x54 },
1520 { 0x74, 0x00 },
1521 { 0x75, 0x8e },
1522 { 0x76, 0x00 },
1523 { 0x77, 0xff },
1524 { 0x78, 0x80 },
1525 { 0x79, 0x80 },
1526 { 0x7a, 0x80 },
1527 { 0x7b, 0xe2 },
1528 { 0x7c, 0x00 },
1531 /* 7640 and 7648. The defaults should be OK for most registers. */
1532 static const struct ov_i2c_regvals norm_7640[] = {
1533 { 0x12, 0x80 },
1534 { 0x12, 0x14 },
1537 static const struct ov_regvals init_519_ov7660[] = {
1538 { 0x5d, 0x03 }, /* Turn off suspend mode */
1539 { 0x53, 0x9b }, /* 0x9f enables the (unused) microcontroller */
1540 { 0x54, 0x0f }, /* bit2 (jpeg enable) */
1541 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
1542 { 0xa3, 0x18 },
1543 { 0xa4, 0x04 },
1544 { 0xa5, 0x28 },
1545 { 0x37, 0x00 }, /* SetUsbInit */
1546 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
1547 /* Enable both fields, YUV Input, disable defect comp (why?) */
1548 { 0x20, 0x0c }, /* 0x0d does U <-> V swap */
1549 { 0x21, 0x38 },
1550 { 0x22, 0x1d },
1551 { 0x17, 0x50 }, /* undocumented */
1552 { 0x37, 0x00 }, /* undocumented */
1553 { 0x40, 0xff }, /* I2C timeout counter */
1554 { 0x46, 0x00 }, /* I2C clock prescaler */
1556 static const struct ov_i2c_regvals norm_7660[] = {
1557 {OV7670_R12_COM7, OV7670_COM7_RESET},
1558 {OV7670_R11_CLKRC, 0x81},
1559 {0x92, 0x00}, /* DM_LNL */
1560 {0x93, 0x00}, /* DM_LNH */
1561 {0x9d, 0x4c}, /* BD50ST */
1562 {0x9e, 0x3f}, /* BD60ST */
1563 {OV7670_R3B_COM11, 0x02},
1564 {OV7670_R13_COM8, 0xf5},
1565 {OV7670_R10_AECH, 0x00},
1566 {OV7670_R00_GAIN, 0x00},
1567 {OV7670_R01_BLUE, 0x7c},
1568 {OV7670_R02_RED, 0x9d},
1569 {OV7670_R12_COM7, 0x00},
1570 {OV7670_R04_COM1, 00},
1571 {OV7670_R18_HSTOP, 0x01},
1572 {OV7670_R17_HSTART, 0x13},
1573 {OV7670_R32_HREF, 0x92},
1574 {OV7670_R19_VSTART, 0x02},
1575 {OV7670_R1A_VSTOP, 0x7a},
1576 {OV7670_R03_VREF, 0x00},
1577 {OV7670_R0E_COM5, 0x04},
1578 {OV7670_R0F_COM6, 0x62},
1579 {OV7670_R15_COM10, 0x00},
1580 {0x16, 0x02}, /* RSVD */
1581 {0x1b, 0x00}, /* PSHFT */
1582 {OV7670_R1E_MVFP, 0x01},
1583 {0x29, 0x3c}, /* RSVD */
1584 {0x33, 0x00}, /* CHLF */
1585 {0x34, 0x07}, /* ARBLM */
1586 {0x35, 0x84}, /* RSVD */
1587 {0x36, 0x00}, /* RSVD */
1588 {0x37, 0x04}, /* ADC */
1589 {0x39, 0x43}, /* OFON */
1590 {OV7670_R3A_TSLB, 0x00},
1591 {OV7670_R3C_COM12, 0x6c},
1592 {OV7670_R3D_COM13, 0x98},
1593 {OV7670_R3F_EDGE, 0x23},
1594 {OV7670_R40_COM15, 0xc1},
1595 {OV7670_R41_COM16, 0x22},
1596 {0x6b, 0x0a}, /* DBLV */
1597 {0xa1, 0x08}, /* RSVD */
1598 {0x69, 0x80}, /* HV */
1599 {0x43, 0xf0}, /* RSVD.. */
1600 {0x44, 0x10},
1601 {0x45, 0x78},
1602 {0x46, 0xa8},
1603 {0x47, 0x60},
1604 {0x48, 0x80},
1605 {0x59, 0xba},
1606 {0x5a, 0x9a},
1607 {0x5b, 0x22},
1608 {0x5c, 0xb9},
1609 {0x5d, 0x9b},
1610 {0x5e, 0x10},
1611 {0x5f, 0xe0},
1612 {0x60, 0x85},
1613 {0x61, 0x60},
1614 {0x9f, 0x9d}, /* RSVD */
1615 {0xa0, 0xa0}, /* DSPC2 */
1616 {0x4f, 0x60}, /* matrix */
1617 {0x50, 0x64},
1618 {0x51, 0x04},
1619 {0x52, 0x18},
1620 {0x53, 0x3c},
1621 {0x54, 0x54},
1622 {0x55, 0x40},
1623 {0x56, 0x40},
1624 {0x57, 0x40},
1625 {0x58, 0x0d}, /* matrix sign */
1626 {0x8b, 0xcc}, /* RSVD */
1627 {0x8c, 0xcc},
1628 {0x8d, 0xcf},
1629 {0x6c, 0x40}, /* gamma curve */
1630 {0x6d, 0xe0},
1631 {0x6e, 0xa0},
1632 {0x6f, 0x80},
1633 {0x70, 0x70},
1634 {0x71, 0x80},
1635 {0x72, 0x60},
1636 {0x73, 0x60},
1637 {0x74, 0x50},
1638 {0x75, 0x40},
1639 {0x76, 0x38},
1640 {0x77, 0x3c},
1641 {0x78, 0x32},
1642 {0x79, 0x1a},
1643 {0x7a, 0x28},
1644 {0x7b, 0x24},
1645 {0x7c, 0x04}, /* gamma curve */
1646 {0x7d, 0x12},
1647 {0x7e, 0x26},
1648 {0x7f, 0x46},
1649 {0x80, 0x54},
1650 {0x81, 0x64},
1651 {0x82, 0x70},
1652 {0x83, 0x7c},
1653 {0x84, 0x86},
1654 {0x85, 0x8e},
1655 {0x86, 0x9c},
1656 {0x87, 0xab},
1657 {0x88, 0xc4},
1658 {0x89, 0xd1},
1659 {0x8a, 0xe5},
1660 {OV7670_R14_COM9, 0x1e},
1661 {OV7670_R24_AEW, 0x80},
1662 {OV7670_R25_AEB, 0x72},
1663 {OV7670_R26_VPT, 0xb3},
1664 {0x62, 0x80}, /* LCC1 */
1665 {0x63, 0x80}, /* LCC2 */
1666 {0x64, 0x06}, /* LCC3 */
1667 {0x65, 0x00}, /* LCC4 */
1668 {0x66, 0x01}, /* LCC5 */
1669 {0x94, 0x0e}, /* RSVD.. */
1670 {0x95, 0x14},
1671 {OV7670_R13_COM8, OV7670_COM8_FASTAEC
1672 | OV7670_COM8_AECSTEP
1673 | OV7670_COM8_BFILT
1674 | 0x10
1675 | OV7670_COM8_AGC
1676 | OV7670_COM8_AWB
1677 | OV7670_COM8_AEC},
1678 {0xa1, 0xc8}
1680 static const struct ov_i2c_regvals norm_9600[] = {
1681 {0x12, 0x80},
1682 {0x0c, 0x28},
1683 {0x11, 0x80},
1684 {0x13, 0xb5},
1685 {0x14, 0x3e},
1686 {0x1b, 0x04},
1687 {0x24, 0xb0},
1688 {0x25, 0x90},
1689 {0x26, 0x94},
1690 {0x35, 0x90},
1691 {0x37, 0x07},
1692 {0x38, 0x08},
1693 {0x01, 0x8e},
1694 {0x02, 0x85}
1697 /* 7670. Defaults taken from OmniVision provided data,
1698 * as provided by Jonathan Corbet of OLPC */
1699 static const struct ov_i2c_regvals norm_7670[] = {
1700 { OV7670_R12_COM7, OV7670_COM7_RESET },
1701 { OV7670_R3A_TSLB, 0x04 }, /* OV */
1702 { OV7670_R12_COM7, OV7670_COM7_FMT_VGA }, /* VGA */
1703 { OV7670_R11_CLKRC, 0x01 },
1705 * Set the hardware window. These values from OV don't entirely
1706 * make sense - hstop is less than hstart. But they work...
1708 { OV7670_R17_HSTART, 0x13 },
1709 { OV7670_R18_HSTOP, 0x01 },
1710 { OV7670_R32_HREF, 0xb6 },
1711 { OV7670_R19_VSTART, 0x02 },
1712 { OV7670_R1A_VSTOP, 0x7a },
1713 { OV7670_R03_VREF, 0x0a },
1715 { OV7670_R0C_COM3, 0x00 },
1716 { OV7670_R3E_COM14, 0x00 },
1717 /* Mystery scaling numbers */
1718 { 0x70, 0x3a },
1719 { 0x71, 0x35 },
1720 { 0x72, 0x11 },
1721 { 0x73, 0xf0 },
1722 { 0xa2, 0x02 },
1723 /* { OV7670_R15_COM10, 0x0 }, */
1725 /* Gamma curve values */
1726 { 0x7a, 0x20 },
1727 { 0x7b, 0x10 },
1728 { 0x7c, 0x1e },
1729 { 0x7d, 0x35 },
1730 { 0x7e, 0x5a },
1731 { 0x7f, 0x69 },
1732 { 0x80, 0x76 },
1733 { 0x81, 0x80 },
1734 { 0x82, 0x88 },
1735 { 0x83, 0x8f },
1736 { 0x84, 0x96 },
1737 { 0x85, 0xa3 },
1738 { 0x86, 0xaf },
1739 { 0x87, 0xc4 },
1740 { 0x88, 0xd7 },
1741 { 0x89, 0xe8 },
1743 /* AGC and AEC parameters. Note we start by disabling those features,
1744 then turn them only after tweaking the values. */
1745 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1746 | OV7670_COM8_AECSTEP
1747 | OV7670_COM8_BFILT },
1748 { OV7670_R00_GAIN, 0x00 },
1749 { OV7670_R10_AECH, 0x00 },
1750 { OV7670_R0D_COM4, 0x40 }, /* magic reserved bit */
1751 { OV7670_R14_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
1752 { OV7670_RA5_BD50MAX, 0x05 },
1753 { OV7670_RAB_BD60MAX, 0x07 },
1754 { OV7670_R24_AEW, 0x95 },
1755 { OV7670_R25_AEB, 0x33 },
1756 { OV7670_R26_VPT, 0xe3 },
1757 { OV7670_R9F_HAECC1, 0x78 },
1758 { OV7670_RA0_HAECC2, 0x68 },
1759 { 0xa1, 0x03 }, /* magic */
1760 { OV7670_RA6_HAECC3, 0xd8 },
1761 { OV7670_RA7_HAECC4, 0xd8 },
1762 { OV7670_RA8_HAECC5, 0xf0 },
1763 { OV7670_RA9_HAECC6, 0x90 },
1764 { OV7670_RAA_HAECC7, 0x94 },
1765 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1766 | OV7670_COM8_AECSTEP
1767 | OV7670_COM8_BFILT
1768 | OV7670_COM8_AGC
1769 | OV7670_COM8_AEC },
1771 /* Almost all of these are magic "reserved" values. */
1772 { OV7670_R0E_COM5, 0x61 },
1773 { OV7670_R0F_COM6, 0x4b },
1774 { 0x16, 0x02 },
1775 { OV7670_R1E_MVFP, 0x07 },
1776 { 0x21, 0x02 },
1777 { 0x22, 0x91 },
1778 { 0x29, 0x07 },
1779 { 0x33, 0x0b },
1780 { 0x35, 0x0b },
1781 { 0x37, 0x1d },
1782 { 0x38, 0x71 },
1783 { 0x39, 0x2a },
1784 { OV7670_R3C_COM12, 0x78 },
1785 { 0x4d, 0x40 },
1786 { 0x4e, 0x20 },
1787 { OV7670_R69_GFIX, 0x00 },
1788 { 0x6b, 0x4a },
1789 { 0x74, 0x10 },
1790 { 0x8d, 0x4f },
1791 { 0x8e, 0x00 },
1792 { 0x8f, 0x00 },
1793 { 0x90, 0x00 },
1794 { 0x91, 0x00 },
1795 { 0x96, 0x00 },
1796 { 0x9a, 0x00 },
1797 { 0xb0, 0x84 },
1798 { 0xb1, 0x0c },
1799 { 0xb2, 0x0e },
1800 { 0xb3, 0x82 },
1801 { 0xb8, 0x0a },
1803 /* More reserved magic, some of which tweaks white balance */
1804 { 0x43, 0x0a },
1805 { 0x44, 0xf0 },
1806 { 0x45, 0x34 },
1807 { 0x46, 0x58 },
1808 { 0x47, 0x28 },
1809 { 0x48, 0x3a },
1810 { 0x59, 0x88 },
1811 { 0x5a, 0x88 },
1812 { 0x5b, 0x44 },
1813 { 0x5c, 0x67 },
1814 { 0x5d, 0x49 },
1815 { 0x5e, 0x0e },
1816 { 0x6c, 0x0a },
1817 { 0x6d, 0x55 },
1818 { 0x6e, 0x11 },
1819 { 0x6f, 0x9f }, /* "9e for advance AWB" */
1820 { 0x6a, 0x40 },
1821 { OV7670_R01_BLUE, 0x40 },
1822 { OV7670_R02_RED, 0x60 },
1823 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1824 | OV7670_COM8_AECSTEP
1825 | OV7670_COM8_BFILT
1826 | OV7670_COM8_AGC
1827 | OV7670_COM8_AEC
1828 | OV7670_COM8_AWB },
1830 /* Matrix coefficients */
1831 { 0x4f, 0x80 },
1832 { 0x50, 0x80 },
1833 { 0x51, 0x00 },
1834 { 0x52, 0x22 },
1835 { 0x53, 0x5e },
1836 { 0x54, 0x80 },
1837 { 0x58, 0x9e },
1839 { OV7670_R41_COM16, OV7670_COM16_AWBGAIN },
1840 { OV7670_R3F_EDGE, 0x00 },
1841 { 0x75, 0x05 },
1842 { 0x76, 0xe1 },
1843 { 0x4c, 0x00 },
1844 { 0x77, 0x01 },
1845 { OV7670_R3D_COM13, OV7670_COM13_GAMMA
1846 | OV7670_COM13_UVSAT
1847 | 2}, /* was 3 */
1848 { 0x4b, 0x09 },
1849 { 0xc9, 0x60 },
1850 { OV7670_R41_COM16, 0x38 },
1851 { 0x56, 0x40 },
1853 { 0x34, 0x11 },
1854 { OV7670_R3B_COM11, OV7670_COM11_EXP|OV7670_COM11_HZAUTO },
1855 { 0xa4, 0x88 },
1856 { 0x96, 0x00 },
1857 { 0x97, 0x30 },
1858 { 0x98, 0x20 },
1859 { 0x99, 0x30 },
1860 { 0x9a, 0x84 },
1861 { 0x9b, 0x29 },
1862 { 0x9c, 0x03 },
1863 { 0x9d, 0x4c },
1864 { 0x9e, 0x3f },
1865 { 0x78, 0x04 },
1867 /* Extra-weird stuff. Some sort of multiplexor register */
1868 { 0x79, 0x01 },
1869 { 0xc8, 0xf0 },
1870 { 0x79, 0x0f },
1871 { 0xc8, 0x00 },
1872 { 0x79, 0x10 },
1873 { 0xc8, 0x7e },
1874 { 0x79, 0x0a },
1875 { 0xc8, 0x80 },
1876 { 0x79, 0x0b },
1877 { 0xc8, 0x01 },
1878 { 0x79, 0x0c },
1879 { 0xc8, 0x0f },
1880 { 0x79, 0x0d },
1881 { 0xc8, 0x20 },
1882 { 0x79, 0x09 },
1883 { 0xc8, 0x80 },
1884 { 0x79, 0x02 },
1885 { 0xc8, 0xc0 },
1886 { 0x79, 0x03 },
1887 { 0xc8, 0x40 },
1888 { 0x79, 0x05 },
1889 { 0xc8, 0x30 },
1890 { 0x79, 0x26 },
1893 static const struct ov_i2c_regvals norm_8610[] = {
1894 { 0x12, 0x80 },
1895 { 0x00, 0x00 },
1896 { 0x01, 0x80 },
1897 { 0x02, 0x80 },
1898 { 0x03, 0xc0 },
1899 { 0x04, 0x30 },
1900 { 0x05, 0x30 }, /* was 0x10, new from windrv 090403 */
1901 { 0x06, 0x70 }, /* was 0x80, new from windrv 090403 */
1902 { 0x0a, 0x86 },
1903 { 0x0b, 0xb0 },
1904 { 0x0c, 0x20 },
1905 { 0x0d, 0x20 },
1906 { 0x11, 0x01 },
1907 { 0x12, 0x25 },
1908 { 0x13, 0x01 },
1909 { 0x14, 0x04 },
1910 { 0x15, 0x01 }, /* Lin and Win think different about UV order */
1911 { 0x16, 0x03 },
1912 { 0x17, 0x38 }, /* was 0x2f, new from windrv 090403 */
1913 { 0x18, 0xea }, /* was 0xcf, new from windrv 090403 */
1914 { 0x19, 0x02 }, /* was 0x06, new from windrv 090403 */
1915 { 0x1a, 0xf5 },
1916 { 0x1b, 0x00 },
1917 { 0x20, 0xd0 }, /* was 0x90, new from windrv 090403 */
1918 { 0x23, 0xc0 }, /* was 0x00, new from windrv 090403 */
1919 { 0x24, 0x30 }, /* was 0x1d, new from windrv 090403 */
1920 { 0x25, 0x50 }, /* was 0x57, new from windrv 090403 */
1921 { 0x26, 0xa2 },
1922 { 0x27, 0xea },
1923 { 0x28, 0x00 },
1924 { 0x29, 0x00 },
1925 { 0x2a, 0x80 },
1926 { 0x2b, 0xc8 }, /* was 0xcc, new from windrv 090403 */
1927 { 0x2c, 0xac },
1928 { 0x2d, 0x45 }, /* was 0xd5, new from windrv 090403 */
1929 { 0x2e, 0x80 },
1930 { 0x2f, 0x14 }, /* was 0x01, new from windrv 090403 */
1931 { 0x4c, 0x00 },
1932 { 0x4d, 0x30 }, /* was 0x10, new from windrv 090403 */
1933 { 0x60, 0x02 }, /* was 0x01, new from windrv 090403 */
1934 { 0x61, 0x00 }, /* was 0x09, new from windrv 090403 */
1935 { 0x62, 0x5f }, /* was 0xd7, new from windrv 090403 */
1936 { 0x63, 0xff },
1937 { 0x64, 0x53 }, /* new windrv 090403 says 0x57,
1938 * maybe that's wrong */
1939 { 0x65, 0x00 },
1940 { 0x66, 0x55 },
1941 { 0x67, 0xb0 },
1942 { 0x68, 0xc0 }, /* was 0xaf, new from windrv 090403 */
1943 { 0x69, 0x02 },
1944 { 0x6a, 0x22 },
1945 { 0x6b, 0x00 },
1946 { 0x6c, 0x99 }, /* was 0x80, old windrv says 0x00, but
1947 * deleting bit7 colors the first images red */
1948 { 0x6d, 0x11 }, /* was 0x00, new from windrv 090403 */
1949 { 0x6e, 0x11 }, /* was 0x00, new from windrv 090403 */
1950 { 0x6f, 0x01 },
1951 { 0x70, 0x8b },
1952 { 0x71, 0x00 },
1953 { 0x72, 0x14 },
1954 { 0x73, 0x54 },
1955 { 0x74, 0x00 },/* 0x60? - was 0x00, new from windrv 090403 */
1956 { 0x75, 0x0e },
1957 { 0x76, 0x02 }, /* was 0x02, new from windrv 090403 */
1958 { 0x77, 0xff },
1959 { 0x78, 0x80 },
1960 { 0x79, 0x80 },
1961 { 0x7a, 0x80 },
1962 { 0x7b, 0x10 }, /* was 0x13, new from windrv 090403 */
1963 { 0x7c, 0x00 },
1964 { 0x7d, 0x08 }, /* was 0x09, new from windrv 090403 */
1965 { 0x7e, 0x08 }, /* was 0xc0, new from windrv 090403 */
1966 { 0x7f, 0xfb },
1967 { 0x80, 0x28 },
1968 { 0x81, 0x00 },
1969 { 0x82, 0x23 },
1970 { 0x83, 0x0b },
1971 { 0x84, 0x00 },
1972 { 0x85, 0x62 }, /* was 0x61, new from windrv 090403 */
1973 { 0x86, 0xc9 },
1974 { 0x87, 0x00 },
1975 { 0x88, 0x00 },
1976 { 0x89, 0x01 },
1977 { 0x12, 0x20 },
1978 { 0x12, 0x25 }, /* was 0x24, new from windrv 090403 */
1981 static unsigned char ov7670_abs_to_sm(unsigned char v)
1983 if (v > 127)
1984 return v & 0x7f;
1985 return (128 - v) | 0x80;
1988 /* Write a OV519 register */
1989 static void reg_w(struct sd *sd, u16 index, u16 value)
1991 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
1992 int ret, req = 0;
1994 if (sd->gspca_dev.usb_err < 0)
1995 return;
1997 /* Avoid things going to fast for the bridge with a xhci host */
1998 udelay(150);
2000 switch (sd->bridge) {
2001 case BRIDGE_OV511:
2002 case BRIDGE_OV511PLUS:
2003 req = 2;
2004 break;
2005 case BRIDGE_OVFX2:
2006 req = 0x0a;
2007 /* fall through */
2008 case BRIDGE_W9968CF:
2009 gspca_dbg(gspca_dev, D_USBO, "SET %02x %04x %04x\n",
2010 req, value, index);
2011 ret = usb_control_msg(sd->gspca_dev.dev,
2012 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2013 req,
2014 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2015 value, index, NULL, 0, 500);
2016 goto leave;
2017 default:
2018 req = 1;
2021 gspca_dbg(gspca_dev, D_USBO, "SET %02x 0000 %04x %02x\n",
2022 req, index, value);
2023 sd->gspca_dev.usb_buf[0] = value;
2024 ret = usb_control_msg(sd->gspca_dev.dev,
2025 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2026 req,
2027 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2028 0, index,
2029 sd->gspca_dev.usb_buf, 1, 500);
2030 leave:
2031 if (ret < 0) {
2032 gspca_err(gspca_dev, "reg_w %02x failed %d\n", index, ret);
2033 sd->gspca_dev.usb_err = ret;
2034 return;
2038 /* Read from a OV519 register, note not valid for the w9968cf!! */
2039 /* returns: negative is error, pos or zero is data */
2040 static int reg_r(struct sd *sd, u16 index)
2042 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2043 int ret;
2044 int req;
2046 if (sd->gspca_dev.usb_err < 0)
2047 return -1;
2049 switch (sd->bridge) {
2050 case BRIDGE_OV511:
2051 case BRIDGE_OV511PLUS:
2052 req = 3;
2053 break;
2054 case BRIDGE_OVFX2:
2055 req = 0x0b;
2056 break;
2057 default:
2058 req = 1;
2061 /* Avoid things going to fast for the bridge with a xhci host */
2062 udelay(150);
2063 ret = usb_control_msg(sd->gspca_dev.dev,
2064 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2065 req,
2066 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2067 0, index, sd->gspca_dev.usb_buf, 1, 500);
2069 if (ret >= 0) {
2070 ret = sd->gspca_dev.usb_buf[0];
2071 gspca_dbg(gspca_dev, D_USBI, "GET %02x 0000 %04x %02x\n",
2072 req, index, ret);
2073 } else {
2074 gspca_err(gspca_dev, "reg_r %02x failed %d\n", index, ret);
2075 sd->gspca_dev.usb_err = ret;
2077 * Make sure the result is zeroed to avoid uninitialized
2078 * values.
2080 gspca_dev->usb_buf[0] = 0;
2083 return ret;
2086 /* Read 8 values from a OV519 register */
2087 static int reg_r8(struct sd *sd,
2088 u16 index)
2090 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2091 int ret;
2093 if (sd->gspca_dev.usb_err < 0)
2094 return -1;
2096 /* Avoid things going to fast for the bridge with a xhci host */
2097 udelay(150);
2098 ret = usb_control_msg(sd->gspca_dev.dev,
2099 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2100 1, /* REQ_IO */
2101 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2102 0, index, sd->gspca_dev.usb_buf, 8, 500);
2104 if (ret >= 0) {
2105 ret = sd->gspca_dev.usb_buf[0];
2106 } else {
2107 gspca_err(gspca_dev, "reg_r8 %02x failed %d\n", index, ret);
2108 sd->gspca_dev.usb_err = ret;
2110 * Make sure the buffer is zeroed to avoid uninitialized
2111 * values.
2113 memset(gspca_dev->usb_buf, 0, 8);
2116 return ret;
2120 * Writes bits at positions specified by mask to an OV51x reg. Bits that are in
2121 * the same position as 1's in "mask" are cleared and set to "value". Bits
2122 * that are in the same position as 0's in "mask" are preserved, regardless
2123 * of their respective state in "value".
2125 static void reg_w_mask(struct sd *sd,
2126 u16 index,
2127 u8 value,
2128 u8 mask)
2130 int ret;
2131 u8 oldval;
2133 if (mask != 0xff) {
2134 value &= mask; /* Enforce mask on value */
2135 ret = reg_r(sd, index);
2136 if (ret < 0)
2137 return;
2139 oldval = ret & ~mask; /* Clear the masked bits */
2140 value |= oldval; /* Set the desired bits */
2142 reg_w(sd, index, value);
2146 * Writes multiple (n) byte value to a single register. Only valid with certain
2147 * registers (0x30 and 0xc4 - 0xce).
2149 static void ov518_reg_w32(struct sd *sd, u16 index, u32 value, int n)
2151 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2152 int ret;
2154 if (sd->gspca_dev.usb_err < 0)
2155 return;
2157 *((__le32 *) sd->gspca_dev.usb_buf) = __cpu_to_le32(value);
2159 /* Avoid things going to fast for the bridge with a xhci host */
2160 udelay(150);
2161 ret = usb_control_msg(sd->gspca_dev.dev,
2162 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2163 1 /* REG_IO */,
2164 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2165 0, index,
2166 sd->gspca_dev.usb_buf, n, 500);
2167 if (ret < 0) {
2168 gspca_err(gspca_dev, "reg_w32 %02x failed %d\n", index, ret);
2169 sd->gspca_dev.usb_err = ret;
2173 static void ov511_i2c_w(struct sd *sd, u8 reg, u8 value)
2175 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2176 int rc, retries;
2178 gspca_dbg(gspca_dev, D_USBO, "ov511_i2c_w %02x %02x\n", reg, value);
2180 /* Three byte write cycle */
2181 for (retries = 6; ; ) {
2182 /* Select camera register */
2183 reg_w(sd, R51x_I2C_SADDR_3, reg);
2185 /* Write "value" to I2C data port of OV511 */
2186 reg_w(sd, R51x_I2C_DATA, value);
2188 /* Initiate 3-byte write cycle */
2189 reg_w(sd, R511_I2C_CTL, 0x01);
2191 do {
2192 rc = reg_r(sd, R511_I2C_CTL);
2193 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2195 if (rc < 0)
2196 return;
2198 if ((rc & 2) == 0) /* Ack? */
2199 break;
2200 if (--retries < 0) {
2201 gspca_dbg(gspca_dev, D_USBO, "i2c write retries exhausted\n");
2202 return;
2207 static int ov511_i2c_r(struct sd *sd, u8 reg)
2209 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2210 int rc, value, retries;
2212 /* Two byte write cycle */
2213 for (retries = 6; ; ) {
2214 /* Select camera register */
2215 reg_w(sd, R51x_I2C_SADDR_2, reg);
2217 /* Initiate 2-byte write cycle */
2218 reg_w(sd, R511_I2C_CTL, 0x03);
2220 do {
2221 rc = reg_r(sd, R511_I2C_CTL);
2222 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2224 if (rc < 0)
2225 return rc;
2227 if ((rc & 2) == 0) /* Ack? */
2228 break;
2230 /* I2C abort */
2231 reg_w(sd, R511_I2C_CTL, 0x10);
2233 if (--retries < 0) {
2234 gspca_dbg(gspca_dev, D_USBI, "i2c write retries exhausted\n");
2235 return -1;
2239 /* Two byte read cycle */
2240 for (retries = 6; ; ) {
2241 /* Initiate 2-byte read cycle */
2242 reg_w(sd, R511_I2C_CTL, 0x05);
2244 do {
2245 rc = reg_r(sd, R511_I2C_CTL);
2246 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2248 if (rc < 0)
2249 return rc;
2251 if ((rc & 2) == 0) /* Ack? */
2252 break;
2254 /* I2C abort */
2255 reg_w(sd, R511_I2C_CTL, 0x10);
2257 if (--retries < 0) {
2258 gspca_dbg(gspca_dev, D_USBI, "i2c read retries exhausted\n");
2259 return -1;
2263 value = reg_r(sd, R51x_I2C_DATA);
2265 gspca_dbg(gspca_dev, D_USBI, "ov511_i2c_r %02x %02x\n", reg, value);
2267 /* This is needed to make i2c_w() work */
2268 reg_w(sd, R511_I2C_CTL, 0x05);
2270 return value;
2274 * The OV518 I2C I/O procedure is different, hence, this function.
2275 * This is normally only called from i2c_w(). Note that this function
2276 * always succeeds regardless of whether the sensor is present and working.
2278 static void ov518_i2c_w(struct sd *sd,
2279 u8 reg,
2280 u8 value)
2282 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2284 gspca_dbg(gspca_dev, D_USBO, "ov518_i2c_w %02x %02x\n", reg, value);
2286 /* Select camera register */
2287 reg_w(sd, R51x_I2C_SADDR_3, reg);
2289 /* Write "value" to I2C data port of OV511 */
2290 reg_w(sd, R51x_I2C_DATA, value);
2292 /* Initiate 3-byte write cycle */
2293 reg_w(sd, R518_I2C_CTL, 0x01);
2295 /* wait for write complete */
2296 msleep(4);
2297 reg_r8(sd, R518_I2C_CTL);
2301 * returns: negative is error, pos or zero is data
2303 * The OV518 I2C I/O procedure is different, hence, this function.
2304 * This is normally only called from i2c_r(). Note that this function
2305 * always succeeds regardless of whether the sensor is present and working.
2307 static int ov518_i2c_r(struct sd *sd, u8 reg)
2309 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2310 int value;
2312 /* Select camera register */
2313 reg_w(sd, R51x_I2C_SADDR_2, reg);
2315 /* Initiate 2-byte write cycle */
2316 reg_w(sd, R518_I2C_CTL, 0x03);
2317 reg_r8(sd, R518_I2C_CTL);
2319 /* Initiate 2-byte read cycle */
2320 reg_w(sd, R518_I2C_CTL, 0x05);
2321 reg_r8(sd, R518_I2C_CTL);
2323 value = reg_r(sd, R51x_I2C_DATA);
2324 gspca_dbg(gspca_dev, D_USBI, "ov518_i2c_r %02x %02x\n", reg, value);
2325 return value;
2328 static void ovfx2_i2c_w(struct sd *sd, u8 reg, u8 value)
2330 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2331 int ret;
2333 if (sd->gspca_dev.usb_err < 0)
2334 return;
2336 ret = usb_control_msg(sd->gspca_dev.dev,
2337 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2338 0x02,
2339 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2340 (u16) value, (u16) reg, NULL, 0, 500);
2342 if (ret < 0) {
2343 gspca_err(gspca_dev, "ovfx2_i2c_w %02x failed %d\n", reg, ret);
2344 sd->gspca_dev.usb_err = ret;
2347 gspca_dbg(gspca_dev, D_USBO, "ovfx2_i2c_w %02x %02x\n", reg, value);
2350 static int ovfx2_i2c_r(struct sd *sd, u8 reg)
2352 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2353 int ret;
2355 if (sd->gspca_dev.usb_err < 0)
2356 return -1;
2358 ret = usb_control_msg(sd->gspca_dev.dev,
2359 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2360 0x03,
2361 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2362 0, (u16) reg, sd->gspca_dev.usb_buf, 1, 500);
2364 if (ret >= 0) {
2365 ret = sd->gspca_dev.usb_buf[0];
2366 gspca_dbg(gspca_dev, D_USBI, "ovfx2_i2c_r %02x %02x\n",
2367 reg, ret);
2368 } else {
2369 gspca_err(gspca_dev, "ovfx2_i2c_r %02x failed %d\n", reg, ret);
2370 sd->gspca_dev.usb_err = ret;
2373 return ret;
2376 static void i2c_w(struct sd *sd, u8 reg, u8 value)
2378 if (sd->sensor_reg_cache[reg] == value)
2379 return;
2381 switch (sd->bridge) {
2382 case BRIDGE_OV511:
2383 case BRIDGE_OV511PLUS:
2384 ov511_i2c_w(sd, reg, value);
2385 break;
2386 case BRIDGE_OV518:
2387 case BRIDGE_OV518PLUS:
2388 case BRIDGE_OV519:
2389 ov518_i2c_w(sd, reg, value);
2390 break;
2391 case BRIDGE_OVFX2:
2392 ovfx2_i2c_w(sd, reg, value);
2393 break;
2394 case BRIDGE_W9968CF:
2395 w9968cf_i2c_w(sd, reg, value);
2396 break;
2399 if (sd->gspca_dev.usb_err >= 0) {
2400 /* Up on sensor reset empty the register cache */
2401 if (reg == 0x12 && (value & 0x80))
2402 memset(sd->sensor_reg_cache, -1,
2403 sizeof(sd->sensor_reg_cache));
2404 else
2405 sd->sensor_reg_cache[reg] = value;
2409 static int i2c_r(struct sd *sd, u8 reg)
2411 int ret = -1;
2413 if (sd->sensor_reg_cache[reg] != -1)
2414 return sd->sensor_reg_cache[reg];
2416 switch (sd->bridge) {
2417 case BRIDGE_OV511:
2418 case BRIDGE_OV511PLUS:
2419 ret = ov511_i2c_r(sd, reg);
2420 break;
2421 case BRIDGE_OV518:
2422 case BRIDGE_OV518PLUS:
2423 case BRIDGE_OV519:
2424 ret = ov518_i2c_r(sd, reg);
2425 break;
2426 case BRIDGE_OVFX2:
2427 ret = ovfx2_i2c_r(sd, reg);
2428 break;
2429 case BRIDGE_W9968CF:
2430 ret = w9968cf_i2c_r(sd, reg);
2431 break;
2434 if (ret >= 0)
2435 sd->sensor_reg_cache[reg] = ret;
2437 return ret;
2440 /* Writes bits at positions specified by mask to an I2C reg. Bits that are in
2441 * the same position as 1's in "mask" are cleared and set to "value". Bits
2442 * that are in the same position as 0's in "mask" are preserved, regardless
2443 * of their respective state in "value".
2445 static void i2c_w_mask(struct sd *sd,
2446 u8 reg,
2447 u8 value,
2448 u8 mask)
2450 int rc;
2451 u8 oldval;
2453 value &= mask; /* Enforce mask on value */
2454 rc = i2c_r(sd, reg);
2455 if (rc < 0)
2456 return;
2457 oldval = rc & ~mask; /* Clear the masked bits */
2458 value |= oldval; /* Set the desired bits */
2459 i2c_w(sd, reg, value);
2462 /* Temporarily stops OV511 from functioning. Must do this before changing
2463 * registers while the camera is streaming */
2464 static inline void ov51x_stop(struct sd *sd)
2466 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2468 gspca_dbg(gspca_dev, D_STREAM, "stopping\n");
2469 sd->stopped = 1;
2470 switch (sd->bridge) {
2471 case BRIDGE_OV511:
2472 case BRIDGE_OV511PLUS:
2473 reg_w(sd, R51x_SYS_RESET, 0x3d);
2474 break;
2475 case BRIDGE_OV518:
2476 case BRIDGE_OV518PLUS:
2477 reg_w_mask(sd, R51x_SYS_RESET, 0x3a, 0x3a);
2478 break;
2479 case BRIDGE_OV519:
2480 reg_w(sd, OV519_R51_RESET1, 0x0f);
2481 reg_w(sd, OV519_R51_RESET1, 0x00);
2482 reg_w(sd, 0x22, 0x00); /* FRAR */
2483 break;
2484 case BRIDGE_OVFX2:
2485 reg_w_mask(sd, 0x0f, 0x00, 0x02);
2486 break;
2487 case BRIDGE_W9968CF:
2488 reg_w(sd, 0x3c, 0x0a05); /* stop USB transfer */
2489 break;
2493 /* Restarts OV511 after ov511_stop() is called. Has no effect if it is not
2494 * actually stopped (for performance). */
2495 static inline void ov51x_restart(struct sd *sd)
2497 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2499 gspca_dbg(gspca_dev, D_STREAM, "restarting\n");
2500 if (!sd->stopped)
2501 return;
2502 sd->stopped = 0;
2504 /* Reinitialize the stream */
2505 switch (sd->bridge) {
2506 case BRIDGE_OV511:
2507 case BRIDGE_OV511PLUS:
2508 reg_w(sd, R51x_SYS_RESET, 0x00);
2509 break;
2510 case BRIDGE_OV518:
2511 case BRIDGE_OV518PLUS:
2512 reg_w(sd, 0x2f, 0x80);
2513 reg_w(sd, R51x_SYS_RESET, 0x00);
2514 break;
2515 case BRIDGE_OV519:
2516 reg_w(sd, OV519_R51_RESET1, 0x0f);
2517 reg_w(sd, OV519_R51_RESET1, 0x00);
2518 reg_w(sd, 0x22, 0x1d); /* FRAR */
2519 break;
2520 case BRIDGE_OVFX2:
2521 reg_w_mask(sd, 0x0f, 0x02, 0x02);
2522 break;
2523 case BRIDGE_W9968CF:
2524 reg_w(sd, 0x3c, 0x8a05); /* USB FIFO enable */
2525 break;
2529 static void ov51x_set_slave_ids(struct sd *sd, u8 slave);
2531 /* This does an initial reset of an OmniVision sensor and ensures that I2C
2532 * is synchronized. Returns <0 on failure.
2534 static int init_ov_sensor(struct sd *sd, u8 slave)
2536 int i;
2537 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2539 ov51x_set_slave_ids(sd, slave);
2541 /* Reset the sensor */
2542 i2c_w(sd, 0x12, 0x80);
2544 /* Wait for it to initialize */
2545 msleep(150);
2547 for (i = 0; i < i2c_detect_tries; i++) {
2548 if (i2c_r(sd, OV7610_REG_ID_HIGH) == 0x7f &&
2549 i2c_r(sd, OV7610_REG_ID_LOW) == 0xa2) {
2550 gspca_dbg(gspca_dev, D_PROBE, "I2C synced in %d attempt(s)\n",
2552 return 0;
2555 /* Reset the sensor */
2556 i2c_w(sd, 0x12, 0x80);
2558 /* Wait for it to initialize */
2559 msleep(150);
2561 /* Dummy read to sync I2C */
2562 if (i2c_r(sd, 0x00) < 0)
2563 return -1;
2565 return -1;
2568 /* Set the read and write slave IDs. The "slave" argument is the write slave,
2569 * and the read slave will be set to (slave + 1).
2570 * This should not be called from outside the i2c I/O functions.
2571 * Sets I2C read and write slave IDs. Returns <0 for error
2573 static void ov51x_set_slave_ids(struct sd *sd,
2574 u8 slave)
2576 switch (sd->bridge) {
2577 case BRIDGE_OVFX2:
2578 reg_w(sd, OVFX2_I2C_ADDR, slave);
2579 return;
2580 case BRIDGE_W9968CF:
2581 sd->sensor_addr = slave;
2582 return;
2585 reg_w(sd, R51x_I2C_W_SID, slave);
2586 reg_w(sd, R51x_I2C_R_SID, slave + 1);
2589 static void write_regvals(struct sd *sd,
2590 const struct ov_regvals *regvals,
2591 int n)
2593 while (--n >= 0) {
2594 reg_w(sd, regvals->reg, regvals->val);
2595 regvals++;
2599 static void write_i2c_regvals(struct sd *sd,
2600 const struct ov_i2c_regvals *regvals,
2601 int n)
2603 while (--n >= 0) {
2604 i2c_w(sd, regvals->reg, regvals->val);
2605 regvals++;
2609 /****************************************************************************
2611 * OV511 and sensor configuration
2613 ***************************************************************************/
2615 /* This initializes the OV2x10 / OV3610 / OV3620 / OV9600 */
2616 static void ov_hires_configure(struct sd *sd)
2618 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2619 int high, low;
2621 if (sd->bridge != BRIDGE_OVFX2) {
2622 gspca_err(gspca_dev, "error hires sensors only supported with ovfx2\n");
2623 return;
2626 gspca_dbg(gspca_dev, D_PROBE, "starting ov hires configuration\n");
2628 /* Detect sensor (sub)type */
2629 high = i2c_r(sd, 0x0a);
2630 low = i2c_r(sd, 0x0b);
2631 /* info("%x, %x", high, low); */
2632 switch (high) {
2633 case 0x96:
2634 switch (low) {
2635 case 0x40:
2636 gspca_dbg(gspca_dev, D_PROBE, "Sensor is a OV2610\n");
2637 sd->sensor = SEN_OV2610;
2638 return;
2639 case 0x41:
2640 gspca_dbg(gspca_dev, D_PROBE, "Sensor is a OV2610AE\n");
2641 sd->sensor = SEN_OV2610AE;
2642 return;
2643 case 0xb1:
2644 gspca_dbg(gspca_dev, D_PROBE, "Sensor is a OV9600\n");
2645 sd->sensor = SEN_OV9600;
2646 return;
2648 break;
2649 case 0x36:
2650 if ((low & 0x0f) == 0x00) {
2651 gspca_dbg(gspca_dev, D_PROBE, "Sensor is a OV3610\n");
2652 sd->sensor = SEN_OV3610;
2653 return;
2655 break;
2657 gspca_err(gspca_dev, "Error unknown sensor type: %02x%02x\n",
2658 high, low);
2661 /* This initializes the OV8110, OV8610 sensor. The OV8110 uses
2662 * the same register settings as the OV8610, since they are very similar.
2664 static void ov8xx0_configure(struct sd *sd)
2666 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2667 int rc;
2669 gspca_dbg(gspca_dev, D_PROBE, "starting ov8xx0 configuration\n");
2671 /* Detect sensor (sub)type */
2672 rc = i2c_r(sd, OV7610_REG_COM_I);
2673 if (rc < 0) {
2674 gspca_err(gspca_dev, "Error detecting sensor type\n");
2675 return;
2677 if ((rc & 3) == 1)
2678 sd->sensor = SEN_OV8610;
2679 else
2680 gspca_err(gspca_dev, "Unknown image sensor version: %d\n",
2681 rc & 3);
2684 /* This initializes the OV7610, OV7620, or OV76BE sensor. The OV76BE uses
2685 * the same register settings as the OV7610, since they are very similar.
2687 static void ov7xx0_configure(struct sd *sd)
2689 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2690 int rc, high, low;
2692 gspca_dbg(gspca_dev, D_PROBE, "starting OV7xx0 configuration\n");
2694 /* Detect sensor (sub)type */
2695 rc = i2c_r(sd, OV7610_REG_COM_I);
2697 /* add OV7670 here
2698 * it appears to be wrongly detected as a 7610 by default */
2699 if (rc < 0) {
2700 gspca_err(gspca_dev, "Error detecting sensor type\n");
2701 return;
2703 if ((rc & 3) == 3) {
2704 /* quick hack to make OV7670s work */
2705 high = i2c_r(sd, 0x0a);
2706 low = i2c_r(sd, 0x0b);
2707 /* info("%x, %x", high, low); */
2708 if (high == 0x76 && (low & 0xf0) == 0x70) {
2709 gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV76%02x\n",
2710 low);
2711 sd->sensor = SEN_OV7670;
2712 } else {
2713 gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV7610\n");
2714 sd->sensor = SEN_OV7610;
2716 } else if ((rc & 3) == 1) {
2717 /* I don't know what's different about the 76BE yet. */
2718 if (i2c_r(sd, 0x15) & 1) {
2719 gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV7620AE\n");
2720 sd->sensor = SEN_OV7620AE;
2721 } else {
2722 gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV76BE\n");
2723 sd->sensor = SEN_OV76BE;
2725 } else if ((rc & 3) == 0) {
2726 /* try to read product id registers */
2727 high = i2c_r(sd, 0x0a);
2728 if (high < 0) {
2729 gspca_err(gspca_dev, "Error detecting camera chip PID\n");
2730 return;
2732 low = i2c_r(sd, 0x0b);
2733 if (low < 0) {
2734 gspca_err(gspca_dev, "Error detecting camera chip VER\n");
2735 return;
2737 if (high == 0x76) {
2738 switch (low) {
2739 case 0x30:
2740 gspca_err(gspca_dev, "Sensor is an OV7630/OV7635\n");
2741 gspca_err(gspca_dev, "7630 is not supported by this driver\n");
2742 return;
2743 case 0x40:
2744 gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV7645\n");
2745 sd->sensor = SEN_OV7640; /* FIXME */
2746 break;
2747 case 0x45:
2748 gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV7645B\n");
2749 sd->sensor = SEN_OV7640; /* FIXME */
2750 break;
2751 case 0x48:
2752 gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV7648\n");
2753 sd->sensor = SEN_OV7648;
2754 break;
2755 case 0x60:
2756 gspca_dbg(gspca_dev, D_PROBE, "Sensor is a OV7660\n");
2757 sd->sensor = SEN_OV7660;
2758 break;
2759 default:
2760 gspca_err(gspca_dev, "Unknown sensor: 0x76%02x\n",
2761 low);
2762 return;
2764 } else {
2765 gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV7620\n");
2766 sd->sensor = SEN_OV7620;
2768 } else {
2769 gspca_err(gspca_dev, "Unknown image sensor version: %d\n",
2770 rc & 3);
2774 /* This initializes the OV6620, OV6630, OV6630AE, or OV6630AF sensor. */
2775 static void ov6xx0_configure(struct sd *sd)
2777 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2778 int rc;
2780 gspca_dbg(gspca_dev, D_PROBE, "starting OV6xx0 configuration\n");
2782 /* Detect sensor (sub)type */
2783 rc = i2c_r(sd, OV7610_REG_COM_I);
2784 if (rc < 0) {
2785 gspca_err(gspca_dev, "Error detecting sensor type\n");
2786 return;
2789 /* Ugh. The first two bits are the version bits, but
2790 * the entire register value must be used. I guess OVT
2791 * underestimated how many variants they would make. */
2792 switch (rc) {
2793 case 0x00:
2794 sd->sensor = SEN_OV6630;
2795 pr_warn("WARNING: Sensor is an OV66308. Your camera may have been misdetected in previous driver versions.\n");
2796 break;
2797 case 0x01:
2798 sd->sensor = SEN_OV6620;
2799 gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV6620\n");
2800 break;
2801 case 0x02:
2802 sd->sensor = SEN_OV6630;
2803 gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV66308AE\n");
2804 break;
2805 case 0x03:
2806 sd->sensor = SEN_OV66308AF;
2807 gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV66308AF\n");
2808 break;
2809 case 0x90:
2810 sd->sensor = SEN_OV6630;
2811 pr_warn("WARNING: Sensor is an OV66307. Your camera may have been misdetected in previous driver versions.\n");
2812 break;
2813 default:
2814 gspca_err(gspca_dev, "FATAL: Unknown sensor version: 0x%02x\n",
2815 rc);
2816 return;
2819 /* Set sensor-specific vars */
2820 sd->sif = 1;
2823 /* Turns on or off the LED. Only has an effect with OV511+/OV518(+)/OV519 */
2824 static void ov51x_led_control(struct sd *sd, int on)
2826 if (sd->invert_led)
2827 on = !on;
2829 switch (sd->bridge) {
2830 /* OV511 has no LED control */
2831 case BRIDGE_OV511PLUS:
2832 reg_w(sd, R511_SYS_LED_CTL, on);
2833 break;
2834 case BRIDGE_OV518:
2835 case BRIDGE_OV518PLUS:
2836 reg_w_mask(sd, R518_GPIO_OUT, 0x02 * on, 0x02);
2837 break;
2838 case BRIDGE_OV519:
2839 reg_w_mask(sd, OV519_GPIO_DATA_OUT0, on, 1);
2840 break;
2844 static void sd_reset_snapshot(struct gspca_dev *gspca_dev)
2846 struct sd *sd = (struct sd *) gspca_dev;
2848 if (!sd->snapshot_needs_reset)
2849 return;
2851 /* Note it is important that we clear sd->snapshot_needs_reset,
2852 before actually clearing the snapshot state in the bridge
2853 otherwise we might race with the pkt_scan interrupt handler */
2854 sd->snapshot_needs_reset = 0;
2856 switch (sd->bridge) {
2857 case BRIDGE_OV511:
2858 case BRIDGE_OV511PLUS:
2859 reg_w(sd, R51x_SYS_SNAP, 0x02);
2860 reg_w(sd, R51x_SYS_SNAP, 0x00);
2861 break;
2862 case BRIDGE_OV518:
2863 case BRIDGE_OV518PLUS:
2864 reg_w(sd, R51x_SYS_SNAP, 0x02); /* Reset */
2865 reg_w(sd, R51x_SYS_SNAP, 0x01); /* Enable */
2866 break;
2867 case BRIDGE_OV519:
2868 reg_w(sd, R51x_SYS_RESET, 0x40);
2869 reg_w(sd, R51x_SYS_RESET, 0x00);
2870 break;
2874 static void ov51x_upload_quan_tables(struct sd *sd)
2876 static const unsigned char yQuanTable511[] = {
2877 0, 1, 1, 2, 2, 3, 3, 4,
2878 1, 1, 1, 2, 2, 3, 4, 4,
2879 1, 1, 2, 2, 3, 4, 4, 4,
2880 2, 2, 2, 3, 4, 4, 4, 4,
2881 2, 2, 3, 4, 4, 5, 5, 5,
2882 3, 3, 4, 4, 5, 5, 5, 5,
2883 3, 4, 4, 4, 5, 5, 5, 5,
2884 4, 4, 4, 4, 5, 5, 5, 5
2887 static const unsigned char uvQuanTable511[] = {
2888 0, 2, 2, 3, 4, 4, 4, 4,
2889 2, 2, 2, 4, 4, 4, 4, 4,
2890 2, 2, 3, 4, 4, 4, 4, 4,
2891 3, 4, 4, 4, 4, 4, 4, 4,
2892 4, 4, 4, 4, 4, 4, 4, 4,
2893 4, 4, 4, 4, 4, 4, 4, 4,
2894 4, 4, 4, 4, 4, 4, 4, 4,
2895 4, 4, 4, 4, 4, 4, 4, 4
2898 /* OV518 quantization tables are 8x4 (instead of 8x8) */
2899 static const unsigned char yQuanTable518[] = {
2900 5, 4, 5, 6, 6, 7, 7, 7,
2901 5, 5, 5, 5, 6, 7, 7, 7,
2902 6, 6, 6, 6, 7, 7, 7, 8,
2903 7, 7, 6, 7, 7, 7, 8, 8
2905 static const unsigned char uvQuanTable518[] = {
2906 6, 6, 6, 7, 7, 7, 7, 7,
2907 6, 6, 6, 7, 7, 7, 7, 7,
2908 6, 6, 6, 7, 7, 7, 7, 8,
2909 7, 7, 7, 7, 7, 7, 8, 8
2912 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2913 const unsigned char *pYTable, *pUVTable;
2914 unsigned char val0, val1;
2915 int i, size, reg = R51x_COMP_LUT_BEGIN;
2917 gspca_dbg(gspca_dev, D_PROBE, "Uploading quantization tables\n");
2919 if (sd->bridge == BRIDGE_OV511 || sd->bridge == BRIDGE_OV511PLUS) {
2920 pYTable = yQuanTable511;
2921 pUVTable = uvQuanTable511;
2922 size = 32;
2923 } else {
2924 pYTable = yQuanTable518;
2925 pUVTable = uvQuanTable518;
2926 size = 16;
2929 for (i = 0; i < size; i++) {
2930 val0 = *pYTable++;
2931 val1 = *pYTable++;
2932 val0 &= 0x0f;
2933 val1 &= 0x0f;
2934 val0 |= val1 << 4;
2935 reg_w(sd, reg, val0);
2937 val0 = *pUVTable++;
2938 val1 = *pUVTable++;
2939 val0 &= 0x0f;
2940 val1 &= 0x0f;
2941 val0 |= val1 << 4;
2942 reg_w(sd, reg + size, val0);
2944 reg++;
2948 /* This initializes the OV511/OV511+ and the sensor */
2949 static void ov511_configure(struct gspca_dev *gspca_dev)
2951 struct sd *sd = (struct sd *) gspca_dev;
2953 /* For 511 and 511+ */
2954 static const struct ov_regvals init_511[] = {
2955 { R51x_SYS_RESET, 0x7f },
2956 { R51x_SYS_INIT, 0x01 },
2957 { R51x_SYS_RESET, 0x7f },
2958 { R51x_SYS_INIT, 0x01 },
2959 { R51x_SYS_RESET, 0x3f },
2960 { R51x_SYS_INIT, 0x01 },
2961 { R51x_SYS_RESET, 0x3d },
2964 static const struct ov_regvals norm_511[] = {
2965 { R511_DRAM_FLOW_CTL, 0x01 },
2966 { R51x_SYS_SNAP, 0x00 },
2967 { R51x_SYS_SNAP, 0x02 },
2968 { R51x_SYS_SNAP, 0x00 },
2969 { R511_FIFO_OPTS, 0x1f },
2970 { R511_COMP_EN, 0x00 },
2971 { R511_COMP_LUT_EN, 0x03 },
2974 static const struct ov_regvals norm_511_p[] = {
2975 { R511_DRAM_FLOW_CTL, 0xff },
2976 { R51x_SYS_SNAP, 0x00 },
2977 { R51x_SYS_SNAP, 0x02 },
2978 { R51x_SYS_SNAP, 0x00 },
2979 { R511_FIFO_OPTS, 0xff },
2980 { R511_COMP_EN, 0x00 },
2981 { R511_COMP_LUT_EN, 0x03 },
2984 static const struct ov_regvals compress_511[] = {
2985 { 0x70, 0x1f },
2986 { 0x71, 0x05 },
2987 { 0x72, 0x06 },
2988 { 0x73, 0x06 },
2989 { 0x74, 0x14 },
2990 { 0x75, 0x03 },
2991 { 0x76, 0x04 },
2992 { 0x77, 0x04 },
2995 gspca_dbg(gspca_dev, D_PROBE, "Device custom id %x\n",
2996 reg_r(sd, R51x_SYS_CUST_ID));
2998 write_regvals(sd, init_511, ARRAY_SIZE(init_511));
3000 switch (sd->bridge) {
3001 case BRIDGE_OV511:
3002 write_regvals(sd, norm_511, ARRAY_SIZE(norm_511));
3003 break;
3004 case BRIDGE_OV511PLUS:
3005 write_regvals(sd, norm_511_p, ARRAY_SIZE(norm_511_p));
3006 break;
3009 /* Init compression */
3010 write_regvals(sd, compress_511, ARRAY_SIZE(compress_511));
3012 ov51x_upload_quan_tables(sd);
3015 /* This initializes the OV518/OV518+ and the sensor */
3016 static void ov518_configure(struct gspca_dev *gspca_dev)
3018 struct sd *sd = (struct sd *) gspca_dev;
3020 /* For 518 and 518+ */
3021 static const struct ov_regvals init_518[] = {
3022 { R51x_SYS_RESET, 0x40 },
3023 { R51x_SYS_INIT, 0xe1 },
3024 { R51x_SYS_RESET, 0x3e },
3025 { R51x_SYS_INIT, 0xe1 },
3026 { R51x_SYS_RESET, 0x00 },
3027 { R51x_SYS_INIT, 0xe1 },
3028 { 0x46, 0x00 },
3029 { 0x5d, 0x03 },
3032 static const struct ov_regvals norm_518[] = {
3033 { R51x_SYS_SNAP, 0x02 }, /* Reset */
3034 { R51x_SYS_SNAP, 0x01 }, /* Enable */
3035 { 0x31, 0x0f },
3036 { 0x5d, 0x03 },
3037 { 0x24, 0x9f },
3038 { 0x25, 0x90 },
3039 { 0x20, 0x00 },
3040 { 0x51, 0x04 },
3041 { 0x71, 0x19 },
3042 { 0x2f, 0x80 },
3045 static const struct ov_regvals norm_518_p[] = {
3046 { R51x_SYS_SNAP, 0x02 }, /* Reset */
3047 { R51x_SYS_SNAP, 0x01 }, /* Enable */
3048 { 0x31, 0x0f },
3049 { 0x5d, 0x03 },
3050 { 0x24, 0x9f },
3051 { 0x25, 0x90 },
3052 { 0x20, 0x60 },
3053 { 0x51, 0x02 },
3054 { 0x71, 0x19 },
3055 { 0x40, 0xff },
3056 { 0x41, 0x42 },
3057 { 0x46, 0x00 },
3058 { 0x33, 0x04 },
3059 { 0x21, 0x19 },
3060 { 0x3f, 0x10 },
3061 { 0x2f, 0x80 },
3064 /* First 5 bits of custom ID reg are a revision ID on OV518 */
3065 sd->revision = reg_r(sd, R51x_SYS_CUST_ID) & 0x1f;
3066 gspca_dbg(gspca_dev, D_PROBE, "Device revision %d\n", sd->revision);
3068 write_regvals(sd, init_518, ARRAY_SIZE(init_518));
3070 /* Set LED GPIO pin to output mode */
3071 reg_w_mask(sd, R518_GPIO_CTL, 0x00, 0x02);
3073 switch (sd->bridge) {
3074 case BRIDGE_OV518:
3075 write_regvals(sd, norm_518, ARRAY_SIZE(norm_518));
3076 break;
3077 case BRIDGE_OV518PLUS:
3078 write_regvals(sd, norm_518_p, ARRAY_SIZE(norm_518_p));
3079 break;
3082 ov51x_upload_quan_tables(sd);
3084 reg_w(sd, 0x2f, 0x80);
3087 static void ov519_configure(struct sd *sd)
3089 static const struct ov_regvals init_519[] = {
3090 { 0x5a, 0x6d }, /* EnableSystem */
3091 { 0x53, 0x9b }, /* don't enable the microcontroller */
3092 { OV519_R54_EN_CLK1, 0xff }, /* set bit2 to enable jpeg */
3093 { 0x5d, 0x03 },
3094 { 0x49, 0x01 },
3095 { 0x48, 0x00 },
3096 /* Set LED pin to output mode. Bit 4 must be cleared or sensor
3097 * detection will fail. This deserves further investigation. */
3098 { OV519_GPIO_IO_CTRL0, 0xee },
3099 { OV519_R51_RESET1, 0x0f },
3100 { OV519_R51_RESET1, 0x00 },
3101 { 0x22, 0x00 },
3102 /* windows reads 0x55 at this point*/
3105 write_regvals(sd, init_519, ARRAY_SIZE(init_519));
3108 static void ovfx2_configure(struct sd *sd)
3110 static const struct ov_regvals init_fx2[] = {
3111 { 0x00, 0x60 },
3112 { 0x02, 0x01 },
3113 { 0x0f, 0x1d },
3114 { 0xe9, 0x82 },
3115 { 0xea, 0xc7 },
3116 { 0xeb, 0x10 },
3117 { 0xec, 0xf6 },
3120 sd->stopped = 1;
3122 write_regvals(sd, init_fx2, ARRAY_SIZE(init_fx2));
3125 /* set the mode */
3126 /* This function works for ov7660 only */
3127 static void ov519_set_mode(struct sd *sd)
3129 static const struct ov_regvals bridge_ov7660[2][10] = {
3130 {{0x10, 0x14}, {0x11, 0x1e}, {0x12, 0x00}, {0x13, 0x00},
3131 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3132 {0x25, 0x01}, {0x26, 0x00}},
3133 {{0x10, 0x28}, {0x11, 0x3c}, {0x12, 0x00}, {0x13, 0x00},
3134 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3135 {0x25, 0x03}, {0x26, 0x00}}
3137 static const struct ov_i2c_regvals sensor_ov7660[2][3] = {
3138 {{0x12, 0x00}, {0x24, 0x00}, {0x0c, 0x0c}},
3139 {{0x12, 0x00}, {0x04, 0x00}, {0x0c, 0x00}}
3141 static const struct ov_i2c_regvals sensor_ov7660_2[] = {
3142 {OV7670_R17_HSTART, 0x13},
3143 {OV7670_R18_HSTOP, 0x01},
3144 {OV7670_R32_HREF, 0x92},
3145 {OV7670_R19_VSTART, 0x02},
3146 {OV7670_R1A_VSTOP, 0x7a},
3147 {OV7670_R03_VREF, 0x00},
3148 /* {0x33, 0x00}, */
3149 /* {0x34, 0x07}, */
3150 /* {0x36, 0x00}, */
3151 /* {0x6b, 0x0a}, */
3154 write_regvals(sd, bridge_ov7660[sd->gspca_dev.curr_mode],
3155 ARRAY_SIZE(bridge_ov7660[0]));
3156 write_i2c_regvals(sd, sensor_ov7660[sd->gspca_dev.curr_mode],
3157 ARRAY_SIZE(sensor_ov7660[0]));
3158 write_i2c_regvals(sd, sensor_ov7660_2,
3159 ARRAY_SIZE(sensor_ov7660_2));
3162 /* set the frame rate */
3163 /* This function works for sensors ov7640, ov7648 ov7660 and ov7670 only */
3164 static void ov519_set_fr(struct sd *sd)
3166 int fr;
3167 u8 clock;
3168 /* frame rate table with indices:
3169 * - mode = 0: 320x240, 1: 640x480
3170 * - fr rate = 0: 30, 1: 25, 2: 20, 3: 15, 4: 10, 5: 5
3171 * - reg = 0: bridge a4, 1: bridge 23, 2: sensor 11 (clock)
3173 static const u8 fr_tb[2][6][3] = {
3174 {{0x04, 0xff, 0x00},
3175 {0x04, 0x1f, 0x00},
3176 {0x04, 0x1b, 0x00},
3177 {0x04, 0x15, 0x00},
3178 {0x04, 0x09, 0x00},
3179 {0x04, 0x01, 0x00}},
3180 {{0x0c, 0xff, 0x00},
3181 {0x0c, 0x1f, 0x00},
3182 {0x0c, 0x1b, 0x00},
3183 {0x04, 0xff, 0x01},
3184 {0x04, 0x1f, 0x01},
3185 {0x04, 0x1b, 0x01}},
3188 if (frame_rate > 0)
3189 sd->frame_rate = frame_rate;
3190 if (sd->frame_rate >= 30)
3191 fr = 0;
3192 else if (sd->frame_rate >= 25)
3193 fr = 1;
3194 else if (sd->frame_rate >= 20)
3195 fr = 2;
3196 else if (sd->frame_rate >= 15)
3197 fr = 3;
3198 else if (sd->frame_rate >= 10)
3199 fr = 4;
3200 else
3201 fr = 5;
3202 reg_w(sd, 0xa4, fr_tb[sd->gspca_dev.curr_mode][fr][0]);
3203 reg_w(sd, 0x23, fr_tb[sd->gspca_dev.curr_mode][fr][1]);
3204 clock = fr_tb[sd->gspca_dev.curr_mode][fr][2];
3205 if (sd->sensor == SEN_OV7660)
3206 clock |= 0x80; /* enable double clock */
3207 ov518_i2c_w(sd, OV7670_R11_CLKRC, clock);
3210 static void setautogain(struct gspca_dev *gspca_dev, s32 val)
3212 struct sd *sd = (struct sd *) gspca_dev;
3214 i2c_w_mask(sd, 0x13, val ? 0x05 : 0x00, 0x05);
3217 /* this function is called at probe time */
3218 static int sd_config(struct gspca_dev *gspca_dev,
3219 const struct usb_device_id *id)
3221 struct sd *sd = (struct sd *) gspca_dev;
3222 struct cam *cam = &gspca_dev->cam;
3224 sd->bridge = id->driver_info & BRIDGE_MASK;
3225 sd->invert_led = (id->driver_info & BRIDGE_INVERT_LED) != 0;
3227 switch (sd->bridge) {
3228 case BRIDGE_OV511:
3229 case BRIDGE_OV511PLUS:
3230 cam->cam_mode = ov511_vga_mode;
3231 cam->nmodes = ARRAY_SIZE(ov511_vga_mode);
3232 break;
3233 case BRIDGE_OV518:
3234 case BRIDGE_OV518PLUS:
3235 cam->cam_mode = ov518_vga_mode;
3236 cam->nmodes = ARRAY_SIZE(ov518_vga_mode);
3237 break;
3238 case BRIDGE_OV519:
3239 cam->cam_mode = ov519_vga_mode;
3240 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3241 break;
3242 case BRIDGE_OVFX2:
3243 cam->cam_mode = ov519_vga_mode;
3244 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3245 cam->bulk_size = OVFX2_BULK_SIZE;
3246 cam->bulk_nurbs = MAX_NURBS;
3247 cam->bulk = 1;
3248 break;
3249 case BRIDGE_W9968CF:
3250 cam->cam_mode = w9968cf_vga_mode;
3251 cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode);
3252 break;
3255 sd->frame_rate = 15;
3257 return 0;
3260 /* this function is called at probe and resume time */
3261 static int sd_init(struct gspca_dev *gspca_dev)
3263 struct sd *sd = (struct sd *) gspca_dev;
3264 struct cam *cam = &gspca_dev->cam;
3266 switch (sd->bridge) {
3267 case BRIDGE_OV511:
3268 case BRIDGE_OV511PLUS:
3269 ov511_configure(gspca_dev);
3270 break;
3271 case BRIDGE_OV518:
3272 case BRIDGE_OV518PLUS:
3273 ov518_configure(gspca_dev);
3274 break;
3275 case BRIDGE_OV519:
3276 ov519_configure(sd);
3277 break;
3278 case BRIDGE_OVFX2:
3279 ovfx2_configure(sd);
3280 break;
3281 case BRIDGE_W9968CF:
3282 w9968cf_configure(sd);
3283 break;
3286 /* The OV519 must be more aggressive about sensor detection since
3287 * I2C write will never fail if the sensor is not present. We have
3288 * to try to initialize the sensor to detect its presence */
3289 sd->sensor = -1;
3291 /* Test for 76xx */
3292 if (init_ov_sensor(sd, OV7xx0_SID) >= 0) {
3293 ov7xx0_configure(sd);
3295 /* Test for 6xx0 */
3296 } else if (init_ov_sensor(sd, OV6xx0_SID) >= 0) {
3297 ov6xx0_configure(sd);
3299 /* Test for 8xx0 */
3300 } else if (init_ov_sensor(sd, OV8xx0_SID) >= 0) {
3301 ov8xx0_configure(sd);
3303 /* Test for 3xxx / 2xxx */
3304 } else if (init_ov_sensor(sd, OV_HIRES_SID) >= 0) {
3305 ov_hires_configure(sd);
3306 } else {
3307 gspca_err(gspca_dev, "Can't determine sensor slave IDs\n");
3308 goto error;
3311 if (sd->sensor < 0)
3312 goto error;
3314 ov51x_led_control(sd, 0); /* turn LED off */
3316 switch (sd->bridge) {
3317 case BRIDGE_OV511:
3318 case BRIDGE_OV511PLUS:
3319 if (sd->sif) {
3320 cam->cam_mode = ov511_sif_mode;
3321 cam->nmodes = ARRAY_SIZE(ov511_sif_mode);
3323 break;
3324 case BRIDGE_OV518:
3325 case BRIDGE_OV518PLUS:
3326 if (sd->sif) {
3327 cam->cam_mode = ov518_sif_mode;
3328 cam->nmodes = ARRAY_SIZE(ov518_sif_mode);
3330 break;
3331 case BRIDGE_OV519:
3332 if (sd->sif) {
3333 cam->cam_mode = ov519_sif_mode;
3334 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3336 break;
3337 case BRIDGE_OVFX2:
3338 switch (sd->sensor) {
3339 case SEN_OV2610:
3340 case SEN_OV2610AE:
3341 cam->cam_mode = ovfx2_ov2610_mode;
3342 cam->nmodes = ARRAY_SIZE(ovfx2_ov2610_mode);
3343 break;
3344 case SEN_OV3610:
3345 cam->cam_mode = ovfx2_ov3610_mode;
3346 cam->nmodes = ARRAY_SIZE(ovfx2_ov3610_mode);
3347 break;
3348 case SEN_OV9600:
3349 cam->cam_mode = ovfx2_ov9600_mode;
3350 cam->nmodes = ARRAY_SIZE(ovfx2_ov9600_mode);
3351 break;
3352 default:
3353 if (sd->sif) {
3354 cam->cam_mode = ov519_sif_mode;
3355 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3357 break;
3359 break;
3360 case BRIDGE_W9968CF:
3361 if (sd->sif)
3362 cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode) - 1;
3364 /* w9968cf needs initialisation once the sensor is known */
3365 w9968cf_init(sd);
3366 break;
3369 /* initialize the sensor */
3370 switch (sd->sensor) {
3371 case SEN_OV2610:
3372 write_i2c_regvals(sd, norm_2610, ARRAY_SIZE(norm_2610));
3374 /* Enable autogain, autoexpo, awb, bandfilter */
3375 i2c_w_mask(sd, 0x13, 0x27, 0x27);
3376 break;
3377 case SEN_OV2610AE:
3378 write_i2c_regvals(sd, norm_2610ae, ARRAY_SIZE(norm_2610ae));
3380 /* enable autoexpo */
3381 i2c_w_mask(sd, 0x13, 0x05, 0x05);
3382 break;
3383 case SEN_OV3610:
3384 write_i2c_regvals(sd, norm_3620b, ARRAY_SIZE(norm_3620b));
3386 /* Enable autogain, autoexpo, awb, bandfilter */
3387 i2c_w_mask(sd, 0x13, 0x27, 0x27);
3388 break;
3389 case SEN_OV6620:
3390 write_i2c_regvals(sd, norm_6x20, ARRAY_SIZE(norm_6x20));
3391 break;
3392 case SEN_OV6630:
3393 case SEN_OV66308AF:
3394 write_i2c_regvals(sd, norm_6x30, ARRAY_SIZE(norm_6x30));
3395 break;
3396 default:
3397 /* case SEN_OV7610: */
3398 /* case SEN_OV76BE: */
3399 write_i2c_regvals(sd, norm_7610, ARRAY_SIZE(norm_7610));
3400 i2c_w_mask(sd, 0x0e, 0x00, 0x40);
3401 break;
3402 case SEN_OV7620:
3403 case SEN_OV7620AE:
3404 write_i2c_regvals(sd, norm_7620, ARRAY_SIZE(norm_7620));
3405 break;
3406 case SEN_OV7640:
3407 case SEN_OV7648:
3408 write_i2c_regvals(sd, norm_7640, ARRAY_SIZE(norm_7640));
3409 break;
3410 case SEN_OV7660:
3411 i2c_w(sd, OV7670_R12_COM7, OV7670_COM7_RESET);
3412 msleep(14);
3413 reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
3414 write_regvals(sd, init_519_ov7660,
3415 ARRAY_SIZE(init_519_ov7660));
3416 write_i2c_regvals(sd, norm_7660, ARRAY_SIZE(norm_7660));
3417 sd->gspca_dev.curr_mode = 1; /* 640x480 */
3418 ov519_set_mode(sd);
3419 ov519_set_fr(sd);
3420 sd_reset_snapshot(gspca_dev);
3421 ov51x_restart(sd);
3422 ov51x_stop(sd); /* not in win traces */
3423 ov51x_led_control(sd, 0);
3424 break;
3425 case SEN_OV7670:
3426 write_i2c_regvals(sd, norm_7670, ARRAY_SIZE(norm_7670));
3427 break;
3428 case SEN_OV8610:
3429 write_i2c_regvals(sd, norm_8610, ARRAY_SIZE(norm_8610));
3430 break;
3431 case SEN_OV9600:
3432 write_i2c_regvals(sd, norm_9600, ARRAY_SIZE(norm_9600));
3434 /* enable autoexpo */
3435 /* i2c_w_mask(sd, 0x13, 0x05, 0x05); */
3436 break;
3438 return gspca_dev->usb_err;
3439 error:
3440 gspca_err(gspca_dev, "OV519 Config failed\n");
3441 return -EINVAL;
3444 /* function called at start time before URB creation */
3445 static int sd_isoc_init(struct gspca_dev *gspca_dev)
3447 struct sd *sd = (struct sd *) gspca_dev;
3449 switch (sd->bridge) {
3450 case BRIDGE_OVFX2:
3451 if (gspca_dev->pixfmt.width != 800)
3452 gspca_dev->cam.bulk_size = OVFX2_BULK_SIZE;
3453 else
3454 gspca_dev->cam.bulk_size = 7 * 4096;
3455 break;
3457 return 0;
3460 /* Set up the OV511/OV511+ with the given image parameters.
3462 * Do not put any sensor-specific code in here (including I2C I/O functions)
3464 static void ov511_mode_init_regs(struct sd *sd)
3466 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3467 int hsegs, vsegs, packet_size, fps, needed;
3468 int interlaced = 0;
3469 struct usb_host_interface *alt;
3470 struct usb_interface *intf;
3472 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3473 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3474 if (!alt) {
3475 gspca_err(gspca_dev, "Couldn't get altsetting\n");
3476 sd->gspca_dev.usb_err = -EIO;
3477 return;
3480 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3481 reg_w(sd, R51x_FIFO_PSIZE, packet_size >> 5);
3483 reg_w(sd, R511_CAM_UV_EN, 0x01);
3484 reg_w(sd, R511_SNAP_UV_EN, 0x01);
3485 reg_w(sd, R511_SNAP_OPTS, 0x03);
3487 /* Here I'm assuming that snapshot size == image size.
3488 * I hope that's always true. --claudio
3490 hsegs = (sd->gspca_dev.pixfmt.width >> 3) - 1;
3491 vsegs = (sd->gspca_dev.pixfmt.height >> 3) - 1;
3493 reg_w(sd, R511_CAM_PXCNT, hsegs);
3494 reg_w(sd, R511_CAM_LNCNT, vsegs);
3495 reg_w(sd, R511_CAM_PXDIV, 0x00);
3496 reg_w(sd, R511_CAM_LNDIV, 0x00);
3498 /* YUV420, low pass filter on */
3499 reg_w(sd, R511_CAM_OPTS, 0x03);
3501 /* Snapshot additions */
3502 reg_w(sd, R511_SNAP_PXCNT, hsegs);
3503 reg_w(sd, R511_SNAP_LNCNT, vsegs);
3504 reg_w(sd, R511_SNAP_PXDIV, 0x00);
3505 reg_w(sd, R511_SNAP_LNDIV, 0x00);
3507 /******** Set the framerate ********/
3508 if (frame_rate > 0)
3509 sd->frame_rate = frame_rate;
3511 switch (sd->sensor) {
3512 case SEN_OV6620:
3513 /* No framerate control, doesn't like higher rates yet */
3514 sd->clockdiv = 3;
3515 break;
3517 /* Note once the FIXME's in mode_init_ov_sensor_regs() are fixed
3518 for more sensors we need to do this for them too */
3519 case SEN_OV7620:
3520 case SEN_OV7620AE:
3521 case SEN_OV7640:
3522 case SEN_OV7648:
3523 case SEN_OV76BE:
3524 if (sd->gspca_dev.pixfmt.width == 320)
3525 interlaced = 1;
3526 /* Fall through */
3527 case SEN_OV6630:
3528 case SEN_OV7610:
3529 case SEN_OV7670:
3530 switch (sd->frame_rate) {
3531 case 30:
3532 case 25:
3533 /* Not enough bandwidth to do 640x480 @ 30 fps */
3534 if (sd->gspca_dev.pixfmt.width != 640) {
3535 sd->clockdiv = 0;
3536 break;
3538 /* For 640x480 case */
3539 /* fall through */
3540 default:
3541 /* case 20: */
3542 /* case 15: */
3543 sd->clockdiv = 1;
3544 break;
3545 case 10:
3546 sd->clockdiv = 2;
3547 break;
3548 case 5:
3549 sd->clockdiv = 5;
3550 break;
3552 if (interlaced) {
3553 sd->clockdiv = (sd->clockdiv + 1) * 2 - 1;
3554 /* Higher then 10 does not work */
3555 if (sd->clockdiv > 10)
3556 sd->clockdiv = 10;
3558 break;
3560 case SEN_OV8610:
3561 /* No framerate control ?? */
3562 sd->clockdiv = 0;
3563 break;
3566 /* Check if we have enough bandwidth to disable compression */
3567 fps = (interlaced ? 60 : 30) / (sd->clockdiv + 1) + 1;
3568 needed = fps * sd->gspca_dev.pixfmt.width *
3569 sd->gspca_dev.pixfmt.height * 3 / 2;
3570 /* 1000 isoc packets/sec */
3571 if (needed > 1000 * packet_size) {
3572 /* Enable Y and UV quantization and compression */
3573 reg_w(sd, R511_COMP_EN, 0x07);
3574 reg_w(sd, R511_COMP_LUT_EN, 0x03);
3575 } else {
3576 reg_w(sd, R511_COMP_EN, 0x06);
3577 reg_w(sd, R511_COMP_LUT_EN, 0x00);
3580 reg_w(sd, R51x_SYS_RESET, OV511_RESET_OMNICE);
3581 reg_w(sd, R51x_SYS_RESET, 0);
3584 /* Sets up the OV518/OV518+ with the given image parameters
3586 * OV518 needs a completely different approach, until we can figure out what
3587 * the individual registers do. Also, only 15 FPS is supported now.
3589 * Do not put any sensor-specific code in here (including I2C I/O functions)
3591 static void ov518_mode_init_regs(struct sd *sd)
3593 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3594 int hsegs, vsegs, packet_size;
3595 struct usb_host_interface *alt;
3596 struct usb_interface *intf;
3598 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3599 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3600 if (!alt) {
3601 gspca_err(gspca_dev, "Couldn't get altsetting\n");
3602 sd->gspca_dev.usb_err = -EIO;
3603 return;
3606 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3607 ov518_reg_w32(sd, R51x_FIFO_PSIZE, packet_size & ~7, 2);
3609 /******** Set the mode ********/
3610 reg_w(sd, 0x2b, 0);
3611 reg_w(sd, 0x2c, 0);
3612 reg_w(sd, 0x2d, 0);
3613 reg_w(sd, 0x2e, 0);
3614 reg_w(sd, 0x3b, 0);
3615 reg_w(sd, 0x3c, 0);
3616 reg_w(sd, 0x3d, 0);
3617 reg_w(sd, 0x3e, 0);
3619 if (sd->bridge == BRIDGE_OV518) {
3620 /* Set 8-bit (YVYU) input format */
3621 reg_w_mask(sd, 0x20, 0x08, 0x08);
3623 /* Set 12-bit (4:2:0) output format */
3624 reg_w_mask(sd, 0x28, 0x80, 0xf0);
3625 reg_w_mask(sd, 0x38, 0x80, 0xf0);
3626 } else {
3627 reg_w(sd, 0x28, 0x80);
3628 reg_w(sd, 0x38, 0x80);
3631 hsegs = sd->gspca_dev.pixfmt.width / 16;
3632 vsegs = sd->gspca_dev.pixfmt.height / 4;
3634 reg_w(sd, 0x29, hsegs);
3635 reg_w(sd, 0x2a, vsegs);
3637 reg_w(sd, 0x39, hsegs);
3638 reg_w(sd, 0x3a, vsegs);
3640 /* Windows driver does this here; who knows why */
3641 reg_w(sd, 0x2f, 0x80);
3643 /******** Set the framerate ********/
3644 if (sd->bridge == BRIDGE_OV518PLUS && sd->revision == 0 &&
3645 sd->sensor == SEN_OV7620AE)
3646 sd->clockdiv = 0;
3647 else
3648 sd->clockdiv = 1;
3650 /* Mode independent, but framerate dependent, regs */
3651 /* 0x51: Clock divider; Only works on some cams which use 2 crystals */
3652 reg_w(sd, 0x51, 0x04);
3653 reg_w(sd, 0x22, 0x18);
3654 reg_w(sd, 0x23, 0xff);
3656 if (sd->bridge == BRIDGE_OV518PLUS) {
3657 switch (sd->sensor) {
3658 case SEN_OV7620AE:
3660 * HdG: 640x480 needs special handling on device
3661 * revision 2, we check for device revision > 0 to
3662 * avoid regressions, as we don't know the correct
3663 * thing todo for revision 1.
3665 * Also this likely means we don't need to
3666 * differentiate between the OV7620 and OV7620AE,
3667 * earlier testing hitting this same problem likely
3668 * happened to be with revision < 2 cams using an
3669 * OV7620 and revision 2 cams using an OV7620AE.
3671 if (sd->revision > 0 &&
3672 sd->gspca_dev.pixfmt.width == 640) {
3673 reg_w(sd, 0x20, 0x60);
3674 reg_w(sd, 0x21, 0x1f);
3675 } else {
3676 reg_w(sd, 0x20, 0x00);
3677 reg_w(sd, 0x21, 0x19);
3679 break;
3680 case SEN_OV7620:
3681 reg_w(sd, 0x20, 0x00);
3682 reg_w(sd, 0x21, 0x19);
3683 break;
3684 default:
3685 reg_w(sd, 0x21, 0x19);
3687 } else
3688 reg_w(sd, 0x71, 0x17); /* Compression-related? */
3690 /* FIXME: Sensor-specific */
3691 /* Bit 5 is what matters here. Of course, it is "reserved" */
3692 i2c_w(sd, 0x54, 0x23);
3694 reg_w(sd, 0x2f, 0x80);
3696 if (sd->bridge == BRIDGE_OV518PLUS) {
3697 reg_w(sd, 0x24, 0x94);
3698 reg_w(sd, 0x25, 0x90);
3699 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3700 ov518_reg_w32(sd, 0xc6, 540, 2); /* 21ch */
3701 ov518_reg_w32(sd, 0xc7, 540, 2); /* 21ch */
3702 ov518_reg_w32(sd, 0xc8, 108, 2); /* 6ch */
3703 ov518_reg_w32(sd, 0xca, 131098, 3); /* 2001ah */
3704 ov518_reg_w32(sd, 0xcb, 532, 2); /* 214h */
3705 ov518_reg_w32(sd, 0xcc, 2400, 2); /* 960h */
3706 ov518_reg_w32(sd, 0xcd, 32, 2); /* 20h */
3707 ov518_reg_w32(sd, 0xce, 608, 2); /* 260h */
3708 } else {
3709 reg_w(sd, 0x24, 0x9f);
3710 reg_w(sd, 0x25, 0x90);
3711 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3712 ov518_reg_w32(sd, 0xc6, 381, 2); /* 17dh */
3713 ov518_reg_w32(sd, 0xc7, 381, 2); /* 17dh */
3714 ov518_reg_w32(sd, 0xc8, 128, 2); /* 80h */
3715 ov518_reg_w32(sd, 0xca, 183331, 3); /* 2cc23h */
3716 ov518_reg_w32(sd, 0xcb, 746, 2); /* 2eah */
3717 ov518_reg_w32(sd, 0xcc, 1750, 2); /* 6d6h */
3718 ov518_reg_w32(sd, 0xcd, 45, 2); /* 2dh */
3719 ov518_reg_w32(sd, 0xce, 851, 2); /* 353h */
3722 reg_w(sd, 0x2f, 0x80);
3725 /* Sets up the OV519 with the given image parameters
3727 * OV519 needs a completely different approach, until we can figure out what
3728 * the individual registers do.
3730 * Do not put any sensor-specific code in here (including I2C I/O functions)
3732 static void ov519_mode_init_regs(struct sd *sd)
3734 static const struct ov_regvals mode_init_519_ov7670[] = {
3735 { 0x5d, 0x03 }, /* Turn off suspend mode */
3736 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3737 { OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3738 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3739 { 0xa3, 0x18 },
3740 { 0xa4, 0x04 },
3741 { 0xa5, 0x28 },
3742 { 0x37, 0x00 }, /* SetUsbInit */
3743 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3744 /* Enable both fields, YUV Input, disable defect comp (why?) */
3745 { 0x20, 0x0c },
3746 { 0x21, 0x38 },
3747 { 0x22, 0x1d },
3748 { 0x17, 0x50 }, /* undocumented */
3749 { 0x37, 0x00 }, /* undocumented */
3750 { 0x40, 0xff }, /* I2C timeout counter */
3751 { 0x46, 0x00 }, /* I2C clock prescaler */
3752 { 0x59, 0x04 }, /* new from windrv 090403 */
3753 { 0xff, 0x00 }, /* undocumented */
3754 /* windows reads 0x55 at this point, why? */
3757 static const struct ov_regvals mode_init_519[] = {
3758 { 0x5d, 0x03 }, /* Turn off suspend mode */
3759 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3760 { OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3761 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3762 { 0xa3, 0x18 },
3763 { 0xa4, 0x04 },
3764 { 0xa5, 0x28 },
3765 { 0x37, 0x00 }, /* SetUsbInit */
3766 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3767 /* Enable both fields, YUV Input, disable defect comp (why?) */
3768 { 0x22, 0x1d },
3769 { 0x17, 0x50 }, /* undocumented */
3770 { 0x37, 0x00 }, /* undocumented */
3771 { 0x40, 0xff }, /* I2C timeout counter */
3772 { 0x46, 0x00 }, /* I2C clock prescaler */
3773 { 0x59, 0x04 }, /* new from windrv 090403 */
3774 { 0xff, 0x00 }, /* undocumented */
3775 /* windows reads 0x55 at this point, why? */
3778 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3780 /******** Set the mode ********/
3781 switch (sd->sensor) {
3782 default:
3783 write_regvals(sd, mode_init_519, ARRAY_SIZE(mode_init_519));
3784 if (sd->sensor == SEN_OV7640 ||
3785 sd->sensor == SEN_OV7648) {
3786 /* Select 8-bit input mode */
3787 reg_w_mask(sd, OV519_R20_DFR, 0x10, 0x10);
3789 break;
3790 case SEN_OV7660:
3791 return; /* done by ov519_set_mode/fr() */
3792 case SEN_OV7670:
3793 write_regvals(sd, mode_init_519_ov7670,
3794 ARRAY_SIZE(mode_init_519_ov7670));
3795 break;
3798 reg_w(sd, OV519_R10_H_SIZE, sd->gspca_dev.pixfmt.width >> 4);
3799 reg_w(sd, OV519_R11_V_SIZE, sd->gspca_dev.pixfmt.height >> 3);
3800 if (sd->sensor == SEN_OV7670 &&
3801 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3802 reg_w(sd, OV519_R12_X_OFFSETL, 0x04);
3803 else if (sd->sensor == SEN_OV7648 &&
3804 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3805 reg_w(sd, OV519_R12_X_OFFSETL, 0x01);
3806 else
3807 reg_w(sd, OV519_R12_X_OFFSETL, 0x00);
3808 reg_w(sd, OV519_R13_X_OFFSETH, 0x00);
3809 reg_w(sd, OV519_R14_Y_OFFSETL, 0x00);
3810 reg_w(sd, OV519_R15_Y_OFFSETH, 0x00);
3811 reg_w(sd, OV519_R16_DIVIDER, 0x00);
3812 reg_w(sd, OV519_R25_FORMAT, 0x03); /* YUV422 */
3813 reg_w(sd, 0x26, 0x00); /* Undocumented */
3815 /******** Set the framerate ********/
3816 if (frame_rate > 0)
3817 sd->frame_rate = frame_rate;
3819 /* FIXME: These are only valid at the max resolution. */
3820 sd->clockdiv = 0;
3821 switch (sd->sensor) {
3822 case SEN_OV7640:
3823 case SEN_OV7648:
3824 switch (sd->frame_rate) {
3825 default:
3826 /* case 30: */
3827 reg_w(sd, 0xa4, 0x0c);
3828 reg_w(sd, 0x23, 0xff);
3829 break;
3830 case 25:
3831 reg_w(sd, 0xa4, 0x0c);
3832 reg_w(sd, 0x23, 0x1f);
3833 break;
3834 case 20:
3835 reg_w(sd, 0xa4, 0x0c);
3836 reg_w(sd, 0x23, 0x1b);
3837 break;
3838 case 15:
3839 reg_w(sd, 0xa4, 0x04);
3840 reg_w(sd, 0x23, 0xff);
3841 sd->clockdiv = 1;
3842 break;
3843 case 10:
3844 reg_w(sd, 0xa4, 0x04);
3845 reg_w(sd, 0x23, 0x1f);
3846 sd->clockdiv = 1;
3847 break;
3848 case 5:
3849 reg_w(sd, 0xa4, 0x04);
3850 reg_w(sd, 0x23, 0x1b);
3851 sd->clockdiv = 1;
3852 break;
3854 break;
3855 case SEN_OV8610:
3856 switch (sd->frame_rate) {
3857 default: /* 15 fps */
3858 /* case 15: */
3859 reg_w(sd, 0xa4, 0x06);
3860 reg_w(sd, 0x23, 0xff);
3861 break;
3862 case 10:
3863 reg_w(sd, 0xa4, 0x06);
3864 reg_w(sd, 0x23, 0x1f);
3865 break;
3866 case 5:
3867 reg_w(sd, 0xa4, 0x06);
3868 reg_w(sd, 0x23, 0x1b);
3869 break;
3871 break;
3872 case SEN_OV7670: /* guesses, based on 7640 */
3873 gspca_dbg(gspca_dev, D_STREAM, "Setting framerate to %d fps\n",
3874 (sd->frame_rate == 0) ? 15 : sd->frame_rate);
3875 reg_w(sd, 0xa4, 0x10);
3876 switch (sd->frame_rate) {
3877 case 30:
3878 reg_w(sd, 0x23, 0xff);
3879 break;
3880 case 20:
3881 reg_w(sd, 0x23, 0x1b);
3882 break;
3883 default:
3884 /* case 15: */
3885 reg_w(sd, 0x23, 0xff);
3886 sd->clockdiv = 1;
3887 break;
3889 break;
3893 static void mode_init_ov_sensor_regs(struct sd *sd)
3895 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3896 int qvga, xstart, xend, ystart, yend;
3897 u8 v;
3899 qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
3901 /******** Mode (VGA/QVGA) and sensor specific regs ********/
3902 switch (sd->sensor) {
3903 case SEN_OV2610:
3904 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3905 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3906 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3907 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3908 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3909 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3910 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3911 return;
3912 case SEN_OV2610AE: {
3913 u8 v;
3915 /* frame rates:
3916 * 10fps / 5 fps for 1600x1200
3917 * 40fps / 20fps for 800x600
3919 v = 80;
3920 if (qvga) {
3921 if (sd->frame_rate < 25)
3922 v = 0x81;
3923 } else {
3924 if (sd->frame_rate < 10)
3925 v = 0x81;
3927 i2c_w(sd, 0x11, v);
3928 i2c_w(sd, 0x12, qvga ? 0x60 : 0x20);
3929 return;
3931 case SEN_OV3610:
3932 if (qvga) {
3933 xstart = (1040 - gspca_dev->pixfmt.width) / 2 +
3934 (0x1f << 4);
3935 ystart = (776 - gspca_dev->pixfmt.height) / 2;
3936 } else {
3937 xstart = (2076 - gspca_dev->pixfmt.width) / 2 +
3938 (0x10 << 4);
3939 ystart = (1544 - gspca_dev->pixfmt.height) / 2;
3941 xend = xstart + gspca_dev->pixfmt.width;
3942 yend = ystart + gspca_dev->pixfmt.height;
3943 /* Writing to the COMH register resets the other windowing regs
3944 to their default values, so we must do this first. */
3945 i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0xf0);
3946 i2c_w_mask(sd, 0x32,
3947 (((xend >> 1) & 7) << 3) | ((xstart >> 1) & 7),
3948 0x3f);
3949 i2c_w_mask(sd, 0x03,
3950 (((yend >> 1) & 3) << 2) | ((ystart >> 1) & 3),
3951 0x0f);
3952 i2c_w(sd, 0x17, xstart >> 4);
3953 i2c_w(sd, 0x18, xend >> 4);
3954 i2c_w(sd, 0x19, ystart >> 3);
3955 i2c_w(sd, 0x1a, yend >> 3);
3956 return;
3957 case SEN_OV8610:
3958 /* For OV8610 qvga means qsvga */
3959 i2c_w_mask(sd, OV7610_REG_COM_C, qvga ? (1 << 5) : 0, 1 << 5);
3960 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3961 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3962 i2c_w_mask(sd, 0x2d, 0x00, 0x40); /* from windrv 090403 */
3963 i2c_w_mask(sd, 0x28, 0x20, 0x20); /* progressive mode on */
3964 break;
3965 case SEN_OV7610:
3966 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3967 i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
3968 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3969 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3970 break;
3971 case SEN_OV7620:
3972 case SEN_OV7620AE:
3973 case SEN_OV76BE:
3974 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3975 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3976 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3977 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3978 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3979 i2c_w_mask(sd, 0x67, qvga ? 0xb0 : 0x90, 0xf0);
3980 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3981 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3982 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3983 if (sd->sensor == SEN_OV76BE)
3984 i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
3985 break;
3986 case SEN_OV7640:
3987 case SEN_OV7648:
3988 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3989 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3990 /* Setting this undocumented bit in qvga mode removes a very
3991 annoying vertical shaking of the image */
3992 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3993 /* Unknown */
3994 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3995 /* Allow higher automatic gain (to allow higher framerates) */
3996 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3997 i2c_w_mask(sd, 0x12, 0x04, 0x04); /* AWB: 1 */
3998 break;
3999 case SEN_OV7670:
4000 /* set COM7_FMT_VGA or COM7_FMT_QVGA
4001 * do we need to set anything else?
4002 * HSTART etc are set in set_ov_sensor_window itself */
4003 i2c_w_mask(sd, OV7670_R12_COM7,
4004 qvga ? OV7670_COM7_FMT_QVGA : OV7670_COM7_FMT_VGA,
4005 OV7670_COM7_FMT_MASK);
4006 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4007 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_AWB,
4008 OV7670_COM8_AWB);
4009 if (qvga) { /* QVGA from ov7670.c by
4010 * Jonathan Corbet */
4011 xstart = 164;
4012 xend = 28;
4013 ystart = 14;
4014 yend = 494;
4015 } else { /* VGA */
4016 xstart = 158;
4017 xend = 14;
4018 ystart = 10;
4019 yend = 490;
4021 /* OV7670 hardware window registers are split across
4022 * multiple locations */
4023 i2c_w(sd, OV7670_R17_HSTART, xstart >> 3);
4024 i2c_w(sd, OV7670_R18_HSTOP, xend >> 3);
4025 v = i2c_r(sd, OV7670_R32_HREF);
4026 v = (v & 0xc0) | ((xend & 0x7) << 3) | (xstart & 0x07);
4027 msleep(10); /* need to sleep between read and write to
4028 * same reg! */
4029 i2c_w(sd, OV7670_R32_HREF, v);
4031 i2c_w(sd, OV7670_R19_VSTART, ystart >> 2);
4032 i2c_w(sd, OV7670_R1A_VSTOP, yend >> 2);
4033 v = i2c_r(sd, OV7670_R03_VREF);
4034 v = (v & 0xc0) | ((yend & 0x3) << 2) | (ystart & 0x03);
4035 msleep(10); /* need to sleep between read and write to
4036 * same reg! */
4037 i2c_w(sd, OV7670_R03_VREF, v);
4038 break;
4039 case SEN_OV6620:
4040 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4041 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4042 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4043 break;
4044 case SEN_OV6630:
4045 case SEN_OV66308AF:
4046 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4047 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4048 break;
4049 case SEN_OV9600: {
4050 const struct ov_i2c_regvals *vals;
4051 static const struct ov_i2c_regvals sxga_15[] = {
4052 {0x11, 0x80}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4054 static const struct ov_i2c_regvals sxga_7_5[] = {
4055 {0x11, 0x81}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4057 static const struct ov_i2c_regvals vga_30[] = {
4058 {0x11, 0x81}, {0x14, 0x7e}, {0x24, 0x70}, {0x25, 0x60}
4060 static const struct ov_i2c_regvals vga_15[] = {
4061 {0x11, 0x83}, {0x14, 0x3e}, {0x24, 0x80}, {0x25, 0x70}
4064 /* frame rates:
4065 * 15fps / 7.5 fps for 1280x1024
4066 * 30fps / 15fps for 640x480
4068 i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0x40);
4069 if (qvga)
4070 vals = sd->frame_rate < 30 ? vga_15 : vga_30;
4071 else
4072 vals = sd->frame_rate < 15 ? sxga_7_5 : sxga_15;
4073 write_i2c_regvals(sd, vals, ARRAY_SIZE(sxga_15));
4074 return;
4076 default:
4077 return;
4080 /******** Clock programming ********/
4081 i2c_w(sd, 0x11, sd->clockdiv);
4084 /* this function works for bridge ov519 and sensors ov7660 and ov7670 only */
4085 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
4087 struct sd *sd = (struct sd *) gspca_dev;
4089 if (sd->gspca_dev.streaming)
4090 reg_w(sd, OV519_R51_RESET1, 0x0f); /* block stream */
4091 i2c_w_mask(sd, OV7670_R1E_MVFP,
4092 OV7670_MVFP_MIRROR * hflip | OV7670_MVFP_VFLIP * vflip,
4093 OV7670_MVFP_MIRROR | OV7670_MVFP_VFLIP);
4094 if (sd->gspca_dev.streaming)
4095 reg_w(sd, OV519_R51_RESET1, 0x00); /* restart stream */
4098 static void set_ov_sensor_window(struct sd *sd)
4100 struct gspca_dev *gspca_dev;
4101 int qvga, crop;
4102 int hwsbase, hwebase, vwsbase, vwebase, hwscale, vwscale;
4104 /* mode setup is fully handled in mode_init_ov_sensor_regs for these */
4105 switch (sd->sensor) {
4106 case SEN_OV2610:
4107 case SEN_OV2610AE:
4108 case SEN_OV3610:
4109 case SEN_OV7670:
4110 case SEN_OV9600:
4111 mode_init_ov_sensor_regs(sd);
4112 return;
4113 case SEN_OV7660:
4114 ov519_set_mode(sd);
4115 ov519_set_fr(sd);
4116 return;
4119 gspca_dev = &sd->gspca_dev;
4120 qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
4121 crop = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 2;
4123 /* The different sensor ICs handle setting up of window differently.
4124 * IF YOU SET IT WRONG, YOU WILL GET ALL ZERO ISOC DATA FROM OV51x!! */
4125 switch (sd->sensor) {
4126 case SEN_OV8610:
4127 hwsbase = 0x1e;
4128 hwebase = 0x1e;
4129 vwsbase = 0x02;
4130 vwebase = 0x02;
4131 break;
4132 case SEN_OV7610:
4133 case SEN_OV76BE:
4134 hwsbase = 0x38;
4135 hwebase = 0x3a;
4136 vwsbase = vwebase = 0x05;
4137 break;
4138 case SEN_OV6620:
4139 case SEN_OV6630:
4140 case SEN_OV66308AF:
4141 hwsbase = 0x38;
4142 hwebase = 0x3a;
4143 vwsbase = 0x05;
4144 vwebase = 0x06;
4145 if (sd->sensor == SEN_OV66308AF && qvga)
4146 /* HDG: this fixes U and V getting swapped */
4147 hwsbase++;
4148 if (crop) {
4149 hwsbase += 8;
4150 hwebase += 8;
4151 vwsbase += 11;
4152 vwebase += 11;
4154 break;
4155 case SEN_OV7620:
4156 case SEN_OV7620AE:
4157 hwsbase = 0x2f; /* From 7620.SET (spec is wrong) */
4158 hwebase = 0x2f;
4159 vwsbase = vwebase = 0x05;
4160 break;
4161 case SEN_OV7640:
4162 case SEN_OV7648:
4163 hwsbase = 0x1a;
4164 hwebase = 0x1a;
4165 vwsbase = vwebase = 0x03;
4166 break;
4167 default:
4168 return;
4171 switch (sd->sensor) {
4172 case SEN_OV6620:
4173 case SEN_OV6630:
4174 case SEN_OV66308AF:
4175 if (qvga) { /* QCIF */
4176 hwscale = 0;
4177 vwscale = 0;
4178 } else { /* CIF */
4179 hwscale = 1;
4180 vwscale = 1; /* The datasheet says 0;
4181 * it's wrong */
4183 break;
4184 case SEN_OV8610:
4185 if (qvga) { /* QSVGA */
4186 hwscale = 1;
4187 vwscale = 1;
4188 } else { /* SVGA */
4189 hwscale = 2;
4190 vwscale = 2;
4192 break;
4193 default: /* SEN_OV7xx0 */
4194 if (qvga) { /* QVGA */
4195 hwscale = 1;
4196 vwscale = 0;
4197 } else { /* VGA */
4198 hwscale = 2;
4199 vwscale = 1;
4203 mode_init_ov_sensor_regs(sd);
4205 i2c_w(sd, 0x17, hwsbase);
4206 i2c_w(sd, 0x18, hwebase + (sd->sensor_width >> hwscale));
4207 i2c_w(sd, 0x19, vwsbase);
4208 i2c_w(sd, 0x1a, vwebase + (sd->sensor_height >> vwscale));
4211 /* -- start the camera -- */
4212 static int sd_start(struct gspca_dev *gspca_dev)
4214 struct sd *sd = (struct sd *) gspca_dev;
4216 /* Default for most bridges, allow bridge_mode_init_regs to override */
4217 sd->sensor_width = sd->gspca_dev.pixfmt.width;
4218 sd->sensor_height = sd->gspca_dev.pixfmt.height;
4220 switch (sd->bridge) {
4221 case BRIDGE_OV511:
4222 case BRIDGE_OV511PLUS:
4223 ov511_mode_init_regs(sd);
4224 break;
4225 case BRIDGE_OV518:
4226 case BRIDGE_OV518PLUS:
4227 ov518_mode_init_regs(sd);
4228 break;
4229 case BRIDGE_OV519:
4230 ov519_mode_init_regs(sd);
4231 break;
4232 /* case BRIDGE_OVFX2: nothing to do */
4233 case BRIDGE_W9968CF:
4234 w9968cf_mode_init_regs(sd);
4235 break;
4238 set_ov_sensor_window(sd);
4240 /* Force clear snapshot state in case the snapshot button was
4241 pressed while we weren't streaming */
4242 sd->snapshot_needs_reset = 1;
4243 sd_reset_snapshot(gspca_dev);
4245 sd->first_frame = 3;
4247 ov51x_restart(sd);
4248 ov51x_led_control(sd, 1);
4249 return gspca_dev->usb_err;
4252 static void sd_stopN(struct gspca_dev *gspca_dev)
4254 struct sd *sd = (struct sd *) gspca_dev;
4256 ov51x_stop(sd);
4257 ov51x_led_control(sd, 0);
4260 static void sd_stop0(struct gspca_dev *gspca_dev)
4262 struct sd *sd = (struct sd *) gspca_dev;
4264 if (!sd->gspca_dev.present)
4265 return;
4266 if (sd->bridge == BRIDGE_W9968CF)
4267 w9968cf_stop0(sd);
4269 #if IS_ENABLED(CONFIG_INPUT)
4270 /* If the last button state is pressed, release it now! */
4271 if (sd->snapshot_pressed) {
4272 input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
4273 input_sync(gspca_dev->input_dev);
4274 sd->snapshot_pressed = 0;
4276 #endif
4277 if (sd->bridge == BRIDGE_OV519)
4278 reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
4281 static void ov51x_handle_button(struct gspca_dev *gspca_dev, u8 state)
4283 struct sd *sd = (struct sd *) gspca_dev;
4285 if (sd->snapshot_pressed != state) {
4286 #if IS_ENABLED(CONFIG_INPUT)
4287 input_report_key(gspca_dev->input_dev, KEY_CAMERA, state);
4288 input_sync(gspca_dev->input_dev);
4289 #endif
4290 if (state)
4291 sd->snapshot_needs_reset = 1;
4293 sd->snapshot_pressed = state;
4294 } else {
4295 /* On the ov511 / ov519 we need to reset the button state
4296 multiple times, as resetting does not work as long as the
4297 button stays pressed */
4298 switch (sd->bridge) {
4299 case BRIDGE_OV511:
4300 case BRIDGE_OV511PLUS:
4301 case BRIDGE_OV519:
4302 if (state)
4303 sd->snapshot_needs_reset = 1;
4304 break;
4309 static void ov511_pkt_scan(struct gspca_dev *gspca_dev,
4310 u8 *in, /* isoc packet */
4311 int len) /* iso packet length */
4313 struct sd *sd = (struct sd *) gspca_dev;
4315 /* SOF/EOF packets have 1st to 8th bytes zeroed and the 9th
4316 * byte non-zero. The EOF packet has image width/height in the
4317 * 10th and 11th bytes. The 9th byte is given as follows:
4319 * bit 7: EOF
4320 * 6: compression enabled
4321 * 5: 422/420/400 modes
4322 * 4: 422/420/400 modes
4323 * 3: 1
4324 * 2: snapshot button on
4325 * 1: snapshot frame
4326 * 0: even/odd field
4328 if (!(in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6] | in[7]) &&
4329 (in[8] & 0x08)) {
4330 ov51x_handle_button(gspca_dev, (in[8] >> 2) & 1);
4331 if (in[8] & 0x80) {
4332 /* Frame end */
4333 if ((in[9] + 1) * 8 != gspca_dev->pixfmt.width ||
4334 (in[10] + 1) * 8 != gspca_dev->pixfmt.height) {
4335 gspca_err(gspca_dev, "Invalid frame size, got: %dx%d, requested: %dx%d\n",
4336 (in[9] + 1) * 8, (in[10] + 1) * 8,
4337 gspca_dev->pixfmt.width,
4338 gspca_dev->pixfmt.height);
4339 gspca_dev->last_packet_type = DISCARD_PACKET;
4340 return;
4342 /* Add 11 byte footer to frame, might be useful */
4343 gspca_frame_add(gspca_dev, LAST_PACKET, in, 11);
4344 return;
4345 } else {
4346 /* Frame start */
4347 gspca_frame_add(gspca_dev, FIRST_PACKET, in, 0);
4348 sd->packet_nr = 0;
4352 /* Ignore the packet number */
4353 len--;
4355 /* intermediate packet */
4356 gspca_frame_add(gspca_dev, INTER_PACKET, in, len);
4359 static void ov518_pkt_scan(struct gspca_dev *gspca_dev,
4360 u8 *data, /* isoc packet */
4361 int len) /* iso packet length */
4363 struct sd *sd = (struct sd *) gspca_dev;
4365 /* A false positive here is likely, until OVT gives me
4366 * the definitive SOF/EOF format */
4367 if ((!(data[0] | data[1] | data[2] | data[3] | data[5])) && data[6]) {
4368 ov51x_handle_button(gspca_dev, (data[6] >> 1) & 1);
4369 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4370 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4371 sd->packet_nr = 0;
4374 if (gspca_dev->last_packet_type == DISCARD_PACKET)
4375 return;
4377 /* Does this device use packet numbers ? */
4378 if (len & 7) {
4379 len--;
4380 if (sd->packet_nr == data[len])
4381 sd->packet_nr++;
4382 /* The last few packets of the frame (which are all 0's
4383 except that they may contain part of the footer), are
4384 numbered 0 */
4385 else if (sd->packet_nr == 0 || data[len]) {
4386 gspca_err(gspca_dev, "Invalid packet nr: %d (expect: %d)\n",
4387 (int)data[len], (int)sd->packet_nr);
4388 gspca_dev->last_packet_type = DISCARD_PACKET;
4389 return;
4393 /* intermediate packet */
4394 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4397 static void ov519_pkt_scan(struct gspca_dev *gspca_dev,
4398 u8 *data, /* isoc packet */
4399 int len) /* iso packet length */
4401 /* Header of ov519 is 16 bytes:
4402 * Byte Value Description
4403 * 0 0xff magic
4404 * 1 0xff magic
4405 * 2 0xff magic
4406 * 3 0xXX 0x50 = SOF, 0x51 = EOF
4407 * 9 0xXX 0x01 initial frame without data,
4408 * 0x00 standard frame with image
4409 * 14 Lo in EOF: length of image data / 8
4410 * 15 Hi
4413 if (data[0] == 0xff && data[1] == 0xff && data[2] == 0xff) {
4414 switch (data[3]) {
4415 case 0x50: /* start of frame */
4416 /* Don't check the button state here, as the state
4417 usually (always ?) changes at EOF and checking it
4418 here leads to unnecessary snapshot state resets. */
4419 #define HDRSZ 16
4420 data += HDRSZ;
4421 len -= HDRSZ;
4422 #undef HDRSZ
4423 if (data[0] == 0xff || data[1] == 0xd8)
4424 gspca_frame_add(gspca_dev, FIRST_PACKET,
4425 data, len);
4426 else
4427 gspca_dev->last_packet_type = DISCARD_PACKET;
4428 return;
4429 case 0x51: /* end of frame */
4430 ov51x_handle_button(gspca_dev, data[11] & 1);
4431 if (data[9] != 0)
4432 gspca_dev->last_packet_type = DISCARD_PACKET;
4433 gspca_frame_add(gspca_dev, LAST_PACKET,
4434 NULL, 0);
4435 return;
4439 /* intermediate packet */
4440 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4443 static void ovfx2_pkt_scan(struct gspca_dev *gspca_dev,
4444 u8 *data, /* isoc packet */
4445 int len) /* iso packet length */
4447 struct sd *sd = (struct sd *) gspca_dev;
4449 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4451 /* A short read signals EOF */
4452 if (len < gspca_dev->cam.bulk_size) {
4453 /* If the frame is short, and it is one of the first ones
4454 the sensor and bridge are still syncing, so drop it. */
4455 if (sd->first_frame) {
4456 sd->first_frame--;
4457 if (gspca_dev->image_len <
4458 sd->gspca_dev.pixfmt.width *
4459 sd->gspca_dev.pixfmt.height)
4460 gspca_dev->last_packet_type = DISCARD_PACKET;
4462 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4463 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4467 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
4468 u8 *data, /* isoc packet */
4469 int len) /* iso packet length */
4471 struct sd *sd = (struct sd *) gspca_dev;
4473 switch (sd->bridge) {
4474 case BRIDGE_OV511:
4475 case BRIDGE_OV511PLUS:
4476 ov511_pkt_scan(gspca_dev, data, len);
4477 break;
4478 case BRIDGE_OV518:
4479 case BRIDGE_OV518PLUS:
4480 ov518_pkt_scan(gspca_dev, data, len);
4481 break;
4482 case BRIDGE_OV519:
4483 ov519_pkt_scan(gspca_dev, data, len);
4484 break;
4485 case BRIDGE_OVFX2:
4486 ovfx2_pkt_scan(gspca_dev, data, len);
4487 break;
4488 case BRIDGE_W9968CF:
4489 w9968cf_pkt_scan(gspca_dev, data, len);
4490 break;
4494 /* -- management routines -- */
4496 static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
4498 struct sd *sd = (struct sd *) gspca_dev;
4499 static const struct ov_i2c_regvals brit_7660[][7] = {
4500 {{0x0f, 0x6a}, {0x24, 0x40}, {0x25, 0x2b}, {0x26, 0x90},
4501 {0x27, 0xe0}, {0x28, 0xe0}, {0x2c, 0xe0}},
4502 {{0x0f, 0x6a}, {0x24, 0x50}, {0x25, 0x40}, {0x26, 0xa1},
4503 {0x27, 0xc0}, {0x28, 0xc0}, {0x2c, 0xc0}},
4504 {{0x0f, 0x6a}, {0x24, 0x68}, {0x25, 0x58}, {0x26, 0xc2},
4505 {0x27, 0xa0}, {0x28, 0xa0}, {0x2c, 0xa0}},
4506 {{0x0f, 0x6a}, {0x24, 0x70}, {0x25, 0x68}, {0x26, 0xd3},
4507 {0x27, 0x80}, {0x28, 0x80}, {0x2c, 0x80}},
4508 {{0x0f, 0x6a}, {0x24, 0x80}, {0x25, 0x70}, {0x26, 0xd3},
4509 {0x27, 0x20}, {0x28, 0x20}, {0x2c, 0x20}},
4510 {{0x0f, 0x6a}, {0x24, 0x88}, {0x25, 0x78}, {0x26, 0xd3},
4511 {0x27, 0x40}, {0x28, 0x40}, {0x2c, 0x40}},
4512 {{0x0f, 0x6a}, {0x24, 0x90}, {0x25, 0x80}, {0x26, 0xd4},
4513 {0x27, 0x60}, {0x28, 0x60}, {0x2c, 0x60}}
4516 switch (sd->sensor) {
4517 case SEN_OV8610:
4518 case SEN_OV7610:
4519 case SEN_OV76BE:
4520 case SEN_OV6620:
4521 case SEN_OV6630:
4522 case SEN_OV66308AF:
4523 case SEN_OV7640:
4524 case SEN_OV7648:
4525 i2c_w(sd, OV7610_REG_BRT, val);
4526 break;
4527 case SEN_OV7620:
4528 case SEN_OV7620AE:
4529 i2c_w(sd, OV7610_REG_BRT, val);
4530 break;
4531 case SEN_OV7660:
4532 write_i2c_regvals(sd, brit_7660[val],
4533 ARRAY_SIZE(brit_7660[0]));
4534 break;
4535 case SEN_OV7670:
4536 /*win trace
4537 * i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_AEC); */
4538 i2c_w(sd, OV7670_R55_BRIGHT, ov7670_abs_to_sm(val));
4539 break;
4543 static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
4545 struct sd *sd = (struct sd *) gspca_dev;
4546 static const struct ov_i2c_regvals contrast_7660[][31] = {
4547 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0xa0},
4548 {0x70, 0x58}, {0x71, 0x38}, {0x72, 0x30}, {0x73, 0x30},
4549 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x24}, {0x77, 0x24},
4550 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x34},
4551 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x65},
4552 {0x80, 0x70}, {0x81, 0x77}, {0x82, 0x7d}, {0x83, 0x83},
4553 {0x84, 0x88}, {0x85, 0x8d}, {0x86, 0x96}, {0x87, 0x9f},
4554 {0x88, 0xb0}, {0x89, 0xc4}, {0x8a, 0xd9}},
4555 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0x94},
4556 {0x70, 0x58}, {0x71, 0x40}, {0x72, 0x30}, {0x73, 0x30},
4557 {0x74, 0x30}, {0x75, 0x30}, {0x76, 0x2c}, {0x77, 0x24},
4558 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x31},
4559 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x62},
4560 {0x80, 0x6d}, {0x81, 0x75}, {0x82, 0x7b}, {0x83, 0x81},
4561 {0x84, 0x87}, {0x85, 0x8d}, {0x86, 0x98}, {0x87, 0xa1},
4562 {0x88, 0xb2}, {0x89, 0xc6}, {0x8a, 0xdb}},
4563 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x84},
4564 {0x70, 0x58}, {0x71, 0x48}, {0x72, 0x40}, {0x73, 0x40},
4565 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x28}, {0x77, 0x24},
4566 {0x78, 0x26}, {0x79, 0x28}, {0x7a, 0x28}, {0x7b, 0x34},
4567 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x5d},
4568 {0x80, 0x68}, {0x81, 0x71}, {0x82, 0x79}, {0x83, 0x81},
4569 {0x84, 0x86}, {0x85, 0x8b}, {0x86, 0x95}, {0x87, 0x9e},
4570 {0x88, 0xb1}, {0x89, 0xc5}, {0x8a, 0xd9}},
4571 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x70},
4572 {0x70, 0x58}, {0x71, 0x58}, {0x72, 0x48}, {0x73, 0x48},
4573 {0x74, 0x38}, {0x75, 0x40}, {0x76, 0x34}, {0x77, 0x34},
4574 {0x78, 0x2e}, {0x79, 0x28}, {0x7a, 0x24}, {0x7b, 0x22},
4575 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x58},
4576 {0x80, 0x63}, {0x81, 0x6e}, {0x82, 0x77}, {0x83, 0x80},
4577 {0x84, 0x87}, {0x85, 0x8f}, {0x86, 0x9c}, {0x87, 0xa9},
4578 {0x88, 0xc0}, {0x89, 0xd4}, {0x8a, 0xe6}},
4579 {{0x6c, 0xa0}, {0x6d, 0xf0}, {0x6e, 0x90}, {0x6f, 0x80},
4580 {0x70, 0x70}, {0x71, 0x80}, {0x72, 0x60}, {0x73, 0x60},
4581 {0x74, 0x58}, {0x75, 0x60}, {0x76, 0x4c}, {0x77, 0x38},
4582 {0x78, 0x38}, {0x79, 0x2a}, {0x7a, 0x20}, {0x7b, 0x0e},
4583 {0x7c, 0x0a}, {0x7d, 0x14}, {0x7e, 0x26}, {0x7f, 0x46},
4584 {0x80, 0x54}, {0x81, 0x64}, {0x82, 0x70}, {0x83, 0x7c},
4585 {0x84, 0x87}, {0x85, 0x93}, {0x86, 0xa6}, {0x87, 0xb4},
4586 {0x88, 0xd0}, {0x89, 0xe5}, {0x8a, 0xf5}},
4587 {{0x6c, 0x60}, {0x6d, 0x80}, {0x6e, 0x60}, {0x6f, 0x80},
4588 {0x70, 0x80}, {0x71, 0x80}, {0x72, 0x88}, {0x73, 0x30},
4589 {0x74, 0x70}, {0x75, 0x68}, {0x76, 0x64}, {0x77, 0x50},
4590 {0x78, 0x3c}, {0x79, 0x22}, {0x7a, 0x10}, {0x7b, 0x08},
4591 {0x7c, 0x06}, {0x7d, 0x0e}, {0x7e, 0x1a}, {0x7f, 0x3a},
4592 {0x80, 0x4a}, {0x81, 0x5a}, {0x82, 0x6b}, {0x83, 0x7b},
4593 {0x84, 0x89}, {0x85, 0x96}, {0x86, 0xaf}, {0x87, 0xc3},
4594 {0x88, 0xe1}, {0x89, 0xf2}, {0x8a, 0xfa}},
4595 {{0x6c, 0x20}, {0x6d, 0x40}, {0x6e, 0x20}, {0x6f, 0x60},
4596 {0x70, 0x88}, {0x71, 0xc8}, {0x72, 0xc0}, {0x73, 0xb8},
4597 {0x74, 0xa8}, {0x75, 0xb8}, {0x76, 0x80}, {0x77, 0x5c},
4598 {0x78, 0x26}, {0x79, 0x10}, {0x7a, 0x08}, {0x7b, 0x04},
4599 {0x7c, 0x02}, {0x7d, 0x06}, {0x7e, 0x0a}, {0x7f, 0x22},
4600 {0x80, 0x33}, {0x81, 0x4c}, {0x82, 0x64}, {0x83, 0x7b},
4601 {0x84, 0x90}, {0x85, 0xa7}, {0x86, 0xc7}, {0x87, 0xde},
4602 {0x88, 0xf1}, {0x89, 0xf9}, {0x8a, 0xfd}},
4605 switch (sd->sensor) {
4606 case SEN_OV7610:
4607 case SEN_OV6620:
4608 i2c_w(sd, OV7610_REG_CNT, val);
4609 break;
4610 case SEN_OV6630:
4611 case SEN_OV66308AF:
4612 i2c_w_mask(sd, OV7610_REG_CNT, val >> 4, 0x0f);
4613 break;
4614 case SEN_OV8610: {
4615 static const u8 ctab[] = {
4616 0x03, 0x09, 0x0b, 0x0f, 0x53, 0x6f, 0x35, 0x7f
4619 /* Use Y gamma control instead. Bit 0 enables it. */
4620 i2c_w(sd, 0x64, ctab[val >> 5]);
4621 break;
4623 case SEN_OV7620:
4624 case SEN_OV7620AE: {
4625 static const u8 ctab[] = {
4626 0x01, 0x05, 0x09, 0x11, 0x15, 0x35, 0x37, 0x57,
4627 0x5b, 0xa5, 0xa7, 0xc7, 0xc9, 0xcf, 0xef, 0xff
4630 /* Use Y gamma control instead. Bit 0 enables it. */
4631 i2c_w(sd, 0x64, ctab[val >> 4]);
4632 break;
4634 case SEN_OV7660:
4635 write_i2c_regvals(sd, contrast_7660[val],
4636 ARRAY_SIZE(contrast_7660[0]));
4637 break;
4638 case SEN_OV7670:
4639 /* check that this isn't just the same as ov7610 */
4640 i2c_w(sd, OV7670_R56_CONTRAS, val >> 1);
4641 break;
4645 static void setexposure(struct gspca_dev *gspca_dev, s32 val)
4647 struct sd *sd = (struct sd *) gspca_dev;
4649 i2c_w(sd, 0x10, val);
4652 static void setcolors(struct gspca_dev *gspca_dev, s32 val)
4654 struct sd *sd = (struct sd *) gspca_dev;
4655 static const struct ov_i2c_regvals colors_7660[][6] = {
4656 {{0x4f, 0x28}, {0x50, 0x2a}, {0x51, 0x02}, {0x52, 0x0a},
4657 {0x53, 0x19}, {0x54, 0x23}},
4658 {{0x4f, 0x47}, {0x50, 0x4a}, {0x51, 0x03}, {0x52, 0x11},
4659 {0x53, 0x2c}, {0x54, 0x3e}},
4660 {{0x4f, 0x66}, {0x50, 0x6b}, {0x51, 0x05}, {0x52, 0x19},
4661 {0x53, 0x40}, {0x54, 0x59}},
4662 {{0x4f, 0x84}, {0x50, 0x8b}, {0x51, 0x06}, {0x52, 0x20},
4663 {0x53, 0x53}, {0x54, 0x73}},
4664 {{0x4f, 0xa3}, {0x50, 0xab}, {0x51, 0x08}, {0x52, 0x28},
4665 {0x53, 0x66}, {0x54, 0x8e}},
4668 switch (sd->sensor) {
4669 case SEN_OV8610:
4670 case SEN_OV7610:
4671 case SEN_OV76BE:
4672 case SEN_OV6620:
4673 case SEN_OV6630:
4674 case SEN_OV66308AF:
4675 i2c_w(sd, OV7610_REG_SAT, val);
4676 break;
4677 case SEN_OV7620:
4678 case SEN_OV7620AE:
4679 /* Use UV gamma control instead. Bits 0 & 7 are reserved. */
4680 /* rc = ov_i2c_write(sd->dev, 0x62, (val >> 9) & 0x7e);
4681 if (rc < 0)
4682 goto out; */
4683 i2c_w(sd, OV7610_REG_SAT, val);
4684 break;
4685 case SEN_OV7640:
4686 case SEN_OV7648:
4687 i2c_w(sd, OV7610_REG_SAT, val & 0xf0);
4688 break;
4689 case SEN_OV7660:
4690 write_i2c_regvals(sd, colors_7660[val],
4691 ARRAY_SIZE(colors_7660[0]));
4692 break;
4693 case SEN_OV7670:
4694 /* supported later once I work out how to do it
4695 * transparently fail now! */
4696 /* set REG_COM13 values for UV sat auto mode */
4697 break;
4701 static void setautobright(struct gspca_dev *gspca_dev, s32 val)
4703 struct sd *sd = (struct sd *) gspca_dev;
4705 i2c_w_mask(sd, 0x2d, val ? 0x10 : 0x00, 0x10);
4708 static void setfreq_i(struct sd *sd, s32 val)
4710 if (sd->sensor == SEN_OV7660
4711 || sd->sensor == SEN_OV7670) {
4712 switch (val) {
4713 case 0: /* Banding filter disabled */
4714 i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_BFILT);
4715 break;
4716 case 1: /* 50 hz */
4717 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4718 OV7670_COM8_BFILT);
4719 i2c_w_mask(sd, OV7670_R3B_COM11, 0x08, 0x18);
4720 break;
4721 case 2: /* 60 hz */
4722 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4723 OV7670_COM8_BFILT);
4724 i2c_w_mask(sd, OV7670_R3B_COM11, 0x00, 0x18);
4725 break;
4726 case 3: /* Auto hz - ov7670 only */
4727 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4728 OV7670_COM8_BFILT);
4729 i2c_w_mask(sd, OV7670_R3B_COM11, OV7670_COM11_HZAUTO,
4730 0x18);
4731 break;
4733 } else {
4734 switch (val) {
4735 case 0: /* Banding filter disabled */
4736 i2c_w_mask(sd, 0x2d, 0x00, 0x04);
4737 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4738 break;
4739 case 1: /* 50 hz (filter on and framerate adj) */
4740 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4741 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4742 /* 20 fps -> 16.667 fps */
4743 if (sd->sensor == SEN_OV6620 ||
4744 sd->sensor == SEN_OV6630 ||
4745 sd->sensor == SEN_OV66308AF)
4746 i2c_w(sd, 0x2b, 0x5e);
4747 else
4748 i2c_w(sd, 0x2b, 0xac);
4749 break;
4750 case 2: /* 60 hz (filter on, ...) */
4751 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4752 if (sd->sensor == SEN_OV6620 ||
4753 sd->sensor == SEN_OV6630 ||
4754 sd->sensor == SEN_OV66308AF) {
4755 /* 20 fps -> 15 fps */
4756 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4757 i2c_w(sd, 0x2b, 0xa8);
4758 } else {
4759 /* no framerate adj. */
4760 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4762 break;
4767 static void setfreq(struct gspca_dev *gspca_dev, s32 val)
4769 struct sd *sd = (struct sd *) gspca_dev;
4771 setfreq_i(sd, val);
4773 /* Ugly but necessary */
4774 if (sd->bridge == BRIDGE_W9968CF)
4775 w9968cf_set_crop_window(sd);
4778 static int sd_get_jcomp(struct gspca_dev *gspca_dev,
4779 struct v4l2_jpegcompression *jcomp)
4781 struct sd *sd = (struct sd *) gspca_dev;
4783 if (sd->bridge != BRIDGE_W9968CF)
4784 return -ENOTTY;
4786 memset(jcomp, 0, sizeof *jcomp);
4787 jcomp->quality = v4l2_ctrl_g_ctrl(sd->jpegqual);
4788 jcomp->jpeg_markers = V4L2_JPEG_MARKER_DHT | V4L2_JPEG_MARKER_DQT |
4789 V4L2_JPEG_MARKER_DRI;
4790 return 0;
4793 static int sd_set_jcomp(struct gspca_dev *gspca_dev,
4794 const struct v4l2_jpegcompression *jcomp)
4796 struct sd *sd = (struct sd *) gspca_dev;
4798 if (sd->bridge != BRIDGE_W9968CF)
4799 return -ENOTTY;
4801 v4l2_ctrl_s_ctrl(sd->jpegqual, jcomp->quality);
4802 return 0;
4805 static int sd_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
4807 struct gspca_dev *gspca_dev =
4808 container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
4809 struct sd *sd = (struct sd *)gspca_dev;
4811 gspca_dev->usb_err = 0;
4813 switch (ctrl->id) {
4814 case V4L2_CID_AUTOGAIN:
4815 gspca_dev->exposure->val = i2c_r(sd, 0x10);
4816 break;
4818 return 0;
4821 static int sd_s_ctrl(struct v4l2_ctrl *ctrl)
4823 struct gspca_dev *gspca_dev =
4824 container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
4825 struct sd *sd = (struct sd *)gspca_dev;
4827 gspca_dev->usb_err = 0;
4829 if (!gspca_dev->streaming)
4830 return 0;
4832 switch (ctrl->id) {
4833 case V4L2_CID_BRIGHTNESS:
4834 setbrightness(gspca_dev, ctrl->val);
4835 break;
4836 case V4L2_CID_CONTRAST:
4837 setcontrast(gspca_dev, ctrl->val);
4838 break;
4839 case V4L2_CID_POWER_LINE_FREQUENCY:
4840 setfreq(gspca_dev, ctrl->val);
4841 break;
4842 case V4L2_CID_AUTOBRIGHTNESS:
4843 if (ctrl->is_new)
4844 setautobright(gspca_dev, ctrl->val);
4845 if (!ctrl->val && sd->brightness->is_new)
4846 setbrightness(gspca_dev, sd->brightness->val);
4847 break;
4848 case V4L2_CID_SATURATION:
4849 setcolors(gspca_dev, ctrl->val);
4850 break;
4851 case V4L2_CID_HFLIP:
4852 sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
4853 break;
4854 case V4L2_CID_AUTOGAIN:
4855 if (ctrl->is_new)
4856 setautogain(gspca_dev, ctrl->val);
4857 if (!ctrl->val && gspca_dev->exposure->is_new)
4858 setexposure(gspca_dev, gspca_dev->exposure->val);
4859 break;
4860 case V4L2_CID_JPEG_COMPRESSION_QUALITY:
4861 return -EBUSY; /* Should never happen, as we grab the ctrl */
4863 return gspca_dev->usb_err;
4866 static const struct v4l2_ctrl_ops sd_ctrl_ops = {
4867 .g_volatile_ctrl = sd_g_volatile_ctrl,
4868 .s_ctrl = sd_s_ctrl,
4871 static int sd_init_controls(struct gspca_dev *gspca_dev)
4873 struct sd *sd = (struct sd *)gspca_dev;
4874 struct v4l2_ctrl_handler *hdl = &gspca_dev->ctrl_handler;
4876 gspca_dev->vdev.ctrl_handler = hdl;
4877 v4l2_ctrl_handler_init(hdl, 10);
4878 if (valid_controls[sd->sensor].has_brightness)
4879 sd->brightness = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4880 V4L2_CID_BRIGHTNESS, 0,
4881 sd->sensor == SEN_OV7660 ? 6 : 255, 1,
4882 sd->sensor == SEN_OV7660 ? 3 : 127);
4883 if (valid_controls[sd->sensor].has_contrast) {
4884 if (sd->sensor == SEN_OV7660)
4885 v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4886 V4L2_CID_CONTRAST, 0, 6, 1, 3);
4887 else
4888 v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4889 V4L2_CID_CONTRAST, 0, 255, 1,
4890 (sd->sensor == SEN_OV6630 ||
4891 sd->sensor == SEN_OV66308AF) ? 200 : 127);
4893 if (valid_controls[sd->sensor].has_sat)
4894 v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4895 V4L2_CID_SATURATION, 0,
4896 sd->sensor == SEN_OV7660 ? 4 : 255, 1,
4897 sd->sensor == SEN_OV7660 ? 2 : 127);
4898 if (valid_controls[sd->sensor].has_exposure)
4899 gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4900 V4L2_CID_EXPOSURE, 0, 255, 1, 127);
4901 if (valid_controls[sd->sensor].has_hvflip) {
4902 sd->hflip = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4903 V4L2_CID_HFLIP, 0, 1, 1, 0);
4904 sd->vflip = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4905 V4L2_CID_VFLIP, 0, 1, 1, 0);
4907 if (valid_controls[sd->sensor].has_autobright)
4908 sd->autobright = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4909 V4L2_CID_AUTOBRIGHTNESS, 0, 1, 1, 1);
4910 if (valid_controls[sd->sensor].has_autogain)
4911 gspca_dev->autogain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4912 V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
4913 if (valid_controls[sd->sensor].has_freq) {
4914 if (sd->sensor == SEN_OV7670)
4915 sd->freq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
4916 V4L2_CID_POWER_LINE_FREQUENCY,
4917 V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0,
4918 V4L2_CID_POWER_LINE_FREQUENCY_AUTO);
4919 else
4920 sd->freq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
4921 V4L2_CID_POWER_LINE_FREQUENCY,
4922 V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 0, 0);
4924 if (sd->bridge == BRIDGE_W9968CF)
4925 sd->jpegqual = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4926 V4L2_CID_JPEG_COMPRESSION_QUALITY,
4927 QUALITY_MIN, QUALITY_MAX, 1, QUALITY_DEF);
4929 if (hdl->error) {
4930 gspca_err(gspca_dev, "Could not initialize controls\n");
4931 return hdl->error;
4933 if (gspca_dev->autogain)
4934 v4l2_ctrl_auto_cluster(3, &gspca_dev->autogain, 0, true);
4935 if (sd->autobright)
4936 v4l2_ctrl_auto_cluster(2, &sd->autobright, 0, false);
4937 if (sd->hflip)
4938 v4l2_ctrl_cluster(2, &sd->hflip);
4939 return 0;
4942 /* sub-driver description */
4943 static const struct sd_desc sd_desc = {
4944 .name = MODULE_NAME,
4945 .config = sd_config,
4946 .init = sd_init,
4947 .init_controls = sd_init_controls,
4948 .isoc_init = sd_isoc_init,
4949 .start = sd_start,
4950 .stopN = sd_stopN,
4951 .stop0 = sd_stop0,
4952 .pkt_scan = sd_pkt_scan,
4953 .dq_callback = sd_reset_snapshot,
4954 .get_jcomp = sd_get_jcomp,
4955 .set_jcomp = sd_set_jcomp,
4956 #if IS_ENABLED(CONFIG_INPUT)
4957 .other_input = 1,
4958 #endif
4961 /* -- module initialisation -- */
4962 static const struct usb_device_id device_table[] = {
4963 {USB_DEVICE(0x041e, 0x4003), .driver_info = BRIDGE_W9968CF },
4964 {USB_DEVICE(0x041e, 0x4052),
4965 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4966 {USB_DEVICE(0x041e, 0x405f), .driver_info = BRIDGE_OV519 },
4967 {USB_DEVICE(0x041e, 0x4060), .driver_info = BRIDGE_OV519 },
4968 {USB_DEVICE(0x041e, 0x4061), .driver_info = BRIDGE_OV519 },
4969 {USB_DEVICE(0x041e, 0x4064), .driver_info = BRIDGE_OV519 },
4970 {USB_DEVICE(0x041e, 0x4067), .driver_info = BRIDGE_OV519 },
4971 {USB_DEVICE(0x041e, 0x4068), .driver_info = BRIDGE_OV519 },
4972 {USB_DEVICE(0x045e, 0x028c),
4973 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4974 {USB_DEVICE(0x054c, 0x0154), .driver_info = BRIDGE_OV519 },
4975 {USB_DEVICE(0x054c, 0x0155), .driver_info = BRIDGE_OV519 },
4976 {USB_DEVICE(0x05a9, 0x0511), .driver_info = BRIDGE_OV511 },
4977 {USB_DEVICE(0x05a9, 0x0518), .driver_info = BRIDGE_OV518 },
4978 {USB_DEVICE(0x05a9, 0x0519),
4979 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4980 {USB_DEVICE(0x05a9, 0x0530),
4981 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4982 {USB_DEVICE(0x05a9, 0x2800), .driver_info = BRIDGE_OVFX2 },
4983 {USB_DEVICE(0x05a9, 0x4519), .driver_info = BRIDGE_OV519 },
4984 {USB_DEVICE(0x05a9, 0x8519), .driver_info = BRIDGE_OV519 },
4985 {USB_DEVICE(0x05a9, 0xa511), .driver_info = BRIDGE_OV511PLUS },
4986 {USB_DEVICE(0x05a9, 0xa518), .driver_info = BRIDGE_OV518PLUS },
4987 {USB_DEVICE(0x0813, 0x0002), .driver_info = BRIDGE_OV511PLUS },
4988 {USB_DEVICE(0x0b62, 0x0059), .driver_info = BRIDGE_OVFX2 },
4989 {USB_DEVICE(0x0e96, 0xc001), .driver_info = BRIDGE_OVFX2 },
4990 {USB_DEVICE(0x1046, 0x9967), .driver_info = BRIDGE_W9968CF },
4991 {USB_DEVICE(0x8020, 0xef04), .driver_info = BRIDGE_OVFX2 },
4995 MODULE_DEVICE_TABLE(usb, device_table);
4997 /* -- device connect -- */
4998 static int sd_probe(struct usb_interface *intf,
4999 const struct usb_device_id *id)
5001 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
5002 THIS_MODULE);
5005 static struct usb_driver sd_driver = {
5006 .name = MODULE_NAME,
5007 .id_table = device_table,
5008 .probe = sd_probe,
5009 .disconnect = gspca_disconnect,
5010 #ifdef CONFIG_PM
5011 .suspend = gspca_suspend,
5012 .resume = gspca_resume,
5013 .reset_resume = gspca_resume,
5014 #endif
5017 module_usb_driver(sd_driver);
5019 module_param(frame_rate, int, 0644);
5020 MODULE_PARM_DESC(frame_rate, "Frame rate (5, 10, 15, 20 or 30 fps)");