1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2012 Texas Instruments, Inc.
7 * Aneesh V <aneesh@ti.com>
8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/reboot.h>
13 #include <linux/platform_data/emif_plat.h>
15 #include <linux/device.h>
16 #include <linux/platform_device.h>
17 #include <linux/interrupt.h>
18 #include <linux/slab.h>
20 #include <linux/debugfs.h>
21 #include <linux/seq_file.h>
22 #include <linux/module.h>
23 #include <linux/list.h>
24 #include <linux/spinlock.h>
28 #include "jedec_ddr.h"
29 #include "of_memory.h"
32 * struct emif_data - Per device static data for driver's use
33 * @duplicate: Whether the DDR devices attached to this EMIF
34 * instance are exactly same as that on EMIF1. In
35 * this case we can save some memory and processing
36 * @temperature_level: Maximum temperature of LPDDR2 devices attached
37 * to this EMIF - read from MR4 register. If there
38 * are two devices attached to this EMIF, this
39 * value is the maximum of the two temperature
41 * @node: node in the device list
42 * @base: base address of memory-mapped IO registers.
43 * @dev: device pointer.
44 * @addressing table with addressing information from the spec
45 * @regs_cache: An array of 'struct emif_regs' that stores
46 * calculated register values for different
47 * frequencies, to avoid re-calculating them on
48 * each DVFS transition.
49 * @curr_regs: The set of register values used in the last
50 * frequency change (i.e. corresponding to the
51 * frequency in effect at the moment)
52 * @plat_data: Pointer to saved platform data.
53 * @debugfs_root: dentry to the root folder for EMIF in debugfs
54 * @np_ddr: Pointer to ddr device tree node
60 struct list_head node
;
61 unsigned long irq_state
;
64 const struct lpddr2_addressing
*addressing
;
65 struct emif_regs
*regs_cache
[EMIF_MAX_NUM_FREQUENCIES
];
66 struct emif_regs
*curr_regs
;
67 struct emif_platform_data
*plat_data
;
68 struct dentry
*debugfs_root
;
69 struct device_node
*np_ddr
;
72 static struct emif_data
*emif1
;
73 static spinlock_t emif_lock
;
74 static unsigned long irq_state
;
75 static u32 t_ck
; /* DDR clock period in ps */
76 static LIST_HEAD(device_list
);
78 #ifdef CONFIG_DEBUG_FS
79 static void do_emif_regdump_show(struct seq_file
*s
, struct emif_data
*emif
,
80 struct emif_regs
*regs
)
82 u32 type
= emif
->plat_data
->device_info
->type
;
83 u32 ip_rev
= emif
->plat_data
->ip_rev
;
85 seq_printf(s
, "EMIF register cache dump for %dMHz\n",
88 seq_printf(s
, "ref_ctrl_shdw\t: 0x%08x\n", regs
->ref_ctrl_shdw
);
89 seq_printf(s
, "sdram_tim1_shdw\t: 0x%08x\n", regs
->sdram_tim1_shdw
);
90 seq_printf(s
, "sdram_tim2_shdw\t: 0x%08x\n", regs
->sdram_tim2_shdw
);
91 seq_printf(s
, "sdram_tim3_shdw\t: 0x%08x\n", regs
->sdram_tim3_shdw
);
93 if (ip_rev
== EMIF_4D
) {
94 seq_printf(s
, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
95 regs
->read_idle_ctrl_shdw_normal
);
96 seq_printf(s
, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
97 regs
->read_idle_ctrl_shdw_volt_ramp
);
98 } else if (ip_rev
== EMIF_4D5
) {
99 seq_printf(s
, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
100 regs
->dll_calib_ctrl_shdw_normal
);
101 seq_printf(s
, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
102 regs
->dll_calib_ctrl_shdw_volt_ramp
);
105 if (type
== DDR_TYPE_LPDDR2_S2
|| type
== DDR_TYPE_LPDDR2_S4
) {
106 seq_printf(s
, "ref_ctrl_shdw_derated\t: 0x%08x\n",
107 regs
->ref_ctrl_shdw_derated
);
108 seq_printf(s
, "sdram_tim1_shdw_derated\t: 0x%08x\n",
109 regs
->sdram_tim1_shdw_derated
);
110 seq_printf(s
, "sdram_tim3_shdw_derated\t: 0x%08x\n",
111 regs
->sdram_tim3_shdw_derated
);
115 static int emif_regdump_show(struct seq_file
*s
, void *unused
)
117 struct emif_data
*emif
= s
->private;
118 struct emif_regs
**regs_cache
;
122 regs_cache
= emif1
->regs_cache
;
124 regs_cache
= emif
->regs_cache
;
126 for (i
= 0; i
< EMIF_MAX_NUM_FREQUENCIES
&& regs_cache
[i
]; i
++) {
127 do_emif_regdump_show(s
, emif
, regs_cache
[i
]);
134 static int emif_regdump_open(struct inode
*inode
, struct file
*file
)
136 return single_open(file
, emif_regdump_show
, inode
->i_private
);
139 static const struct file_operations emif_regdump_fops
= {
140 .open
= emif_regdump_open
,
142 .release
= single_release
,
145 static int emif_mr4_show(struct seq_file
*s
, void *unused
)
147 struct emif_data
*emif
= s
->private;
149 seq_printf(s
, "MR4=%d\n", emif
->temperature_level
);
153 static int emif_mr4_open(struct inode
*inode
, struct file
*file
)
155 return single_open(file
, emif_mr4_show
, inode
->i_private
);
158 static const struct file_operations emif_mr4_fops
= {
159 .open
= emif_mr4_open
,
161 .release
= single_release
,
164 static int __init_or_module
emif_debugfs_init(struct emif_data
*emif
)
166 struct dentry
*dentry
;
169 dentry
= debugfs_create_dir(dev_name(emif
->dev
), NULL
);
174 emif
->debugfs_root
= dentry
;
176 dentry
= debugfs_create_file("regcache_dump", S_IRUGO
,
177 emif
->debugfs_root
, emif
, &emif_regdump_fops
);
183 dentry
= debugfs_create_file("mr4", S_IRUGO
,
184 emif
->debugfs_root
, emif
, &emif_mr4_fops
);
192 debugfs_remove_recursive(emif
->debugfs_root
);
197 static void __exit
emif_debugfs_exit(struct emif_data
*emif
)
199 debugfs_remove_recursive(emif
->debugfs_root
);
200 emif
->debugfs_root
= NULL
;
203 static inline int __init_or_module
emif_debugfs_init(struct emif_data
*emif
)
208 static inline void __exit
emif_debugfs_exit(struct emif_data
*emif
)
214 * Calculate the period of DDR clock from frequency value
216 static void set_ddr_clk_period(u32 freq
)
218 /* Divide 10^12 by frequency to get period in ps */
219 t_ck
= (u32
)DIV_ROUND_UP_ULL(1000000000000ull, freq
);
223 * Get bus width used by EMIF. Note that this may be different from the
224 * bus width of the DDR devices used. For instance two 16-bit DDR devices
225 * may be connected to a given CS of EMIF. In this case bus width as far
226 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
228 static u32
get_emif_bus_width(struct emif_data
*emif
)
231 void __iomem
*base
= emif
->base
;
233 width
= (readl(base
+ EMIF_SDRAM_CONFIG
) & NARROW_MODE_MASK
)
234 >> NARROW_MODE_SHIFT
;
235 width
= width
== 0 ? 32 : 16;
241 * Get the CL from SDRAM_CONFIG register
243 static u32
get_cl(struct emif_data
*emif
)
246 void __iomem
*base
= emif
->base
;
248 cl
= (readl(base
+ EMIF_SDRAM_CONFIG
) & CL_MASK
) >> CL_SHIFT
;
253 static void set_lpmode(struct emif_data
*emif
, u8 lpmode
)
256 void __iomem
*base
= emif
->base
;
259 * Workaround for errata i743 - LPDDR2 Power-Down State is Not
263 * The EMIF supports power-down state for low power. The EMIF
264 * automatically puts the SDRAM into power-down after the memory is
265 * not accessed for a defined number of cycles and the
266 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
267 * As the EMIF supports automatic output impedance calibration, a ZQ
268 * calibration long command is issued every time it exits active
269 * power-down and precharge power-down modes. The EMIF waits and
270 * blocks any other command during this calibration.
271 * The EMIF does not allow selective disabling of ZQ calibration upon
272 * exit of power-down mode. Due to very short periods of power-down
273 * cycles, ZQ calibration overhead creates bandwidth issues and
274 * increases overall system power consumption. On the other hand,
275 * issuing ZQ calibration long commands when exiting self-refresh is
279 * Because there is no power consumption benefit of the power-down due
280 * to the calibration and there is a performance risk, the guideline
281 * is to not allow power-down state and, therefore, to not have set
282 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
284 if ((emif
->plat_data
->ip_rev
== EMIF_4D
) &&
285 (EMIF_LP_MODE_PWR_DN
== lpmode
)) {
287 "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by"
288 "erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
289 /* rollback LP_MODE to Self-refresh mode */
290 lpmode
= EMIF_LP_MODE_SELF_REFRESH
;
293 temp
= readl(base
+ EMIF_POWER_MANAGEMENT_CONTROL
);
294 temp
&= ~LP_MODE_MASK
;
295 temp
|= (lpmode
<< LP_MODE_SHIFT
);
296 writel(temp
, base
+ EMIF_POWER_MANAGEMENT_CONTROL
);
299 static void do_freq_update(void)
301 struct emif_data
*emif
;
304 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
307 * The EMIF automatically puts the SDRAM into self-refresh mode
308 * after the EMIF has not performed accesses during
309 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
310 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
311 * to 0x2. If during a small window the following three events
313 * - The SR_TIMING counter expires
314 * - And frequency change is requested
315 * - And OCP access is requested
316 * Then it causes instable clock on the DDR interface.
319 * To avoid the occurrence of the three events, the workaround
320 * is to disable the self-refresh when requesting a frequency
321 * change. Before requesting a frequency change the software must
322 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
323 * frequency change has been done, the software can reprogram
324 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
326 list_for_each_entry(emif
, &device_list
, node
) {
327 if (emif
->lpmode
== EMIF_LP_MODE_SELF_REFRESH
)
328 set_lpmode(emif
, EMIF_LP_MODE_DISABLE
);
332 * TODO: Do FREQ_UPDATE here when an API
333 * is available for this as part of the new
337 list_for_each_entry(emif
, &device_list
, node
) {
338 if (emif
->lpmode
== EMIF_LP_MODE_SELF_REFRESH
)
339 set_lpmode(emif
, EMIF_LP_MODE_SELF_REFRESH
);
343 /* Find addressing table entry based on the device's type and density */
344 static const struct lpddr2_addressing
*get_addressing_table(
345 const struct ddr_device_info
*device_info
)
347 u32 index
, type
, density
;
349 type
= device_info
->type
;
350 density
= device_info
->density
;
353 case DDR_TYPE_LPDDR2_S4
:
356 case DDR_TYPE_LPDDR2_S2
:
358 case DDR_DENSITY_1Gb
:
359 case DDR_DENSITY_2Gb
:
370 return &lpddr2_jedec_addressing_table
[index
];
374 * Find the the right timing table from the array of timing
375 * tables of the device using DDR clock frequency
377 static const struct lpddr2_timings
*get_timings_table(struct emif_data
*emif
,
380 u32 i
, min
, max
, freq_nearest
;
381 const struct lpddr2_timings
*timings
= NULL
;
382 const struct lpddr2_timings
*timings_arr
= emif
->plat_data
->timings
;
383 struct device
*dev
= emif
->dev
;
385 /* Start with a very high frequency - 1GHz */
386 freq_nearest
= 1000000000;
389 * Find the timings table such that:
390 * 1. the frequency range covers the required frequency(safe) AND
391 * 2. the max_freq is closest to the required frequency(optimal)
393 for (i
= 0; i
< emif
->plat_data
->timings_arr_size
; i
++) {
394 max
= timings_arr
[i
].max_freq
;
395 min
= timings_arr
[i
].min_freq
;
396 if ((freq
>= min
) && (freq
<= max
) && (max
< freq_nearest
)) {
398 timings
= &timings_arr
[i
];
403 dev_err(dev
, "%s: couldn't find timings for - %dHz\n",
406 dev_dbg(dev
, "%s: timings table: freq %d, speed bin freq %d\n",
407 __func__
, freq
, freq_nearest
);
412 static u32
get_sdram_ref_ctrl_shdw(u32 freq
,
413 const struct lpddr2_addressing
*addressing
)
415 u32 ref_ctrl_shdw
= 0, val
= 0, freq_khz
, t_refi
;
417 /* Scale down frequency and t_refi to avoid overflow */
418 freq_khz
= freq
/ 1000;
419 t_refi
= addressing
->tREFI_ns
/ 100;
422 * refresh rate to be set is 'tREFI(in us) * freq in MHz
423 * division by 10000 to account for change in units
425 val
= t_refi
* freq_khz
/ 10000;
426 ref_ctrl_shdw
|= val
<< REFRESH_RATE_SHIFT
;
428 return ref_ctrl_shdw
;
431 static u32
get_sdram_tim_1_shdw(const struct lpddr2_timings
*timings
,
432 const struct lpddr2_min_tck
*min_tck
,
433 const struct lpddr2_addressing
*addressing
)
435 u32 tim1
= 0, val
= 0;
437 val
= max(min_tck
->tWTR
, DIV_ROUND_UP(timings
->tWTR
, t_ck
)) - 1;
438 tim1
|= val
<< T_WTR_SHIFT
;
440 if (addressing
->num_banks
== B8
)
441 val
= DIV_ROUND_UP(timings
->tFAW
, t_ck
*4);
443 val
= max(min_tck
->tRRD
, DIV_ROUND_UP(timings
->tRRD
, t_ck
));
444 tim1
|= (val
- 1) << T_RRD_SHIFT
;
446 val
= DIV_ROUND_UP(timings
->tRAS_min
+ timings
->tRPab
, t_ck
) - 1;
447 tim1
|= val
<< T_RC_SHIFT
;
449 val
= max(min_tck
->tRASmin
, DIV_ROUND_UP(timings
->tRAS_min
, t_ck
));
450 tim1
|= (val
- 1) << T_RAS_SHIFT
;
452 val
= max(min_tck
->tWR
, DIV_ROUND_UP(timings
->tWR
, t_ck
)) - 1;
453 tim1
|= val
<< T_WR_SHIFT
;
455 val
= max(min_tck
->tRCD
, DIV_ROUND_UP(timings
->tRCD
, t_ck
)) - 1;
456 tim1
|= val
<< T_RCD_SHIFT
;
458 val
= max(min_tck
->tRPab
, DIV_ROUND_UP(timings
->tRPab
, t_ck
)) - 1;
459 tim1
|= val
<< T_RP_SHIFT
;
464 static u32
get_sdram_tim_1_shdw_derated(const struct lpddr2_timings
*timings
,
465 const struct lpddr2_min_tck
*min_tck
,
466 const struct lpddr2_addressing
*addressing
)
468 u32 tim1
= 0, val
= 0;
470 val
= max(min_tck
->tWTR
, DIV_ROUND_UP(timings
->tWTR
, t_ck
)) - 1;
471 tim1
= val
<< T_WTR_SHIFT
;
474 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
475 * to tFAW for de-rating
477 if (addressing
->num_banks
== B8
) {
478 val
= DIV_ROUND_UP(timings
->tFAW
+ 7500, 4 * t_ck
) - 1;
480 val
= DIV_ROUND_UP(timings
->tRRD
+ 1875, t_ck
);
481 val
= max(min_tck
->tRRD
, val
) - 1;
483 tim1
|= val
<< T_RRD_SHIFT
;
485 val
= DIV_ROUND_UP(timings
->tRAS_min
+ timings
->tRPab
+ 1875, t_ck
);
486 tim1
|= (val
- 1) << T_RC_SHIFT
;
488 val
= DIV_ROUND_UP(timings
->tRAS_min
+ 1875, t_ck
);
489 val
= max(min_tck
->tRASmin
, val
) - 1;
490 tim1
|= val
<< T_RAS_SHIFT
;
492 val
= max(min_tck
->tWR
, DIV_ROUND_UP(timings
->tWR
, t_ck
)) - 1;
493 tim1
|= val
<< T_WR_SHIFT
;
495 val
= max(min_tck
->tRCD
, DIV_ROUND_UP(timings
->tRCD
+ 1875, t_ck
));
496 tim1
|= (val
- 1) << T_RCD_SHIFT
;
498 val
= max(min_tck
->tRPab
, DIV_ROUND_UP(timings
->tRPab
+ 1875, t_ck
));
499 tim1
|= (val
- 1) << T_RP_SHIFT
;
504 static u32
get_sdram_tim_2_shdw(const struct lpddr2_timings
*timings
,
505 const struct lpddr2_min_tck
*min_tck
,
506 const struct lpddr2_addressing
*addressing
,
509 u32 tim2
= 0, val
= 0;
511 val
= min_tck
->tCKE
- 1;
512 tim2
|= val
<< T_CKE_SHIFT
;
514 val
= max(min_tck
->tRTP
, DIV_ROUND_UP(timings
->tRTP
, t_ck
)) - 1;
515 tim2
|= val
<< T_RTP_SHIFT
;
517 /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
518 val
= DIV_ROUND_UP(addressing
->tRFCab_ps
+ 10000, t_ck
) - 1;
519 tim2
|= val
<< T_XSNR_SHIFT
;
521 /* XSRD same as XSNR for LPDDR2 */
522 tim2
|= val
<< T_XSRD_SHIFT
;
524 val
= max(min_tck
->tXP
, DIV_ROUND_UP(timings
->tXP
, t_ck
)) - 1;
525 tim2
|= val
<< T_XP_SHIFT
;
530 static u32
get_sdram_tim_3_shdw(const struct lpddr2_timings
*timings
,
531 const struct lpddr2_min_tck
*min_tck
,
532 const struct lpddr2_addressing
*addressing
,
533 u32 type
, u32 ip_rev
, u32 derated
)
535 u32 tim3
= 0, val
= 0, t_dqsck
;
537 val
= timings
->tRAS_max_ns
/ addressing
->tREFI_ns
- 1;
538 val
= val
> 0xF ? 0xF : val
;
539 tim3
|= val
<< T_RAS_MAX_SHIFT
;
541 val
= DIV_ROUND_UP(addressing
->tRFCab_ps
, t_ck
) - 1;
542 tim3
|= val
<< T_RFC_SHIFT
;
544 t_dqsck
= (derated
== EMIF_DERATED_TIMINGS
) ?
545 timings
->tDQSCK_max_derated
: timings
->tDQSCK_max
;
546 if (ip_rev
== EMIF_4D5
)
547 val
= DIV_ROUND_UP(t_dqsck
+ 1000, t_ck
) - 1;
549 val
= DIV_ROUND_UP(t_dqsck
, t_ck
) - 1;
551 tim3
|= val
<< T_TDQSCKMAX_SHIFT
;
553 val
= DIV_ROUND_UP(timings
->tZQCS
, t_ck
) - 1;
554 tim3
|= val
<< ZQ_ZQCS_SHIFT
;
556 val
= DIV_ROUND_UP(timings
->tCKESR
, t_ck
);
557 val
= max(min_tck
->tCKESR
, val
) - 1;
558 tim3
|= val
<< T_CKESR_SHIFT
;
560 if (ip_rev
== EMIF_4D5
) {
561 tim3
|= (EMIF_T_CSTA
- 1) << T_CSTA_SHIFT
;
563 val
= DIV_ROUND_UP(EMIF_T_PDLL_UL
, 128) - 1;
564 tim3
|= val
<< T_PDLL_UL_SHIFT
;
570 static u32
get_zq_config_reg(const struct lpddr2_addressing
*addressing
,
571 bool cs1_used
, bool cal_resistors_per_cs
)
575 val
= EMIF_ZQCS_INTERVAL_US
* 1000 / addressing
->tREFI_ns
;
576 zq
|= val
<< ZQ_REFINTERVAL_SHIFT
;
578 val
= DIV_ROUND_UP(T_ZQCL_DEFAULT_NS
, T_ZQCS_DEFAULT_NS
) - 1;
579 zq
|= val
<< ZQ_ZQCL_MULT_SHIFT
;
581 val
= DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS
, T_ZQCL_DEFAULT_NS
) - 1;
582 zq
|= val
<< ZQ_ZQINIT_MULT_SHIFT
;
584 zq
|= ZQ_SFEXITEN_ENABLE
<< ZQ_SFEXITEN_SHIFT
;
586 if (cal_resistors_per_cs
)
587 zq
|= ZQ_DUALCALEN_ENABLE
<< ZQ_DUALCALEN_SHIFT
;
589 zq
|= ZQ_DUALCALEN_DISABLE
<< ZQ_DUALCALEN_SHIFT
;
591 zq
|= ZQ_CS0EN_MASK
; /* CS0 is used for sure */
593 val
= cs1_used
? 1 : 0;
594 zq
|= val
<< ZQ_CS1EN_SHIFT
;
599 static u32
get_temp_alert_config(const struct lpddr2_addressing
*addressing
,
600 const struct emif_custom_configs
*custom_configs
, bool cs1_used
,
601 u32 sdram_io_width
, u32 emif_bus_width
)
603 u32 alert
= 0, interval
, devcnt
;
605 if (custom_configs
&& (custom_configs
->mask
&
606 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL
))
607 interval
= custom_configs
->temp_alert_poll_interval_ms
;
609 interval
= TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS
;
611 interval
*= 1000000; /* Convert to ns */
612 interval
/= addressing
->tREFI_ns
; /* Convert to refresh cycles */
613 alert
|= (interval
<< TA_REFINTERVAL_SHIFT
);
616 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
617 * also to this form and subtract to get TA_DEVCNT, which is
620 emif_bus_width
= __fls(emif_bus_width
) - 1;
621 devcnt
= emif_bus_width
- sdram_io_width
;
622 alert
|= devcnt
<< TA_DEVCNT_SHIFT
;
624 /* DEVWDT is in 'log2(x) - 3' form */
625 alert
|= (sdram_io_width
- 2) << TA_DEVWDT_SHIFT
;
627 alert
|= 1 << TA_SFEXITEN_SHIFT
;
628 alert
|= 1 << TA_CS0EN_SHIFT
;
629 alert
|= (cs1_used
? 1 : 0) << TA_CS1EN_SHIFT
;
634 static u32
get_read_idle_ctrl_shdw(u8 volt_ramp
)
636 u32 idle
= 0, val
= 0;
639 * Maximum value in normal conditions and increased frequency
640 * when voltage is ramping
643 val
= READ_IDLE_INTERVAL_DVFS
/ t_ck
/ 64 - 1;
648 * READ_IDLE_CTRL register in EMIF4D has same offset and fields
649 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
651 idle
|= val
<< DLL_CALIB_INTERVAL_SHIFT
;
652 idle
|= EMIF_READ_IDLE_LEN_VAL
<< ACK_WAIT_SHIFT
;
657 static u32
get_dll_calib_ctrl_shdw(u8 volt_ramp
)
659 u32 calib
= 0, val
= 0;
661 if (volt_ramp
== DDR_VOLTAGE_RAMPING
)
662 val
= DLL_CALIB_INTERVAL_DVFS
/ t_ck
/ 16 - 1;
664 val
= 0; /* Disabled when voltage is stable */
666 calib
|= val
<< DLL_CALIB_INTERVAL_SHIFT
;
667 calib
|= DLL_CALIB_ACK_WAIT_VAL
<< ACK_WAIT_SHIFT
;
672 static u32
get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings
*timings
,
675 u32 phy
= EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY
, val
= 0;
677 val
= RL
+ DIV_ROUND_UP(timings
->tDQSCK_max
, t_ck
) - 1;
678 phy
|= val
<< READ_LATENCY_SHIFT_4D
;
680 if (freq
<= 100000000)
681 val
= EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY
;
682 else if (freq
<= 200000000)
683 val
= EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY
;
685 val
= EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY
;
687 phy
|= val
<< DLL_SLAVE_DLY_CTRL_SHIFT_4D
;
692 static u32
get_phy_ctrl_1_intelliphy_4d5(u32 freq
, u8 cl
)
694 u32 phy
= EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY
, half_delay
;
697 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
698 * half-delay is not needed else set half-delay
700 if (freq
>= 265000000 && freq
< 267000000)
705 phy
|= half_delay
<< DLL_HALF_DELAY_SHIFT_4D5
;
706 phy
|= ((cl
+ DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS
,
707 t_ck
) - 1) << READ_LATENCY_SHIFT_4D5
);
712 static u32
get_ext_phy_ctrl_2_intelliphy_4d5(void)
714 u32 fifo_we_slave_ratio
;
716 fifo_we_slave_ratio
= DIV_ROUND_CLOSEST(
717 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS
* 256 , t_ck
);
719 return fifo_we_slave_ratio
| fifo_we_slave_ratio
<< 11 |
720 fifo_we_slave_ratio
<< 22;
723 static u32
get_ext_phy_ctrl_3_intelliphy_4d5(void)
725 u32 fifo_we_slave_ratio
;
727 fifo_we_slave_ratio
= DIV_ROUND_CLOSEST(
728 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS
* 256 , t_ck
);
730 return fifo_we_slave_ratio
>> 10 | fifo_we_slave_ratio
<< 1 |
731 fifo_we_slave_ratio
<< 12 | fifo_we_slave_ratio
<< 23;
734 static u32
get_ext_phy_ctrl_4_intelliphy_4d5(void)
736 u32 fifo_we_slave_ratio
;
738 fifo_we_slave_ratio
= DIV_ROUND_CLOSEST(
739 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS
* 256 , t_ck
);
741 return fifo_we_slave_ratio
>> 9 | fifo_we_slave_ratio
<< 2 |
742 fifo_we_slave_ratio
<< 13;
745 static u32
get_pwr_mgmt_ctrl(u32 freq
, struct emif_data
*emif
, u32 ip_rev
)
747 u32 pwr_mgmt_ctrl
= 0, timeout
;
748 u32 lpmode
= EMIF_LP_MODE_SELF_REFRESH
;
749 u32 timeout_perf
= EMIF_LP_MODE_TIMEOUT_PERFORMANCE
;
750 u32 timeout_pwr
= EMIF_LP_MODE_TIMEOUT_POWER
;
751 u32 freq_threshold
= EMIF_LP_MODE_FREQ_THRESHOLD
;
755 struct emif_custom_configs
*cust_cfgs
= emif
->plat_data
->custom_configs
;
757 if (cust_cfgs
&& (cust_cfgs
->mask
& EMIF_CUSTOM_CONFIG_LPMODE
)) {
758 lpmode
= cust_cfgs
->lpmode
;
759 timeout_perf
= cust_cfgs
->lpmode_timeout_performance
;
760 timeout_pwr
= cust_cfgs
->lpmode_timeout_power
;
761 freq_threshold
= cust_cfgs
->lpmode_freq_threshold
;
764 /* Timeout based on DDR frequency */
765 timeout
= freq
>= freq_threshold
? timeout_perf
: timeout_pwr
;
768 * The value to be set in register is "log2(timeout) - 3"
769 * if timeout < 16 load 0 in register
770 * if timeout is not a power of 2, round to next highest power of 2
775 if (timeout
& (timeout
- 1))
777 timeout
= __fls(timeout
) - 3;
781 case EMIF_LP_MODE_CLOCK_STOP
:
782 shift
= CS_TIM_SHIFT
;
785 case EMIF_LP_MODE_SELF_REFRESH
:
786 /* Workaround for errata i735 */
790 shift
= SR_TIM_SHIFT
;
793 case EMIF_LP_MODE_PWR_DN
:
794 shift
= PD_TIM_SHIFT
;
797 case EMIF_LP_MODE_DISABLE
:
803 /* Round to maximum in case of overflow, BUT warn! */
804 if (lpmode
!= EMIF_LP_MODE_DISABLE
&& timeout
> mask
>> shift
) {
805 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
810 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
811 timeout
, mask
>> shift
);
812 timeout
= mask
>> shift
;
815 /* Setup required timing */
816 pwr_mgmt_ctrl
= (timeout
<< shift
) & mask
;
817 /* setup a default mask for rest of the modes */
818 pwr_mgmt_ctrl
|= (SR_TIM_MASK
| CS_TIM_MASK
| PD_TIM_MASK
) &
821 /* No CS_TIM in EMIF_4D5 */
822 if (ip_rev
== EMIF_4D5
)
823 pwr_mgmt_ctrl
&= ~CS_TIM_MASK
;
825 pwr_mgmt_ctrl
|= lpmode
<< LP_MODE_SHIFT
;
827 return pwr_mgmt_ctrl
;
831 * Get the temperature level of the EMIF instance:
832 * Reads the MR4 register of attached SDRAM parts to find out the temperature
833 * level. If there are two parts attached(one on each CS), then the temperature
834 * level for the EMIF instance is the higher of the two temperatures.
836 static void get_temperature_level(struct emif_data
*emif
)
838 u32 temp
, temperature_level
;
843 /* Read mode register 4 */
844 writel(DDR_MR4
, base
+ EMIF_LPDDR2_MODE_REG_CONFIG
);
845 temperature_level
= readl(base
+ EMIF_LPDDR2_MODE_REG_DATA
);
846 temperature_level
= (temperature_level
& MR4_SDRAM_REF_RATE_MASK
) >>
847 MR4_SDRAM_REF_RATE_SHIFT
;
849 if (emif
->plat_data
->device_info
->cs1_used
) {
850 writel(DDR_MR4
| CS_MASK
, base
+ EMIF_LPDDR2_MODE_REG_CONFIG
);
851 temp
= readl(base
+ EMIF_LPDDR2_MODE_REG_DATA
);
852 temp
= (temp
& MR4_SDRAM_REF_RATE_MASK
)
853 >> MR4_SDRAM_REF_RATE_SHIFT
;
854 temperature_level
= max(temp
, temperature_level
);
857 /* treat everything less than nominal(3) in MR4 as nominal */
858 if (unlikely(temperature_level
< SDRAM_TEMP_NOMINAL
))
859 temperature_level
= SDRAM_TEMP_NOMINAL
;
861 /* if we get reserved value in MR4 persist with the existing value */
862 if (likely(temperature_level
!= SDRAM_TEMP_RESERVED_4
))
863 emif
->temperature_level
= temperature_level
;
867 * Program EMIF shadow registers that are not dependent on temperature
870 static void setup_registers(struct emif_data
*emif
, struct emif_regs
*regs
)
872 void __iomem
*base
= emif
->base
;
874 writel(regs
->sdram_tim2_shdw
, base
+ EMIF_SDRAM_TIMING_2_SHDW
);
875 writel(regs
->phy_ctrl_1_shdw
, base
+ EMIF_DDR_PHY_CTRL_1_SHDW
);
876 writel(regs
->pwr_mgmt_ctrl_shdw
,
877 base
+ EMIF_POWER_MANAGEMENT_CTRL_SHDW
);
879 /* Settings specific for EMIF4D5 */
880 if (emif
->plat_data
->ip_rev
!= EMIF_4D5
)
882 writel(regs
->ext_phy_ctrl_2_shdw
, base
+ EMIF_EXT_PHY_CTRL_2_SHDW
);
883 writel(regs
->ext_phy_ctrl_3_shdw
, base
+ EMIF_EXT_PHY_CTRL_3_SHDW
);
884 writel(regs
->ext_phy_ctrl_4_shdw
, base
+ EMIF_EXT_PHY_CTRL_4_SHDW
);
888 * When voltage ramps dll calibration and forced read idle should
891 static void setup_volt_sensitive_regs(struct emif_data
*emif
,
892 struct emif_regs
*regs
, u32 volt_state
)
895 void __iomem
*base
= emif
->base
;
898 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
899 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
900 * is an alias of the respective read_idle_ctrl_shdw_* (members of
901 * a union). So, the below code takes care of both cases
903 if (volt_state
== DDR_VOLTAGE_RAMPING
)
904 calib_ctrl
= regs
->dll_calib_ctrl_shdw_volt_ramp
;
906 calib_ctrl
= regs
->dll_calib_ctrl_shdw_normal
;
908 writel(calib_ctrl
, base
+ EMIF_DLL_CALIB_CTRL_SHDW
);
912 * setup_temperature_sensitive_regs() - set the timings for temperature
913 * sensitive registers. This happens once at initialisation time based
914 * on the temperature at boot time and subsequently based on the temperature
915 * alert interrupt. Temperature alert can happen when the temperature
916 * increases or drops. So this function can have the effect of either
917 * derating the timings or going back to nominal values.
919 static void setup_temperature_sensitive_regs(struct emif_data
*emif
,
920 struct emif_regs
*regs
)
922 u32 tim1
, tim3
, ref_ctrl
, type
;
923 void __iomem
*base
= emif
->base
;
926 type
= emif
->plat_data
->device_info
->type
;
928 tim1
= regs
->sdram_tim1_shdw
;
929 tim3
= regs
->sdram_tim3_shdw
;
930 ref_ctrl
= regs
->ref_ctrl_shdw
;
932 /* No de-rating for non-lpddr2 devices */
933 if (type
!= DDR_TYPE_LPDDR2_S2
&& type
!= DDR_TYPE_LPDDR2_S4
)
936 temperature
= emif
->temperature_level
;
937 if (temperature
== SDRAM_TEMP_HIGH_DERATE_REFRESH
) {
938 ref_ctrl
= regs
->ref_ctrl_shdw_derated
;
939 } else if (temperature
== SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS
) {
940 tim1
= regs
->sdram_tim1_shdw_derated
;
941 tim3
= regs
->sdram_tim3_shdw_derated
;
942 ref_ctrl
= regs
->ref_ctrl_shdw_derated
;
946 writel(tim1
, base
+ EMIF_SDRAM_TIMING_1_SHDW
);
947 writel(tim3
, base
+ EMIF_SDRAM_TIMING_3_SHDW
);
948 writel(ref_ctrl
, base
+ EMIF_SDRAM_REFRESH_CTRL_SHDW
);
951 static irqreturn_t
handle_temp_alert(void __iomem
*base
, struct emif_data
*emif
)
954 irqreturn_t ret
= IRQ_HANDLED
;
955 struct emif_custom_configs
*custom_configs
;
957 spin_lock_irqsave(&emif_lock
, irq_state
);
958 old_temp_level
= emif
->temperature_level
;
959 get_temperature_level(emif
);
961 if (unlikely(emif
->temperature_level
== old_temp_level
)) {
963 } else if (!emif
->curr_regs
) {
964 dev_err(emif
->dev
, "temperature alert before registers are calculated, not de-rating timings\n");
968 custom_configs
= emif
->plat_data
->custom_configs
;
971 * IF we detect higher than "nominal rating" from DDR sensor
972 * on an unsupported DDR part, shutdown system
974 if (custom_configs
&& !(custom_configs
->mask
&
975 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART
)) {
976 if (emif
->temperature_level
>= SDRAM_TEMP_HIGH_DERATE_REFRESH
) {
978 "%s:NOT Extended temperature capable memory."
979 "Converting MR4=0x%02x as shutdown event\n",
980 __func__
, emif
->temperature_level
);
982 * Temperature far too high - do kernel_power_off()
983 * from thread context
985 emif
->temperature_level
= SDRAM_TEMP_VERY_HIGH_SHUTDOWN
;
986 ret
= IRQ_WAKE_THREAD
;
991 if (emif
->temperature_level
< old_temp_level
||
992 emif
->temperature_level
== SDRAM_TEMP_VERY_HIGH_SHUTDOWN
) {
994 * Temperature coming down - defer handling to thread OR
995 * Temperature far too high - do kernel_power_off() from
998 ret
= IRQ_WAKE_THREAD
;
1000 /* Temperature is going up - handle immediately */
1001 setup_temperature_sensitive_regs(emif
, emif
->curr_regs
);
1006 spin_unlock_irqrestore(&emif_lock
, irq_state
);
1010 static irqreturn_t
emif_interrupt_handler(int irq
, void *dev_id
)
1013 struct emif_data
*emif
= dev_id
;
1014 void __iomem
*base
= emif
->base
;
1015 struct device
*dev
= emif
->dev
;
1016 irqreturn_t ret
= IRQ_HANDLED
;
1018 /* Save the status and clear it */
1019 interrupts
= readl(base
+ EMIF_SYSTEM_OCP_INTERRUPT_STATUS
);
1020 writel(interrupts
, base
+ EMIF_SYSTEM_OCP_INTERRUPT_STATUS
);
1023 * Handle temperature alert
1024 * Temperature alert should be same for all ports
1025 * So, it's enough to process it only for one of the ports
1027 if (interrupts
& TA_SYS_MASK
)
1028 ret
= handle_temp_alert(base
, emif
);
1030 if (interrupts
& ERR_SYS_MASK
)
1031 dev_err(dev
, "Access error from SYS port - %x\n", interrupts
);
1033 if (emif
->plat_data
->hw_caps
& EMIF_HW_CAPS_LL_INTERFACE
) {
1034 /* Save the status and clear it */
1035 interrupts
= readl(base
+ EMIF_LL_OCP_INTERRUPT_STATUS
);
1036 writel(interrupts
, base
+ EMIF_LL_OCP_INTERRUPT_STATUS
);
1038 if (interrupts
& ERR_LL_MASK
)
1039 dev_err(dev
, "Access error from LL port - %x\n",
1046 static irqreturn_t
emif_threaded_isr(int irq
, void *dev_id
)
1048 struct emif_data
*emif
= dev_id
;
1050 if (emif
->temperature_level
== SDRAM_TEMP_VERY_HIGH_SHUTDOWN
) {
1051 dev_emerg(emif
->dev
, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1053 /* If we have Power OFF ability, use it, else try restarting */
1057 WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1058 kernel_restart("SDRAM Over-temp Emergency restart");
1063 spin_lock_irqsave(&emif_lock
, irq_state
);
1065 if (emif
->curr_regs
) {
1066 setup_temperature_sensitive_regs(emif
, emif
->curr_regs
);
1069 dev_err(emif
->dev
, "temperature alert before registers are calculated, not de-rating timings\n");
1072 spin_unlock_irqrestore(&emif_lock
, irq_state
);
1077 static void clear_all_interrupts(struct emif_data
*emif
)
1079 void __iomem
*base
= emif
->base
;
1081 writel(readl(base
+ EMIF_SYSTEM_OCP_INTERRUPT_STATUS
),
1082 base
+ EMIF_SYSTEM_OCP_INTERRUPT_STATUS
);
1083 if (emif
->plat_data
->hw_caps
& EMIF_HW_CAPS_LL_INTERFACE
)
1084 writel(readl(base
+ EMIF_LL_OCP_INTERRUPT_STATUS
),
1085 base
+ EMIF_LL_OCP_INTERRUPT_STATUS
);
1088 static void disable_and_clear_all_interrupts(struct emif_data
*emif
)
1090 void __iomem
*base
= emif
->base
;
1092 /* Disable all interrupts */
1093 writel(readl(base
+ EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET
),
1094 base
+ EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR
);
1095 if (emif
->plat_data
->hw_caps
& EMIF_HW_CAPS_LL_INTERFACE
)
1096 writel(readl(base
+ EMIF_LL_OCP_INTERRUPT_ENABLE_SET
),
1097 base
+ EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR
);
1099 /* Clear all interrupts */
1100 clear_all_interrupts(emif
);
1103 static int __init_or_module
setup_interrupts(struct emif_data
*emif
, u32 irq
)
1105 u32 interrupts
, type
;
1106 void __iomem
*base
= emif
->base
;
1108 type
= emif
->plat_data
->device_info
->type
;
1110 clear_all_interrupts(emif
);
1112 /* Enable interrupts for SYS interface */
1113 interrupts
= EN_ERR_SYS_MASK
;
1114 if (type
== DDR_TYPE_LPDDR2_S2
|| type
== DDR_TYPE_LPDDR2_S4
)
1115 interrupts
|= EN_TA_SYS_MASK
;
1116 writel(interrupts
, base
+ EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET
);
1118 /* Enable interrupts for LL interface */
1119 if (emif
->plat_data
->hw_caps
& EMIF_HW_CAPS_LL_INTERFACE
) {
1120 /* TA need not be enabled for LL */
1121 interrupts
= EN_ERR_LL_MASK
;
1122 writel(interrupts
, base
+ EMIF_LL_OCP_INTERRUPT_ENABLE_SET
);
1125 /* setup IRQ handlers */
1126 return devm_request_threaded_irq(emif
->dev
, irq
,
1127 emif_interrupt_handler
,
1129 0, dev_name(emif
->dev
),
1134 static void __init_or_module
emif_onetime_settings(struct emif_data
*emif
)
1136 u32 pwr_mgmt_ctrl
, zq
, temp_alert_cfg
;
1137 void __iomem
*base
= emif
->base
;
1138 const struct lpddr2_addressing
*addressing
;
1139 const struct ddr_device_info
*device_info
;
1141 device_info
= emif
->plat_data
->device_info
;
1142 addressing
= get_addressing_table(device_info
);
1145 * Init power management settings
1146 * We don't know the frequency yet. Use a high frequency
1147 * value for a conservative timeout setting
1149 pwr_mgmt_ctrl
= get_pwr_mgmt_ctrl(1000000000, emif
,
1150 emif
->plat_data
->ip_rev
);
1151 emif
->lpmode
= (pwr_mgmt_ctrl
& LP_MODE_MASK
) >> LP_MODE_SHIFT
;
1152 writel(pwr_mgmt_ctrl
, base
+ EMIF_POWER_MANAGEMENT_CONTROL
);
1154 /* Init ZQ calibration settings */
1155 zq
= get_zq_config_reg(addressing
, device_info
->cs1_used
,
1156 device_info
->cal_resistors_per_cs
);
1157 writel(zq
, base
+ EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG
);
1159 /* Check temperature level temperature level*/
1160 get_temperature_level(emif
);
1161 if (emif
->temperature_level
== SDRAM_TEMP_VERY_HIGH_SHUTDOWN
)
1162 dev_emerg(emif
->dev
, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1164 /* Init temperature polling */
1165 temp_alert_cfg
= get_temp_alert_config(addressing
,
1166 emif
->plat_data
->custom_configs
, device_info
->cs1_used
,
1167 device_info
->io_width
, get_emif_bus_width(emif
));
1168 writel(temp_alert_cfg
, base
+ EMIF_TEMPERATURE_ALERT_CONFIG
);
1171 * Program external PHY control registers that are not frequency
1174 if (emif
->plat_data
->phy_type
!= EMIF_PHY_TYPE_INTELLIPHY
)
1176 writel(EMIF_EXT_PHY_CTRL_1_VAL
, base
+ EMIF_EXT_PHY_CTRL_1_SHDW
);
1177 writel(EMIF_EXT_PHY_CTRL_5_VAL
, base
+ EMIF_EXT_PHY_CTRL_5_SHDW
);
1178 writel(EMIF_EXT_PHY_CTRL_6_VAL
, base
+ EMIF_EXT_PHY_CTRL_6_SHDW
);
1179 writel(EMIF_EXT_PHY_CTRL_7_VAL
, base
+ EMIF_EXT_PHY_CTRL_7_SHDW
);
1180 writel(EMIF_EXT_PHY_CTRL_8_VAL
, base
+ EMIF_EXT_PHY_CTRL_8_SHDW
);
1181 writel(EMIF_EXT_PHY_CTRL_9_VAL
, base
+ EMIF_EXT_PHY_CTRL_9_SHDW
);
1182 writel(EMIF_EXT_PHY_CTRL_10_VAL
, base
+ EMIF_EXT_PHY_CTRL_10_SHDW
);
1183 writel(EMIF_EXT_PHY_CTRL_11_VAL
, base
+ EMIF_EXT_PHY_CTRL_11_SHDW
);
1184 writel(EMIF_EXT_PHY_CTRL_12_VAL
, base
+ EMIF_EXT_PHY_CTRL_12_SHDW
);
1185 writel(EMIF_EXT_PHY_CTRL_13_VAL
, base
+ EMIF_EXT_PHY_CTRL_13_SHDW
);
1186 writel(EMIF_EXT_PHY_CTRL_14_VAL
, base
+ EMIF_EXT_PHY_CTRL_14_SHDW
);
1187 writel(EMIF_EXT_PHY_CTRL_15_VAL
, base
+ EMIF_EXT_PHY_CTRL_15_SHDW
);
1188 writel(EMIF_EXT_PHY_CTRL_16_VAL
, base
+ EMIF_EXT_PHY_CTRL_16_SHDW
);
1189 writel(EMIF_EXT_PHY_CTRL_17_VAL
, base
+ EMIF_EXT_PHY_CTRL_17_SHDW
);
1190 writel(EMIF_EXT_PHY_CTRL_18_VAL
, base
+ EMIF_EXT_PHY_CTRL_18_SHDW
);
1191 writel(EMIF_EXT_PHY_CTRL_19_VAL
, base
+ EMIF_EXT_PHY_CTRL_19_SHDW
);
1192 writel(EMIF_EXT_PHY_CTRL_20_VAL
, base
+ EMIF_EXT_PHY_CTRL_20_SHDW
);
1193 writel(EMIF_EXT_PHY_CTRL_21_VAL
, base
+ EMIF_EXT_PHY_CTRL_21_SHDW
);
1194 writel(EMIF_EXT_PHY_CTRL_22_VAL
, base
+ EMIF_EXT_PHY_CTRL_22_SHDW
);
1195 writel(EMIF_EXT_PHY_CTRL_23_VAL
, base
+ EMIF_EXT_PHY_CTRL_23_SHDW
);
1196 writel(EMIF_EXT_PHY_CTRL_24_VAL
, base
+ EMIF_EXT_PHY_CTRL_24_SHDW
);
1199 static void get_default_timings(struct emif_data
*emif
)
1201 struct emif_platform_data
*pd
= emif
->plat_data
;
1203 pd
->timings
= lpddr2_jedec_timings
;
1204 pd
->timings_arr_size
= ARRAY_SIZE(lpddr2_jedec_timings
);
1206 dev_warn(emif
->dev
, "%s: using default timings\n", __func__
);
1209 static int is_dev_data_valid(u32 type
, u32 density
, u32 io_width
, u32 phy_type
,
1210 u32 ip_rev
, struct device
*dev
)
1214 valid
= (type
== DDR_TYPE_LPDDR2_S4
||
1215 type
== DDR_TYPE_LPDDR2_S2
)
1216 && (density
>= DDR_DENSITY_64Mb
1217 && density
<= DDR_DENSITY_8Gb
)
1218 && (io_width
>= DDR_IO_WIDTH_8
1219 && io_width
<= DDR_IO_WIDTH_32
);
1221 /* Combinations of EMIF and PHY revisions that we support today */
1224 valid
= valid
&& (phy_type
== EMIF_PHY_TYPE_ATTILAPHY
);
1227 valid
= valid
&& (phy_type
== EMIF_PHY_TYPE_INTELLIPHY
);
1234 dev_err(dev
, "%s: invalid DDR details\n", __func__
);
1238 static int is_custom_config_valid(struct emif_custom_configs
*cust_cfgs
,
1243 if ((cust_cfgs
->mask
& EMIF_CUSTOM_CONFIG_LPMODE
) &&
1244 (cust_cfgs
->lpmode
!= EMIF_LP_MODE_DISABLE
))
1245 valid
= cust_cfgs
->lpmode_freq_threshold
&&
1246 cust_cfgs
->lpmode_timeout_performance
&&
1247 cust_cfgs
->lpmode_timeout_power
;
1249 if (cust_cfgs
->mask
& EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL
)
1250 valid
= valid
&& cust_cfgs
->temp_alert_poll_interval_ms
;
1253 dev_warn(dev
, "%s: invalid custom configs\n", __func__
);
1258 #if defined(CONFIG_OF)
1259 static void __init_or_module
of_get_custom_configs(struct device_node
*np_emif
,
1260 struct emif_data
*emif
)
1262 struct emif_custom_configs
*cust_cfgs
= NULL
;
1264 const __be32
*lpmode
, *poll_intvl
;
1266 lpmode
= of_get_property(np_emif
, "low-power-mode", &len
);
1267 poll_intvl
= of_get_property(np_emif
, "temp-alert-poll-interval", &len
);
1269 if (lpmode
|| poll_intvl
)
1270 cust_cfgs
= devm_kzalloc(emif
->dev
, sizeof(*cust_cfgs
),
1277 cust_cfgs
->mask
|= EMIF_CUSTOM_CONFIG_LPMODE
;
1278 cust_cfgs
->lpmode
= be32_to_cpup(lpmode
);
1279 of_property_read_u32(np_emif
,
1280 "low-power-mode-timeout-performance",
1281 &cust_cfgs
->lpmode_timeout_performance
);
1282 of_property_read_u32(np_emif
,
1283 "low-power-mode-timeout-power",
1284 &cust_cfgs
->lpmode_timeout_power
);
1285 of_property_read_u32(np_emif
,
1286 "low-power-mode-freq-threshold",
1287 &cust_cfgs
->lpmode_freq_threshold
);
1292 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL
;
1293 cust_cfgs
->temp_alert_poll_interval_ms
=
1294 be32_to_cpup(poll_intvl
);
1297 if (of_find_property(np_emif
, "extended-temp-part", &len
))
1298 cust_cfgs
->mask
|= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART
;
1300 if (!is_custom_config_valid(cust_cfgs
, emif
->dev
)) {
1301 devm_kfree(emif
->dev
, cust_cfgs
);
1305 emif
->plat_data
->custom_configs
= cust_cfgs
;
1308 static void __init_or_module
of_get_ddr_info(struct device_node
*np_emif
,
1309 struct device_node
*np_ddr
,
1310 struct ddr_device_info
*dev_info
)
1312 u32 density
= 0, io_width
= 0;
1315 if (of_find_property(np_emif
, "cs1-used", &len
))
1316 dev_info
->cs1_used
= true;
1318 if (of_find_property(np_emif
, "cal-resistor-per-cs", &len
))
1319 dev_info
->cal_resistors_per_cs
= true;
1321 if (of_device_is_compatible(np_ddr
, "jedec,lpddr2-s4"))
1322 dev_info
->type
= DDR_TYPE_LPDDR2_S4
;
1323 else if (of_device_is_compatible(np_ddr
, "jedec,lpddr2-s2"))
1324 dev_info
->type
= DDR_TYPE_LPDDR2_S2
;
1326 of_property_read_u32(np_ddr
, "density", &density
);
1327 of_property_read_u32(np_ddr
, "io-width", &io_width
);
1329 /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1330 if (density
& (density
- 1))
1331 dev_info
->density
= 0;
1333 dev_info
->density
= __fls(density
) - 5;
1335 /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1336 if (io_width
& (io_width
- 1))
1337 dev_info
->io_width
= 0;
1339 dev_info
->io_width
= __fls(io_width
) - 1;
1342 static struct emif_data
* __init_or_module
of_get_memory_device_details(
1343 struct device_node
*np_emif
, struct device
*dev
)
1345 struct emif_data
*emif
= NULL
;
1346 struct ddr_device_info
*dev_info
= NULL
;
1347 struct emif_platform_data
*pd
= NULL
;
1348 struct device_node
*np_ddr
;
1351 np_ddr
= of_parse_phandle(np_emif
, "device-handle", 0);
1354 emif
= devm_kzalloc(dev
, sizeof(struct emif_data
), GFP_KERNEL
);
1355 pd
= devm_kzalloc(dev
, sizeof(*pd
), GFP_KERNEL
);
1356 dev_info
= devm_kzalloc(dev
, sizeof(*dev_info
), GFP_KERNEL
);
1358 if (!emif
|| !pd
|| !dev_info
) {
1359 dev_err(dev
, "%s: Out of memory!!\n",
1364 emif
->plat_data
= pd
;
1365 pd
->device_info
= dev_info
;
1367 emif
->np_ddr
= np_ddr
;
1368 emif
->temperature_level
= SDRAM_TEMP_NOMINAL
;
1370 if (of_device_is_compatible(np_emif
, "ti,emif-4d"))
1371 emif
->plat_data
->ip_rev
= EMIF_4D
;
1372 else if (of_device_is_compatible(np_emif
, "ti,emif-4d5"))
1373 emif
->plat_data
->ip_rev
= EMIF_4D5
;
1375 of_property_read_u32(np_emif
, "phy-type", &pd
->phy_type
);
1377 if (of_find_property(np_emif
, "hw-caps-ll-interface", &len
))
1378 pd
->hw_caps
|= EMIF_HW_CAPS_LL_INTERFACE
;
1380 of_get_ddr_info(np_emif
, np_ddr
, dev_info
);
1381 if (!is_dev_data_valid(pd
->device_info
->type
, pd
->device_info
->density
,
1382 pd
->device_info
->io_width
, pd
->phy_type
, pd
->ip_rev
,
1384 dev_err(dev
, "%s: invalid device data!!\n", __func__
);
1388 * For EMIF instances other than EMIF1 see if the devices connected
1389 * are exactly same as on EMIF1(which is typically the case). If so,
1390 * mark it as a duplicate of EMIF1. This will save some memory and
1393 if (emif1
&& emif1
->np_ddr
== np_ddr
) {
1394 emif
->duplicate
= true;
1397 dev_warn(emif
->dev
, "%s: Non-symmetric DDR geometry\n",
1401 of_get_custom_configs(np_emif
, emif
);
1402 emif
->plat_data
->timings
= of_get_ddr_timings(np_ddr
, emif
->dev
,
1403 emif
->plat_data
->device_info
->type
,
1404 &emif
->plat_data
->timings_arr_size
);
1406 emif
->plat_data
->min_tck
= of_get_min_tck(np_ddr
, emif
->dev
);
1417 static struct emif_data
* __init_or_module
of_get_memory_device_details(
1418 struct device_node
*np_emif
, struct device
*dev
)
1424 static struct emif_data
*__init_or_module
get_device_details(
1425 struct platform_device
*pdev
)
1428 struct emif_data
*emif
= NULL
;
1429 struct ddr_device_info
*dev_info
;
1430 struct emif_custom_configs
*cust_cfgs
;
1431 struct emif_platform_data
*pd
;
1435 pd
= pdev
->dev
.platform_data
;
1438 if (!(pd
&& pd
->device_info
&& is_dev_data_valid(pd
->device_info
->type
,
1439 pd
->device_info
->density
, pd
->device_info
->io_width
,
1440 pd
->phy_type
, pd
->ip_rev
, dev
))) {
1441 dev_err(dev
, "%s: invalid device data\n", __func__
);
1445 emif
= devm_kzalloc(dev
, sizeof(*emif
), GFP_KERNEL
);
1446 temp
= devm_kzalloc(dev
, sizeof(*pd
), GFP_KERNEL
);
1447 dev_info
= devm_kzalloc(dev
, sizeof(*dev_info
), GFP_KERNEL
);
1449 if (!emif
|| !pd
|| !dev_info
) {
1450 dev_err(dev
, "%s:%d: allocation error\n", __func__
, __LINE__
);
1454 memcpy(temp
, pd
, sizeof(*pd
));
1456 memcpy(dev_info
, pd
->device_info
, sizeof(*dev_info
));
1458 pd
->device_info
= dev_info
;
1459 emif
->plat_data
= pd
;
1461 emif
->temperature_level
= SDRAM_TEMP_NOMINAL
;
1464 * For EMIF instances other than EMIF1 see if the devices connected
1465 * are exactly same as on EMIF1(which is typically the case). If so,
1466 * mark it as a duplicate of EMIF1 and skip copying timings data.
1467 * This will save some memory and some computation later.
1469 emif
->duplicate
= emif1
&& (memcmp(dev_info
,
1470 emif1
->plat_data
->device_info
,
1471 sizeof(struct ddr_device_info
)) == 0);
1473 if (emif
->duplicate
) {
1478 dev_warn(emif
->dev
, "%s: Non-symmetric DDR geometry\n",
1483 * Copy custom configs - ignore allocation error, if any, as
1484 * custom_configs is not very critical
1486 cust_cfgs
= pd
->custom_configs
;
1487 if (cust_cfgs
&& is_custom_config_valid(cust_cfgs
, dev
)) {
1488 temp
= devm_kzalloc(dev
, sizeof(*cust_cfgs
), GFP_KERNEL
);
1490 memcpy(temp
, cust_cfgs
, sizeof(*cust_cfgs
));
1492 dev_warn(dev
, "%s:%d: allocation error\n", __func__
,
1494 pd
->custom_configs
= temp
;
1498 * Copy timings and min-tck values from platform data. If it is not
1499 * available or if memory allocation fails, use JEDEC defaults
1501 size
= sizeof(struct lpddr2_timings
) * pd
->timings_arr_size
;
1503 temp
= devm_kzalloc(dev
, size
, GFP_KERNEL
);
1505 memcpy(temp
, pd
->timings
, size
);
1508 dev_warn(dev
, "%s:%d: allocation error\n", __func__
,
1510 get_default_timings(emif
);
1513 get_default_timings(emif
);
1517 temp
= devm_kzalloc(dev
, sizeof(*pd
->min_tck
), GFP_KERNEL
);
1519 memcpy(temp
, pd
->min_tck
, sizeof(*pd
->min_tck
));
1522 dev_warn(dev
, "%s:%d: allocation error\n", __func__
,
1524 pd
->min_tck
= &lpddr2_jedec_min_tck
;
1527 pd
->min_tck
= &lpddr2_jedec_min_tck
;
1537 static int __init_or_module
emif_probe(struct platform_device
*pdev
)
1539 struct emif_data
*emif
;
1540 struct resource
*res
;
1543 if (pdev
->dev
.of_node
)
1544 emif
= of_get_memory_device_details(pdev
->dev
.of_node
, &pdev
->dev
);
1546 emif
= get_device_details(pdev
);
1549 pr_err("%s: error getting device data\n", __func__
);
1553 list_add(&emif
->node
, &device_list
);
1554 emif
->addressing
= get_addressing_table(emif
->plat_data
->device_info
);
1556 /* Save pointers to each other in emif and device structures */
1557 emif
->dev
= &pdev
->dev
;
1558 platform_set_drvdata(pdev
, emif
);
1560 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1561 emif
->base
= devm_ioremap_resource(emif
->dev
, res
);
1562 if (IS_ERR(emif
->base
))
1565 irq
= platform_get_irq(pdev
, 0);
1567 dev_err(emif
->dev
, "%s: error getting IRQ resource - %d\n",
1572 emif_onetime_settings(emif
);
1573 emif_debugfs_init(emif
);
1574 disable_and_clear_all_interrupts(emif
);
1575 setup_interrupts(emif
, irq
);
1577 /* One-time actions taken on probing the first device */
1580 spin_lock_init(&emif_lock
);
1583 * TODO: register notifiers for frequency and voltage
1584 * change here once the respective frameworks are
1589 dev_info(&pdev
->dev
, "%s: device configured with addr = %p and IRQ%d\n",
1590 __func__
, emif
->base
, irq
);
1597 static int __exit
emif_remove(struct platform_device
*pdev
)
1599 struct emif_data
*emif
= platform_get_drvdata(pdev
);
1601 emif_debugfs_exit(emif
);
1606 static void emif_shutdown(struct platform_device
*pdev
)
1608 struct emif_data
*emif
= platform_get_drvdata(pdev
);
1610 disable_and_clear_all_interrupts(emif
);
1613 static int get_emif_reg_values(struct emif_data
*emif
, u32 freq
,
1614 struct emif_regs
*regs
)
1616 u32 ip_rev
, phy_type
;
1618 const struct lpddr2_timings
*timings
;
1619 const struct lpddr2_min_tck
*min_tck
;
1620 const struct ddr_device_info
*device_info
;
1621 const struct lpddr2_addressing
*addressing
;
1622 struct emif_data
*emif_for_calc
;
1627 * If the devices on this EMIF instance is duplicate of EMIF1,
1628 * use EMIF1 details for the calculation
1630 emif_for_calc
= emif
->duplicate
? emif1
: emif
;
1631 timings
= get_timings_table(emif_for_calc
, freq
);
1632 addressing
= emif_for_calc
->addressing
;
1633 if (!timings
|| !addressing
) {
1634 dev_err(dev
, "%s: not enough data available for %dHz",
1639 device_info
= emif_for_calc
->plat_data
->device_info
;
1640 type
= device_info
->type
;
1641 ip_rev
= emif_for_calc
->plat_data
->ip_rev
;
1642 phy_type
= emif_for_calc
->plat_data
->phy_type
;
1644 min_tck
= emif_for_calc
->plat_data
->min_tck
;
1646 set_ddr_clk_period(freq
);
1648 regs
->ref_ctrl_shdw
= get_sdram_ref_ctrl_shdw(freq
, addressing
);
1649 regs
->sdram_tim1_shdw
= get_sdram_tim_1_shdw(timings
, min_tck
,
1651 regs
->sdram_tim2_shdw
= get_sdram_tim_2_shdw(timings
, min_tck
,
1653 regs
->sdram_tim3_shdw
= get_sdram_tim_3_shdw(timings
, min_tck
,
1654 addressing
, type
, ip_rev
, EMIF_NORMAL_TIMINGS
);
1658 if (phy_type
== EMIF_PHY_TYPE_ATTILAPHY
&& ip_rev
== EMIF_4D
) {
1659 regs
->phy_ctrl_1_shdw
= get_ddr_phy_ctrl_1_attilaphy_4d(
1661 } else if (phy_type
== EMIF_PHY_TYPE_INTELLIPHY
&& ip_rev
== EMIF_4D5
) {
1662 regs
->phy_ctrl_1_shdw
= get_phy_ctrl_1_intelliphy_4d5(freq
, cl
);
1663 regs
->ext_phy_ctrl_2_shdw
= get_ext_phy_ctrl_2_intelliphy_4d5();
1664 regs
->ext_phy_ctrl_3_shdw
= get_ext_phy_ctrl_3_intelliphy_4d5();
1665 regs
->ext_phy_ctrl_4_shdw
= get_ext_phy_ctrl_4_intelliphy_4d5();
1670 /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1671 regs
->pwr_mgmt_ctrl_shdw
=
1672 get_pwr_mgmt_ctrl(freq
, emif_for_calc
, ip_rev
) &
1673 (CS_TIM_MASK
| SR_TIM_MASK
| PD_TIM_MASK
);
1675 if (ip_rev
& EMIF_4D
) {
1676 regs
->read_idle_ctrl_shdw_normal
=
1677 get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE
);
1679 regs
->read_idle_ctrl_shdw_volt_ramp
=
1680 get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING
);
1681 } else if (ip_rev
& EMIF_4D5
) {
1682 regs
->dll_calib_ctrl_shdw_normal
=
1683 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE
);
1685 regs
->dll_calib_ctrl_shdw_volt_ramp
=
1686 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING
);
1689 if (type
== DDR_TYPE_LPDDR2_S2
|| type
== DDR_TYPE_LPDDR2_S4
) {
1690 regs
->ref_ctrl_shdw_derated
= get_sdram_ref_ctrl_shdw(freq
/ 4,
1693 regs
->sdram_tim1_shdw_derated
=
1694 get_sdram_tim_1_shdw_derated(timings
, min_tck
,
1697 regs
->sdram_tim3_shdw_derated
= get_sdram_tim_3_shdw(timings
,
1698 min_tck
, addressing
, type
, ip_rev
,
1699 EMIF_DERATED_TIMINGS
);
1708 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1709 * given frequency(freq):
1711 * As an optimisation, every EMIF instance other than EMIF1 shares the
1712 * register cache with EMIF1 if the devices connected on this instance
1713 * are same as that on EMIF1(indicated by the duplicate flag)
1715 * If we do not have an entry corresponding to the frequency given, we
1716 * allocate a new entry and calculate the values
1718 * Upon finding the right reg dump, save it in curr_regs. It can be
1719 * directly used for thermal de-rating and voltage ramping changes.
1721 static struct emif_regs
*get_regs(struct emif_data
*emif
, u32 freq
)
1724 struct emif_regs
**regs_cache
;
1725 struct emif_regs
*regs
= NULL
;
1729 if (emif
->curr_regs
&& emif
->curr_regs
->freq
== freq
) {
1730 dev_dbg(dev
, "%s: using curr_regs - %u Hz", __func__
, freq
);
1731 return emif
->curr_regs
;
1734 if (emif
->duplicate
)
1735 regs_cache
= emif1
->regs_cache
;
1737 regs_cache
= emif
->regs_cache
;
1739 for (i
= 0; i
< EMIF_MAX_NUM_FREQUENCIES
&& regs_cache
[i
]; i
++) {
1740 if (regs_cache
[i
]->freq
== freq
) {
1741 regs
= regs_cache
[i
];
1743 "%s: reg dump found in reg cache for %u Hz\n",
1750 * If we don't have an entry for this frequency in the cache create one
1751 * and calculate the values
1754 regs
= devm_kzalloc(emif
->dev
, sizeof(*regs
), GFP_ATOMIC
);
1758 if (get_emif_reg_values(emif
, freq
, regs
)) {
1759 devm_kfree(emif
->dev
, regs
);
1764 * Now look for an un-used entry in the cache and save the
1765 * newly created struct. If there are no free entries
1766 * over-write the last entry
1768 for (i
= 0; i
< EMIF_MAX_NUM_FREQUENCIES
&& regs_cache
[i
]; i
++)
1771 if (i
>= EMIF_MAX_NUM_FREQUENCIES
) {
1772 dev_warn(dev
, "%s: regs_cache full - reusing a slot!!\n",
1774 i
= EMIF_MAX_NUM_FREQUENCIES
- 1;
1775 devm_kfree(emif
->dev
, regs_cache
[i
]);
1777 regs_cache
[i
] = regs
;
1783 static void do_volt_notify_handling(struct emif_data
*emif
, u32 volt_state
)
1785 dev_dbg(emif
->dev
, "%s: voltage notification : %d", __func__
,
1788 if (!emif
->curr_regs
) {
1790 "%s: volt-notify before registers are ready: %d\n",
1791 __func__
, volt_state
);
1795 setup_volt_sensitive_regs(emif
, emif
->curr_regs
, volt_state
);
1799 * TODO: voltage notify handling should be hooked up to
1800 * regulator framework as soon as the necessary support
1801 * is available in mainline kernel. This function is un-used
1804 static void __attribute__((unused
)) volt_notify_handling(u32 volt_state
)
1806 struct emif_data
*emif
;
1808 spin_lock_irqsave(&emif_lock
, irq_state
);
1810 list_for_each_entry(emif
, &device_list
, node
)
1811 do_volt_notify_handling(emif
, volt_state
);
1814 spin_unlock_irqrestore(&emif_lock
, irq_state
);
1817 static void do_freq_pre_notify_handling(struct emif_data
*emif
, u32 new_freq
)
1819 struct emif_regs
*regs
;
1821 regs
= get_regs(emif
, new_freq
);
1825 emif
->curr_regs
= regs
;
1828 * Update the shadow registers:
1829 * Temperature and voltage-ramp sensitive settings are also configured
1830 * in terms of DDR cycles. So, we need to update them too when there
1833 dev_dbg(emif
->dev
, "%s: setting up shadow registers for %uHz",
1834 __func__
, new_freq
);
1835 setup_registers(emif
, regs
);
1836 setup_temperature_sensitive_regs(emif
, regs
);
1837 setup_volt_sensitive_regs(emif
, regs
, DDR_VOLTAGE_STABLE
);
1840 * Part of workaround for errata i728. See do_freq_update()
1843 if (emif
->lpmode
== EMIF_LP_MODE_SELF_REFRESH
)
1844 set_lpmode(emif
, EMIF_LP_MODE_DISABLE
);
1848 * TODO: frequency notify handling should be hooked up to
1849 * clock framework as soon as the necessary support is
1850 * available in mainline kernel. This function is un-used
1853 static void __attribute__((unused
)) freq_pre_notify_handling(u32 new_freq
)
1855 struct emif_data
*emif
;
1858 * NOTE: we are taking the spin-lock here and releases it
1859 * only in post-notifier. This doesn't look good and
1860 * Sparse complains about it, but this seems to be
1861 * un-avoidable. We need to lock a sequence of events
1862 * that is split between EMIF and clock framework.
1864 * 1. EMIF driver updates EMIF timings in shadow registers in the
1865 * frequency pre-notify callback from clock framework
1866 * 2. clock framework sets up the registers for the new frequency
1867 * 3. clock framework initiates a hw-sequence that updates
1868 * the frequency EMIF timings synchronously.
1870 * All these 3 steps should be performed as an atomic operation
1871 * vis-a-vis similar sequence in the EMIF interrupt handler
1872 * for temperature events. Otherwise, there could be race
1873 * conditions that could result in incorrect EMIF timings for
1876 spin_lock_irqsave(&emif_lock
, irq_state
);
1878 list_for_each_entry(emif
, &device_list
, node
)
1879 do_freq_pre_notify_handling(emif
, new_freq
);
1882 static void do_freq_post_notify_handling(struct emif_data
*emif
)
1885 * Part of workaround for errata i728. See do_freq_update()
1888 if (emif
->lpmode
== EMIF_LP_MODE_SELF_REFRESH
)
1889 set_lpmode(emif
, EMIF_LP_MODE_SELF_REFRESH
);
1893 * TODO: frequency notify handling should be hooked up to
1894 * clock framework as soon as the necessary support is
1895 * available in mainline kernel. This function is un-used
1898 static void __attribute__((unused
)) freq_post_notify_handling(void)
1900 struct emif_data
*emif
;
1902 list_for_each_entry(emif
, &device_list
, node
)
1903 do_freq_post_notify_handling(emif
);
1906 * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1909 spin_unlock_irqrestore(&emif_lock
, irq_state
);
1912 #if defined(CONFIG_OF)
1913 static const struct of_device_id emif_of_match
[] = {
1914 { .compatible
= "ti,emif-4d" },
1915 { .compatible
= "ti,emif-4d5" },
1918 MODULE_DEVICE_TABLE(of
, emif_of_match
);
1921 static struct platform_driver emif_driver
= {
1922 .remove
= __exit_p(emif_remove
),
1923 .shutdown
= emif_shutdown
,
1926 .of_match_table
= of_match_ptr(emif_of_match
),
1930 module_platform_driver_probe(emif_driver
, emif_probe
);
1932 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1933 MODULE_LICENSE("GPL");
1934 MODULE_ALIAS("platform:emif");
1935 MODULE_AUTHOR("Texas Instruments Inc");