treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / mmc / core / block.c
blob663d87924e5e8a224b78b49578d968e3b4b5bc15
1 /*
2 * Block driver for media (i.e., flash cards)
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 * Author: Andrew Christian
18 * 28 May 2002
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
48 #include <linux/uaccess.h>
50 #include "queue.h"
51 #include "block.h"
52 #include "core.h"
53 #include "card.h"
54 #include "host.h"
55 #include "bus.h"
56 #include "mmc_ops.h"
57 #include "quirks.h"
58 #include "sd_ops.h"
60 MODULE_ALIAS("mmc:block");
61 #ifdef MODULE_PARAM_PREFIX
62 #undef MODULE_PARAM_PREFIX
63 #endif
64 #define MODULE_PARAM_PREFIX "mmcblk."
67 * Set a 10 second timeout for polling write request busy state. Note, mmc core
68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
69 * second software timer to timeout the whole request, so 10 seconds should be
70 * ample.
72 #define MMC_BLK_TIMEOUT_MS (10 * 1000)
73 #define MMC_SANITIZE_REQ_TIMEOUT 240000
74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
75 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
77 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
78 (rq_data_dir(req) == WRITE))
79 static DEFINE_MUTEX(block_mutex);
82 * The defaults come from config options but can be overriden by module
83 * or bootarg options.
85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
88 * We've only got one major, so number of mmcblk devices is
89 * limited to (1 << 20) / number of minors per device. It is also
90 * limited by the MAX_DEVICES below.
92 static int max_devices;
94 #define MAX_DEVICES 256
96 static DEFINE_IDA(mmc_blk_ida);
97 static DEFINE_IDA(mmc_rpmb_ida);
100 * There is one mmc_blk_data per slot.
102 struct mmc_blk_data {
103 struct device *parent;
104 struct gendisk *disk;
105 struct mmc_queue queue;
106 struct list_head part;
107 struct list_head rpmbs;
109 unsigned int flags;
110 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
111 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
113 unsigned int usage;
114 unsigned int read_only;
115 unsigned int part_type;
116 unsigned int reset_done;
117 #define MMC_BLK_READ BIT(0)
118 #define MMC_BLK_WRITE BIT(1)
119 #define MMC_BLK_DISCARD BIT(2)
120 #define MMC_BLK_SECDISCARD BIT(3)
121 #define MMC_BLK_CQE_RECOVERY BIT(4)
124 * Only set in main mmc_blk_data associated
125 * with mmc_card with dev_set_drvdata, and keeps
126 * track of the current selected device partition.
128 unsigned int part_curr;
129 struct device_attribute force_ro;
130 struct device_attribute power_ro_lock;
131 int area_type;
133 /* debugfs files (only in main mmc_blk_data) */
134 struct dentry *status_dentry;
135 struct dentry *ext_csd_dentry;
138 /* Device type for RPMB character devices */
139 static dev_t mmc_rpmb_devt;
141 /* Bus type for RPMB character devices */
142 static struct bus_type mmc_rpmb_bus_type = {
143 .name = "mmc_rpmb",
147 * struct mmc_rpmb_data - special RPMB device type for these areas
148 * @dev: the device for the RPMB area
149 * @chrdev: character device for the RPMB area
150 * @id: unique device ID number
151 * @part_index: partition index (0 on first)
152 * @md: parent MMC block device
153 * @node: list item, so we can put this device on a list
155 struct mmc_rpmb_data {
156 struct device dev;
157 struct cdev chrdev;
158 int id;
159 unsigned int part_index;
160 struct mmc_blk_data *md;
161 struct list_head node;
164 static DEFINE_MUTEX(open_lock);
166 module_param(perdev_minors, int, 0444);
167 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
169 static inline int mmc_blk_part_switch(struct mmc_card *card,
170 unsigned int part_type);
172 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
174 struct mmc_blk_data *md;
176 mutex_lock(&open_lock);
177 md = disk->private_data;
178 if (md && md->usage == 0)
179 md = NULL;
180 if (md)
181 md->usage++;
182 mutex_unlock(&open_lock);
184 return md;
187 static inline int mmc_get_devidx(struct gendisk *disk)
189 int devidx = disk->first_minor / perdev_minors;
190 return devidx;
193 static void mmc_blk_put(struct mmc_blk_data *md)
195 mutex_lock(&open_lock);
196 md->usage--;
197 if (md->usage == 0) {
198 int devidx = mmc_get_devidx(md->disk);
199 blk_put_queue(md->queue.queue);
200 ida_simple_remove(&mmc_blk_ida, devidx);
201 put_disk(md->disk);
202 kfree(md);
204 mutex_unlock(&open_lock);
207 static ssize_t power_ro_lock_show(struct device *dev,
208 struct device_attribute *attr, char *buf)
210 int ret;
211 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
212 struct mmc_card *card = md->queue.card;
213 int locked = 0;
215 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
216 locked = 2;
217 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
218 locked = 1;
220 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
222 mmc_blk_put(md);
224 return ret;
227 static ssize_t power_ro_lock_store(struct device *dev,
228 struct device_attribute *attr, const char *buf, size_t count)
230 int ret;
231 struct mmc_blk_data *md, *part_md;
232 struct mmc_queue *mq;
233 struct request *req;
234 unsigned long set;
236 if (kstrtoul(buf, 0, &set))
237 return -EINVAL;
239 if (set != 1)
240 return count;
242 md = mmc_blk_get(dev_to_disk(dev));
243 mq = &md->queue;
245 /* Dispatch locking to the block layer */
246 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
247 if (IS_ERR(req)) {
248 count = PTR_ERR(req);
249 goto out_put;
251 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
252 blk_execute_rq(mq->queue, NULL, req, 0);
253 ret = req_to_mmc_queue_req(req)->drv_op_result;
254 blk_put_request(req);
256 if (!ret) {
257 pr_info("%s: Locking boot partition ro until next power on\n",
258 md->disk->disk_name);
259 set_disk_ro(md->disk, 1);
261 list_for_each_entry(part_md, &md->part, part)
262 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
263 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
264 set_disk_ro(part_md->disk, 1);
267 out_put:
268 mmc_blk_put(md);
269 return count;
272 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
273 char *buf)
275 int ret;
276 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
278 ret = snprintf(buf, PAGE_SIZE, "%d\n",
279 get_disk_ro(dev_to_disk(dev)) ^
280 md->read_only);
281 mmc_blk_put(md);
282 return ret;
285 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
286 const char *buf, size_t count)
288 int ret;
289 char *end;
290 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
291 unsigned long set = simple_strtoul(buf, &end, 0);
292 if (end == buf) {
293 ret = -EINVAL;
294 goto out;
297 set_disk_ro(dev_to_disk(dev), set || md->read_only);
298 ret = count;
299 out:
300 mmc_blk_put(md);
301 return ret;
304 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
306 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
307 int ret = -ENXIO;
309 mutex_lock(&block_mutex);
310 if (md) {
311 if (md->usage == 2)
312 check_disk_change(bdev);
313 ret = 0;
315 if ((mode & FMODE_WRITE) && md->read_only) {
316 mmc_blk_put(md);
317 ret = -EROFS;
320 mutex_unlock(&block_mutex);
322 return ret;
325 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
327 struct mmc_blk_data *md = disk->private_data;
329 mutex_lock(&block_mutex);
330 mmc_blk_put(md);
331 mutex_unlock(&block_mutex);
334 static int
335 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
337 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
338 geo->heads = 4;
339 geo->sectors = 16;
340 return 0;
343 struct mmc_blk_ioc_data {
344 struct mmc_ioc_cmd ic;
345 unsigned char *buf;
346 u64 buf_bytes;
347 struct mmc_rpmb_data *rpmb;
350 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
351 struct mmc_ioc_cmd __user *user)
353 struct mmc_blk_ioc_data *idata;
354 int err;
356 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
357 if (!idata) {
358 err = -ENOMEM;
359 goto out;
362 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
363 err = -EFAULT;
364 goto idata_err;
367 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
368 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
369 err = -EOVERFLOW;
370 goto idata_err;
373 if (!idata->buf_bytes) {
374 idata->buf = NULL;
375 return idata;
378 idata->buf = memdup_user((void __user *)(unsigned long)
379 idata->ic.data_ptr, idata->buf_bytes);
380 if (IS_ERR(idata->buf)) {
381 err = PTR_ERR(idata->buf);
382 goto idata_err;
385 return idata;
387 idata_err:
388 kfree(idata);
389 out:
390 return ERR_PTR(err);
393 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
394 struct mmc_blk_ioc_data *idata)
396 struct mmc_ioc_cmd *ic = &idata->ic;
398 if (copy_to_user(&(ic_ptr->response), ic->response,
399 sizeof(ic->response)))
400 return -EFAULT;
402 if (!idata->ic.write_flag) {
403 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
404 idata->buf, idata->buf_bytes))
405 return -EFAULT;
408 return 0;
411 static int ioctl_do_sanitize(struct mmc_card *card)
413 int err;
415 if (!mmc_can_sanitize(card)) {
416 pr_warn("%s: %s - SANITIZE is not supported\n",
417 mmc_hostname(card->host), __func__);
418 err = -EOPNOTSUPP;
419 goto out;
422 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
423 mmc_hostname(card->host), __func__);
425 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
426 EXT_CSD_SANITIZE_START, 1,
427 MMC_SANITIZE_REQ_TIMEOUT);
429 if (err)
430 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
431 mmc_hostname(card->host), __func__, err);
433 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
434 __func__);
435 out:
436 return err;
439 static inline bool mmc_blk_in_tran_state(u32 status)
442 * Some cards mishandle the status bits, so make sure to check both the
443 * busy indication and the card state.
445 return status & R1_READY_FOR_DATA &&
446 (R1_CURRENT_STATE(status) == R1_STATE_TRAN);
449 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
450 u32 *resp_errs)
452 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
453 int err = 0;
454 u32 status;
456 do {
457 bool done = time_after(jiffies, timeout);
459 err = __mmc_send_status(card, &status, 5);
460 if (err) {
461 dev_err(mmc_dev(card->host),
462 "error %d requesting status\n", err);
463 return err;
466 /* Accumulate any response error bits seen */
467 if (resp_errs)
468 *resp_errs |= status;
471 * Timeout if the device never becomes ready for data and never
472 * leaves the program state.
474 if (done) {
475 dev_err(mmc_dev(card->host),
476 "Card stuck in wrong state! %s status: %#x\n",
477 __func__, status);
478 return -ETIMEDOUT;
482 * Some cards mishandle the status bits,
483 * so make sure to check both the busy
484 * indication and the card state.
486 } while (!mmc_blk_in_tran_state(status));
488 return err;
491 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
492 struct mmc_blk_ioc_data *idata)
494 struct mmc_command cmd = {}, sbc = {};
495 struct mmc_data data = {};
496 struct mmc_request mrq = {};
497 struct scatterlist sg;
498 int err;
499 unsigned int target_part;
501 if (!card || !md || !idata)
502 return -EINVAL;
505 * The RPMB accesses comes in from the character device, so we
506 * need to target these explicitly. Else we just target the
507 * partition type for the block device the ioctl() was issued
508 * on.
510 if (idata->rpmb) {
511 /* Support multiple RPMB partitions */
512 target_part = idata->rpmb->part_index;
513 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
514 } else {
515 target_part = md->part_type;
518 cmd.opcode = idata->ic.opcode;
519 cmd.arg = idata->ic.arg;
520 cmd.flags = idata->ic.flags;
522 if (idata->buf_bytes) {
523 data.sg = &sg;
524 data.sg_len = 1;
525 data.blksz = idata->ic.blksz;
526 data.blocks = idata->ic.blocks;
528 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
530 if (idata->ic.write_flag)
531 data.flags = MMC_DATA_WRITE;
532 else
533 data.flags = MMC_DATA_READ;
535 /* data.flags must already be set before doing this. */
536 mmc_set_data_timeout(&data, card);
538 /* Allow overriding the timeout_ns for empirical tuning. */
539 if (idata->ic.data_timeout_ns)
540 data.timeout_ns = idata->ic.data_timeout_ns;
542 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
544 * Pretend this is a data transfer and rely on the
545 * host driver to compute timeout. When all host
546 * drivers support cmd.cmd_timeout for R1B, this
547 * can be changed to:
549 * mrq.data = NULL;
550 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
552 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
555 mrq.data = &data;
558 mrq.cmd = &cmd;
560 err = mmc_blk_part_switch(card, target_part);
561 if (err)
562 return err;
564 if (idata->ic.is_acmd) {
565 err = mmc_app_cmd(card->host, card);
566 if (err)
567 return err;
570 if (idata->rpmb) {
571 sbc.opcode = MMC_SET_BLOCK_COUNT;
573 * We don't do any blockcount validation because the max size
574 * may be increased by a future standard. We just copy the
575 * 'Reliable Write' bit here.
577 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
578 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
579 mrq.sbc = &sbc;
582 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
583 (cmd.opcode == MMC_SWITCH)) {
584 err = ioctl_do_sanitize(card);
586 if (err)
587 pr_err("%s: ioctl_do_sanitize() failed. err = %d",
588 __func__, err);
590 return err;
593 mmc_wait_for_req(card->host, &mrq);
595 if (cmd.error) {
596 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
597 __func__, cmd.error);
598 return cmd.error;
600 if (data.error) {
601 dev_err(mmc_dev(card->host), "%s: data error %d\n",
602 __func__, data.error);
603 return data.error;
607 * Make sure the cache of the PARTITION_CONFIG register and
608 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
609 * changed it successfully.
611 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
612 (cmd.opcode == MMC_SWITCH)) {
613 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
614 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
617 * Update cache so the next mmc_blk_part_switch call operates
618 * on up-to-date data.
620 card->ext_csd.part_config = value;
621 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
625 * According to the SD specs, some commands require a delay after
626 * issuing the command.
628 if (idata->ic.postsleep_min_us)
629 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
631 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
633 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B)) {
635 * Ensure RPMB/R1B command has completed by polling CMD13
636 * "Send Status".
638 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL);
641 return err;
644 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
645 struct mmc_ioc_cmd __user *ic_ptr,
646 struct mmc_rpmb_data *rpmb)
648 struct mmc_blk_ioc_data *idata;
649 struct mmc_blk_ioc_data *idatas[1];
650 struct mmc_queue *mq;
651 struct mmc_card *card;
652 int err = 0, ioc_err = 0;
653 struct request *req;
655 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
656 if (IS_ERR(idata))
657 return PTR_ERR(idata);
658 /* This will be NULL on non-RPMB ioctl():s */
659 idata->rpmb = rpmb;
661 card = md->queue.card;
662 if (IS_ERR(card)) {
663 err = PTR_ERR(card);
664 goto cmd_done;
668 * Dispatch the ioctl() into the block request queue.
670 mq = &md->queue;
671 req = blk_get_request(mq->queue,
672 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
673 if (IS_ERR(req)) {
674 err = PTR_ERR(req);
675 goto cmd_done;
677 idatas[0] = idata;
678 req_to_mmc_queue_req(req)->drv_op =
679 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
680 req_to_mmc_queue_req(req)->drv_op_data = idatas;
681 req_to_mmc_queue_req(req)->ioc_count = 1;
682 blk_execute_rq(mq->queue, NULL, req, 0);
683 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
684 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
685 blk_put_request(req);
687 cmd_done:
688 kfree(idata->buf);
689 kfree(idata);
690 return ioc_err ? ioc_err : err;
693 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
694 struct mmc_ioc_multi_cmd __user *user,
695 struct mmc_rpmb_data *rpmb)
697 struct mmc_blk_ioc_data **idata = NULL;
698 struct mmc_ioc_cmd __user *cmds = user->cmds;
699 struct mmc_card *card;
700 struct mmc_queue *mq;
701 int i, err = 0, ioc_err = 0;
702 __u64 num_of_cmds;
703 struct request *req;
705 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
706 sizeof(num_of_cmds)))
707 return -EFAULT;
709 if (!num_of_cmds)
710 return 0;
712 if (num_of_cmds > MMC_IOC_MAX_CMDS)
713 return -EINVAL;
715 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
716 if (!idata)
717 return -ENOMEM;
719 for (i = 0; i < num_of_cmds; i++) {
720 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
721 if (IS_ERR(idata[i])) {
722 err = PTR_ERR(idata[i]);
723 num_of_cmds = i;
724 goto cmd_err;
726 /* This will be NULL on non-RPMB ioctl():s */
727 idata[i]->rpmb = rpmb;
730 card = md->queue.card;
731 if (IS_ERR(card)) {
732 err = PTR_ERR(card);
733 goto cmd_err;
738 * Dispatch the ioctl()s into the block request queue.
740 mq = &md->queue;
741 req = blk_get_request(mq->queue,
742 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
743 if (IS_ERR(req)) {
744 err = PTR_ERR(req);
745 goto cmd_err;
747 req_to_mmc_queue_req(req)->drv_op =
748 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
749 req_to_mmc_queue_req(req)->drv_op_data = idata;
750 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
751 blk_execute_rq(mq->queue, NULL, req, 0);
752 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
754 /* copy to user if data and response */
755 for (i = 0; i < num_of_cmds && !err; i++)
756 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
758 blk_put_request(req);
760 cmd_err:
761 for (i = 0; i < num_of_cmds; i++) {
762 kfree(idata[i]->buf);
763 kfree(idata[i]);
765 kfree(idata);
766 return ioc_err ? ioc_err : err;
769 static int mmc_blk_check_blkdev(struct block_device *bdev)
772 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
773 * whole block device, not on a partition. This prevents overspray
774 * between sibling partitions.
776 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
777 return -EPERM;
778 return 0;
781 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
782 unsigned int cmd, unsigned long arg)
784 struct mmc_blk_data *md;
785 int ret;
787 switch (cmd) {
788 case MMC_IOC_CMD:
789 ret = mmc_blk_check_blkdev(bdev);
790 if (ret)
791 return ret;
792 md = mmc_blk_get(bdev->bd_disk);
793 if (!md)
794 return -EINVAL;
795 ret = mmc_blk_ioctl_cmd(md,
796 (struct mmc_ioc_cmd __user *)arg,
797 NULL);
798 mmc_blk_put(md);
799 return ret;
800 case MMC_IOC_MULTI_CMD:
801 ret = mmc_blk_check_blkdev(bdev);
802 if (ret)
803 return ret;
804 md = mmc_blk_get(bdev->bd_disk);
805 if (!md)
806 return -EINVAL;
807 ret = mmc_blk_ioctl_multi_cmd(md,
808 (struct mmc_ioc_multi_cmd __user *)arg,
809 NULL);
810 mmc_blk_put(md);
811 return ret;
812 default:
813 return -EINVAL;
817 #ifdef CONFIG_COMPAT
818 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
819 unsigned int cmd, unsigned long arg)
821 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
823 #endif
825 static const struct block_device_operations mmc_bdops = {
826 .open = mmc_blk_open,
827 .release = mmc_blk_release,
828 .getgeo = mmc_blk_getgeo,
829 .owner = THIS_MODULE,
830 .ioctl = mmc_blk_ioctl,
831 #ifdef CONFIG_COMPAT
832 .compat_ioctl = mmc_blk_compat_ioctl,
833 #endif
836 static int mmc_blk_part_switch_pre(struct mmc_card *card,
837 unsigned int part_type)
839 int ret = 0;
841 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
842 if (card->ext_csd.cmdq_en) {
843 ret = mmc_cmdq_disable(card);
844 if (ret)
845 return ret;
847 mmc_retune_pause(card->host);
850 return ret;
853 static int mmc_blk_part_switch_post(struct mmc_card *card,
854 unsigned int part_type)
856 int ret = 0;
858 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
859 mmc_retune_unpause(card->host);
860 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
861 ret = mmc_cmdq_enable(card);
864 return ret;
867 static inline int mmc_blk_part_switch(struct mmc_card *card,
868 unsigned int part_type)
870 int ret = 0;
871 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
873 if (main_md->part_curr == part_type)
874 return 0;
876 if (mmc_card_mmc(card)) {
877 u8 part_config = card->ext_csd.part_config;
879 ret = mmc_blk_part_switch_pre(card, part_type);
880 if (ret)
881 return ret;
883 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
884 part_config |= part_type;
886 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
887 EXT_CSD_PART_CONFIG, part_config,
888 card->ext_csd.part_time);
889 if (ret) {
890 mmc_blk_part_switch_post(card, part_type);
891 return ret;
894 card->ext_csd.part_config = part_config;
896 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
899 main_md->part_curr = part_type;
900 return ret;
903 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
905 int err;
906 u32 result;
907 __be32 *blocks;
909 struct mmc_request mrq = {};
910 struct mmc_command cmd = {};
911 struct mmc_data data = {};
913 struct scatterlist sg;
915 cmd.opcode = MMC_APP_CMD;
916 cmd.arg = card->rca << 16;
917 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
919 err = mmc_wait_for_cmd(card->host, &cmd, 0);
920 if (err)
921 return err;
922 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
923 return -EIO;
925 memset(&cmd, 0, sizeof(struct mmc_command));
927 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
928 cmd.arg = 0;
929 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
931 data.blksz = 4;
932 data.blocks = 1;
933 data.flags = MMC_DATA_READ;
934 data.sg = &sg;
935 data.sg_len = 1;
936 mmc_set_data_timeout(&data, card);
938 mrq.cmd = &cmd;
939 mrq.data = &data;
941 blocks = kmalloc(4, GFP_KERNEL);
942 if (!blocks)
943 return -ENOMEM;
945 sg_init_one(&sg, blocks, 4);
947 mmc_wait_for_req(card->host, &mrq);
949 result = ntohl(*blocks);
950 kfree(blocks);
952 if (cmd.error || data.error)
953 return -EIO;
955 *written_blocks = result;
957 return 0;
960 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
962 if (host->actual_clock)
963 return host->actual_clock / 1000;
965 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
966 if (host->ios.clock)
967 return host->ios.clock / 2000;
969 /* How can there be no clock */
970 WARN_ON_ONCE(1);
971 return 100; /* 100 kHz is minimum possible value */
974 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
975 struct mmc_data *data)
977 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
978 unsigned int khz;
980 if (data->timeout_clks) {
981 khz = mmc_blk_clock_khz(host);
982 ms += DIV_ROUND_UP(data->timeout_clks, khz);
985 return ms;
988 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
989 int type)
991 int err;
993 if (md->reset_done & type)
994 return -EEXIST;
996 md->reset_done |= type;
997 err = mmc_hw_reset(host);
998 /* Ensure we switch back to the correct partition */
999 if (err != -EOPNOTSUPP) {
1000 struct mmc_blk_data *main_md =
1001 dev_get_drvdata(&host->card->dev);
1002 int part_err;
1004 main_md->part_curr = main_md->part_type;
1005 part_err = mmc_blk_part_switch(host->card, md->part_type);
1006 if (part_err) {
1008 * We have failed to get back into the correct
1009 * partition, so we need to abort the whole request.
1011 return -ENODEV;
1014 return err;
1017 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1019 md->reset_done &= ~type;
1023 * The non-block commands come back from the block layer after it queued it and
1024 * processed it with all other requests and then they get issued in this
1025 * function.
1027 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1029 struct mmc_queue_req *mq_rq;
1030 struct mmc_card *card = mq->card;
1031 struct mmc_blk_data *md = mq->blkdata;
1032 struct mmc_blk_ioc_data **idata;
1033 bool rpmb_ioctl;
1034 u8 **ext_csd;
1035 u32 status;
1036 int ret;
1037 int i;
1039 mq_rq = req_to_mmc_queue_req(req);
1040 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1042 switch (mq_rq->drv_op) {
1043 case MMC_DRV_OP_IOCTL:
1044 case MMC_DRV_OP_IOCTL_RPMB:
1045 idata = mq_rq->drv_op_data;
1046 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1047 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1048 if (ret)
1049 break;
1051 /* Always switch back to main area after RPMB access */
1052 if (rpmb_ioctl)
1053 mmc_blk_part_switch(card, 0);
1054 break;
1055 case MMC_DRV_OP_BOOT_WP:
1056 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1057 card->ext_csd.boot_ro_lock |
1058 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1059 card->ext_csd.part_time);
1060 if (ret)
1061 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1062 md->disk->disk_name, ret);
1063 else
1064 card->ext_csd.boot_ro_lock |=
1065 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1066 break;
1067 case MMC_DRV_OP_GET_CARD_STATUS:
1068 ret = mmc_send_status(card, &status);
1069 if (!ret)
1070 ret = status;
1071 break;
1072 case MMC_DRV_OP_GET_EXT_CSD:
1073 ext_csd = mq_rq->drv_op_data;
1074 ret = mmc_get_ext_csd(card, ext_csd);
1075 break;
1076 default:
1077 pr_err("%s: unknown driver specific operation\n",
1078 md->disk->disk_name);
1079 ret = -EINVAL;
1080 break;
1082 mq_rq->drv_op_result = ret;
1083 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1086 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1088 struct mmc_blk_data *md = mq->blkdata;
1089 struct mmc_card *card = md->queue.card;
1090 unsigned int from, nr;
1091 int err = 0, type = MMC_BLK_DISCARD;
1092 blk_status_t status = BLK_STS_OK;
1094 if (!mmc_can_erase(card)) {
1095 status = BLK_STS_NOTSUPP;
1096 goto fail;
1099 from = blk_rq_pos(req);
1100 nr = blk_rq_sectors(req);
1102 do {
1103 err = 0;
1104 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1105 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1106 INAND_CMD38_ARG_EXT_CSD,
1107 card->erase_arg == MMC_TRIM_ARG ?
1108 INAND_CMD38_ARG_TRIM :
1109 INAND_CMD38_ARG_ERASE,
1110 card->ext_csd.generic_cmd6_time);
1112 if (!err)
1113 err = mmc_erase(card, from, nr, card->erase_arg);
1114 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1115 if (err)
1116 status = BLK_STS_IOERR;
1117 else
1118 mmc_blk_reset_success(md, type);
1119 fail:
1120 blk_mq_end_request(req, status);
1123 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1124 struct request *req)
1126 struct mmc_blk_data *md = mq->blkdata;
1127 struct mmc_card *card = md->queue.card;
1128 unsigned int from, nr, arg;
1129 int err = 0, type = MMC_BLK_SECDISCARD;
1130 blk_status_t status = BLK_STS_OK;
1132 if (!(mmc_can_secure_erase_trim(card))) {
1133 status = BLK_STS_NOTSUPP;
1134 goto out;
1137 from = blk_rq_pos(req);
1138 nr = blk_rq_sectors(req);
1140 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1141 arg = MMC_SECURE_TRIM1_ARG;
1142 else
1143 arg = MMC_SECURE_ERASE_ARG;
1145 retry:
1146 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1147 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1148 INAND_CMD38_ARG_EXT_CSD,
1149 arg == MMC_SECURE_TRIM1_ARG ?
1150 INAND_CMD38_ARG_SECTRIM1 :
1151 INAND_CMD38_ARG_SECERASE,
1152 card->ext_csd.generic_cmd6_time);
1153 if (err)
1154 goto out_retry;
1157 err = mmc_erase(card, from, nr, arg);
1158 if (err == -EIO)
1159 goto out_retry;
1160 if (err) {
1161 status = BLK_STS_IOERR;
1162 goto out;
1165 if (arg == MMC_SECURE_TRIM1_ARG) {
1166 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1167 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1168 INAND_CMD38_ARG_EXT_CSD,
1169 INAND_CMD38_ARG_SECTRIM2,
1170 card->ext_csd.generic_cmd6_time);
1171 if (err)
1172 goto out_retry;
1175 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1176 if (err == -EIO)
1177 goto out_retry;
1178 if (err) {
1179 status = BLK_STS_IOERR;
1180 goto out;
1184 out_retry:
1185 if (err && !mmc_blk_reset(md, card->host, type))
1186 goto retry;
1187 if (!err)
1188 mmc_blk_reset_success(md, type);
1189 out:
1190 blk_mq_end_request(req, status);
1193 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1195 struct mmc_blk_data *md = mq->blkdata;
1196 struct mmc_card *card = md->queue.card;
1197 int ret = 0;
1199 ret = mmc_flush_cache(card);
1200 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1204 * Reformat current write as a reliable write, supporting
1205 * both legacy and the enhanced reliable write MMC cards.
1206 * In each transfer we'll handle only as much as a single
1207 * reliable write can handle, thus finish the request in
1208 * partial completions.
1210 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1211 struct mmc_card *card,
1212 struct request *req)
1214 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1215 /* Legacy mode imposes restrictions on transfers. */
1216 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1217 brq->data.blocks = 1;
1219 if (brq->data.blocks > card->ext_csd.rel_sectors)
1220 brq->data.blocks = card->ext_csd.rel_sectors;
1221 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1222 brq->data.blocks = 1;
1226 #define CMD_ERRORS_EXCL_OOR \
1227 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1228 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1229 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1230 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1231 R1_CC_ERROR | /* Card controller error */ \
1232 R1_ERROR) /* General/unknown error */
1234 #define CMD_ERRORS \
1235 (CMD_ERRORS_EXCL_OOR | \
1236 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1238 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1240 u32 val;
1243 * Per the SD specification(physical layer version 4.10)[1],
1244 * section 4.3.3, it explicitly states that "When the last
1245 * block of user area is read using CMD18, the host should
1246 * ignore OUT_OF_RANGE error that may occur even the sequence
1247 * is correct". And JESD84-B51 for eMMC also has a similar
1248 * statement on section 6.8.3.
1250 * Multiple block read/write could be done by either predefined
1251 * method, namely CMD23, or open-ending mode. For open-ending mode,
1252 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1254 * However the spec[1] doesn't tell us whether we should also
1255 * ignore that for predefined method. But per the spec[1], section
1256 * 4.15 Set Block Count Command, it says"If illegal block count
1257 * is set, out of range error will be indicated during read/write
1258 * operation (For example, data transfer is stopped at user area
1259 * boundary)." In another word, we could expect a out of range error
1260 * in the response for the following CMD18/25. And if argument of
1261 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1262 * we could also expect to get a -ETIMEDOUT or any error number from
1263 * the host drivers due to missing data response(for write)/data(for
1264 * read), as the cards will stop the data transfer by itself per the
1265 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1268 if (!brq->stop.error) {
1269 bool oor_with_open_end;
1270 /* If there is no error yet, check R1 response */
1272 val = brq->stop.resp[0] & CMD_ERRORS;
1273 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1275 if (val && !oor_with_open_end)
1276 brq->stop.error = -EIO;
1280 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1281 int disable_multi, bool *do_rel_wr_p,
1282 bool *do_data_tag_p)
1284 struct mmc_blk_data *md = mq->blkdata;
1285 struct mmc_card *card = md->queue.card;
1286 struct mmc_blk_request *brq = &mqrq->brq;
1287 struct request *req = mmc_queue_req_to_req(mqrq);
1288 bool do_rel_wr, do_data_tag;
1291 * Reliable writes are used to implement Forced Unit Access and
1292 * are supported only on MMCs.
1294 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1295 rq_data_dir(req) == WRITE &&
1296 (md->flags & MMC_BLK_REL_WR);
1298 memset(brq, 0, sizeof(struct mmc_blk_request));
1300 brq->mrq.data = &brq->data;
1301 brq->mrq.tag = req->tag;
1303 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1304 brq->stop.arg = 0;
1306 if (rq_data_dir(req) == READ) {
1307 brq->data.flags = MMC_DATA_READ;
1308 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1309 } else {
1310 brq->data.flags = MMC_DATA_WRITE;
1311 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1314 brq->data.blksz = 512;
1315 brq->data.blocks = blk_rq_sectors(req);
1316 brq->data.blk_addr = blk_rq_pos(req);
1319 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1320 * The eMMC will give "high" priority tasks priority over "simple"
1321 * priority tasks. Here we always set "simple" priority by not setting
1322 * MMC_DATA_PRIO.
1326 * The block layer doesn't support all sector count
1327 * restrictions, so we need to be prepared for too big
1328 * requests.
1330 if (brq->data.blocks > card->host->max_blk_count)
1331 brq->data.blocks = card->host->max_blk_count;
1333 if (brq->data.blocks > 1) {
1335 * Some SD cards in SPI mode return a CRC error or even lock up
1336 * completely when trying to read the last block using a
1337 * multiblock read command.
1339 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1340 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1341 get_capacity(md->disk)))
1342 brq->data.blocks--;
1345 * After a read error, we redo the request one sector
1346 * at a time in order to accurately determine which
1347 * sectors can be read successfully.
1349 if (disable_multi)
1350 brq->data.blocks = 1;
1353 * Some controllers have HW issues while operating
1354 * in multiple I/O mode
1356 if (card->host->ops->multi_io_quirk)
1357 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1358 (rq_data_dir(req) == READ) ?
1359 MMC_DATA_READ : MMC_DATA_WRITE,
1360 brq->data.blocks);
1363 if (do_rel_wr) {
1364 mmc_apply_rel_rw(brq, card, req);
1365 brq->data.flags |= MMC_DATA_REL_WR;
1369 * Data tag is used only during writing meta data to speed
1370 * up write and any subsequent read of this meta data
1372 do_data_tag = card->ext_csd.data_tag_unit_size &&
1373 (req->cmd_flags & REQ_META) &&
1374 (rq_data_dir(req) == WRITE) &&
1375 ((brq->data.blocks * brq->data.blksz) >=
1376 card->ext_csd.data_tag_unit_size);
1378 if (do_data_tag)
1379 brq->data.flags |= MMC_DATA_DAT_TAG;
1381 mmc_set_data_timeout(&brq->data, card);
1383 brq->data.sg = mqrq->sg;
1384 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1387 * Adjust the sg list so it is the same size as the
1388 * request.
1390 if (brq->data.blocks != blk_rq_sectors(req)) {
1391 int i, data_size = brq->data.blocks << 9;
1392 struct scatterlist *sg;
1394 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1395 data_size -= sg->length;
1396 if (data_size <= 0) {
1397 sg->length += data_size;
1398 i++;
1399 break;
1402 brq->data.sg_len = i;
1405 if (do_rel_wr_p)
1406 *do_rel_wr_p = do_rel_wr;
1408 if (do_data_tag_p)
1409 *do_data_tag_p = do_data_tag;
1412 #define MMC_CQE_RETRIES 2
1414 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1416 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1417 struct mmc_request *mrq = &mqrq->brq.mrq;
1418 struct request_queue *q = req->q;
1419 struct mmc_host *host = mq->card->host;
1420 unsigned long flags;
1421 bool put_card;
1422 int err;
1424 mmc_cqe_post_req(host, mrq);
1426 if (mrq->cmd && mrq->cmd->error)
1427 err = mrq->cmd->error;
1428 else if (mrq->data && mrq->data->error)
1429 err = mrq->data->error;
1430 else
1431 err = 0;
1433 if (err) {
1434 if (mqrq->retries++ < MMC_CQE_RETRIES)
1435 blk_mq_requeue_request(req, true);
1436 else
1437 blk_mq_end_request(req, BLK_STS_IOERR);
1438 } else if (mrq->data) {
1439 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1440 blk_mq_requeue_request(req, true);
1441 else
1442 __blk_mq_end_request(req, BLK_STS_OK);
1443 } else {
1444 blk_mq_end_request(req, BLK_STS_OK);
1447 spin_lock_irqsave(&mq->lock, flags);
1449 mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1451 put_card = (mmc_tot_in_flight(mq) == 0);
1453 mmc_cqe_check_busy(mq);
1455 spin_unlock_irqrestore(&mq->lock, flags);
1457 if (!mq->cqe_busy)
1458 blk_mq_run_hw_queues(q, true);
1460 if (put_card)
1461 mmc_put_card(mq->card, &mq->ctx);
1464 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1466 struct mmc_card *card = mq->card;
1467 struct mmc_host *host = card->host;
1468 int err;
1470 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1472 err = mmc_cqe_recovery(host);
1473 if (err)
1474 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1475 else
1476 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1478 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1481 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1483 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1484 brq.mrq);
1485 struct request *req = mmc_queue_req_to_req(mqrq);
1486 struct request_queue *q = req->q;
1487 struct mmc_queue *mq = q->queuedata;
1490 * Block layer timeouts race with completions which means the normal
1491 * completion path cannot be used during recovery.
1493 if (mq->in_recovery)
1494 mmc_blk_cqe_complete_rq(mq, req);
1495 else
1496 blk_mq_complete_request(req);
1499 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1501 mrq->done = mmc_blk_cqe_req_done;
1502 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1504 return mmc_cqe_start_req(host, mrq);
1507 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1508 struct request *req)
1510 struct mmc_blk_request *brq = &mqrq->brq;
1512 memset(brq, 0, sizeof(*brq));
1514 brq->mrq.cmd = &brq->cmd;
1515 brq->mrq.tag = req->tag;
1517 return &brq->mrq;
1520 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1522 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1523 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1525 mrq->cmd->opcode = MMC_SWITCH;
1526 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1527 (EXT_CSD_FLUSH_CACHE << 16) |
1528 (1 << 8) |
1529 EXT_CSD_CMD_SET_NORMAL;
1530 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1532 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1535 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1537 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1539 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1541 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1544 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1545 struct mmc_card *card,
1546 int disable_multi,
1547 struct mmc_queue *mq)
1549 u32 readcmd, writecmd;
1550 struct mmc_blk_request *brq = &mqrq->brq;
1551 struct request *req = mmc_queue_req_to_req(mqrq);
1552 struct mmc_blk_data *md = mq->blkdata;
1553 bool do_rel_wr, do_data_tag;
1555 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1557 brq->mrq.cmd = &brq->cmd;
1559 brq->cmd.arg = blk_rq_pos(req);
1560 if (!mmc_card_blockaddr(card))
1561 brq->cmd.arg <<= 9;
1562 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1564 if (brq->data.blocks > 1 || do_rel_wr) {
1565 /* SPI multiblock writes terminate using a special
1566 * token, not a STOP_TRANSMISSION request.
1568 if (!mmc_host_is_spi(card->host) ||
1569 rq_data_dir(req) == READ)
1570 brq->mrq.stop = &brq->stop;
1571 readcmd = MMC_READ_MULTIPLE_BLOCK;
1572 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1573 } else {
1574 brq->mrq.stop = NULL;
1575 readcmd = MMC_READ_SINGLE_BLOCK;
1576 writecmd = MMC_WRITE_BLOCK;
1578 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1581 * Pre-defined multi-block transfers are preferable to
1582 * open ended-ones (and necessary for reliable writes).
1583 * However, it is not sufficient to just send CMD23,
1584 * and avoid the final CMD12, as on an error condition
1585 * CMD12 (stop) needs to be sent anyway. This, coupled
1586 * with Auto-CMD23 enhancements provided by some
1587 * hosts, means that the complexity of dealing
1588 * with this is best left to the host. If CMD23 is
1589 * supported by card and host, we'll fill sbc in and let
1590 * the host deal with handling it correctly. This means
1591 * that for hosts that don't expose MMC_CAP_CMD23, no
1592 * change of behavior will be observed.
1594 * N.B: Some MMC cards experience perf degradation.
1595 * We'll avoid using CMD23-bounded multiblock writes for
1596 * these, while retaining features like reliable writes.
1598 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1599 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1600 do_data_tag)) {
1601 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1602 brq->sbc.arg = brq->data.blocks |
1603 (do_rel_wr ? (1 << 31) : 0) |
1604 (do_data_tag ? (1 << 29) : 0);
1605 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1606 brq->mrq.sbc = &brq->sbc;
1610 #define MMC_MAX_RETRIES 5
1611 #define MMC_DATA_RETRIES 2
1612 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1614 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1616 struct mmc_command cmd = {
1617 .opcode = MMC_STOP_TRANSMISSION,
1618 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1619 /* Some hosts wait for busy anyway, so provide a busy timeout */
1620 .busy_timeout = timeout,
1623 return mmc_wait_for_cmd(card->host, &cmd, 5);
1626 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1628 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1629 struct mmc_blk_request *brq = &mqrq->brq;
1630 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1631 int err;
1633 mmc_retune_hold_now(card->host);
1635 mmc_blk_send_stop(card, timeout);
1637 err = card_busy_detect(card, timeout, NULL);
1639 mmc_retune_release(card->host);
1641 return err;
1644 #define MMC_READ_SINGLE_RETRIES 2
1646 /* Single sector read during recovery */
1647 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1649 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1650 struct mmc_request *mrq = &mqrq->brq.mrq;
1651 struct mmc_card *card = mq->card;
1652 struct mmc_host *host = card->host;
1653 blk_status_t error = BLK_STS_OK;
1654 int retries = 0;
1656 do {
1657 u32 status;
1658 int err;
1660 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1662 mmc_wait_for_req(host, mrq);
1664 err = mmc_send_status(card, &status);
1665 if (err)
1666 goto error_exit;
1668 if (!mmc_host_is_spi(host) &&
1669 !mmc_blk_in_tran_state(status)) {
1670 err = mmc_blk_fix_state(card, req);
1671 if (err)
1672 goto error_exit;
1675 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1676 continue;
1678 retries = 0;
1680 if (mrq->cmd->error ||
1681 mrq->data->error ||
1682 (!mmc_host_is_spi(host) &&
1683 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1684 error = BLK_STS_IOERR;
1685 else
1686 error = BLK_STS_OK;
1688 } while (blk_update_request(req, error, 512));
1690 return;
1692 error_exit:
1693 mrq->data->bytes_xfered = 0;
1694 blk_update_request(req, BLK_STS_IOERR, 512);
1695 /* Let it try the remaining request again */
1696 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1697 mqrq->retries = MMC_MAX_RETRIES - 1;
1700 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1702 return !!brq->mrq.sbc;
1705 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1707 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1711 * Check for errors the host controller driver might not have seen such as
1712 * response mode errors or invalid card state.
1714 static bool mmc_blk_status_error(struct request *req, u32 status)
1716 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1717 struct mmc_blk_request *brq = &mqrq->brq;
1718 struct mmc_queue *mq = req->q->queuedata;
1719 u32 stop_err_bits;
1721 if (mmc_host_is_spi(mq->card->host))
1722 return false;
1724 stop_err_bits = mmc_blk_stop_err_bits(brq);
1726 return brq->cmd.resp[0] & CMD_ERRORS ||
1727 brq->stop.resp[0] & stop_err_bits ||
1728 status & stop_err_bits ||
1729 (rq_data_dir(req) == WRITE && !mmc_blk_in_tran_state(status));
1732 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1734 return !brq->sbc.error && !brq->cmd.error &&
1735 !(brq->cmd.resp[0] & CMD_ERRORS);
1739 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1740 * policy:
1741 * 1. A request that has transferred at least some data is considered
1742 * successful and will be requeued if there is remaining data to
1743 * transfer.
1744 * 2. Otherwise the number of retries is incremented and the request
1745 * will be requeued if there are remaining retries.
1746 * 3. Otherwise the request will be errored out.
1747 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1748 * mqrq->retries. So there are only 4 possible actions here:
1749 * 1. do not accept the bytes_xfered value i.e. set it to zero
1750 * 2. change mqrq->retries to determine the number of retries
1751 * 3. try to reset the card
1752 * 4. read one sector at a time
1754 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1756 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1757 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1758 struct mmc_blk_request *brq = &mqrq->brq;
1759 struct mmc_blk_data *md = mq->blkdata;
1760 struct mmc_card *card = mq->card;
1761 u32 status;
1762 u32 blocks;
1763 int err;
1766 * Some errors the host driver might not have seen. Set the number of
1767 * bytes transferred to zero in that case.
1769 err = __mmc_send_status(card, &status, 0);
1770 if (err || mmc_blk_status_error(req, status))
1771 brq->data.bytes_xfered = 0;
1773 mmc_retune_release(card->host);
1776 * Try again to get the status. This also provides an opportunity for
1777 * re-tuning.
1779 if (err)
1780 err = __mmc_send_status(card, &status, 0);
1783 * Nothing more to do after the number of bytes transferred has been
1784 * updated and there is no card.
1786 if (err && mmc_detect_card_removed(card->host))
1787 return;
1789 /* Try to get back to "tran" state */
1790 if (!mmc_host_is_spi(mq->card->host) &&
1791 (err || !mmc_blk_in_tran_state(status)))
1792 err = mmc_blk_fix_state(mq->card, req);
1795 * Special case for SD cards where the card might record the number of
1796 * blocks written.
1798 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1799 rq_data_dir(req) == WRITE) {
1800 if (mmc_sd_num_wr_blocks(card, &blocks))
1801 brq->data.bytes_xfered = 0;
1802 else
1803 brq->data.bytes_xfered = blocks << 9;
1806 /* Reset if the card is in a bad state */
1807 if (!mmc_host_is_spi(mq->card->host) &&
1808 err && mmc_blk_reset(md, card->host, type)) {
1809 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1810 mqrq->retries = MMC_NO_RETRIES;
1811 return;
1815 * If anything was done, just return and if there is anything remaining
1816 * on the request it will get requeued.
1818 if (brq->data.bytes_xfered)
1819 return;
1821 /* Reset before last retry */
1822 if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1823 mmc_blk_reset(md, card->host, type);
1825 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1826 if (brq->sbc.error || brq->cmd.error)
1827 return;
1829 /* Reduce the remaining retries for data errors */
1830 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1831 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1832 return;
1835 /* FIXME: Missing single sector read for large sector size */
1836 if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1837 brq->data.blocks > 1) {
1838 /* Read one sector at a time */
1839 mmc_blk_read_single(mq, req);
1840 return;
1844 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1846 mmc_blk_eval_resp_error(brq);
1848 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1849 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1852 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1854 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1855 u32 status = 0;
1856 int err;
1858 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1859 return 0;
1861 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status);
1864 * Do not assume data transferred correctly if there are any error bits
1865 * set.
1867 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1868 mqrq->brq.data.bytes_xfered = 0;
1869 err = err ? err : -EIO;
1872 /* Copy the exception bit so it will be seen later on */
1873 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1874 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1876 return err;
1879 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1880 struct request *req)
1882 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1884 mmc_blk_reset_success(mq->blkdata, type);
1887 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1889 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1890 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1892 if (nr_bytes) {
1893 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1894 blk_mq_requeue_request(req, true);
1895 else
1896 __blk_mq_end_request(req, BLK_STS_OK);
1897 } else if (!blk_rq_bytes(req)) {
1898 __blk_mq_end_request(req, BLK_STS_IOERR);
1899 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1900 blk_mq_requeue_request(req, true);
1901 } else {
1902 if (mmc_card_removed(mq->card))
1903 req->rq_flags |= RQF_QUIET;
1904 blk_mq_end_request(req, BLK_STS_IOERR);
1908 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1909 struct mmc_queue_req *mqrq)
1911 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1912 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1913 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1916 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1917 struct mmc_queue_req *mqrq)
1919 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1920 mmc_run_bkops(mq->card);
1923 void mmc_blk_mq_complete(struct request *req)
1925 struct mmc_queue *mq = req->q->queuedata;
1927 if (mq->use_cqe)
1928 mmc_blk_cqe_complete_rq(mq, req);
1929 else
1930 mmc_blk_mq_complete_rq(mq, req);
1933 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1934 struct request *req)
1936 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1937 struct mmc_host *host = mq->card->host;
1939 if (mmc_blk_rq_error(&mqrq->brq) ||
1940 mmc_blk_card_busy(mq->card, req)) {
1941 mmc_blk_mq_rw_recovery(mq, req);
1942 } else {
1943 mmc_blk_rw_reset_success(mq, req);
1944 mmc_retune_release(host);
1947 mmc_blk_urgent_bkops(mq, mqrq);
1950 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1952 unsigned long flags;
1953 bool put_card;
1955 spin_lock_irqsave(&mq->lock, flags);
1957 mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1959 put_card = (mmc_tot_in_flight(mq) == 0);
1961 spin_unlock_irqrestore(&mq->lock, flags);
1963 if (put_card)
1964 mmc_put_card(mq->card, &mq->ctx);
1967 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
1969 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1970 struct mmc_request *mrq = &mqrq->brq.mrq;
1971 struct mmc_host *host = mq->card->host;
1973 mmc_post_req(host, mrq, 0);
1976 * Block layer timeouts race with completions which means the normal
1977 * completion path cannot be used during recovery.
1979 if (mq->in_recovery)
1980 mmc_blk_mq_complete_rq(mq, req);
1981 else
1982 blk_mq_complete_request(req);
1984 mmc_blk_mq_dec_in_flight(mq, req);
1987 void mmc_blk_mq_recovery(struct mmc_queue *mq)
1989 struct request *req = mq->recovery_req;
1990 struct mmc_host *host = mq->card->host;
1991 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1993 mq->recovery_req = NULL;
1994 mq->rw_wait = false;
1996 if (mmc_blk_rq_error(&mqrq->brq)) {
1997 mmc_retune_hold_now(host);
1998 mmc_blk_mq_rw_recovery(mq, req);
2001 mmc_blk_urgent_bkops(mq, mqrq);
2003 mmc_blk_mq_post_req(mq, req);
2006 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2007 struct request **prev_req)
2009 if (mmc_host_done_complete(mq->card->host))
2010 return;
2012 mutex_lock(&mq->complete_lock);
2014 if (!mq->complete_req)
2015 goto out_unlock;
2017 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2019 if (prev_req)
2020 *prev_req = mq->complete_req;
2021 else
2022 mmc_blk_mq_post_req(mq, mq->complete_req);
2024 mq->complete_req = NULL;
2026 out_unlock:
2027 mutex_unlock(&mq->complete_lock);
2030 void mmc_blk_mq_complete_work(struct work_struct *work)
2032 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2033 complete_work);
2035 mmc_blk_mq_complete_prev_req(mq, NULL);
2038 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2040 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2041 brq.mrq);
2042 struct request *req = mmc_queue_req_to_req(mqrq);
2043 struct request_queue *q = req->q;
2044 struct mmc_queue *mq = q->queuedata;
2045 struct mmc_host *host = mq->card->host;
2046 unsigned long flags;
2048 if (!mmc_host_done_complete(host)) {
2049 bool waiting;
2052 * We cannot complete the request in this context, so record
2053 * that there is a request to complete, and that a following
2054 * request does not need to wait (although it does need to
2055 * complete complete_req first).
2057 spin_lock_irqsave(&mq->lock, flags);
2058 mq->complete_req = req;
2059 mq->rw_wait = false;
2060 waiting = mq->waiting;
2061 spin_unlock_irqrestore(&mq->lock, flags);
2064 * If 'waiting' then the waiting task will complete this
2065 * request, otherwise queue a work to do it. Note that
2066 * complete_work may still race with the dispatch of a following
2067 * request.
2069 if (waiting)
2070 wake_up(&mq->wait);
2071 else
2072 queue_work(mq->card->complete_wq, &mq->complete_work);
2074 return;
2077 /* Take the recovery path for errors or urgent background operations */
2078 if (mmc_blk_rq_error(&mqrq->brq) ||
2079 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2080 spin_lock_irqsave(&mq->lock, flags);
2081 mq->recovery_needed = true;
2082 mq->recovery_req = req;
2083 spin_unlock_irqrestore(&mq->lock, flags);
2084 wake_up(&mq->wait);
2085 schedule_work(&mq->recovery_work);
2086 return;
2089 mmc_blk_rw_reset_success(mq, req);
2091 mq->rw_wait = false;
2092 wake_up(&mq->wait);
2094 mmc_blk_mq_post_req(mq, req);
2097 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2099 unsigned long flags;
2100 bool done;
2103 * Wait while there is another request in progress, but not if recovery
2104 * is needed. Also indicate whether there is a request waiting to start.
2106 spin_lock_irqsave(&mq->lock, flags);
2107 if (mq->recovery_needed) {
2108 *err = -EBUSY;
2109 done = true;
2110 } else {
2111 done = !mq->rw_wait;
2113 mq->waiting = !done;
2114 spin_unlock_irqrestore(&mq->lock, flags);
2116 return done;
2119 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2121 int err = 0;
2123 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2125 /* Always complete the previous request if there is one */
2126 mmc_blk_mq_complete_prev_req(mq, prev_req);
2128 return err;
2131 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2132 struct request *req)
2134 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2135 struct mmc_host *host = mq->card->host;
2136 struct request *prev_req = NULL;
2137 int err = 0;
2139 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2141 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2143 mmc_pre_req(host, &mqrq->brq.mrq);
2145 err = mmc_blk_rw_wait(mq, &prev_req);
2146 if (err)
2147 goto out_post_req;
2149 mq->rw_wait = true;
2151 err = mmc_start_request(host, &mqrq->brq.mrq);
2153 if (prev_req)
2154 mmc_blk_mq_post_req(mq, prev_req);
2156 if (err)
2157 mq->rw_wait = false;
2159 /* Release re-tuning here where there is no synchronization required */
2160 if (err || mmc_host_done_complete(host))
2161 mmc_retune_release(host);
2163 out_post_req:
2164 if (err)
2165 mmc_post_req(host, &mqrq->brq.mrq, err);
2167 return err;
2170 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2172 if (mq->use_cqe)
2173 return host->cqe_ops->cqe_wait_for_idle(host);
2175 return mmc_blk_rw_wait(mq, NULL);
2178 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2180 struct mmc_blk_data *md = mq->blkdata;
2181 struct mmc_card *card = md->queue.card;
2182 struct mmc_host *host = card->host;
2183 int ret;
2185 ret = mmc_blk_part_switch(card, md->part_type);
2186 if (ret)
2187 return MMC_REQ_FAILED_TO_START;
2189 switch (mmc_issue_type(mq, req)) {
2190 case MMC_ISSUE_SYNC:
2191 ret = mmc_blk_wait_for_idle(mq, host);
2192 if (ret)
2193 return MMC_REQ_BUSY;
2194 switch (req_op(req)) {
2195 case REQ_OP_DRV_IN:
2196 case REQ_OP_DRV_OUT:
2197 mmc_blk_issue_drv_op(mq, req);
2198 break;
2199 case REQ_OP_DISCARD:
2200 mmc_blk_issue_discard_rq(mq, req);
2201 break;
2202 case REQ_OP_SECURE_ERASE:
2203 mmc_blk_issue_secdiscard_rq(mq, req);
2204 break;
2205 case REQ_OP_FLUSH:
2206 mmc_blk_issue_flush(mq, req);
2207 break;
2208 default:
2209 WARN_ON_ONCE(1);
2210 return MMC_REQ_FAILED_TO_START;
2212 return MMC_REQ_FINISHED;
2213 case MMC_ISSUE_DCMD:
2214 case MMC_ISSUE_ASYNC:
2215 switch (req_op(req)) {
2216 case REQ_OP_FLUSH:
2217 ret = mmc_blk_cqe_issue_flush(mq, req);
2218 break;
2219 case REQ_OP_READ:
2220 case REQ_OP_WRITE:
2221 if (mq->use_cqe)
2222 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2223 else
2224 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2225 break;
2226 default:
2227 WARN_ON_ONCE(1);
2228 ret = -EINVAL;
2230 if (!ret)
2231 return MMC_REQ_STARTED;
2232 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2233 default:
2234 WARN_ON_ONCE(1);
2235 return MMC_REQ_FAILED_TO_START;
2239 static inline int mmc_blk_readonly(struct mmc_card *card)
2241 return mmc_card_readonly(card) ||
2242 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2245 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2246 struct device *parent,
2247 sector_t size,
2248 bool default_ro,
2249 const char *subname,
2250 int area_type)
2252 struct mmc_blk_data *md;
2253 int devidx, ret;
2255 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2256 if (devidx < 0) {
2258 * We get -ENOSPC because there are no more any available
2259 * devidx. The reason may be that, either userspace haven't yet
2260 * unmounted the partitions, which postpones mmc_blk_release()
2261 * from being called, or the device has more partitions than
2262 * what we support.
2264 if (devidx == -ENOSPC)
2265 dev_err(mmc_dev(card->host),
2266 "no more device IDs available\n");
2268 return ERR_PTR(devidx);
2271 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2272 if (!md) {
2273 ret = -ENOMEM;
2274 goto out;
2277 md->area_type = area_type;
2280 * Set the read-only status based on the supported commands
2281 * and the write protect switch.
2283 md->read_only = mmc_blk_readonly(card);
2285 md->disk = alloc_disk(perdev_minors);
2286 if (md->disk == NULL) {
2287 ret = -ENOMEM;
2288 goto err_kfree;
2291 INIT_LIST_HEAD(&md->part);
2292 INIT_LIST_HEAD(&md->rpmbs);
2293 md->usage = 1;
2295 ret = mmc_init_queue(&md->queue, card);
2296 if (ret)
2297 goto err_putdisk;
2299 md->queue.blkdata = md;
2302 * Keep an extra reference to the queue so that we can shutdown the
2303 * queue (i.e. call blk_cleanup_queue()) while there are still
2304 * references to the 'md'. The corresponding blk_put_queue() is in
2305 * mmc_blk_put().
2307 if (!blk_get_queue(md->queue.queue)) {
2308 mmc_cleanup_queue(&md->queue);
2309 ret = -ENODEV;
2310 goto err_putdisk;
2313 md->disk->major = MMC_BLOCK_MAJOR;
2314 md->disk->first_minor = devidx * perdev_minors;
2315 md->disk->fops = &mmc_bdops;
2316 md->disk->private_data = md;
2317 md->disk->queue = md->queue.queue;
2318 md->parent = parent;
2319 set_disk_ro(md->disk, md->read_only || default_ro);
2320 md->disk->flags = GENHD_FL_EXT_DEVT;
2321 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2322 md->disk->flags |= GENHD_FL_NO_PART_SCAN
2323 | GENHD_FL_SUPPRESS_PARTITION_INFO;
2326 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2328 * - be set for removable media with permanent block devices
2329 * - be unset for removable block devices with permanent media
2331 * Since MMC block devices clearly fall under the second
2332 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2333 * should use the block device creation/destruction hotplug
2334 * messages to tell when the card is present.
2337 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2338 "mmcblk%u%s", card->host->index, subname ? subname : "");
2340 set_capacity(md->disk, size);
2342 if (mmc_host_cmd23(card->host)) {
2343 if ((mmc_card_mmc(card) &&
2344 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2345 (mmc_card_sd(card) &&
2346 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2347 md->flags |= MMC_BLK_CMD23;
2350 if (mmc_card_mmc(card) &&
2351 md->flags & MMC_BLK_CMD23 &&
2352 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2353 card->ext_csd.rel_sectors)) {
2354 md->flags |= MMC_BLK_REL_WR;
2355 blk_queue_write_cache(md->queue.queue, true, true);
2358 return md;
2360 err_putdisk:
2361 put_disk(md->disk);
2362 err_kfree:
2363 kfree(md);
2364 out:
2365 ida_simple_remove(&mmc_blk_ida, devidx);
2366 return ERR_PTR(ret);
2369 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2371 sector_t size;
2373 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2375 * The EXT_CSD sector count is in number or 512 byte
2376 * sectors.
2378 size = card->ext_csd.sectors;
2379 } else {
2381 * The CSD capacity field is in units of read_blkbits.
2382 * set_capacity takes units of 512 bytes.
2384 size = (typeof(sector_t))card->csd.capacity
2385 << (card->csd.read_blkbits - 9);
2388 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2389 MMC_BLK_DATA_AREA_MAIN);
2392 static int mmc_blk_alloc_part(struct mmc_card *card,
2393 struct mmc_blk_data *md,
2394 unsigned int part_type,
2395 sector_t size,
2396 bool default_ro,
2397 const char *subname,
2398 int area_type)
2400 char cap_str[10];
2401 struct mmc_blk_data *part_md;
2403 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2404 subname, area_type);
2405 if (IS_ERR(part_md))
2406 return PTR_ERR(part_md);
2407 part_md->part_type = part_type;
2408 list_add(&part_md->part, &md->part);
2410 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2411 cap_str, sizeof(cap_str));
2412 pr_info("%s: %s %s partition %u %s\n",
2413 part_md->disk->disk_name, mmc_card_id(card),
2414 mmc_card_name(card), part_md->part_type, cap_str);
2415 return 0;
2419 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2420 * @filp: the character device file
2421 * @cmd: the ioctl() command
2422 * @arg: the argument from userspace
2424 * This will essentially just redirect the ioctl()s coming in over to
2425 * the main block device spawning the RPMB character device.
2427 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2428 unsigned long arg)
2430 struct mmc_rpmb_data *rpmb = filp->private_data;
2431 int ret;
2433 switch (cmd) {
2434 case MMC_IOC_CMD:
2435 ret = mmc_blk_ioctl_cmd(rpmb->md,
2436 (struct mmc_ioc_cmd __user *)arg,
2437 rpmb);
2438 break;
2439 case MMC_IOC_MULTI_CMD:
2440 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2441 (struct mmc_ioc_multi_cmd __user *)arg,
2442 rpmb);
2443 break;
2444 default:
2445 ret = -EINVAL;
2446 break;
2449 return ret;
2452 #ifdef CONFIG_COMPAT
2453 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2454 unsigned long arg)
2456 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2458 #endif
2460 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2462 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2463 struct mmc_rpmb_data, chrdev);
2465 get_device(&rpmb->dev);
2466 filp->private_data = rpmb;
2467 mmc_blk_get(rpmb->md->disk);
2469 return nonseekable_open(inode, filp);
2472 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2474 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2475 struct mmc_rpmb_data, chrdev);
2477 put_device(&rpmb->dev);
2478 mmc_blk_put(rpmb->md);
2480 return 0;
2483 static const struct file_operations mmc_rpmb_fileops = {
2484 .release = mmc_rpmb_chrdev_release,
2485 .open = mmc_rpmb_chrdev_open,
2486 .owner = THIS_MODULE,
2487 .llseek = no_llseek,
2488 .unlocked_ioctl = mmc_rpmb_ioctl,
2489 #ifdef CONFIG_COMPAT
2490 .compat_ioctl = mmc_rpmb_ioctl_compat,
2491 #endif
2494 static void mmc_blk_rpmb_device_release(struct device *dev)
2496 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2498 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2499 kfree(rpmb);
2502 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2503 struct mmc_blk_data *md,
2504 unsigned int part_index,
2505 sector_t size,
2506 const char *subname)
2508 int devidx, ret;
2509 char rpmb_name[DISK_NAME_LEN];
2510 char cap_str[10];
2511 struct mmc_rpmb_data *rpmb;
2513 /* This creates the minor number for the RPMB char device */
2514 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2515 if (devidx < 0)
2516 return devidx;
2518 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2519 if (!rpmb) {
2520 ida_simple_remove(&mmc_rpmb_ida, devidx);
2521 return -ENOMEM;
2524 snprintf(rpmb_name, sizeof(rpmb_name),
2525 "mmcblk%u%s", card->host->index, subname ? subname : "");
2527 rpmb->id = devidx;
2528 rpmb->part_index = part_index;
2529 rpmb->dev.init_name = rpmb_name;
2530 rpmb->dev.bus = &mmc_rpmb_bus_type;
2531 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2532 rpmb->dev.parent = &card->dev;
2533 rpmb->dev.release = mmc_blk_rpmb_device_release;
2534 device_initialize(&rpmb->dev);
2535 dev_set_drvdata(&rpmb->dev, rpmb);
2536 rpmb->md = md;
2538 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2539 rpmb->chrdev.owner = THIS_MODULE;
2540 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2541 if (ret) {
2542 pr_err("%s: could not add character device\n", rpmb_name);
2543 goto out_put_device;
2546 list_add(&rpmb->node, &md->rpmbs);
2548 string_get_size((u64)size, 512, STRING_UNITS_2,
2549 cap_str, sizeof(cap_str));
2551 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2552 rpmb_name, mmc_card_id(card),
2553 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2554 MAJOR(mmc_rpmb_devt), rpmb->id);
2556 return 0;
2558 out_put_device:
2559 put_device(&rpmb->dev);
2560 return ret;
2563 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2566 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2567 put_device(&rpmb->dev);
2570 /* MMC Physical partitions consist of two boot partitions and
2571 * up to four general purpose partitions.
2572 * For each partition enabled in EXT_CSD a block device will be allocatedi
2573 * to provide access to the partition.
2576 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2578 int idx, ret;
2580 if (!mmc_card_mmc(card))
2581 return 0;
2583 for (idx = 0; idx < card->nr_parts; idx++) {
2584 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2586 * RPMB partitions does not provide block access, they
2587 * are only accessed using ioctl():s. Thus create
2588 * special RPMB block devices that do not have a
2589 * backing block queue for these.
2591 ret = mmc_blk_alloc_rpmb_part(card, md,
2592 card->part[idx].part_cfg,
2593 card->part[idx].size >> 9,
2594 card->part[idx].name);
2595 if (ret)
2596 return ret;
2597 } else if (card->part[idx].size) {
2598 ret = mmc_blk_alloc_part(card, md,
2599 card->part[idx].part_cfg,
2600 card->part[idx].size >> 9,
2601 card->part[idx].force_ro,
2602 card->part[idx].name,
2603 card->part[idx].area_type);
2604 if (ret)
2605 return ret;
2609 return 0;
2612 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2614 struct mmc_card *card;
2616 if (md) {
2618 * Flush remaining requests and free queues. It
2619 * is freeing the queue that stops new requests
2620 * from being accepted.
2622 card = md->queue.card;
2623 if (md->disk->flags & GENHD_FL_UP) {
2624 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2625 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2626 card->ext_csd.boot_ro_lockable)
2627 device_remove_file(disk_to_dev(md->disk),
2628 &md->power_ro_lock);
2630 del_gendisk(md->disk);
2632 mmc_cleanup_queue(&md->queue);
2633 mmc_blk_put(md);
2637 static void mmc_blk_remove_parts(struct mmc_card *card,
2638 struct mmc_blk_data *md)
2640 struct list_head *pos, *q;
2641 struct mmc_blk_data *part_md;
2642 struct mmc_rpmb_data *rpmb;
2644 /* Remove RPMB partitions */
2645 list_for_each_safe(pos, q, &md->rpmbs) {
2646 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2647 list_del(pos);
2648 mmc_blk_remove_rpmb_part(rpmb);
2650 /* Remove block partitions */
2651 list_for_each_safe(pos, q, &md->part) {
2652 part_md = list_entry(pos, struct mmc_blk_data, part);
2653 list_del(pos);
2654 mmc_blk_remove_req(part_md);
2658 static int mmc_add_disk(struct mmc_blk_data *md)
2660 int ret;
2661 struct mmc_card *card = md->queue.card;
2663 device_add_disk(md->parent, md->disk, NULL);
2664 md->force_ro.show = force_ro_show;
2665 md->force_ro.store = force_ro_store;
2666 sysfs_attr_init(&md->force_ro.attr);
2667 md->force_ro.attr.name = "force_ro";
2668 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2669 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2670 if (ret)
2671 goto force_ro_fail;
2673 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2674 card->ext_csd.boot_ro_lockable) {
2675 umode_t mode;
2677 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2678 mode = S_IRUGO;
2679 else
2680 mode = S_IRUGO | S_IWUSR;
2682 md->power_ro_lock.show = power_ro_lock_show;
2683 md->power_ro_lock.store = power_ro_lock_store;
2684 sysfs_attr_init(&md->power_ro_lock.attr);
2685 md->power_ro_lock.attr.mode = mode;
2686 md->power_ro_lock.attr.name =
2687 "ro_lock_until_next_power_on";
2688 ret = device_create_file(disk_to_dev(md->disk),
2689 &md->power_ro_lock);
2690 if (ret)
2691 goto power_ro_lock_fail;
2693 return ret;
2695 power_ro_lock_fail:
2696 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2697 force_ro_fail:
2698 del_gendisk(md->disk);
2700 return ret;
2703 #ifdef CONFIG_DEBUG_FS
2705 static int mmc_dbg_card_status_get(void *data, u64 *val)
2707 struct mmc_card *card = data;
2708 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2709 struct mmc_queue *mq = &md->queue;
2710 struct request *req;
2711 int ret;
2713 /* Ask the block layer about the card status */
2714 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2715 if (IS_ERR(req))
2716 return PTR_ERR(req);
2717 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2718 blk_execute_rq(mq->queue, NULL, req, 0);
2719 ret = req_to_mmc_queue_req(req)->drv_op_result;
2720 if (ret >= 0) {
2721 *val = ret;
2722 ret = 0;
2724 blk_put_request(req);
2726 return ret;
2728 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2729 NULL, "%08llx\n");
2731 /* That is two digits * 512 + 1 for newline */
2732 #define EXT_CSD_STR_LEN 1025
2734 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2736 struct mmc_card *card = inode->i_private;
2737 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2738 struct mmc_queue *mq = &md->queue;
2739 struct request *req;
2740 char *buf;
2741 ssize_t n = 0;
2742 u8 *ext_csd;
2743 int err, i;
2745 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2746 if (!buf)
2747 return -ENOMEM;
2749 /* Ask the block layer for the EXT CSD */
2750 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2751 if (IS_ERR(req)) {
2752 err = PTR_ERR(req);
2753 goto out_free;
2755 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2756 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2757 blk_execute_rq(mq->queue, NULL, req, 0);
2758 err = req_to_mmc_queue_req(req)->drv_op_result;
2759 blk_put_request(req);
2760 if (err) {
2761 pr_err("FAILED %d\n", err);
2762 goto out_free;
2765 for (i = 0; i < 512; i++)
2766 n += sprintf(buf + n, "%02x", ext_csd[i]);
2767 n += sprintf(buf + n, "\n");
2769 if (n != EXT_CSD_STR_LEN) {
2770 err = -EINVAL;
2771 kfree(ext_csd);
2772 goto out_free;
2775 filp->private_data = buf;
2776 kfree(ext_csd);
2777 return 0;
2779 out_free:
2780 kfree(buf);
2781 return err;
2784 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2785 size_t cnt, loff_t *ppos)
2787 char *buf = filp->private_data;
2789 return simple_read_from_buffer(ubuf, cnt, ppos,
2790 buf, EXT_CSD_STR_LEN);
2793 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2795 kfree(file->private_data);
2796 return 0;
2799 static const struct file_operations mmc_dbg_ext_csd_fops = {
2800 .open = mmc_ext_csd_open,
2801 .read = mmc_ext_csd_read,
2802 .release = mmc_ext_csd_release,
2803 .llseek = default_llseek,
2806 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2808 struct dentry *root;
2810 if (!card->debugfs_root)
2811 return 0;
2813 root = card->debugfs_root;
2815 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2816 md->status_dentry =
2817 debugfs_create_file_unsafe("status", 0400, root,
2818 card,
2819 &mmc_dbg_card_status_fops);
2820 if (!md->status_dentry)
2821 return -EIO;
2824 if (mmc_card_mmc(card)) {
2825 md->ext_csd_dentry =
2826 debugfs_create_file("ext_csd", S_IRUSR, root, card,
2827 &mmc_dbg_ext_csd_fops);
2828 if (!md->ext_csd_dentry)
2829 return -EIO;
2832 return 0;
2835 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2836 struct mmc_blk_data *md)
2838 if (!card->debugfs_root)
2839 return;
2841 if (!IS_ERR_OR_NULL(md->status_dentry)) {
2842 debugfs_remove(md->status_dentry);
2843 md->status_dentry = NULL;
2846 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2847 debugfs_remove(md->ext_csd_dentry);
2848 md->ext_csd_dentry = NULL;
2852 #else
2854 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2856 return 0;
2859 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2860 struct mmc_blk_data *md)
2864 #endif /* CONFIG_DEBUG_FS */
2866 static int mmc_blk_probe(struct mmc_card *card)
2868 struct mmc_blk_data *md, *part_md;
2869 char cap_str[10];
2872 * Check that the card supports the command class(es) we need.
2874 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2875 return -ENODEV;
2877 mmc_fixup_device(card, mmc_blk_fixups);
2879 card->complete_wq = alloc_workqueue("mmc_complete",
2880 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2881 if (unlikely(!card->complete_wq)) {
2882 pr_err("Failed to create mmc completion workqueue");
2883 return -ENOMEM;
2886 md = mmc_blk_alloc(card);
2887 if (IS_ERR(md))
2888 return PTR_ERR(md);
2890 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2891 cap_str, sizeof(cap_str));
2892 pr_info("%s: %s %s %s %s\n",
2893 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2894 cap_str, md->read_only ? "(ro)" : "");
2896 if (mmc_blk_alloc_parts(card, md))
2897 goto out;
2899 dev_set_drvdata(&card->dev, md);
2901 if (mmc_add_disk(md))
2902 goto out;
2904 list_for_each_entry(part_md, &md->part, part) {
2905 if (mmc_add_disk(part_md))
2906 goto out;
2909 /* Add two debugfs entries */
2910 mmc_blk_add_debugfs(card, md);
2912 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2913 pm_runtime_use_autosuspend(&card->dev);
2916 * Don't enable runtime PM for SD-combo cards here. Leave that
2917 * decision to be taken during the SDIO init sequence instead.
2919 if (card->type != MMC_TYPE_SD_COMBO) {
2920 pm_runtime_set_active(&card->dev);
2921 pm_runtime_enable(&card->dev);
2924 return 0;
2926 out:
2927 mmc_blk_remove_parts(card, md);
2928 mmc_blk_remove_req(md);
2929 return 0;
2932 static void mmc_blk_remove(struct mmc_card *card)
2934 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2936 mmc_blk_remove_debugfs(card, md);
2937 mmc_blk_remove_parts(card, md);
2938 pm_runtime_get_sync(&card->dev);
2939 if (md->part_curr != md->part_type) {
2940 mmc_claim_host(card->host);
2941 mmc_blk_part_switch(card, md->part_type);
2942 mmc_release_host(card->host);
2944 if (card->type != MMC_TYPE_SD_COMBO)
2945 pm_runtime_disable(&card->dev);
2946 pm_runtime_put_noidle(&card->dev);
2947 mmc_blk_remove_req(md);
2948 dev_set_drvdata(&card->dev, NULL);
2949 destroy_workqueue(card->complete_wq);
2952 static int _mmc_blk_suspend(struct mmc_card *card)
2954 struct mmc_blk_data *part_md;
2955 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2957 if (md) {
2958 mmc_queue_suspend(&md->queue);
2959 list_for_each_entry(part_md, &md->part, part) {
2960 mmc_queue_suspend(&part_md->queue);
2963 return 0;
2966 static void mmc_blk_shutdown(struct mmc_card *card)
2968 _mmc_blk_suspend(card);
2971 #ifdef CONFIG_PM_SLEEP
2972 static int mmc_blk_suspend(struct device *dev)
2974 struct mmc_card *card = mmc_dev_to_card(dev);
2976 return _mmc_blk_suspend(card);
2979 static int mmc_blk_resume(struct device *dev)
2981 struct mmc_blk_data *part_md;
2982 struct mmc_blk_data *md = dev_get_drvdata(dev);
2984 if (md) {
2986 * Resume involves the card going into idle state,
2987 * so current partition is always the main one.
2989 md->part_curr = md->part_type;
2990 mmc_queue_resume(&md->queue);
2991 list_for_each_entry(part_md, &md->part, part) {
2992 mmc_queue_resume(&part_md->queue);
2995 return 0;
2997 #endif
2999 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3001 static struct mmc_driver mmc_driver = {
3002 .drv = {
3003 .name = "mmcblk",
3004 .pm = &mmc_blk_pm_ops,
3006 .probe = mmc_blk_probe,
3007 .remove = mmc_blk_remove,
3008 .shutdown = mmc_blk_shutdown,
3011 static int __init mmc_blk_init(void)
3013 int res;
3015 res = bus_register(&mmc_rpmb_bus_type);
3016 if (res < 0) {
3017 pr_err("mmcblk: could not register RPMB bus type\n");
3018 return res;
3020 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3021 if (res < 0) {
3022 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3023 goto out_bus_unreg;
3026 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3027 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3029 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3031 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3032 if (res)
3033 goto out_chrdev_unreg;
3035 res = mmc_register_driver(&mmc_driver);
3036 if (res)
3037 goto out_blkdev_unreg;
3039 return 0;
3041 out_blkdev_unreg:
3042 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3043 out_chrdev_unreg:
3044 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3045 out_bus_unreg:
3046 bus_unregister(&mmc_rpmb_bus_type);
3047 return res;
3050 static void __exit mmc_blk_exit(void)
3052 mmc_unregister_driver(&mmc_driver);
3053 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3054 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3055 bus_unregister(&mmc_rpmb_bus_type);
3058 module_init(mmc_blk_init);
3059 module_exit(mmc_blk_exit);
3061 MODULE_LICENSE("GPL");
3062 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");