1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * SN Platform GRU Driver
5 * FAULT HANDLER FOR GRU DETECTED TLB MISSES
7 * This file contains code that handles TLB misses within the GRU.
8 * These misses are reported either via interrupts or user polling of
11 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
14 #include <linux/kernel.h>
15 #include <linux/errno.h>
16 #include <linux/spinlock.h>
18 #include <linux/hugetlb.h>
19 #include <linux/device.h>
21 #include <linux/uaccess.h>
22 #include <linux/security.h>
23 #include <linux/prefetch.h>
24 #include <asm/pgtable.h>
26 #include "grutables.h"
28 #include "gru_instructions.h"
29 #include <asm/uv/uv_hub.h>
31 /* Return codes for vtop functions */
32 #define VTOP_SUCCESS 0
33 #define VTOP_INVALID -1
38 * Test if a physical address is a valid GRU GSEG address
40 static inline int is_gru_paddr(unsigned long paddr
)
42 return paddr
>= gru_start_paddr
&& paddr
< gru_end_paddr
;
46 * Find the vma of a GRU segment. Caller must hold mmap_sem.
48 struct vm_area_struct
*gru_find_vma(unsigned long vaddr
)
50 struct vm_area_struct
*vma
;
52 vma
= find_vma(current
->mm
, vaddr
);
53 if (vma
&& vma
->vm_start
<= vaddr
&& vma
->vm_ops
== &gru_vm_ops
)
59 * Find and lock the gts that contains the specified user vaddr.
62 * - *gts with the mmap_sem locked for read and the GTS locked.
63 * - NULL if vaddr invalid OR is not a valid GSEG vaddr.
66 static struct gru_thread_state
*gru_find_lock_gts(unsigned long vaddr
)
68 struct mm_struct
*mm
= current
->mm
;
69 struct vm_area_struct
*vma
;
70 struct gru_thread_state
*gts
= NULL
;
72 down_read(&mm
->mmap_sem
);
73 vma
= gru_find_vma(vaddr
);
75 gts
= gru_find_thread_state(vma
, TSID(vaddr
, vma
));
77 mutex_lock(>s
->ts_ctxlock
);
79 up_read(&mm
->mmap_sem
);
83 static struct gru_thread_state
*gru_alloc_locked_gts(unsigned long vaddr
)
85 struct mm_struct
*mm
= current
->mm
;
86 struct vm_area_struct
*vma
;
87 struct gru_thread_state
*gts
= ERR_PTR(-EINVAL
);
89 down_write(&mm
->mmap_sem
);
90 vma
= gru_find_vma(vaddr
);
94 gts
= gru_alloc_thread_state(vma
, TSID(vaddr
, vma
));
97 mutex_lock(>s
->ts_ctxlock
);
98 downgrade_write(&mm
->mmap_sem
);
102 up_write(&mm
->mmap_sem
);
107 * Unlock a GTS that was previously locked with gru_find_lock_gts().
109 static void gru_unlock_gts(struct gru_thread_state
*gts
)
111 mutex_unlock(>s
->ts_ctxlock
);
112 up_read(¤t
->mm
->mmap_sem
);
116 * Set a CB.istatus to active using a user virtual address. This must be done
117 * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY.
118 * If the line is evicted, the status may be lost. The in-cache update
119 * is necessary to prevent the user from seeing a stale cb.istatus that will
120 * change as soon as the TFH restart is complete. Races may cause an
121 * occasional failure to clear the cb.istatus, but that is ok.
123 static void gru_cb_set_istatus_active(struct gru_instruction_bits
*cbk
)
126 cbk
->istatus
= CBS_ACTIVE
;
133 * The GRU has an array of fault maps. A map is private to a cpu
134 * Only one cpu will be accessing a cpu's fault map.
136 * This function scans the cpu-private fault map & clears all bits that
137 * are set. The function returns a bitmap that indicates the bits that
138 * were cleared. Note that sense the maps may be updated asynchronously by
139 * the GRU, atomic operations must be used to clear bits.
141 static void get_clear_fault_map(struct gru_state
*gru
,
142 struct gru_tlb_fault_map
*imap
,
143 struct gru_tlb_fault_map
*dmap
)
146 struct gru_tlb_fault_map
*tfm
;
148 tfm
= get_tfm_for_cpu(gru
, gru_cpu_fault_map_id());
149 prefetchw(tfm
); /* Helps on hardware, required for emulator */
150 for (i
= 0; i
< BITS_TO_LONGS(GRU_NUM_CBE
); i
++) {
151 k
= tfm
->fault_bits
[i
];
153 k
= xchg(&tfm
->fault_bits
[i
], 0UL);
154 imap
->fault_bits
[i
] = k
;
155 k
= tfm
->done_bits
[i
];
157 k
= xchg(&tfm
->done_bits
[i
], 0UL);
158 dmap
->fault_bits
[i
] = k
;
162 * Not functionally required but helps performance. (Required
165 gru_flush_cache(tfm
);
169 * Atomic (interrupt context) & non-atomic (user context) functions to
170 * convert a vaddr into a physical address. The size of the page
171 * is returned in pageshift.
175 * 1 - (atomic only) try again in non-atomic context
177 static int non_atomic_pte_lookup(struct vm_area_struct
*vma
,
178 unsigned long vaddr
, int write
,
179 unsigned long *paddr
, int *pageshift
)
183 #ifdef CONFIG_HUGETLB_PAGE
184 *pageshift
= is_vm_hugetlb_page(vma
) ? HPAGE_SHIFT
: PAGE_SHIFT
;
186 *pageshift
= PAGE_SHIFT
;
188 if (get_user_pages(vaddr
, 1, write
? FOLL_WRITE
: 0, &page
, NULL
) <= 0)
190 *paddr
= page_to_phys(page
);
198 * Convert a user virtual address to a physical address
199 * Only supports Intel large pages (2MB only) on x86_64.
200 * ZZZ - hugepage support is incomplete
202 * NOTE: mmap_sem is already held on entry to this function. This
203 * guarantees existence of the page tables.
205 static int atomic_pte_lookup(struct vm_area_struct
*vma
, unsigned long vaddr
,
206 int write
, unsigned long *paddr
, int *pageshift
)
214 pgdp
= pgd_offset(vma
->vm_mm
, vaddr
);
215 if (unlikely(pgd_none(*pgdp
)))
218 p4dp
= p4d_offset(pgdp
, vaddr
);
219 if (unlikely(p4d_none(*p4dp
)))
222 pudp
= pud_offset(p4dp
, vaddr
);
223 if (unlikely(pud_none(*pudp
)))
226 pmdp
= pmd_offset(pudp
, vaddr
);
227 if (unlikely(pmd_none(*pmdp
)))
230 if (unlikely(pmd_large(*pmdp
)))
231 pte
= *(pte_t
*) pmdp
;
234 pte
= *pte_offset_kernel(pmdp
, vaddr
);
236 if (unlikely(!pte_present(pte
) ||
237 (write
&& (!pte_write(pte
) || !pte_dirty(pte
)))))
240 *paddr
= pte_pfn(pte
) << PAGE_SHIFT
;
241 #ifdef CONFIG_HUGETLB_PAGE
242 *pageshift
= is_vm_hugetlb_page(vma
) ? HPAGE_SHIFT
: PAGE_SHIFT
;
244 *pageshift
= PAGE_SHIFT
;
252 static int gru_vtop(struct gru_thread_state
*gts
, unsigned long vaddr
,
253 int write
, int atomic
, unsigned long *gpa
, int *pageshift
)
255 struct mm_struct
*mm
= gts
->ts_mm
;
256 struct vm_area_struct
*vma
;
260 vma
= find_vma(mm
, vaddr
);
265 * Atomic lookup is faster & usually works even if called in non-atomic
268 rmb(); /* Must/check ms_range_active before loading PTEs */
269 ret
= atomic_pte_lookup(vma
, vaddr
, write
, &paddr
, &ps
);
273 if (non_atomic_pte_lookup(vma
, vaddr
, write
, &paddr
, &ps
))
276 if (is_gru_paddr(paddr
))
278 paddr
= paddr
& ~((1UL << ps
) - 1);
279 *gpa
= uv_soc_phys_ram_to_gpa(paddr
);
291 * Flush a CBE from cache. The CBE is clean in the cache. Dirty the
292 * CBE cacheline so that the line will be written back to home agent.
293 * Otherwise the line may be silently dropped. This has no impact
294 * except on performance.
296 static void gru_flush_cache_cbe(struct gru_control_block_extended
*cbe
)
299 cbe
->cbrexecstatus
= 0; /* make CL dirty */
300 gru_flush_cache(cbe
);
305 * Preload the TLB with entries that may be required. Currently, preloading
306 * is implemented only for BCOPY. Preload <tlb_preload_count> pages OR to
307 * the end of the bcopy tranfer, whichever is smaller.
309 static void gru_preload_tlb(struct gru_state
*gru
,
310 struct gru_thread_state
*gts
, int atomic
,
311 unsigned long fault_vaddr
, int asid
, int write
,
312 unsigned char tlb_preload_count
,
313 struct gru_tlb_fault_handle
*tfh
,
314 struct gru_control_block_extended
*cbe
)
316 unsigned long vaddr
= 0, gpa
;
319 if (cbe
->opccpy
!= OP_BCOPY
)
322 if (fault_vaddr
== cbe
->cbe_baddr0
)
323 vaddr
= fault_vaddr
+ GRU_CACHE_LINE_BYTES
* cbe
->cbe_src_cl
- 1;
324 else if (fault_vaddr
== cbe
->cbe_baddr1
)
325 vaddr
= fault_vaddr
+ (1 << cbe
->xtypecpy
) * cbe
->cbe_nelemcur
- 1;
327 fault_vaddr
&= PAGE_MASK
;
329 vaddr
= min(vaddr
, fault_vaddr
+ tlb_preload_count
* PAGE_SIZE
);
331 while (vaddr
> fault_vaddr
) {
332 ret
= gru_vtop(gts
, vaddr
, write
, atomic
, &gpa
, &pageshift
);
333 if (ret
|| tfh_write_only(tfh
, gpa
, GAA_RAM
, vaddr
, asid
, write
,
334 GRU_PAGESIZE(pageshift
)))
337 "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, rw %d, ps %d, gpa 0x%lx\n",
338 atomic
? "atomic" : "non-atomic", gru
->gs_gid
, gts
, tfh
,
339 vaddr
, asid
, write
, pageshift
, gpa
);
341 STAT(tlb_preload_page
);
346 * Drop a TLB entry into the GRU. The fault is described by info in an TFH.
348 * cb Address of user CBR. Null if not running in user context
350 * 0 = dropin, exception, or switch to UPM successful
351 * 1 = range invalidate active
355 static int gru_try_dropin(struct gru_state
*gru
,
356 struct gru_thread_state
*gts
,
357 struct gru_tlb_fault_handle
*tfh
,
358 struct gru_instruction_bits
*cbk
)
360 struct gru_control_block_extended
*cbe
= NULL
;
361 unsigned char tlb_preload_count
= gts
->ts_tlb_preload_count
;
362 int pageshift
= 0, asid
, write
, ret
, atomic
= !cbk
, indexway
;
363 unsigned long gpa
= 0, vaddr
= 0;
366 * NOTE: The GRU contains magic hardware that eliminates races between
367 * TLB invalidates and TLB dropins. If an invalidate occurs
368 * in the window between reading the TFH and the subsequent TLB dropin,
369 * the dropin is ignored. This eliminates the need for additional locks.
373 * Prefetch the CBE if doing TLB preloading
375 if (unlikely(tlb_preload_count
)) {
376 cbe
= gru_tfh_to_cbe(tfh
);
381 * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call.
382 * Might be a hardware race OR a stupid user. Ignore FMM because FMM
383 * is a transient state.
385 if (tfh
->status
!= TFHSTATUS_EXCEPTION
) {
386 gru_flush_cache(tfh
);
388 if (tfh
->status
!= TFHSTATUS_EXCEPTION
)
389 goto failnoexception
;
390 STAT(tfh_stale_on_fault
);
392 if (tfh
->state
== TFHSTATE_IDLE
)
394 if (tfh
->state
== TFHSTATE_MISS_FMM
&& cbk
)
397 write
= (tfh
->cause
& TFHCAUSE_TLB_MOD
) != 0;
398 vaddr
= tfh
->missvaddr
;
399 asid
= tfh
->missasid
;
400 indexway
= tfh
->indexway
;
404 rmb(); /* TFH must be cache resident before reading ms_range_active */
407 * TFH is cache resident - at least briefly. Fail the dropin
408 * if a range invalidate is active.
410 if (atomic_read(>s
->ts_gms
->ms_range_active
))
413 ret
= gru_vtop(gts
, vaddr
, write
, atomic
, &gpa
, &pageshift
);
414 if (ret
== VTOP_INVALID
)
416 if (ret
== VTOP_RETRY
)
419 if (!(gts
->ts_sizeavail
& GRU_SIZEAVAIL(pageshift
))) {
420 gts
->ts_sizeavail
|= GRU_SIZEAVAIL(pageshift
);
421 if (atomic
|| !gru_update_cch(gts
)) {
422 gts
->ts_force_cch_reload
= 1;
427 if (unlikely(cbe
) && pageshift
== PAGE_SHIFT
) {
428 gru_preload_tlb(gru
, gts
, atomic
, vaddr
, asid
, write
, tlb_preload_count
, tfh
, cbe
);
429 gru_flush_cache_cbe(cbe
);
432 gru_cb_set_istatus_active(cbk
);
433 gts
->ustats
.tlbdropin
++;
434 tfh_write_restart(tfh
, gpa
, GAA_RAM
, vaddr
, asid
, write
,
435 GRU_PAGESIZE(pageshift
));
437 "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, indexway 0x%x,"
438 " rw %d, ps %d, gpa 0x%lx\n",
439 atomic
? "atomic" : "non-atomic", gru
->gs_gid
, gts
, tfh
, vaddr
, asid
,
440 indexway
, write
, pageshift
, gpa
);
445 /* No asid (delayed unload). */
446 STAT(tlb_dropin_fail_no_asid
);
447 gru_dbg(grudev
, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh
, vaddr
);
449 tfh_user_polling_mode(tfh
);
451 gru_flush_cache(tfh
);
452 gru_flush_cache_cbe(cbe
);
456 /* Atomic failure switch CBR to UPM */
457 tfh_user_polling_mode(tfh
);
458 gru_flush_cache_cbe(cbe
);
459 STAT(tlb_dropin_fail_upm
);
460 gru_dbg(grudev
, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh
, vaddr
);
464 /* FMM state on UPM call */
465 gru_flush_cache(tfh
);
466 gru_flush_cache_cbe(cbe
);
467 STAT(tlb_dropin_fail_fmm
);
468 gru_dbg(grudev
, "FAILED fmm tfh: 0x%p, state %d\n", tfh
, tfh
->state
);
472 /* TFH status did not show exception pending */
473 gru_flush_cache(tfh
);
474 gru_flush_cache_cbe(cbe
);
476 gru_flush_cache(cbk
);
477 STAT(tlb_dropin_fail_no_exception
);
478 gru_dbg(grudev
, "FAILED non-exception tfh: 0x%p, status %d, state %d\n",
479 tfh
, tfh
->status
, tfh
->state
);
483 /* TFH state was idle - no miss pending */
484 gru_flush_cache(tfh
);
485 gru_flush_cache_cbe(cbe
);
487 gru_flush_cache(cbk
);
488 STAT(tlb_dropin_fail_idle
);
489 gru_dbg(grudev
, "FAILED idle tfh: 0x%p, state %d\n", tfh
, tfh
->state
);
493 /* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */
495 gru_flush_cache_cbe(cbe
);
496 STAT(tlb_dropin_fail_invalid
);
497 gru_dbg(grudev
, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh
, vaddr
);
501 /* Range invalidate active. Switch to UPM iff atomic */
503 tfh_user_polling_mode(tfh
);
505 gru_flush_cache(tfh
);
506 gru_flush_cache_cbe(cbe
);
507 STAT(tlb_dropin_fail_range_active
);
508 gru_dbg(grudev
, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n",
514 * Process an external interrupt from the GRU. This interrupt is
515 * caused by a TLB miss.
516 * Note that this is the interrupt handler that is registered with linux
517 * interrupt handlers.
519 static irqreturn_t
gru_intr(int chiplet
, int blade
)
521 struct gru_state
*gru
;
522 struct gru_tlb_fault_map imap
, dmap
;
523 struct gru_thread_state
*gts
;
524 struct gru_tlb_fault_handle
*tfh
= NULL
;
525 struct completion
*cmp
;
530 gru
= &gru_base
[blade
]->bs_grus
[chiplet
];
532 dev_err(grudev
, "GRU: invalid interrupt: cpu %d, chiplet %d\n",
533 raw_smp_processor_id(), chiplet
);
536 get_clear_fault_map(gru
, &imap
, &dmap
);
538 "cpu %d, chiplet %d, gid %d, imap %016lx %016lx, dmap %016lx %016lx\n",
539 smp_processor_id(), chiplet
, gru
->gs_gid
,
540 imap
.fault_bits
[0], imap
.fault_bits
[1],
541 dmap
.fault_bits
[0], dmap
.fault_bits
[1]);
543 for_each_cbr_in_tfm(cbrnum
, dmap
.fault_bits
) {
545 cmp
= gru
->gs_blade
->bs_async_wq
;
548 gru_dbg(grudev
, "gid %d, cbr_done %d, done %d\n",
549 gru
->gs_gid
, cbrnum
, cmp
? cmp
->done
: -1);
552 for_each_cbr_in_tfm(cbrnum
, imap
.fault_bits
) {
554 tfh
= get_tfh_by_index(gru
, cbrnum
);
555 prefetchw(tfh
); /* Helps on hdw, required for emulator */
558 * When hardware sets a bit in the faultmap, it implicitly
559 * locks the GRU context so that it cannot be unloaded.
560 * The gts cannot change until a TFH start/writestart command
563 ctxnum
= tfh
->ctxnum
;
564 gts
= gru
->gs_gts
[ctxnum
];
566 /* Spurious interrupts can cause this. Ignore. */
573 * This is running in interrupt context. Trylock the mmap_sem.
574 * If it fails, retry the fault in user context.
576 gts
->ustats
.fmm_tlbmiss
++;
577 if (!gts
->ts_force_cch_reload
&&
578 down_read_trylock(>s
->ts_mm
->mmap_sem
)) {
579 gru_try_dropin(gru
, gts
, tfh
, NULL
);
580 up_read(>s
->ts_mm
->mmap_sem
);
582 tfh_user_polling_mode(tfh
);
583 STAT(intr_mm_lock_failed
);
589 irqreturn_t
gru0_intr(int irq
, void *dev_id
)
591 return gru_intr(0, uv_numa_blade_id());
594 irqreturn_t
gru1_intr(int irq
, void *dev_id
)
596 return gru_intr(1, uv_numa_blade_id());
599 irqreturn_t
gru_intr_mblade(int irq
, void *dev_id
)
603 for_each_possible_blade(blade
) {
604 if (uv_blade_nr_possible_cpus(blade
))
613 static int gru_user_dropin(struct gru_thread_state
*gts
,
614 struct gru_tlb_fault_handle
*tfh
,
617 struct gru_mm_struct
*gms
= gts
->ts_gms
;
620 gts
->ustats
.upm_tlbmiss
++;
622 wait_event(gms
->ms_wait_queue
,
623 atomic_read(&gms
->ms_range_active
) == 0);
624 prefetchw(tfh
); /* Helps on hdw, required for emulator */
625 ret
= gru_try_dropin(gts
->ts_gru
, gts
, tfh
, cb
);
628 STAT(call_os_wait_queue
);
633 * This interface is called as a result of a user detecting a "call OS" bit
634 * in a user CB. Normally means that a TLB fault has occurred.
635 * cb - user virtual address of the CB
637 int gru_handle_user_call_os(unsigned long cb
)
639 struct gru_tlb_fault_handle
*tfh
;
640 struct gru_thread_state
*gts
;
642 int ucbnum
, cbrnum
, ret
= -EINVAL
;
646 /* sanity check the cb pointer */
647 ucbnum
= get_cb_number((void *)cb
);
648 if ((cb
& (GRU_HANDLE_STRIDE
- 1)) || ucbnum
>= GRU_NUM_CB
)
651 gts
= gru_find_lock_gts(cb
);
654 gru_dbg(grudev
, "address 0x%lx, gid %d, gts 0x%p\n", cb
, gts
->ts_gru
? gts
->ts_gru
->gs_gid
: -1, gts
);
656 if (ucbnum
>= gts
->ts_cbr_au_count
* GRU_CBR_AU_SIZE
)
659 gru_check_context_placement(gts
);
662 * CCH may contain stale data if ts_force_cch_reload is set.
664 if (gts
->ts_gru
&& gts
->ts_force_cch_reload
) {
665 gts
->ts_force_cch_reload
= 0;
670 cbrnum
= thread_cbr_number(gts
, ucbnum
);
672 tfh
= get_tfh_by_index(gts
->ts_gru
, cbrnum
);
673 cbk
= get_gseg_base_address_cb(gts
->ts_gru
->gs_gru_base_vaddr
,
674 gts
->ts_ctxnum
, ucbnum
);
675 ret
= gru_user_dropin(gts
, tfh
, cbk
);
683 * Fetch the exception detail information for a CB that terminated with
686 int gru_get_exception_detail(unsigned long arg
)
688 struct control_block_extended_exc_detail excdet
;
689 struct gru_control_block_extended
*cbe
;
690 struct gru_thread_state
*gts
;
691 int ucbnum
, cbrnum
, ret
;
693 STAT(user_exception
);
694 if (copy_from_user(&excdet
, (void __user
*)arg
, sizeof(excdet
)))
697 gts
= gru_find_lock_gts(excdet
.cb
);
701 gru_dbg(grudev
, "address 0x%lx, gid %d, gts 0x%p\n", excdet
.cb
, gts
->ts_gru
? gts
->ts_gru
->gs_gid
: -1, gts
);
702 ucbnum
= get_cb_number((void *)excdet
.cb
);
703 if (ucbnum
>= gts
->ts_cbr_au_count
* GRU_CBR_AU_SIZE
) {
705 } else if (gts
->ts_gru
) {
706 cbrnum
= thread_cbr_number(gts
, ucbnum
);
707 cbe
= get_cbe_by_index(gts
->ts_gru
, cbrnum
);
708 gru_flush_cache(cbe
); /* CBE not coherent */
709 sync_core(); /* make sure we are have current data */
710 excdet
.opc
= cbe
->opccpy
;
711 excdet
.exopc
= cbe
->exopccpy
;
712 excdet
.ecause
= cbe
->ecause
;
713 excdet
.exceptdet0
= cbe
->idef1upd
;
714 excdet
.exceptdet1
= cbe
->idef3upd
;
715 excdet
.cbrstate
= cbe
->cbrstate
;
716 excdet
.cbrexecstatus
= cbe
->cbrexecstatus
;
717 gru_flush_cache_cbe(cbe
);
725 "cb 0x%lx, op %d, exopc %d, cbrstate %d, cbrexecstatus 0x%x, ecause 0x%x, "
726 "exdet0 0x%lx, exdet1 0x%x\n",
727 excdet
.cb
, excdet
.opc
, excdet
.exopc
, excdet
.cbrstate
, excdet
.cbrexecstatus
,
728 excdet
.ecause
, excdet
.exceptdet0
, excdet
.exceptdet1
);
729 if (!ret
&& copy_to_user((void __user
*)arg
, &excdet
, sizeof(excdet
)))
735 * User request to unload a context. Content is saved for possible reload.
737 static int gru_unload_all_contexts(void)
739 struct gru_thread_state
*gts
;
740 struct gru_state
*gru
;
743 if (!capable(CAP_SYS_ADMIN
))
746 gru
= GID_TO_GRU(gid
);
747 spin_lock(&gru
->gs_lock
);
748 for (ctxnum
= 0; ctxnum
< GRU_NUM_CCH
; ctxnum
++) {
749 gts
= gru
->gs_gts
[ctxnum
];
750 if (gts
&& mutex_trylock(>s
->ts_ctxlock
)) {
751 spin_unlock(&gru
->gs_lock
);
752 gru_unload_context(gts
, 1);
753 mutex_unlock(>s
->ts_ctxlock
);
754 spin_lock(&gru
->gs_lock
);
757 spin_unlock(&gru
->gs_lock
);
762 int gru_user_unload_context(unsigned long arg
)
764 struct gru_thread_state
*gts
;
765 struct gru_unload_context_req req
;
767 STAT(user_unload_context
);
768 if (copy_from_user(&req
, (void __user
*)arg
, sizeof(req
)))
771 gru_dbg(grudev
, "gseg 0x%lx\n", req
.gseg
);
774 return gru_unload_all_contexts();
776 gts
= gru_find_lock_gts(req
.gseg
);
781 gru_unload_context(gts
, 1);
788 * User request to flush a range of virtual addresses from the GRU TLB
789 * (Mainly for testing).
791 int gru_user_flush_tlb(unsigned long arg
)
793 struct gru_thread_state
*gts
;
794 struct gru_flush_tlb_req req
;
795 struct gru_mm_struct
*gms
;
797 STAT(user_flush_tlb
);
798 if (copy_from_user(&req
, (void __user
*)arg
, sizeof(req
)))
801 gru_dbg(grudev
, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req
.gseg
,
804 gts
= gru_find_lock_gts(req
.gseg
);
810 gru_flush_tlb_range(gms
, req
.vaddr
, req
.len
);
816 * Fetch GSEG statisticss
818 long gru_get_gseg_statistics(unsigned long arg
)
820 struct gru_thread_state
*gts
;
821 struct gru_get_gseg_statistics_req req
;
823 if (copy_from_user(&req
, (void __user
*)arg
, sizeof(req
)))
827 * The library creates arrays of contexts for threaded programs.
828 * If no gts exists in the array, the context has never been used & all
829 * statistics are implicitly 0.
831 gts
= gru_find_lock_gts(req
.gseg
);
833 memcpy(&req
.stats
, >s
->ustats
, sizeof(gts
->ustats
));
836 memset(&req
.stats
, 0, sizeof(gts
->ustats
));
839 if (copy_to_user((void __user
*)arg
, &req
, sizeof(req
)))
846 * Register the current task as the user of the GSEG slice.
847 * Needed for TLB fault interrupt targeting.
849 int gru_set_context_option(unsigned long arg
)
851 struct gru_thread_state
*gts
;
852 struct gru_set_context_option_req req
;
855 STAT(set_context_option
);
856 if (copy_from_user(&req
, (void __user
*)arg
, sizeof(req
)))
858 gru_dbg(grudev
, "op %d, gseg 0x%lx, value1 0x%lx\n", req
.op
, req
.gseg
, req
.val1
);
860 gts
= gru_find_lock_gts(req
.gseg
);
862 gts
= gru_alloc_locked_gts(req
.gseg
);
868 case sco_blade_chiplet
:
869 /* Select blade/chiplet for GRU context */
870 if (req
.val0
< -1 || req
.val0
>= GRU_CHIPLETS_PER_HUB
||
871 req
.val1
< -1 || req
.val1
>= GRU_MAX_BLADES
||
872 (req
.val1
>= 0 && !gru_base
[req
.val1
])) {
875 gts
->ts_user_blade_id
= req
.val1
;
876 gts
->ts_user_chiplet_id
= req
.val0
;
877 gru_check_context_placement(gts
);
881 /* Register the current task as the GSEG owner */
882 gts
->ts_tgid_owner
= current
->tgid
;
884 case sco_cch_req_slice
:
885 /* Set the CCH slice option */
886 gts
->ts_cch_req_slice
= req
.val1
& 3;