1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright 2014 IBM Corp.
6 #include <linux/spinlock.h>
7 #include <linux/sched.h>
8 #include <linux/sched/clock.h>
9 #include <linux/slab.h>
10 #include <linux/mutex.h>
12 #include <linux/uaccess.h>
13 #include <linux/delay.h>
14 #include <asm/synch.h>
15 #include <asm/switch_to.h>
16 #include <misc/cxl-base.h>
21 static int afu_control(struct cxl_afu
*afu
, u64 command
, u64 clear
,
22 u64 result
, u64 mask
, bool enabled
)
25 unsigned long timeout
= jiffies
+ (HZ
* CXL_TIMEOUT
);
28 spin_lock(&afu
->afu_cntl_lock
);
29 pr_devel("AFU command starting: %llx\n", command
);
31 trace_cxl_afu_ctrl(afu
, command
);
33 AFU_Cntl
= cxl_p2n_read(afu
, CXL_AFU_Cntl_An
);
34 cxl_p2n_write(afu
, CXL_AFU_Cntl_An
, (AFU_Cntl
& ~clear
) | command
);
36 AFU_Cntl
= cxl_p2n_read(afu
, CXL_AFU_Cntl_An
);
37 while ((AFU_Cntl
& mask
) != result
) {
38 if (time_after_eq(jiffies
, timeout
)) {
39 dev_warn(&afu
->dev
, "WARNING: AFU control timed out!\n");
44 if (!cxl_ops
->link_ok(afu
->adapter
, afu
)) {
45 afu
->enabled
= enabled
;
50 pr_devel_ratelimited("AFU control... (0x%016llx)\n",
53 AFU_Cntl
= cxl_p2n_read(afu
, CXL_AFU_Cntl_An
);
56 if (AFU_Cntl
& CXL_AFU_Cntl_An_RA
) {
58 * Workaround for a bug in the XSL used in the Mellanox CX4
59 * that fails to clear the RA bit after an AFU reset,
60 * preventing subsequent AFU resets from working.
62 cxl_p2n_write(afu
, CXL_AFU_Cntl_An
, AFU_Cntl
& ~CXL_AFU_Cntl_An_RA
);
65 pr_devel("AFU command complete: %llx\n", command
);
66 afu
->enabled
= enabled
;
68 trace_cxl_afu_ctrl_done(afu
, command
, rc
);
69 spin_unlock(&afu
->afu_cntl_lock
);
74 static int afu_enable(struct cxl_afu
*afu
)
76 pr_devel("AFU enable request\n");
78 return afu_control(afu
, CXL_AFU_Cntl_An_E
, 0,
79 CXL_AFU_Cntl_An_ES_Enabled
,
80 CXL_AFU_Cntl_An_ES_MASK
, true);
83 int cxl_afu_disable(struct cxl_afu
*afu
)
85 pr_devel("AFU disable request\n");
87 return afu_control(afu
, 0, CXL_AFU_Cntl_An_E
,
88 CXL_AFU_Cntl_An_ES_Disabled
,
89 CXL_AFU_Cntl_An_ES_MASK
, false);
92 /* This will disable as well as reset */
93 static int native_afu_reset(struct cxl_afu
*afu
)
98 pr_devel("AFU reset request\n");
100 rc
= afu_control(afu
, CXL_AFU_Cntl_An_RA
, 0,
101 CXL_AFU_Cntl_An_RS_Complete
| CXL_AFU_Cntl_An_ES_Disabled
,
102 CXL_AFU_Cntl_An_RS_MASK
| CXL_AFU_Cntl_An_ES_MASK
,
106 * Re-enable any masked interrupts when the AFU is not
107 * activated to avoid side effects after attaching a process
110 if (afu
->current_mode
== 0) {
111 serr
= cxl_p1n_read(afu
, CXL_PSL_SERR_An
);
112 serr
&= ~CXL_PSL_SERR_An_IRQ_MASKS
;
113 cxl_p1n_write(afu
, CXL_PSL_SERR_An
, serr
);
119 static int native_afu_check_and_enable(struct cxl_afu
*afu
)
121 if (!cxl_ops
->link_ok(afu
->adapter
, afu
)) {
122 WARN(1, "Refusing to enable afu while link down!\n");
127 return afu_enable(afu
);
130 int cxl_psl_purge(struct cxl_afu
*afu
)
132 u64 PSL_CNTL
= cxl_p1n_read(afu
, CXL_PSL_SCNTL_An
);
133 u64 AFU_Cntl
= cxl_p2n_read(afu
, CXL_AFU_Cntl_An
);
136 u64 trans_fault
= 0x0ULL
;
137 unsigned long timeout
= jiffies
+ (HZ
* CXL_TIMEOUT
);
140 trace_cxl_psl_ctrl(afu
, CXL_PSL_SCNTL_An_Pc
);
142 pr_devel("PSL purge request\n");
145 trans_fault
= CXL_PSL_DSISR_TRANS
;
147 trans_fault
= CXL_PSL9_DSISR_An_TF
;
149 if (!cxl_ops
->link_ok(afu
->adapter
, afu
)) {
150 dev_warn(&afu
->dev
, "PSL Purge called with link down, ignoring\n");
155 if ((AFU_Cntl
& CXL_AFU_Cntl_An_ES_MASK
) != CXL_AFU_Cntl_An_ES_Disabled
) {
156 WARN(1, "psl_purge request while AFU not disabled!\n");
157 cxl_afu_disable(afu
);
160 cxl_p1n_write(afu
, CXL_PSL_SCNTL_An
,
161 PSL_CNTL
| CXL_PSL_SCNTL_An_Pc
);
162 start
= local_clock();
163 PSL_CNTL
= cxl_p1n_read(afu
, CXL_PSL_SCNTL_An
);
164 while ((PSL_CNTL
& CXL_PSL_SCNTL_An_Ps_MASK
)
165 == CXL_PSL_SCNTL_An_Ps_Pending
) {
166 if (time_after_eq(jiffies
, timeout
)) {
167 dev_warn(&afu
->dev
, "WARNING: PSL Purge timed out!\n");
171 if (!cxl_ops
->link_ok(afu
->adapter
, afu
)) {
176 dsisr
= cxl_p2n_read(afu
, CXL_PSL_DSISR_An
);
177 pr_devel_ratelimited("PSL purging... PSL_CNTL: 0x%016llx PSL_DSISR: 0x%016llx\n",
180 if (dsisr
& trans_fault
) {
181 dar
= cxl_p2n_read(afu
, CXL_PSL_DAR_An
);
182 dev_notice(&afu
->dev
, "PSL purge terminating pending translation, DSISR: 0x%016llx, DAR: 0x%016llx\n",
184 cxl_p2n_write(afu
, CXL_PSL_TFC_An
, CXL_PSL_TFC_An_AE
);
186 dev_notice(&afu
->dev
, "PSL purge acknowledging pending non-translation fault, DSISR: 0x%016llx\n",
188 cxl_p2n_write(afu
, CXL_PSL_TFC_An
, CXL_PSL_TFC_An_A
);
192 PSL_CNTL
= cxl_p1n_read(afu
, CXL_PSL_SCNTL_An
);
195 pr_devel("PSL purged in %lld ns\n", end
- start
);
197 cxl_p1n_write(afu
, CXL_PSL_SCNTL_An
,
198 PSL_CNTL
& ~CXL_PSL_SCNTL_An_Pc
);
200 trace_cxl_psl_ctrl_done(afu
, CXL_PSL_SCNTL_An_Pc
, rc
);
204 static int spa_max_procs(int spa_size
)
208 * end_of_SPA_area = SPA_Base + ((n+4) * 128) + (( ((n*8) + 127) >> 7) * 128) + 255
209 * Most of that junk is really just an overly-complicated way of saying
210 * the last 256 bytes are __aligned(128), so it's really:
211 * end_of_SPA_area = end_of_PSL_queue_area + __aligned(128) 255
213 * end_of_PSL_queue_area = SPA_Base + ((n+4) * 128) + (n*8) - 1
215 * sizeof(SPA) = ((n+4) * 128) + (n*8) + __aligned(128) 256
216 * Ignore the alignment (which is safe in this case as long as we are
217 * careful with our rounding) and solve for n:
219 return ((spa_size
/ 8) - 96) / 17;
222 static int cxl_alloc_spa(struct cxl_afu
*afu
, int mode
)
226 /* Work out how many pages to allocate */
227 afu
->native
->spa_order
= -1;
229 afu
->native
->spa_order
++;
230 spa_size
= (1 << afu
->native
->spa_order
) * PAGE_SIZE
;
232 if (spa_size
> 0x100000) {
233 dev_warn(&afu
->dev
, "num_of_processes too large for the SPA, limiting to %i (0x%x)\n",
234 afu
->native
->spa_max_procs
, afu
->native
->spa_size
);
235 if (mode
!= CXL_MODE_DEDICATED
)
236 afu
->num_procs
= afu
->native
->spa_max_procs
;
240 afu
->native
->spa_size
= spa_size
;
241 afu
->native
->spa_max_procs
= spa_max_procs(afu
->native
->spa_size
);
242 } while (afu
->native
->spa_max_procs
< afu
->num_procs
);
244 if (!(afu
->native
->spa
= (struct cxl_process_element
*)
245 __get_free_pages(GFP_KERNEL
| __GFP_ZERO
, afu
->native
->spa_order
))) {
246 pr_err("cxl_alloc_spa: Unable to allocate scheduled process area\n");
249 pr_devel("spa pages: %i afu->spa_max_procs: %i afu->num_procs: %i\n",
250 1<<afu
->native
->spa_order
, afu
->native
->spa_max_procs
, afu
->num_procs
);
255 static void attach_spa(struct cxl_afu
*afu
)
259 afu
->native
->sw_command_status
= (__be64
*)((char *)afu
->native
->spa
+
260 ((afu
->native
->spa_max_procs
+ 3) * 128));
262 spap
= virt_to_phys(afu
->native
->spa
) & CXL_PSL_SPAP_Addr
;
263 spap
|= ((afu
->native
->spa_size
>> (12 - CXL_PSL_SPAP_Size_Shift
)) - 1) & CXL_PSL_SPAP_Size
;
264 spap
|= CXL_PSL_SPAP_V
;
265 pr_devel("cxl: SPA allocated at 0x%p. Max processes: %i, sw_command_status: 0x%p CXL_PSL_SPAP_An=0x%016llx\n",
266 afu
->native
->spa
, afu
->native
->spa_max_procs
,
267 afu
->native
->sw_command_status
, spap
);
268 cxl_p1n_write(afu
, CXL_PSL_SPAP_An
, spap
);
271 static inline void detach_spa(struct cxl_afu
*afu
)
273 cxl_p1n_write(afu
, CXL_PSL_SPAP_An
, 0);
276 void cxl_release_spa(struct cxl_afu
*afu
)
278 if (afu
->native
->spa
) {
279 free_pages((unsigned long) afu
->native
->spa
,
280 afu
->native
->spa_order
);
281 afu
->native
->spa
= NULL
;
286 * Invalidation of all ERAT entries is no longer required by CAIA2. Use
289 int cxl_invalidate_all_psl9(struct cxl
*adapter
)
291 unsigned long timeout
= jiffies
+ (HZ
* CXL_TIMEOUT
);
294 pr_devel("CXL adapter - invalidation of all ERAT entries\n");
296 /* Invalidates all ERAT entries for Radix or HPT */
297 ierat
= CXL_XSL9_IERAT_IALL
;
299 ierat
|= CXL_XSL9_IERAT_INVR
;
300 cxl_p1_write(adapter
, CXL_XSL9_IERAT
, ierat
);
302 while (cxl_p1_read(adapter
, CXL_XSL9_IERAT
) & CXL_XSL9_IERAT_IINPROG
) {
303 if (time_after_eq(jiffies
, timeout
)) {
304 dev_warn(&adapter
->dev
,
305 "WARNING: CXL adapter invalidation of all ERAT entries timed out!\n");
308 if (!cxl_ops
->link_ok(adapter
, NULL
))
315 int cxl_invalidate_all_psl8(struct cxl
*adapter
)
317 unsigned long timeout
= jiffies
+ (HZ
* CXL_TIMEOUT
);
319 pr_devel("CXL adapter wide TLBIA & SLBIA\n");
321 cxl_p1_write(adapter
, CXL_PSL_AFUSEL
, CXL_PSL_AFUSEL_A
);
323 cxl_p1_write(adapter
, CXL_PSL_TLBIA
, CXL_TLB_SLB_IQ_ALL
);
324 while (cxl_p1_read(adapter
, CXL_PSL_TLBIA
) & CXL_TLB_SLB_P
) {
325 if (time_after_eq(jiffies
, timeout
)) {
326 dev_warn(&adapter
->dev
, "WARNING: CXL adapter wide TLBIA timed out!\n");
329 if (!cxl_ops
->link_ok(adapter
, NULL
))
334 cxl_p1_write(adapter
, CXL_PSL_SLBIA
, CXL_TLB_SLB_IQ_ALL
);
335 while (cxl_p1_read(adapter
, CXL_PSL_SLBIA
) & CXL_TLB_SLB_P
) {
336 if (time_after_eq(jiffies
, timeout
)) {
337 dev_warn(&adapter
->dev
, "WARNING: CXL adapter wide SLBIA timed out!\n");
340 if (!cxl_ops
->link_ok(adapter
, NULL
))
347 int cxl_data_cache_flush(struct cxl
*adapter
)
350 unsigned long timeout
= jiffies
+ (HZ
* CXL_TIMEOUT
);
353 * Do a datacache flush only if datacache is available.
354 * In case of PSL9D datacache absent hence flush operation.
357 if (adapter
->native
->no_data_cache
) {
358 pr_devel("No PSL data cache. Ignoring cache flush req.\n");
362 pr_devel("Flushing data cache\n");
363 reg
= cxl_p1_read(adapter
, CXL_PSL_Control
);
364 reg
|= CXL_PSL_Control_Fr
;
365 cxl_p1_write(adapter
, CXL_PSL_Control
, reg
);
367 reg
= cxl_p1_read(adapter
, CXL_PSL_Control
);
368 while ((reg
& CXL_PSL_Control_Fs_MASK
) != CXL_PSL_Control_Fs_Complete
) {
369 if (time_after_eq(jiffies
, timeout
)) {
370 dev_warn(&adapter
->dev
, "WARNING: cache flush timed out!\n");
374 if (!cxl_ops
->link_ok(adapter
, NULL
)) {
375 dev_warn(&adapter
->dev
, "WARNING: link down when flushing cache\n");
379 reg
= cxl_p1_read(adapter
, CXL_PSL_Control
);
382 reg
&= ~CXL_PSL_Control_Fr
;
383 cxl_p1_write(adapter
, CXL_PSL_Control
, reg
);
387 static int cxl_write_sstp(struct cxl_afu
*afu
, u64 sstp0
, u64 sstp1
)
391 /* 1. Disable SSTP by writing 0 to SSTP1[V] */
392 cxl_p2n_write(afu
, CXL_SSTP1_An
, 0);
394 /* 2. Invalidate all SLB entries */
395 if ((rc
= cxl_afu_slbia(afu
)))
398 /* 3. Set SSTP0_An */
399 cxl_p2n_write(afu
, CXL_SSTP0_An
, sstp0
);
401 /* 4. Set SSTP1_An */
402 cxl_p2n_write(afu
, CXL_SSTP1_An
, sstp1
);
407 /* Using per slice version may improve performance here. (ie. SLBIA_An) */
408 static void slb_invalid(struct cxl_context
*ctx
)
410 struct cxl
*adapter
= ctx
->afu
->adapter
;
413 WARN_ON(!mutex_is_locked(&ctx
->afu
->native
->spa_mutex
));
415 cxl_p1_write(adapter
, CXL_PSL_LBISEL
,
416 ((u64
)be32_to_cpu(ctx
->elem
->common
.pid
) << 32) |
417 be32_to_cpu(ctx
->elem
->lpid
));
418 cxl_p1_write(adapter
, CXL_PSL_SLBIA
, CXL_TLB_SLB_IQ_LPIDPID
);
421 if (!cxl_ops
->link_ok(adapter
, NULL
))
423 slbia
= cxl_p1_read(adapter
, CXL_PSL_SLBIA
);
424 if (!(slbia
& CXL_TLB_SLB_P
))
430 static int do_process_element_cmd(struct cxl_context
*ctx
,
431 u64 cmd
, u64 pe_state
)
434 unsigned long timeout
= jiffies
+ (HZ
* CXL_TIMEOUT
);
437 trace_cxl_llcmd(ctx
, cmd
);
439 WARN_ON(!ctx
->afu
->enabled
);
441 ctx
->elem
->software_state
= cpu_to_be32(pe_state
);
443 *(ctx
->afu
->native
->sw_command_status
) = cpu_to_be64(cmd
| 0 | ctx
->pe
);
445 cxl_p1n_write(ctx
->afu
, CXL_PSL_LLCMD_An
, cmd
| ctx
->pe
);
447 if (time_after_eq(jiffies
, timeout
)) {
448 dev_warn(&ctx
->afu
->dev
, "WARNING: Process Element Command timed out!\n");
452 if (!cxl_ops
->link_ok(ctx
->afu
->adapter
, ctx
->afu
)) {
453 dev_warn(&ctx
->afu
->dev
, "WARNING: Device link down, aborting Process Element Command!\n");
457 state
= be64_to_cpup(ctx
->afu
->native
->sw_command_status
);
458 if (state
== ~0ULL) {
459 pr_err("cxl: Error adding process element to AFU\n");
463 if ((state
& (CXL_SPA_SW_CMD_MASK
| CXL_SPA_SW_STATE_MASK
| CXL_SPA_SW_LINK_MASK
)) ==
464 (cmd
| (cmd
>> 16) | ctx
->pe
))
467 * The command won't finish in the PSL if there are
468 * outstanding DSIs. Hence we need to yield here in
469 * case there are outstanding DSIs that we need to
470 * service. Tuning possiblity: we could wait for a
477 trace_cxl_llcmd_done(ctx
, cmd
, rc
);
481 static int add_process_element(struct cxl_context
*ctx
)
485 mutex_lock(&ctx
->afu
->native
->spa_mutex
);
486 pr_devel("%s Adding pe: %i started\n", __func__
, ctx
->pe
);
487 if (!(rc
= do_process_element_cmd(ctx
, CXL_SPA_SW_CMD_ADD
, CXL_PE_SOFTWARE_STATE_V
)))
488 ctx
->pe_inserted
= true;
489 pr_devel("%s Adding pe: %i finished\n", __func__
, ctx
->pe
);
490 mutex_unlock(&ctx
->afu
->native
->spa_mutex
);
494 static int terminate_process_element(struct cxl_context
*ctx
)
498 /* fast path terminate if it's already invalid */
499 if (!(ctx
->elem
->software_state
& cpu_to_be32(CXL_PE_SOFTWARE_STATE_V
)))
502 mutex_lock(&ctx
->afu
->native
->spa_mutex
);
503 pr_devel("%s Terminate pe: %i started\n", __func__
, ctx
->pe
);
504 /* We could be asked to terminate when the hw is down. That
505 * should always succeed: it's not running if the hw has gone
506 * away and is being reset.
508 if (cxl_ops
->link_ok(ctx
->afu
->adapter
, ctx
->afu
))
509 rc
= do_process_element_cmd(ctx
, CXL_SPA_SW_CMD_TERMINATE
,
510 CXL_PE_SOFTWARE_STATE_V
| CXL_PE_SOFTWARE_STATE_T
);
511 ctx
->elem
->software_state
= 0; /* Remove Valid bit */
512 pr_devel("%s Terminate pe: %i finished\n", __func__
, ctx
->pe
);
513 mutex_unlock(&ctx
->afu
->native
->spa_mutex
);
517 static int remove_process_element(struct cxl_context
*ctx
)
521 mutex_lock(&ctx
->afu
->native
->spa_mutex
);
522 pr_devel("%s Remove pe: %i started\n", __func__
, ctx
->pe
);
524 /* We could be asked to remove when the hw is down. Again, if
525 * the hw is down, the PE is gone, so we succeed.
527 if (cxl_ops
->link_ok(ctx
->afu
->adapter
, ctx
->afu
))
528 rc
= do_process_element_cmd(ctx
, CXL_SPA_SW_CMD_REMOVE
, 0);
531 ctx
->pe_inserted
= false;
534 pr_devel("%s Remove pe: %i finished\n", __func__
, ctx
->pe
);
535 mutex_unlock(&ctx
->afu
->native
->spa_mutex
);
540 void cxl_assign_psn_space(struct cxl_context
*ctx
)
542 if (!ctx
->afu
->pp_size
|| ctx
->master
) {
543 ctx
->psn_phys
= ctx
->afu
->psn_phys
;
544 ctx
->psn_size
= ctx
->afu
->adapter
->ps_size
;
546 ctx
->psn_phys
= ctx
->afu
->psn_phys
+
547 (ctx
->afu
->native
->pp_offset
+ ctx
->afu
->pp_size
* ctx
->pe
);
548 ctx
->psn_size
= ctx
->afu
->pp_size
;
552 static int activate_afu_directed(struct cxl_afu
*afu
)
556 dev_info(&afu
->dev
, "Activating AFU directed mode\n");
558 afu
->num_procs
= afu
->max_procs_virtualised
;
559 if (afu
->native
->spa
== NULL
) {
560 if (cxl_alloc_spa(afu
, CXL_MODE_DIRECTED
))
565 cxl_p1n_write(afu
, CXL_PSL_SCNTL_An
, CXL_PSL_SCNTL_An_PM_AFU
);
567 cxl_p1n_write(afu
, CXL_PSL_AMOR_An
, 0xFFFFFFFFFFFFFFFFULL
);
568 cxl_p1n_write(afu
, CXL_PSL_ID_An
, CXL_PSL_ID_An_F
| CXL_PSL_ID_An_L
);
570 afu
->current_mode
= CXL_MODE_DIRECTED
;
572 if ((rc
= cxl_chardev_m_afu_add(afu
)))
575 if ((rc
= cxl_sysfs_afu_m_add(afu
)))
578 if ((rc
= cxl_chardev_s_afu_add(afu
)))
583 cxl_sysfs_afu_m_remove(afu
);
585 cxl_chardev_afu_remove(afu
);
589 #ifdef CONFIG_CPU_LITTLE_ENDIAN
590 #define set_endian(sr) ((sr) |= CXL_PSL_SR_An_LE)
592 #define set_endian(sr) ((sr) &= ~(CXL_PSL_SR_An_LE))
595 u64
cxl_calculate_sr(bool master
, bool kernel
, bool real_mode
, bool p9
)
601 sr
|= CXL_PSL_SR_An_MP
;
602 if (mfspr(SPRN_LPCR
) & LPCR_TC
)
603 sr
|= CXL_PSL_SR_An_TC
;
607 sr
|= CXL_PSL_SR_An_R
;
608 sr
|= (mfmsr() & MSR_SF
) | CXL_PSL_SR_An_HV
;
610 sr
|= CXL_PSL_SR_An_PR
| CXL_PSL_SR_An_R
;
612 sr
|= CXL_PSL_SR_An_HV
;
614 sr
&= ~(CXL_PSL_SR_An_HV
);
615 if (!test_tsk_thread_flag(current
, TIF_32BIT
))
616 sr
|= CXL_PSL_SR_An_SF
;
620 sr
|= CXL_PSL_SR_An_XLAT_ror
;
622 sr
|= CXL_PSL_SR_An_XLAT_hpt
;
627 static u64
calculate_sr(struct cxl_context
*ctx
)
629 return cxl_calculate_sr(ctx
->master
, ctx
->kernel
, false,
633 static void update_ivtes_directed(struct cxl_context
*ctx
)
635 bool need_update
= (ctx
->status
== STARTED
);
639 WARN_ON(terminate_process_element(ctx
));
640 WARN_ON(remove_process_element(ctx
));
643 for (r
= 0; r
< CXL_IRQ_RANGES
; r
++) {
644 ctx
->elem
->ivte_offsets
[r
] = cpu_to_be16(ctx
->irqs
.offset
[r
]);
645 ctx
->elem
->ivte_ranges
[r
] = cpu_to_be16(ctx
->irqs
.range
[r
]);
649 * Theoretically we could use the update llcmd, instead of a
650 * terminate/remove/add (or if an atomic update was required we could
651 * do a suspend/update/resume), however it seems there might be issues
652 * with the update llcmd on some cards (including those using an XSL on
653 * an ASIC) so for now it's safest to go with the commands that are
654 * known to work. In the future if we come across a situation where the
655 * card may be performing transactions using the same PE while we are
656 * doing this update we might need to revisit this.
659 WARN_ON(add_process_element(ctx
));
662 static int process_element_entry_psl9(struct cxl_context
*ctx
, u64 wed
, u64 amr
)
667 cxl_assign_psn_space(ctx
);
669 ctx
->elem
->ctxtime
= 0; /* disable */
670 ctx
->elem
->lpid
= cpu_to_be32(mfspr(SPRN_LPID
));
671 ctx
->elem
->haurp
= 0; /* disable */
676 if (ctx
->mm
== NULL
) {
677 pr_devel("%s: unable to get mm for pe=%d pid=%i\n",
678 __func__
, ctx
->pe
, pid_nr(ctx
->pid
));
681 pid
= ctx
->mm
->context
.id
;
684 /* Assign a unique TIDR (thread id) for the current thread */
685 if (!(ctx
->tidr
) && (ctx
->assign_tidr
)) {
686 rc
= set_thread_tidr(current
);
689 ctx
->tidr
= current
->thread
.tidr
;
690 pr_devel("%s: current tidr: %d\n", __func__
, ctx
->tidr
);
693 ctx
->elem
->common
.tid
= cpu_to_be32(ctx
->tidr
);
694 ctx
->elem
->common
.pid
= cpu_to_be32(pid
);
696 ctx
->elem
->sr
= cpu_to_be64(calculate_sr(ctx
));
698 ctx
->elem
->common
.csrp
= 0; /* disable */
700 cxl_prefault(ctx
, wed
);
703 * Ensure we have the multiplexed PSL interrupt set up to take faults
704 * for kernel contexts that may not have allocated any AFU IRQs at all:
706 if (ctx
->irqs
.range
[0] == 0) {
707 ctx
->irqs
.offset
[0] = ctx
->afu
->native
->psl_hwirq
;
708 ctx
->irqs
.range
[0] = 1;
711 ctx
->elem
->common
.amr
= cpu_to_be64(amr
);
712 ctx
->elem
->common
.wed
= cpu_to_be64(wed
);
717 int cxl_attach_afu_directed_psl9(struct cxl_context
*ctx
, u64 wed
, u64 amr
)
721 /* fill the process element entry */
722 result
= process_element_entry_psl9(ctx
, wed
, amr
);
726 update_ivtes_directed(ctx
);
728 /* first guy needs to enable */
729 result
= cxl_ops
->afu_check_and_enable(ctx
->afu
);
733 return add_process_element(ctx
);
736 int cxl_attach_afu_directed_psl8(struct cxl_context
*ctx
, u64 wed
, u64 amr
)
741 cxl_assign_psn_space(ctx
);
743 ctx
->elem
->ctxtime
= 0; /* disable */
744 ctx
->elem
->lpid
= cpu_to_be32(mfspr(SPRN_LPID
));
745 ctx
->elem
->haurp
= 0; /* disable */
746 ctx
->elem
->u
.sdr
= cpu_to_be64(mfspr(SPRN_SDR1
));
751 ctx
->elem
->common
.tid
= 0;
752 ctx
->elem
->common
.pid
= cpu_to_be32(pid
);
754 ctx
->elem
->sr
= cpu_to_be64(calculate_sr(ctx
));
756 ctx
->elem
->common
.csrp
= 0; /* disable */
757 ctx
->elem
->common
.u
.psl8
.aurp0
= 0; /* disable */
758 ctx
->elem
->common
.u
.psl8
.aurp1
= 0; /* disable */
760 cxl_prefault(ctx
, wed
);
762 ctx
->elem
->common
.u
.psl8
.sstp0
= cpu_to_be64(ctx
->sstp0
);
763 ctx
->elem
->common
.u
.psl8
.sstp1
= cpu_to_be64(ctx
->sstp1
);
766 * Ensure we have the multiplexed PSL interrupt set up to take faults
767 * for kernel contexts that may not have allocated any AFU IRQs at all:
769 if (ctx
->irqs
.range
[0] == 0) {
770 ctx
->irqs
.offset
[0] = ctx
->afu
->native
->psl_hwirq
;
771 ctx
->irqs
.range
[0] = 1;
774 update_ivtes_directed(ctx
);
776 ctx
->elem
->common
.amr
= cpu_to_be64(amr
);
777 ctx
->elem
->common
.wed
= cpu_to_be64(wed
);
779 /* first guy needs to enable */
780 if ((result
= cxl_ops
->afu_check_and_enable(ctx
->afu
)))
783 return add_process_element(ctx
);
786 static int deactivate_afu_directed(struct cxl_afu
*afu
)
788 dev_info(&afu
->dev
, "Deactivating AFU directed mode\n");
790 afu
->current_mode
= 0;
793 cxl_sysfs_afu_m_remove(afu
);
794 cxl_chardev_afu_remove(afu
);
797 * The CAIA section 2.2.1 indicates that the procedure for starting and
798 * stopping an AFU in AFU directed mode is AFU specific, which is not
799 * ideal since this code is generic and with one exception has no
800 * knowledge of the AFU. This is in contrast to the procedure for
801 * disabling a dedicated process AFU, which is documented to just
802 * require a reset. The architecture does indicate that both an AFU
803 * reset and an AFU disable should result in the AFU being disabled and
804 * we do both followed by a PSL purge for safety.
806 * Notably we used to have some issues with the disable sequence on PSL
807 * cards, which is why we ended up using this heavy weight procedure in
808 * the first place, however a bug was discovered that had rendered the
809 * disable operation ineffective, so it is conceivable that was the
810 * sole explanation for those difficulties. Careful regression testing
811 * is recommended if anyone attempts to remove or reorder these
814 * The XSL on the Mellanox CX4 behaves a little differently from the
815 * PSL based cards and will time out an AFU reset if the AFU is still
816 * enabled. That card is special in that we do have a means to identify
817 * it from this code, so in that case we skip the reset and just use a
818 * disable/purge to avoid the timeout and corresponding noise in the
821 if (afu
->adapter
->native
->sl_ops
->needs_reset_before_disable
)
822 cxl_ops
->afu_reset(afu
);
823 cxl_afu_disable(afu
);
829 int cxl_activate_dedicated_process_psl9(struct cxl_afu
*afu
)
831 dev_info(&afu
->dev
, "Activating dedicated process mode\n");
834 * If XSL is set to dedicated mode (Set in PSL_SCNTL reg), the
835 * XSL and AFU are programmed to work with a single context.
836 * The context information should be configured in the SPA area
837 * index 0 (so PSL_SPAP must be configured before enabling the
841 if (afu
->native
->spa
== NULL
) {
842 if (cxl_alloc_spa(afu
, CXL_MODE_DEDICATED
))
847 cxl_p1n_write(afu
, CXL_PSL_SCNTL_An
, CXL_PSL_SCNTL_An_PM_Process
);
848 cxl_p1n_write(afu
, CXL_PSL_ID_An
, CXL_PSL_ID_An_F
| CXL_PSL_ID_An_L
);
850 afu
->current_mode
= CXL_MODE_DEDICATED
;
852 return cxl_chardev_d_afu_add(afu
);
855 int cxl_activate_dedicated_process_psl8(struct cxl_afu
*afu
)
857 dev_info(&afu
->dev
, "Activating dedicated process mode\n");
859 cxl_p1n_write(afu
, CXL_PSL_SCNTL_An
, CXL_PSL_SCNTL_An_PM_Process
);
861 cxl_p1n_write(afu
, CXL_PSL_CtxTime_An
, 0); /* disable */
862 cxl_p1n_write(afu
, CXL_PSL_SPAP_An
, 0); /* disable */
863 cxl_p1n_write(afu
, CXL_PSL_AMOR_An
, 0xFFFFFFFFFFFFFFFFULL
);
864 cxl_p1n_write(afu
, CXL_PSL_LPID_An
, mfspr(SPRN_LPID
));
865 cxl_p1n_write(afu
, CXL_HAURP_An
, 0); /* disable */
866 cxl_p1n_write(afu
, CXL_PSL_SDR_An
, mfspr(SPRN_SDR1
));
868 cxl_p2n_write(afu
, CXL_CSRP_An
, 0); /* disable */
869 cxl_p2n_write(afu
, CXL_AURP0_An
, 0); /* disable */
870 cxl_p2n_write(afu
, CXL_AURP1_An
, 0); /* disable */
872 afu
->current_mode
= CXL_MODE_DEDICATED
;
875 return cxl_chardev_d_afu_add(afu
);
878 void cxl_update_dedicated_ivtes_psl9(struct cxl_context
*ctx
)
882 for (r
= 0; r
< CXL_IRQ_RANGES
; r
++) {
883 ctx
->elem
->ivte_offsets
[r
] = cpu_to_be16(ctx
->irqs
.offset
[r
]);
884 ctx
->elem
->ivte_ranges
[r
] = cpu_to_be16(ctx
->irqs
.range
[r
]);
888 void cxl_update_dedicated_ivtes_psl8(struct cxl_context
*ctx
)
890 struct cxl_afu
*afu
= ctx
->afu
;
892 cxl_p1n_write(afu
, CXL_PSL_IVTE_Offset_An
,
893 (((u64
)ctx
->irqs
.offset
[0] & 0xffff) << 48) |
894 (((u64
)ctx
->irqs
.offset
[1] & 0xffff) << 32) |
895 (((u64
)ctx
->irqs
.offset
[2] & 0xffff) << 16) |
896 ((u64
)ctx
->irqs
.offset
[3] & 0xffff));
897 cxl_p1n_write(afu
, CXL_PSL_IVTE_Limit_An
, (u64
)
898 (((u64
)ctx
->irqs
.range
[0] & 0xffff) << 48) |
899 (((u64
)ctx
->irqs
.range
[1] & 0xffff) << 32) |
900 (((u64
)ctx
->irqs
.range
[2] & 0xffff) << 16) |
901 ((u64
)ctx
->irqs
.range
[3] & 0xffff));
904 int cxl_attach_dedicated_process_psl9(struct cxl_context
*ctx
, u64 wed
, u64 amr
)
906 struct cxl_afu
*afu
= ctx
->afu
;
909 /* fill the process element entry */
910 result
= process_element_entry_psl9(ctx
, wed
, amr
);
914 if (ctx
->afu
->adapter
->native
->sl_ops
->update_dedicated_ivtes
)
915 afu
->adapter
->native
->sl_ops
->update_dedicated_ivtes(ctx
);
917 ctx
->elem
->software_state
= cpu_to_be32(CXL_PE_SOFTWARE_STATE_V
);
919 * Ideally we should do a wmb() here to make sure the changes to the
920 * PE are visible to the card before we call afu_enable.
921 * On ppc64 though all mmios are preceded by a 'sync' instruction hence
922 * we dont dont need one here.
925 result
= cxl_ops
->afu_reset(afu
);
929 return afu_enable(afu
);
932 int cxl_attach_dedicated_process_psl8(struct cxl_context
*ctx
, u64 wed
, u64 amr
)
934 struct cxl_afu
*afu
= ctx
->afu
;
938 pid
= (u64
)current
->pid
<< 32;
941 cxl_p2n_write(afu
, CXL_PSL_PID_TID_An
, pid
);
943 cxl_p1n_write(afu
, CXL_PSL_SR_An
, calculate_sr(ctx
));
945 if ((rc
= cxl_write_sstp(afu
, ctx
->sstp0
, ctx
->sstp1
)))
948 cxl_prefault(ctx
, wed
);
950 if (ctx
->afu
->adapter
->native
->sl_ops
->update_dedicated_ivtes
)
951 afu
->adapter
->native
->sl_ops
->update_dedicated_ivtes(ctx
);
953 cxl_p2n_write(afu
, CXL_PSL_AMR_An
, amr
);
955 /* master only context for dedicated */
956 cxl_assign_psn_space(ctx
);
958 if ((rc
= cxl_ops
->afu_reset(afu
)))
961 cxl_p2n_write(afu
, CXL_PSL_WED_An
, wed
);
963 return afu_enable(afu
);
966 static int deactivate_dedicated_process(struct cxl_afu
*afu
)
968 dev_info(&afu
->dev
, "Deactivating dedicated process mode\n");
970 afu
->current_mode
= 0;
973 cxl_chardev_afu_remove(afu
);
978 static int native_afu_deactivate_mode(struct cxl_afu
*afu
, int mode
)
980 if (mode
== CXL_MODE_DIRECTED
)
981 return deactivate_afu_directed(afu
);
982 if (mode
== CXL_MODE_DEDICATED
)
983 return deactivate_dedicated_process(afu
);
987 static int native_afu_activate_mode(struct cxl_afu
*afu
, int mode
)
991 if (!(mode
& afu
->modes_supported
))
994 if (!cxl_ops
->link_ok(afu
->adapter
, afu
)) {
995 WARN(1, "Device link is down, refusing to activate!\n");
999 if (mode
== CXL_MODE_DIRECTED
)
1000 return activate_afu_directed(afu
);
1001 if ((mode
== CXL_MODE_DEDICATED
) &&
1002 (afu
->adapter
->native
->sl_ops
->activate_dedicated_process
))
1003 return afu
->adapter
->native
->sl_ops
->activate_dedicated_process(afu
);
1008 static int native_attach_process(struct cxl_context
*ctx
, bool kernel
,
1011 if (!cxl_ops
->link_ok(ctx
->afu
->adapter
, ctx
->afu
)) {
1012 WARN(1, "Device link is down, refusing to attach process!\n");
1016 ctx
->kernel
= kernel
;
1017 if ((ctx
->afu
->current_mode
== CXL_MODE_DIRECTED
) &&
1018 (ctx
->afu
->adapter
->native
->sl_ops
->attach_afu_directed
))
1019 return ctx
->afu
->adapter
->native
->sl_ops
->attach_afu_directed(ctx
, wed
, amr
);
1021 if ((ctx
->afu
->current_mode
== CXL_MODE_DEDICATED
) &&
1022 (ctx
->afu
->adapter
->native
->sl_ops
->attach_dedicated_process
))
1023 return ctx
->afu
->adapter
->native
->sl_ops
->attach_dedicated_process(ctx
, wed
, amr
);
1028 static inline int detach_process_native_dedicated(struct cxl_context
*ctx
)
1031 * The CAIA section 2.1.1 indicates that we need to do an AFU reset to
1032 * stop the AFU in dedicated mode (we therefore do not make that
1033 * optional like we do in the afu directed path). It does not indicate
1034 * that we need to do an explicit disable (which should occur
1035 * implicitly as part of the reset) or purge, but we do these as well
1036 * to be on the safe side.
1038 * Notably we used to have some issues with the disable sequence
1039 * (before the sequence was spelled out in the architecture) which is
1040 * why we were so heavy weight in the first place, however a bug was
1041 * discovered that had rendered the disable operation ineffective, so
1042 * it is conceivable that was the sole explanation for those
1043 * difficulties. Point is, we should be careful and do some regression
1044 * testing if we ever attempt to remove any part of this procedure.
1046 cxl_ops
->afu_reset(ctx
->afu
);
1047 cxl_afu_disable(ctx
->afu
);
1048 cxl_psl_purge(ctx
->afu
);
1052 static void native_update_ivtes(struct cxl_context
*ctx
)
1054 if (ctx
->afu
->current_mode
== CXL_MODE_DIRECTED
)
1055 return update_ivtes_directed(ctx
);
1056 if ((ctx
->afu
->current_mode
== CXL_MODE_DEDICATED
) &&
1057 (ctx
->afu
->adapter
->native
->sl_ops
->update_dedicated_ivtes
))
1058 return ctx
->afu
->adapter
->native
->sl_ops
->update_dedicated_ivtes(ctx
);
1059 WARN(1, "native_update_ivtes: Bad mode\n");
1062 static inline int detach_process_native_afu_directed(struct cxl_context
*ctx
)
1064 if (!ctx
->pe_inserted
)
1066 if (terminate_process_element(ctx
))
1068 if (remove_process_element(ctx
))
1074 static int native_detach_process(struct cxl_context
*ctx
)
1076 trace_cxl_detach(ctx
);
1078 if (ctx
->afu
->current_mode
== CXL_MODE_DEDICATED
)
1079 return detach_process_native_dedicated(ctx
);
1081 return detach_process_native_afu_directed(ctx
);
1084 static int native_get_irq_info(struct cxl_afu
*afu
, struct cxl_irq_info
*info
)
1086 /* If the adapter has gone away, we can't get any meaningful
1089 if (!cxl_ops
->link_ok(afu
->adapter
, afu
))
1092 info
->dsisr
= cxl_p2n_read(afu
, CXL_PSL_DSISR_An
);
1093 info
->dar
= cxl_p2n_read(afu
, CXL_PSL_DAR_An
);
1094 if (cxl_is_power8())
1095 info
->dsr
= cxl_p2n_read(afu
, CXL_PSL_DSR_An
);
1096 info
->afu_err
= cxl_p2n_read(afu
, CXL_AFU_ERR_An
);
1097 info
->errstat
= cxl_p2n_read(afu
, CXL_PSL_ErrStat_An
);
1098 info
->proc_handle
= 0;
1103 void cxl_native_irq_dump_regs_psl9(struct cxl_context
*ctx
)
1107 fir1
= cxl_p1_read(ctx
->afu
->adapter
, CXL_PSL9_FIR1
);
1109 dev_crit(&ctx
->afu
->dev
, "PSL_FIR1: 0x%016llx\n", fir1
);
1110 if (ctx
->afu
->adapter
->native
->sl_ops
->register_serr_irq
) {
1111 serr
= cxl_p1n_read(ctx
->afu
, CXL_PSL_SERR_An
);
1112 cxl_afu_decode_psl_serr(ctx
->afu
, serr
);
1116 void cxl_native_irq_dump_regs_psl8(struct cxl_context
*ctx
)
1118 u64 fir1
, fir2
, fir_slice
, serr
, afu_debug
;
1120 fir1
= cxl_p1_read(ctx
->afu
->adapter
, CXL_PSL_FIR1
);
1121 fir2
= cxl_p1_read(ctx
->afu
->adapter
, CXL_PSL_FIR2
);
1122 fir_slice
= cxl_p1n_read(ctx
->afu
, CXL_PSL_FIR_SLICE_An
);
1123 afu_debug
= cxl_p1n_read(ctx
->afu
, CXL_AFU_DEBUG_An
);
1125 dev_crit(&ctx
->afu
->dev
, "PSL_FIR1: 0x%016llx\n", fir1
);
1126 dev_crit(&ctx
->afu
->dev
, "PSL_FIR2: 0x%016llx\n", fir2
);
1127 if (ctx
->afu
->adapter
->native
->sl_ops
->register_serr_irq
) {
1128 serr
= cxl_p1n_read(ctx
->afu
, CXL_PSL_SERR_An
);
1129 cxl_afu_decode_psl_serr(ctx
->afu
, serr
);
1131 dev_crit(&ctx
->afu
->dev
, "PSL_FIR_SLICE_An: 0x%016llx\n", fir_slice
);
1132 dev_crit(&ctx
->afu
->dev
, "CXL_PSL_AFU_DEBUG_An: 0x%016llx\n", afu_debug
);
1135 static irqreturn_t
native_handle_psl_slice_error(struct cxl_context
*ctx
,
1136 u64 dsisr
, u64 errstat
)
1139 dev_crit(&ctx
->afu
->dev
, "PSL ERROR STATUS: 0x%016llx\n", errstat
);
1141 if (ctx
->afu
->adapter
->native
->sl_ops
->psl_irq_dump_registers
)
1142 ctx
->afu
->adapter
->native
->sl_ops
->psl_irq_dump_registers(ctx
);
1144 if (ctx
->afu
->adapter
->native
->sl_ops
->debugfs_stop_trace
) {
1145 dev_crit(&ctx
->afu
->dev
, "STOPPING CXL TRACE\n");
1146 ctx
->afu
->adapter
->native
->sl_ops
->debugfs_stop_trace(ctx
->afu
->adapter
);
1149 return cxl_ops
->ack_irq(ctx
, 0, errstat
);
1152 static bool cxl_is_translation_fault(struct cxl_afu
*afu
, u64 dsisr
)
1154 if ((cxl_is_power8()) && (dsisr
& CXL_PSL_DSISR_TRANS
))
1157 if ((cxl_is_power9()) && (dsisr
& CXL_PSL9_DSISR_An_TF
))
1163 irqreturn_t
cxl_fail_irq_psl(struct cxl_afu
*afu
, struct cxl_irq_info
*irq_info
)
1165 if (cxl_is_translation_fault(afu
, irq_info
->dsisr
))
1166 cxl_p2n_write(afu
, CXL_PSL_TFC_An
, CXL_PSL_TFC_An_AE
);
1168 cxl_p2n_write(afu
, CXL_PSL_TFC_An
, CXL_PSL_TFC_An_A
);
1173 static irqreturn_t
native_irq_multiplexed(int irq
, void *data
)
1175 struct cxl_afu
*afu
= data
;
1176 struct cxl_context
*ctx
;
1177 struct cxl_irq_info irq_info
;
1178 u64 phreg
= cxl_p2n_read(afu
, CXL_PSL_PEHandle_An
);
1179 int ph
, ret
= IRQ_HANDLED
, res
;
1181 /* check if eeh kicked in while the interrupt was in flight */
1182 if (unlikely(phreg
== ~0ULL)) {
1184 "Ignoring slice interrupt(%d) due to fenced card",
1188 /* Mask the pe-handle from register value */
1189 ph
= phreg
& 0xffff;
1190 if ((res
= native_get_irq_info(afu
, &irq_info
))) {
1191 WARN(1, "Unable to get CXL IRQ Info: %i\n", res
);
1192 if (afu
->adapter
->native
->sl_ops
->fail_irq
)
1193 return afu
->adapter
->native
->sl_ops
->fail_irq(afu
, &irq_info
);
1198 ctx
= idr_find(&afu
->contexts_idr
, ph
);
1200 if (afu
->adapter
->native
->sl_ops
->handle_interrupt
)
1201 ret
= afu
->adapter
->native
->sl_ops
->handle_interrupt(irq
, ctx
, &irq_info
);
1207 WARN(1, "Unable to demultiplex CXL PSL IRQ for PE %i DSISR %016llx DAR"
1208 " %016llx\n(Possible AFU HW issue - was a term/remove acked"
1209 " with outstanding transactions?)\n", ph
, irq_info
.dsisr
,
1211 if (afu
->adapter
->native
->sl_ops
->fail_irq
)
1212 ret
= afu
->adapter
->native
->sl_ops
->fail_irq(afu
, &irq_info
);
1216 static void native_irq_wait(struct cxl_context
*ctx
)
1223 * Wait until no further interrupts are presented by the PSL
1227 ph
= cxl_p2n_read(ctx
->afu
, CXL_PSL_PEHandle_An
) & 0xffff;
1230 dsisr
= cxl_p2n_read(ctx
->afu
, CXL_PSL_DSISR_An
);
1231 if (cxl_is_power8() &&
1232 ((dsisr
& CXL_PSL_DSISR_PENDING
) == 0))
1234 if (cxl_is_power9() &&
1235 ((dsisr
& CXL_PSL9_DSISR_PENDING
) == 0))
1238 * We are waiting for the workqueue to process our
1239 * irq, so need to let that run here.
1244 dev_warn(&ctx
->afu
->dev
, "WARNING: waiting on DSI for PE %i"
1245 " DSISR %016llx!\n", ph
, dsisr
);
1249 static irqreturn_t
native_slice_irq_err(int irq
, void *data
)
1251 struct cxl_afu
*afu
= data
;
1252 u64 errstat
, serr
, afu_error
, dsisr
;
1253 u64 fir_slice
, afu_debug
, irq_mask
;
1256 * slice err interrupt is only used with full PSL (no XSL)
1258 serr
= cxl_p1n_read(afu
, CXL_PSL_SERR_An
);
1259 errstat
= cxl_p2n_read(afu
, CXL_PSL_ErrStat_An
);
1260 afu_error
= cxl_p2n_read(afu
, CXL_AFU_ERR_An
);
1261 dsisr
= cxl_p2n_read(afu
, CXL_PSL_DSISR_An
);
1262 cxl_afu_decode_psl_serr(afu
, serr
);
1264 if (cxl_is_power8()) {
1265 fir_slice
= cxl_p1n_read(afu
, CXL_PSL_FIR_SLICE_An
);
1266 afu_debug
= cxl_p1n_read(afu
, CXL_AFU_DEBUG_An
);
1267 dev_crit(&afu
->dev
, "PSL_FIR_SLICE_An: 0x%016llx\n", fir_slice
);
1268 dev_crit(&afu
->dev
, "CXL_PSL_AFU_DEBUG_An: 0x%016llx\n", afu_debug
);
1270 dev_crit(&afu
->dev
, "CXL_PSL_ErrStat_An: 0x%016llx\n", errstat
);
1271 dev_crit(&afu
->dev
, "AFU_ERR_An: 0x%.16llx\n", afu_error
);
1272 dev_crit(&afu
->dev
, "PSL_DSISR_An: 0x%.16llx\n", dsisr
);
1274 /* mask off the IRQ so it won't retrigger until the AFU is reset */
1275 irq_mask
= (serr
& CXL_PSL_SERR_An_IRQS
) >> 32;
1277 cxl_p1n_write(afu
, CXL_PSL_SERR_An
, serr
);
1278 dev_info(&afu
->dev
, "Further such interrupts will be masked until the AFU is reset\n");
1283 void cxl_native_err_irq_dump_regs_psl9(struct cxl
*adapter
)
1287 fir1
= cxl_p1_read(adapter
, CXL_PSL9_FIR1
);
1288 dev_crit(&adapter
->dev
, "PSL_FIR: 0x%016llx\n", fir1
);
1291 void cxl_native_err_irq_dump_regs_psl8(struct cxl
*adapter
)
1295 fir1
= cxl_p1_read(adapter
, CXL_PSL_FIR1
);
1296 fir2
= cxl_p1_read(adapter
, CXL_PSL_FIR2
);
1297 dev_crit(&adapter
->dev
,
1298 "PSL_FIR1: 0x%016llx\nPSL_FIR2: 0x%016llx\n",
1302 static irqreturn_t
native_irq_err(int irq
, void *data
)
1304 struct cxl
*adapter
= data
;
1307 WARN(1, "CXL ERROR interrupt %i\n", irq
);
1309 err_ivte
= cxl_p1_read(adapter
, CXL_PSL_ErrIVTE
);
1310 dev_crit(&adapter
->dev
, "PSL_ErrIVTE: 0x%016llx\n", err_ivte
);
1312 if (adapter
->native
->sl_ops
->debugfs_stop_trace
) {
1313 dev_crit(&adapter
->dev
, "STOPPING CXL TRACE\n");
1314 adapter
->native
->sl_ops
->debugfs_stop_trace(adapter
);
1317 if (adapter
->native
->sl_ops
->err_irq_dump_registers
)
1318 adapter
->native
->sl_ops
->err_irq_dump_registers(adapter
);
1323 int cxl_native_register_psl_err_irq(struct cxl
*adapter
)
1327 adapter
->irq_name
= kasprintf(GFP_KERNEL
, "cxl-%s-err",
1328 dev_name(&adapter
->dev
));
1329 if (!adapter
->irq_name
)
1332 if ((rc
= cxl_register_one_irq(adapter
, native_irq_err
, adapter
,
1333 &adapter
->native
->err_hwirq
,
1334 &adapter
->native
->err_virq
,
1335 adapter
->irq_name
))) {
1336 kfree(adapter
->irq_name
);
1337 adapter
->irq_name
= NULL
;
1341 cxl_p1_write(adapter
, CXL_PSL_ErrIVTE
, adapter
->native
->err_hwirq
& 0xffff);
1346 void cxl_native_release_psl_err_irq(struct cxl
*adapter
)
1348 if (adapter
->native
->err_virq
== 0 ||
1349 adapter
->native
->err_virq
!=
1350 irq_find_mapping(NULL
, adapter
->native
->err_hwirq
))
1353 cxl_p1_write(adapter
, CXL_PSL_ErrIVTE
, 0x0000000000000000);
1354 cxl_unmap_irq(adapter
->native
->err_virq
, adapter
);
1355 cxl_ops
->release_one_irq(adapter
, adapter
->native
->err_hwirq
);
1356 kfree(adapter
->irq_name
);
1357 adapter
->native
->err_virq
= 0;
1360 int cxl_native_register_serr_irq(struct cxl_afu
*afu
)
1365 afu
->err_irq_name
= kasprintf(GFP_KERNEL
, "cxl-%s-err",
1366 dev_name(&afu
->dev
));
1367 if (!afu
->err_irq_name
)
1370 if ((rc
= cxl_register_one_irq(afu
->adapter
, native_slice_irq_err
, afu
,
1372 &afu
->serr_virq
, afu
->err_irq_name
))) {
1373 kfree(afu
->err_irq_name
);
1374 afu
->err_irq_name
= NULL
;
1378 serr
= cxl_p1n_read(afu
, CXL_PSL_SERR_An
);
1379 if (cxl_is_power8())
1380 serr
= (serr
& 0x00ffffffffff0000ULL
) | (afu
->serr_hwirq
& 0xffff);
1381 if (cxl_is_power9()) {
1383 * By default, all errors are masked. So don't set all masks.
1384 * Slice errors will be transfered.
1386 serr
= (serr
& ~0xff0000007fffffffULL
) | (afu
->serr_hwirq
& 0xffff);
1388 cxl_p1n_write(afu
, CXL_PSL_SERR_An
, serr
);
1393 void cxl_native_release_serr_irq(struct cxl_afu
*afu
)
1395 if (afu
->serr_virq
== 0 ||
1396 afu
->serr_virq
!= irq_find_mapping(NULL
, afu
->serr_hwirq
))
1399 cxl_p1n_write(afu
, CXL_PSL_SERR_An
, 0x0000000000000000);
1400 cxl_unmap_irq(afu
->serr_virq
, afu
);
1401 cxl_ops
->release_one_irq(afu
->adapter
, afu
->serr_hwirq
);
1402 kfree(afu
->err_irq_name
);
1406 int cxl_native_register_psl_irq(struct cxl_afu
*afu
)
1410 afu
->psl_irq_name
= kasprintf(GFP_KERNEL
, "cxl-%s",
1411 dev_name(&afu
->dev
));
1412 if (!afu
->psl_irq_name
)
1415 if ((rc
= cxl_register_one_irq(afu
->adapter
, native_irq_multiplexed
,
1416 afu
, &afu
->native
->psl_hwirq
, &afu
->native
->psl_virq
,
1417 afu
->psl_irq_name
))) {
1418 kfree(afu
->psl_irq_name
);
1419 afu
->psl_irq_name
= NULL
;
1424 void cxl_native_release_psl_irq(struct cxl_afu
*afu
)
1426 if (afu
->native
->psl_virq
== 0 ||
1427 afu
->native
->psl_virq
!=
1428 irq_find_mapping(NULL
, afu
->native
->psl_hwirq
))
1431 cxl_unmap_irq(afu
->native
->psl_virq
, afu
);
1432 cxl_ops
->release_one_irq(afu
->adapter
, afu
->native
->psl_hwirq
);
1433 kfree(afu
->psl_irq_name
);
1434 afu
->native
->psl_virq
= 0;
1437 static void recover_psl_err(struct cxl_afu
*afu
, u64 errstat
)
1441 pr_devel("RECOVERING FROM PSL ERROR... (0x%016llx)\n", errstat
);
1443 /* Clear PSL_DSISR[PE] */
1444 dsisr
= cxl_p2n_read(afu
, CXL_PSL_DSISR_An
);
1445 cxl_p2n_write(afu
, CXL_PSL_DSISR_An
, dsisr
& ~CXL_PSL_DSISR_An_PE
);
1447 /* Write 1s to clear error status bits */
1448 cxl_p2n_write(afu
, CXL_PSL_ErrStat_An
, errstat
);
1451 static int native_ack_irq(struct cxl_context
*ctx
, u64 tfc
, u64 psl_reset_mask
)
1453 trace_cxl_psl_irq_ack(ctx
, tfc
);
1455 cxl_p2n_write(ctx
->afu
, CXL_PSL_TFC_An
, tfc
);
1457 recover_psl_err(ctx
->afu
, psl_reset_mask
);
1462 int cxl_check_error(struct cxl_afu
*afu
)
1464 return (cxl_p1n_read(afu
, CXL_PSL_SCNTL_An
) == ~0ULL);
1467 static bool native_support_attributes(const char *attr_name
,
1468 enum cxl_attrs type
)
1473 static int native_afu_cr_read64(struct cxl_afu
*afu
, int cr
, u64 off
, u64
*out
)
1475 if (unlikely(!cxl_ops
->link_ok(afu
->adapter
, afu
)))
1477 if (unlikely(off
>= afu
->crs_len
))
1479 *out
= in_le64(afu
->native
->afu_desc_mmio
+ afu
->crs_offset
+
1480 (cr
* afu
->crs_len
) + off
);
1484 static int native_afu_cr_read32(struct cxl_afu
*afu
, int cr
, u64 off
, u32
*out
)
1486 if (unlikely(!cxl_ops
->link_ok(afu
->adapter
, afu
)))
1488 if (unlikely(off
>= afu
->crs_len
))
1490 *out
= in_le32(afu
->native
->afu_desc_mmio
+ afu
->crs_offset
+
1491 (cr
* afu
->crs_len
) + off
);
1495 static int native_afu_cr_read16(struct cxl_afu
*afu
, int cr
, u64 off
, u16
*out
)
1497 u64 aligned_off
= off
& ~0x3L
;
1501 rc
= native_afu_cr_read32(afu
, cr
, aligned_off
, &val
);
1503 *out
= (val
>> ((off
& 0x3) * 8)) & 0xffff;
1507 static int native_afu_cr_read8(struct cxl_afu
*afu
, int cr
, u64 off
, u8
*out
)
1509 u64 aligned_off
= off
& ~0x3L
;
1513 rc
= native_afu_cr_read32(afu
, cr
, aligned_off
, &val
);
1515 *out
= (val
>> ((off
& 0x3) * 8)) & 0xff;
1519 static int native_afu_cr_write32(struct cxl_afu
*afu
, int cr
, u64 off
, u32 in
)
1521 if (unlikely(!cxl_ops
->link_ok(afu
->adapter
, afu
)))
1523 if (unlikely(off
>= afu
->crs_len
))
1525 out_le32(afu
->native
->afu_desc_mmio
+ afu
->crs_offset
+
1526 (cr
* afu
->crs_len
) + off
, in
);
1530 static int native_afu_cr_write16(struct cxl_afu
*afu
, int cr
, u64 off
, u16 in
)
1532 u64 aligned_off
= off
& ~0x3L
;
1533 u32 val32
, mask
, shift
;
1536 rc
= native_afu_cr_read32(afu
, cr
, aligned_off
, &val32
);
1539 shift
= (off
& 0x3) * 8;
1540 WARN_ON(shift
== 24);
1541 mask
= 0xffff << shift
;
1542 val32
= (val32
& ~mask
) | (in
<< shift
);
1544 rc
= native_afu_cr_write32(afu
, cr
, aligned_off
, val32
);
1548 static int native_afu_cr_write8(struct cxl_afu
*afu
, int cr
, u64 off
, u8 in
)
1550 u64 aligned_off
= off
& ~0x3L
;
1551 u32 val32
, mask
, shift
;
1554 rc
= native_afu_cr_read32(afu
, cr
, aligned_off
, &val32
);
1557 shift
= (off
& 0x3) * 8;
1558 mask
= 0xff << shift
;
1559 val32
= (val32
& ~mask
) | (in
<< shift
);
1561 rc
= native_afu_cr_write32(afu
, cr
, aligned_off
, val32
);
1565 const struct cxl_backend_ops cxl_native_ops
= {
1566 .module
= THIS_MODULE
,
1567 .adapter_reset
= cxl_pci_reset
,
1568 .alloc_one_irq
= cxl_pci_alloc_one_irq
,
1569 .release_one_irq
= cxl_pci_release_one_irq
,
1570 .alloc_irq_ranges
= cxl_pci_alloc_irq_ranges
,
1571 .release_irq_ranges
= cxl_pci_release_irq_ranges
,
1572 .setup_irq
= cxl_pci_setup_irq
,
1573 .handle_psl_slice_error
= native_handle_psl_slice_error
,
1574 .psl_interrupt
= NULL
,
1575 .ack_irq
= native_ack_irq
,
1576 .irq_wait
= native_irq_wait
,
1577 .attach_process
= native_attach_process
,
1578 .detach_process
= native_detach_process
,
1579 .update_ivtes
= native_update_ivtes
,
1580 .support_attributes
= native_support_attributes
,
1581 .link_ok
= cxl_adapter_link_ok
,
1582 .release_afu
= cxl_pci_release_afu
,
1583 .afu_read_err_buffer
= cxl_pci_afu_read_err_buffer
,
1584 .afu_check_and_enable
= native_afu_check_and_enable
,
1585 .afu_activate_mode
= native_afu_activate_mode
,
1586 .afu_deactivate_mode
= native_afu_deactivate_mode
,
1587 .afu_reset
= native_afu_reset
,
1588 .afu_cr_read8
= native_afu_cr_read8
,
1589 .afu_cr_read16
= native_afu_cr_read16
,
1590 .afu_cr_read32
= native_afu_cr_read32
,
1591 .afu_cr_read64
= native_afu_cr_read64
,
1592 .afu_cr_write8
= native_afu_cr_write8
,
1593 .afu_cr_write16
= native_afu_cr_write16
,
1594 .afu_cr_write32
= native_afu_cr_write32
,
1595 .read_adapter_vpd
= cxl_pci_read_adapter_vpd
,