1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/drivers/mmc/core/mmc.c
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
10 #include <linux/err.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
16 #include <linux/mmc/host.h>
17 #include <linux/mmc/card.h>
18 #include <linux/mmc/mmc.h>
29 #define DEFAULT_CMD6_TIMEOUT_MS 500
30 #define MIN_CACHE_EN_TIMEOUT_MS 1600
32 static const unsigned int tran_exp
[] = {
33 10000, 100000, 1000000, 10000000,
37 static const unsigned char tran_mant
[] = {
38 0, 10, 12, 13, 15, 20, 25, 30,
39 35, 40, 45, 50, 55, 60, 70, 80,
42 static const unsigned int taac_exp
[] = {
43 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
46 static const unsigned int taac_mant
[] = {
47 0, 10, 12, 13, 15, 20, 25, 30,
48 35, 40, 45, 50, 55, 60, 70, 80,
51 #define UNSTUFF_BITS(resp,start,size) \
53 const int __size = size; \
54 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
55 const int __off = 3 - ((start) / 32); \
56 const int __shft = (start) & 31; \
59 __res = resp[__off] >> __shft; \
60 if (__size + __shft > 32) \
61 __res |= resp[__off-1] << ((32 - __shft) % 32); \
66 * Given the decoded CSD structure, decode the raw CID to our CID structure.
68 static int mmc_decode_cid(struct mmc_card
*card
)
70 u32
*resp
= card
->raw_cid
;
73 * The selection of the format here is based upon published
74 * specs from sandisk and from what people have reported.
76 switch (card
->csd
.mmca_vsn
) {
77 case 0: /* MMC v1.0 - v1.2 */
78 case 1: /* MMC v1.4 */
79 card
->cid
.manfid
= UNSTUFF_BITS(resp
, 104, 24);
80 card
->cid
.prod_name
[0] = UNSTUFF_BITS(resp
, 96, 8);
81 card
->cid
.prod_name
[1] = UNSTUFF_BITS(resp
, 88, 8);
82 card
->cid
.prod_name
[2] = UNSTUFF_BITS(resp
, 80, 8);
83 card
->cid
.prod_name
[3] = UNSTUFF_BITS(resp
, 72, 8);
84 card
->cid
.prod_name
[4] = UNSTUFF_BITS(resp
, 64, 8);
85 card
->cid
.prod_name
[5] = UNSTUFF_BITS(resp
, 56, 8);
86 card
->cid
.prod_name
[6] = UNSTUFF_BITS(resp
, 48, 8);
87 card
->cid
.hwrev
= UNSTUFF_BITS(resp
, 44, 4);
88 card
->cid
.fwrev
= UNSTUFF_BITS(resp
, 40, 4);
89 card
->cid
.serial
= UNSTUFF_BITS(resp
, 16, 24);
90 card
->cid
.month
= UNSTUFF_BITS(resp
, 12, 4);
91 card
->cid
.year
= UNSTUFF_BITS(resp
, 8, 4) + 1997;
94 case 2: /* MMC v2.0 - v2.2 */
95 case 3: /* MMC v3.1 - v3.3 */
97 card
->cid
.manfid
= UNSTUFF_BITS(resp
, 120, 8);
98 card
->cid
.oemid
= UNSTUFF_BITS(resp
, 104, 16);
99 card
->cid
.prod_name
[0] = UNSTUFF_BITS(resp
, 96, 8);
100 card
->cid
.prod_name
[1] = UNSTUFF_BITS(resp
, 88, 8);
101 card
->cid
.prod_name
[2] = UNSTUFF_BITS(resp
, 80, 8);
102 card
->cid
.prod_name
[3] = UNSTUFF_BITS(resp
, 72, 8);
103 card
->cid
.prod_name
[4] = UNSTUFF_BITS(resp
, 64, 8);
104 card
->cid
.prod_name
[5] = UNSTUFF_BITS(resp
, 56, 8);
105 card
->cid
.prv
= UNSTUFF_BITS(resp
, 48, 8);
106 card
->cid
.serial
= UNSTUFF_BITS(resp
, 16, 32);
107 card
->cid
.month
= UNSTUFF_BITS(resp
, 12, 4);
108 card
->cid
.year
= UNSTUFF_BITS(resp
, 8, 4) + 1997;
112 pr_err("%s: card has unknown MMCA version %d\n",
113 mmc_hostname(card
->host
), card
->csd
.mmca_vsn
);
120 static void mmc_set_erase_size(struct mmc_card
*card
)
122 if (card
->ext_csd
.erase_group_def
& 1)
123 card
->erase_size
= card
->ext_csd
.hc_erase_size
;
125 card
->erase_size
= card
->csd
.erase_size
;
127 mmc_init_erase(card
);
131 * Given a 128-bit response, decode to our card CSD structure.
133 static int mmc_decode_csd(struct mmc_card
*card
)
135 struct mmc_csd
*csd
= &card
->csd
;
136 unsigned int e
, m
, a
, b
;
137 u32
*resp
= card
->raw_csd
;
140 * We only understand CSD structure v1.1 and v1.2.
141 * v1.2 has extra information in bits 15, 11 and 10.
142 * We also support eMMC v4.4 & v4.41.
144 csd
->structure
= UNSTUFF_BITS(resp
, 126, 2);
145 if (csd
->structure
== 0) {
146 pr_err("%s: unrecognised CSD structure version %d\n",
147 mmc_hostname(card
->host
), csd
->structure
);
151 csd
->mmca_vsn
= UNSTUFF_BITS(resp
, 122, 4);
152 m
= UNSTUFF_BITS(resp
, 115, 4);
153 e
= UNSTUFF_BITS(resp
, 112, 3);
154 csd
->taac_ns
= (taac_exp
[e
] * taac_mant
[m
] + 9) / 10;
155 csd
->taac_clks
= UNSTUFF_BITS(resp
, 104, 8) * 100;
157 m
= UNSTUFF_BITS(resp
, 99, 4);
158 e
= UNSTUFF_BITS(resp
, 96, 3);
159 csd
->max_dtr
= tran_exp
[e
] * tran_mant
[m
];
160 csd
->cmdclass
= UNSTUFF_BITS(resp
, 84, 12);
162 e
= UNSTUFF_BITS(resp
, 47, 3);
163 m
= UNSTUFF_BITS(resp
, 62, 12);
164 csd
->capacity
= (1 + m
) << (e
+ 2);
166 csd
->read_blkbits
= UNSTUFF_BITS(resp
, 80, 4);
167 csd
->read_partial
= UNSTUFF_BITS(resp
, 79, 1);
168 csd
->write_misalign
= UNSTUFF_BITS(resp
, 78, 1);
169 csd
->read_misalign
= UNSTUFF_BITS(resp
, 77, 1);
170 csd
->dsr_imp
= UNSTUFF_BITS(resp
, 76, 1);
171 csd
->r2w_factor
= UNSTUFF_BITS(resp
, 26, 3);
172 csd
->write_blkbits
= UNSTUFF_BITS(resp
, 22, 4);
173 csd
->write_partial
= UNSTUFF_BITS(resp
, 21, 1);
175 if (csd
->write_blkbits
>= 9) {
176 a
= UNSTUFF_BITS(resp
, 42, 5);
177 b
= UNSTUFF_BITS(resp
, 37, 5);
178 csd
->erase_size
= (a
+ 1) * (b
+ 1);
179 csd
->erase_size
<<= csd
->write_blkbits
- 9;
185 static void mmc_select_card_type(struct mmc_card
*card
)
187 struct mmc_host
*host
= card
->host
;
188 u8 card_type
= card
->ext_csd
.raw_card_type
;
189 u32 caps
= host
->caps
, caps2
= host
->caps2
;
190 unsigned int hs_max_dtr
= 0, hs200_max_dtr
= 0;
191 unsigned int avail_type
= 0;
193 if (caps
& MMC_CAP_MMC_HIGHSPEED
&&
194 card_type
& EXT_CSD_CARD_TYPE_HS_26
) {
195 hs_max_dtr
= MMC_HIGH_26_MAX_DTR
;
196 avail_type
|= EXT_CSD_CARD_TYPE_HS_26
;
199 if (caps
& MMC_CAP_MMC_HIGHSPEED
&&
200 card_type
& EXT_CSD_CARD_TYPE_HS_52
) {
201 hs_max_dtr
= MMC_HIGH_52_MAX_DTR
;
202 avail_type
|= EXT_CSD_CARD_TYPE_HS_52
;
205 if (caps
& (MMC_CAP_1_8V_DDR
| MMC_CAP_3_3V_DDR
) &&
206 card_type
& EXT_CSD_CARD_TYPE_DDR_1_8V
) {
207 hs_max_dtr
= MMC_HIGH_DDR_MAX_DTR
;
208 avail_type
|= EXT_CSD_CARD_TYPE_DDR_1_8V
;
211 if (caps
& MMC_CAP_1_2V_DDR
&&
212 card_type
& EXT_CSD_CARD_TYPE_DDR_1_2V
) {
213 hs_max_dtr
= MMC_HIGH_DDR_MAX_DTR
;
214 avail_type
|= EXT_CSD_CARD_TYPE_DDR_1_2V
;
217 if (caps2
& MMC_CAP2_HS200_1_8V_SDR
&&
218 card_type
& EXT_CSD_CARD_TYPE_HS200_1_8V
) {
219 hs200_max_dtr
= MMC_HS200_MAX_DTR
;
220 avail_type
|= EXT_CSD_CARD_TYPE_HS200_1_8V
;
223 if (caps2
& MMC_CAP2_HS200_1_2V_SDR
&&
224 card_type
& EXT_CSD_CARD_TYPE_HS200_1_2V
) {
225 hs200_max_dtr
= MMC_HS200_MAX_DTR
;
226 avail_type
|= EXT_CSD_CARD_TYPE_HS200_1_2V
;
229 if (caps2
& MMC_CAP2_HS400_1_8V
&&
230 card_type
& EXT_CSD_CARD_TYPE_HS400_1_8V
) {
231 hs200_max_dtr
= MMC_HS200_MAX_DTR
;
232 avail_type
|= EXT_CSD_CARD_TYPE_HS400_1_8V
;
235 if (caps2
& MMC_CAP2_HS400_1_2V
&&
236 card_type
& EXT_CSD_CARD_TYPE_HS400_1_2V
) {
237 hs200_max_dtr
= MMC_HS200_MAX_DTR
;
238 avail_type
|= EXT_CSD_CARD_TYPE_HS400_1_2V
;
241 if ((caps2
& MMC_CAP2_HS400_ES
) &&
242 card
->ext_csd
.strobe_support
&&
243 (avail_type
& EXT_CSD_CARD_TYPE_HS400
))
244 avail_type
|= EXT_CSD_CARD_TYPE_HS400ES
;
246 card
->ext_csd
.hs_max_dtr
= hs_max_dtr
;
247 card
->ext_csd
.hs200_max_dtr
= hs200_max_dtr
;
248 card
->mmc_avail_type
= avail_type
;
251 static void mmc_manage_enhanced_area(struct mmc_card
*card
, u8
*ext_csd
)
253 u8 hc_erase_grp_sz
, hc_wp_grp_sz
;
256 * Disable these attributes by default
258 card
->ext_csd
.enhanced_area_offset
= -EINVAL
;
259 card
->ext_csd
.enhanced_area_size
= -EINVAL
;
262 * Enhanced area feature support -- check whether the eMMC
263 * card has the Enhanced area enabled. If so, export enhanced
264 * area offset and size to user by adding sysfs interface.
266 if ((ext_csd
[EXT_CSD_PARTITION_SUPPORT
] & 0x2) &&
267 (ext_csd
[EXT_CSD_PARTITION_ATTRIBUTE
] & 0x1)) {
268 if (card
->ext_csd
.partition_setting_completed
) {
270 ext_csd
[EXT_CSD_HC_ERASE_GRP_SIZE
];
272 ext_csd
[EXT_CSD_HC_WP_GRP_SIZE
];
275 * calculate the enhanced data area offset, in bytes
277 card
->ext_csd
.enhanced_area_offset
=
278 (((unsigned long long)ext_csd
[139]) << 24) +
279 (((unsigned long long)ext_csd
[138]) << 16) +
280 (((unsigned long long)ext_csd
[137]) << 8) +
281 (((unsigned long long)ext_csd
[136]));
282 if (mmc_card_blockaddr(card
))
283 card
->ext_csd
.enhanced_area_offset
<<= 9;
285 * calculate the enhanced data area size, in kilobytes
287 card
->ext_csd
.enhanced_area_size
=
288 (ext_csd
[142] << 16) + (ext_csd
[141] << 8) +
290 card
->ext_csd
.enhanced_area_size
*=
291 (size_t)(hc_erase_grp_sz
* hc_wp_grp_sz
);
292 card
->ext_csd
.enhanced_area_size
<<= 9;
294 pr_warn("%s: defines enhanced area without partition setting complete\n",
295 mmc_hostname(card
->host
));
300 static void mmc_part_add(struct mmc_card
*card
, u64 size
,
301 unsigned int part_cfg
, char *name
, int idx
, bool ro
,
304 card
->part
[card
->nr_parts
].size
= size
;
305 card
->part
[card
->nr_parts
].part_cfg
= part_cfg
;
306 sprintf(card
->part
[card
->nr_parts
].name
, name
, idx
);
307 card
->part
[card
->nr_parts
].force_ro
= ro
;
308 card
->part
[card
->nr_parts
].area_type
= area_type
;
312 static void mmc_manage_gp_partitions(struct mmc_card
*card
, u8
*ext_csd
)
315 u8 hc_erase_grp_sz
, hc_wp_grp_sz
;
319 * General purpose partition feature support --
320 * If ext_csd has the size of general purpose partitions,
321 * set size, part_cfg, partition name in mmc_part.
323 if (ext_csd
[EXT_CSD_PARTITION_SUPPORT
] &
324 EXT_CSD_PART_SUPPORT_PART_EN
) {
326 ext_csd
[EXT_CSD_HC_ERASE_GRP_SIZE
];
328 ext_csd
[EXT_CSD_HC_WP_GRP_SIZE
];
330 for (idx
= 0; idx
< MMC_NUM_GP_PARTITION
; idx
++) {
331 if (!ext_csd
[EXT_CSD_GP_SIZE_MULT
+ idx
* 3] &&
332 !ext_csd
[EXT_CSD_GP_SIZE_MULT
+ idx
* 3 + 1] &&
333 !ext_csd
[EXT_CSD_GP_SIZE_MULT
+ idx
* 3 + 2])
335 if (card
->ext_csd
.partition_setting_completed
== 0) {
336 pr_warn("%s: has partition size defined without partition complete\n",
337 mmc_hostname(card
->host
));
341 (ext_csd
[EXT_CSD_GP_SIZE_MULT
+ idx
* 3 + 2]
343 (ext_csd
[EXT_CSD_GP_SIZE_MULT
+ idx
* 3 + 1]
345 ext_csd
[EXT_CSD_GP_SIZE_MULT
+ idx
* 3];
346 part_size
*= (hc_erase_grp_sz
* hc_wp_grp_sz
);
347 mmc_part_add(card
, part_size
<< 19,
348 EXT_CSD_PART_CONFIG_ACC_GP0
+ idx
,
350 MMC_BLK_DATA_AREA_GP
);
355 /* Minimum partition switch timeout in milliseconds */
356 #define MMC_MIN_PART_SWITCH_TIME 300
359 * Decode extended CSD.
361 static int mmc_decode_ext_csd(struct mmc_card
*card
, u8
*ext_csd
)
365 struct device_node
*np
;
366 bool broken_hpi
= false;
368 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
369 card
->ext_csd
.raw_ext_csd_structure
= ext_csd
[EXT_CSD_STRUCTURE
];
370 if (card
->csd
.structure
== 3) {
371 if (card
->ext_csd
.raw_ext_csd_structure
> 2) {
372 pr_err("%s: unrecognised EXT_CSD structure "
373 "version %d\n", mmc_hostname(card
->host
),
374 card
->ext_csd
.raw_ext_csd_structure
);
380 np
= mmc_of_find_child_device(card
->host
, 0);
381 if (np
&& of_device_is_compatible(np
, "mmc-card"))
382 broken_hpi
= of_property_read_bool(np
, "broken-hpi");
386 * The EXT_CSD format is meant to be forward compatible. As long
387 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
388 * are authorized, see JEDEC JESD84-B50 section B.8.
390 card
->ext_csd
.rev
= ext_csd
[EXT_CSD_REV
];
392 /* fixup device after ext_csd revision field is updated */
393 mmc_fixup_device(card
, mmc_ext_csd_fixups
);
395 card
->ext_csd
.raw_sectors
[0] = ext_csd
[EXT_CSD_SEC_CNT
+ 0];
396 card
->ext_csd
.raw_sectors
[1] = ext_csd
[EXT_CSD_SEC_CNT
+ 1];
397 card
->ext_csd
.raw_sectors
[2] = ext_csd
[EXT_CSD_SEC_CNT
+ 2];
398 card
->ext_csd
.raw_sectors
[3] = ext_csd
[EXT_CSD_SEC_CNT
+ 3];
399 if (card
->ext_csd
.rev
>= 2) {
400 card
->ext_csd
.sectors
=
401 ext_csd
[EXT_CSD_SEC_CNT
+ 0] << 0 |
402 ext_csd
[EXT_CSD_SEC_CNT
+ 1] << 8 |
403 ext_csd
[EXT_CSD_SEC_CNT
+ 2] << 16 |
404 ext_csd
[EXT_CSD_SEC_CNT
+ 3] << 24;
406 /* Cards with density > 2GiB are sector addressed */
407 if (card
->ext_csd
.sectors
> (2u * 1024 * 1024 * 1024) / 512)
408 mmc_card_set_blockaddr(card
);
411 card
->ext_csd
.strobe_support
= ext_csd
[EXT_CSD_STROBE_SUPPORT
];
412 card
->ext_csd
.raw_card_type
= ext_csd
[EXT_CSD_CARD_TYPE
];
413 mmc_select_card_type(card
);
415 card
->ext_csd
.raw_s_a_timeout
= ext_csd
[EXT_CSD_S_A_TIMEOUT
];
416 card
->ext_csd
.raw_erase_timeout_mult
=
417 ext_csd
[EXT_CSD_ERASE_TIMEOUT_MULT
];
418 card
->ext_csd
.raw_hc_erase_grp_size
=
419 ext_csd
[EXT_CSD_HC_ERASE_GRP_SIZE
];
420 if (card
->ext_csd
.rev
>= 3) {
421 u8 sa_shift
= ext_csd
[EXT_CSD_S_A_TIMEOUT
];
422 card
->ext_csd
.part_config
= ext_csd
[EXT_CSD_PART_CONFIG
];
424 /* EXT_CSD value is in units of 10ms, but we store in ms */
425 card
->ext_csd
.part_time
= 10 * ext_csd
[EXT_CSD_PART_SWITCH_TIME
];
426 /* Some eMMC set the value too low so set a minimum */
427 if (card
->ext_csd
.part_time
&&
428 card
->ext_csd
.part_time
< MMC_MIN_PART_SWITCH_TIME
)
429 card
->ext_csd
.part_time
= MMC_MIN_PART_SWITCH_TIME
;
431 /* Sleep / awake timeout in 100ns units */
432 if (sa_shift
> 0 && sa_shift
<= 0x17)
433 card
->ext_csd
.sa_timeout
=
434 1 << ext_csd
[EXT_CSD_S_A_TIMEOUT
];
435 card
->ext_csd
.erase_group_def
=
436 ext_csd
[EXT_CSD_ERASE_GROUP_DEF
];
437 card
->ext_csd
.hc_erase_timeout
= 300 *
438 ext_csd
[EXT_CSD_ERASE_TIMEOUT_MULT
];
439 card
->ext_csd
.hc_erase_size
=
440 ext_csd
[EXT_CSD_HC_ERASE_GRP_SIZE
] << 10;
442 card
->ext_csd
.rel_sectors
= ext_csd
[EXT_CSD_REL_WR_SEC_C
];
445 * There are two boot regions of equal size, defined in
448 if (ext_csd
[EXT_CSD_BOOT_MULT
] && mmc_boot_partition_access(card
->host
)) {
449 for (idx
= 0; idx
< MMC_NUM_BOOT_PARTITION
; idx
++) {
450 part_size
= ext_csd
[EXT_CSD_BOOT_MULT
] << 17;
451 mmc_part_add(card
, part_size
,
452 EXT_CSD_PART_CONFIG_ACC_BOOT0
+ idx
,
454 MMC_BLK_DATA_AREA_BOOT
);
459 card
->ext_csd
.raw_hc_erase_gap_size
=
460 ext_csd
[EXT_CSD_HC_WP_GRP_SIZE
];
461 card
->ext_csd
.raw_sec_trim_mult
=
462 ext_csd
[EXT_CSD_SEC_TRIM_MULT
];
463 card
->ext_csd
.raw_sec_erase_mult
=
464 ext_csd
[EXT_CSD_SEC_ERASE_MULT
];
465 card
->ext_csd
.raw_sec_feature_support
=
466 ext_csd
[EXT_CSD_SEC_FEATURE_SUPPORT
];
467 card
->ext_csd
.raw_trim_mult
=
468 ext_csd
[EXT_CSD_TRIM_MULT
];
469 card
->ext_csd
.raw_partition_support
= ext_csd
[EXT_CSD_PARTITION_SUPPORT
];
470 card
->ext_csd
.raw_driver_strength
= ext_csd
[EXT_CSD_DRIVER_STRENGTH
];
471 if (card
->ext_csd
.rev
>= 4) {
472 if (ext_csd
[EXT_CSD_PARTITION_SETTING_COMPLETED
] &
473 EXT_CSD_PART_SETTING_COMPLETED
)
474 card
->ext_csd
.partition_setting_completed
= 1;
476 card
->ext_csd
.partition_setting_completed
= 0;
478 mmc_manage_enhanced_area(card
, ext_csd
);
480 mmc_manage_gp_partitions(card
, ext_csd
);
482 card
->ext_csd
.sec_trim_mult
=
483 ext_csd
[EXT_CSD_SEC_TRIM_MULT
];
484 card
->ext_csd
.sec_erase_mult
=
485 ext_csd
[EXT_CSD_SEC_ERASE_MULT
];
486 card
->ext_csd
.sec_feature_support
=
487 ext_csd
[EXT_CSD_SEC_FEATURE_SUPPORT
];
488 card
->ext_csd
.trim_timeout
= 300 *
489 ext_csd
[EXT_CSD_TRIM_MULT
];
492 * Note that the call to mmc_part_add above defaults to read
493 * only. If this default assumption is changed, the call must
494 * take into account the value of boot_locked below.
496 card
->ext_csd
.boot_ro_lock
= ext_csd
[EXT_CSD_BOOT_WP
];
497 card
->ext_csd
.boot_ro_lockable
= true;
499 /* Save power class values */
500 card
->ext_csd
.raw_pwr_cl_52_195
=
501 ext_csd
[EXT_CSD_PWR_CL_52_195
];
502 card
->ext_csd
.raw_pwr_cl_26_195
=
503 ext_csd
[EXT_CSD_PWR_CL_26_195
];
504 card
->ext_csd
.raw_pwr_cl_52_360
=
505 ext_csd
[EXT_CSD_PWR_CL_52_360
];
506 card
->ext_csd
.raw_pwr_cl_26_360
=
507 ext_csd
[EXT_CSD_PWR_CL_26_360
];
508 card
->ext_csd
.raw_pwr_cl_200_195
=
509 ext_csd
[EXT_CSD_PWR_CL_200_195
];
510 card
->ext_csd
.raw_pwr_cl_200_360
=
511 ext_csd
[EXT_CSD_PWR_CL_200_360
];
512 card
->ext_csd
.raw_pwr_cl_ddr_52_195
=
513 ext_csd
[EXT_CSD_PWR_CL_DDR_52_195
];
514 card
->ext_csd
.raw_pwr_cl_ddr_52_360
=
515 ext_csd
[EXT_CSD_PWR_CL_DDR_52_360
];
516 card
->ext_csd
.raw_pwr_cl_ddr_200_360
=
517 ext_csd
[EXT_CSD_PWR_CL_DDR_200_360
];
520 if (card
->ext_csd
.rev
>= 5) {
521 /* Adjust production date as per JEDEC JESD84-B451 */
522 if (card
->cid
.year
< 2010)
523 card
->cid
.year
+= 16;
525 /* check whether the eMMC card supports BKOPS */
526 if (ext_csd
[EXT_CSD_BKOPS_SUPPORT
] & 0x1) {
527 card
->ext_csd
.bkops
= 1;
528 card
->ext_csd
.man_bkops_en
=
529 (ext_csd
[EXT_CSD_BKOPS_EN
] &
530 EXT_CSD_MANUAL_BKOPS_MASK
);
531 card
->ext_csd
.raw_bkops_status
=
532 ext_csd
[EXT_CSD_BKOPS_STATUS
];
533 if (card
->ext_csd
.man_bkops_en
)
534 pr_debug("%s: MAN_BKOPS_EN bit is set\n",
535 mmc_hostname(card
->host
));
536 card
->ext_csd
.auto_bkops_en
=
537 (ext_csd
[EXT_CSD_BKOPS_EN
] &
538 EXT_CSD_AUTO_BKOPS_MASK
);
539 if (card
->ext_csd
.auto_bkops_en
)
540 pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
541 mmc_hostname(card
->host
));
544 /* check whether the eMMC card supports HPI */
545 if (!mmc_card_broken_hpi(card
) &&
546 !broken_hpi
&& (ext_csd
[EXT_CSD_HPI_FEATURES
] & 0x1)) {
547 card
->ext_csd
.hpi
= 1;
548 if (ext_csd
[EXT_CSD_HPI_FEATURES
] & 0x2)
549 card
->ext_csd
.hpi_cmd
= MMC_STOP_TRANSMISSION
;
551 card
->ext_csd
.hpi_cmd
= MMC_SEND_STATUS
;
553 * Indicate the maximum timeout to close
554 * a command interrupted by HPI
556 card
->ext_csd
.out_of_int_time
=
557 ext_csd
[EXT_CSD_OUT_OF_INTERRUPT_TIME
] * 10;
560 card
->ext_csd
.rel_param
= ext_csd
[EXT_CSD_WR_REL_PARAM
];
561 card
->ext_csd
.rst_n_function
= ext_csd
[EXT_CSD_RST_N_FUNCTION
];
564 * RPMB regions are defined in multiples of 128K.
566 card
->ext_csd
.raw_rpmb_size_mult
= ext_csd
[EXT_CSD_RPMB_MULT
];
567 if (ext_csd
[EXT_CSD_RPMB_MULT
] && mmc_host_cmd23(card
->host
)) {
568 mmc_part_add(card
, ext_csd
[EXT_CSD_RPMB_MULT
] << 17,
569 EXT_CSD_PART_CONFIG_ACC_RPMB
,
571 MMC_BLK_DATA_AREA_RPMB
);
575 card
->ext_csd
.raw_erased_mem_count
= ext_csd
[EXT_CSD_ERASED_MEM_CONT
];
576 if (ext_csd
[EXT_CSD_ERASED_MEM_CONT
])
577 card
->erased_byte
= 0xFF;
579 card
->erased_byte
= 0x0;
581 /* eMMC v4.5 or later */
582 card
->ext_csd
.generic_cmd6_time
= DEFAULT_CMD6_TIMEOUT_MS
;
583 if (card
->ext_csd
.rev
>= 6) {
584 card
->ext_csd
.feature_support
|= MMC_DISCARD_FEATURE
;
586 card
->ext_csd
.generic_cmd6_time
= 10 *
587 ext_csd
[EXT_CSD_GENERIC_CMD6_TIME
];
588 card
->ext_csd
.power_off_longtime
= 10 *
589 ext_csd
[EXT_CSD_POWER_OFF_LONG_TIME
];
591 card
->ext_csd
.cache_size
=
592 ext_csd
[EXT_CSD_CACHE_SIZE
+ 0] << 0 |
593 ext_csd
[EXT_CSD_CACHE_SIZE
+ 1] << 8 |
594 ext_csd
[EXT_CSD_CACHE_SIZE
+ 2] << 16 |
595 ext_csd
[EXT_CSD_CACHE_SIZE
+ 3] << 24;
597 if (ext_csd
[EXT_CSD_DATA_SECTOR_SIZE
] == 1)
598 card
->ext_csd
.data_sector_size
= 4096;
600 card
->ext_csd
.data_sector_size
= 512;
602 if ((ext_csd
[EXT_CSD_DATA_TAG_SUPPORT
] & 1) &&
603 (ext_csd
[EXT_CSD_TAG_UNIT_SIZE
] <= 8)) {
604 card
->ext_csd
.data_tag_unit_size
=
605 ((unsigned int) 1 << ext_csd
[EXT_CSD_TAG_UNIT_SIZE
]) *
606 (card
->ext_csd
.data_sector_size
);
608 card
->ext_csd
.data_tag_unit_size
= 0;
611 card
->ext_csd
.max_packed_writes
=
612 ext_csd
[EXT_CSD_MAX_PACKED_WRITES
];
613 card
->ext_csd
.max_packed_reads
=
614 ext_csd
[EXT_CSD_MAX_PACKED_READS
];
616 card
->ext_csd
.data_sector_size
= 512;
619 /* eMMC v5 or later */
620 if (card
->ext_csd
.rev
>= 7) {
621 memcpy(card
->ext_csd
.fwrev
, &ext_csd
[EXT_CSD_FIRMWARE_VERSION
],
623 card
->ext_csd
.ffu_capable
=
624 (ext_csd
[EXT_CSD_SUPPORTED_MODE
] & 0x1) &&
625 !(ext_csd
[EXT_CSD_FW_CONFIG
] & 0x1);
627 card
->ext_csd
.pre_eol_info
= ext_csd
[EXT_CSD_PRE_EOL_INFO
];
628 card
->ext_csd
.device_life_time_est_typ_a
=
629 ext_csd
[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A
];
630 card
->ext_csd
.device_life_time_est_typ_b
=
631 ext_csd
[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B
];
634 /* eMMC v5.1 or later */
635 if (card
->ext_csd
.rev
>= 8) {
636 card
->ext_csd
.cmdq_support
= ext_csd
[EXT_CSD_CMDQ_SUPPORT
] &
637 EXT_CSD_CMDQ_SUPPORTED
;
638 card
->ext_csd
.cmdq_depth
= (ext_csd
[EXT_CSD_CMDQ_DEPTH
] &
639 EXT_CSD_CMDQ_DEPTH_MASK
) + 1;
640 /* Exclude inefficiently small queue depths */
641 if (card
->ext_csd
.cmdq_depth
<= 2) {
642 card
->ext_csd
.cmdq_support
= false;
643 card
->ext_csd
.cmdq_depth
= 0;
645 if (card
->ext_csd
.cmdq_support
) {
646 pr_debug("%s: Command Queue supported depth %u\n",
647 mmc_hostname(card
->host
),
648 card
->ext_csd
.cmdq_depth
);
655 static int mmc_read_ext_csd(struct mmc_card
*card
)
660 if (!mmc_can_ext_csd(card
))
663 err
= mmc_get_ext_csd(card
, &ext_csd
);
665 /* If the host or the card can't do the switch,
666 * fail more gracefully. */
673 * High capacity cards should have this "magic" size
674 * stored in their CSD.
676 if (card
->csd
.capacity
== (4096 * 512)) {
677 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
678 mmc_hostname(card
->host
));
680 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
681 mmc_hostname(card
->host
));
688 err
= mmc_decode_ext_csd(card
, ext_csd
);
693 static int mmc_compare_ext_csds(struct mmc_card
*card
, unsigned bus_width
)
698 if (bus_width
== MMC_BUS_WIDTH_1
)
701 err
= mmc_get_ext_csd(card
, &bw_ext_csd
);
705 /* only compare read only fields */
706 err
= !((card
->ext_csd
.raw_partition_support
==
707 bw_ext_csd
[EXT_CSD_PARTITION_SUPPORT
]) &&
708 (card
->ext_csd
.raw_erased_mem_count
==
709 bw_ext_csd
[EXT_CSD_ERASED_MEM_CONT
]) &&
710 (card
->ext_csd
.rev
==
711 bw_ext_csd
[EXT_CSD_REV
]) &&
712 (card
->ext_csd
.raw_ext_csd_structure
==
713 bw_ext_csd
[EXT_CSD_STRUCTURE
]) &&
714 (card
->ext_csd
.raw_card_type
==
715 bw_ext_csd
[EXT_CSD_CARD_TYPE
]) &&
716 (card
->ext_csd
.raw_s_a_timeout
==
717 bw_ext_csd
[EXT_CSD_S_A_TIMEOUT
]) &&
718 (card
->ext_csd
.raw_hc_erase_gap_size
==
719 bw_ext_csd
[EXT_CSD_HC_WP_GRP_SIZE
]) &&
720 (card
->ext_csd
.raw_erase_timeout_mult
==
721 bw_ext_csd
[EXT_CSD_ERASE_TIMEOUT_MULT
]) &&
722 (card
->ext_csd
.raw_hc_erase_grp_size
==
723 bw_ext_csd
[EXT_CSD_HC_ERASE_GRP_SIZE
]) &&
724 (card
->ext_csd
.raw_sec_trim_mult
==
725 bw_ext_csd
[EXT_CSD_SEC_TRIM_MULT
]) &&
726 (card
->ext_csd
.raw_sec_erase_mult
==
727 bw_ext_csd
[EXT_CSD_SEC_ERASE_MULT
]) &&
728 (card
->ext_csd
.raw_sec_feature_support
==
729 bw_ext_csd
[EXT_CSD_SEC_FEATURE_SUPPORT
]) &&
730 (card
->ext_csd
.raw_trim_mult
==
731 bw_ext_csd
[EXT_CSD_TRIM_MULT
]) &&
732 (card
->ext_csd
.raw_sectors
[0] ==
733 bw_ext_csd
[EXT_CSD_SEC_CNT
+ 0]) &&
734 (card
->ext_csd
.raw_sectors
[1] ==
735 bw_ext_csd
[EXT_CSD_SEC_CNT
+ 1]) &&
736 (card
->ext_csd
.raw_sectors
[2] ==
737 bw_ext_csd
[EXT_CSD_SEC_CNT
+ 2]) &&
738 (card
->ext_csd
.raw_sectors
[3] ==
739 bw_ext_csd
[EXT_CSD_SEC_CNT
+ 3]) &&
740 (card
->ext_csd
.raw_pwr_cl_52_195
==
741 bw_ext_csd
[EXT_CSD_PWR_CL_52_195
]) &&
742 (card
->ext_csd
.raw_pwr_cl_26_195
==
743 bw_ext_csd
[EXT_CSD_PWR_CL_26_195
]) &&
744 (card
->ext_csd
.raw_pwr_cl_52_360
==
745 bw_ext_csd
[EXT_CSD_PWR_CL_52_360
]) &&
746 (card
->ext_csd
.raw_pwr_cl_26_360
==
747 bw_ext_csd
[EXT_CSD_PWR_CL_26_360
]) &&
748 (card
->ext_csd
.raw_pwr_cl_200_195
==
749 bw_ext_csd
[EXT_CSD_PWR_CL_200_195
]) &&
750 (card
->ext_csd
.raw_pwr_cl_200_360
==
751 bw_ext_csd
[EXT_CSD_PWR_CL_200_360
]) &&
752 (card
->ext_csd
.raw_pwr_cl_ddr_52_195
==
753 bw_ext_csd
[EXT_CSD_PWR_CL_DDR_52_195
]) &&
754 (card
->ext_csd
.raw_pwr_cl_ddr_52_360
==
755 bw_ext_csd
[EXT_CSD_PWR_CL_DDR_52_360
]) &&
756 (card
->ext_csd
.raw_pwr_cl_ddr_200_360
==
757 bw_ext_csd
[EXT_CSD_PWR_CL_DDR_200_360
]));
766 MMC_DEV_ATTR(cid
, "%08x%08x%08x%08x\n", card
->raw_cid
[0], card
->raw_cid
[1],
767 card
->raw_cid
[2], card
->raw_cid
[3]);
768 MMC_DEV_ATTR(csd
, "%08x%08x%08x%08x\n", card
->raw_csd
[0], card
->raw_csd
[1],
769 card
->raw_csd
[2], card
->raw_csd
[3]);
770 MMC_DEV_ATTR(date
, "%02d/%04d\n", card
->cid
.month
, card
->cid
.year
);
771 MMC_DEV_ATTR(erase_size
, "%u\n", card
->erase_size
<< 9);
772 MMC_DEV_ATTR(preferred_erase_size
, "%u\n", card
->pref_erase
<< 9);
773 MMC_DEV_ATTR(ffu_capable
, "%d\n", card
->ext_csd
.ffu_capable
);
774 MMC_DEV_ATTR(hwrev
, "0x%x\n", card
->cid
.hwrev
);
775 MMC_DEV_ATTR(manfid
, "0x%06x\n", card
->cid
.manfid
);
776 MMC_DEV_ATTR(name
, "%s\n", card
->cid
.prod_name
);
777 MMC_DEV_ATTR(oemid
, "0x%04x\n", card
->cid
.oemid
);
778 MMC_DEV_ATTR(prv
, "0x%x\n", card
->cid
.prv
);
779 MMC_DEV_ATTR(rev
, "0x%x\n", card
->ext_csd
.rev
);
780 MMC_DEV_ATTR(pre_eol_info
, "0x%02x\n", card
->ext_csd
.pre_eol_info
);
781 MMC_DEV_ATTR(life_time
, "0x%02x 0x%02x\n",
782 card
->ext_csd
.device_life_time_est_typ_a
,
783 card
->ext_csd
.device_life_time_est_typ_b
);
784 MMC_DEV_ATTR(serial
, "0x%08x\n", card
->cid
.serial
);
785 MMC_DEV_ATTR(enhanced_area_offset
, "%llu\n",
786 card
->ext_csd
.enhanced_area_offset
);
787 MMC_DEV_ATTR(enhanced_area_size
, "%u\n", card
->ext_csd
.enhanced_area_size
);
788 MMC_DEV_ATTR(raw_rpmb_size_mult
, "%#x\n", card
->ext_csd
.raw_rpmb_size_mult
);
789 MMC_DEV_ATTR(rel_sectors
, "%#x\n", card
->ext_csd
.rel_sectors
);
790 MMC_DEV_ATTR(ocr
, "0x%08x\n", card
->ocr
);
791 MMC_DEV_ATTR(rca
, "0x%04x\n", card
->rca
);
792 MMC_DEV_ATTR(cmdq_en
, "%d\n", card
->ext_csd
.cmdq_en
);
794 static ssize_t
mmc_fwrev_show(struct device
*dev
,
795 struct device_attribute
*attr
,
798 struct mmc_card
*card
= mmc_dev_to_card(dev
);
800 if (card
->ext_csd
.rev
< 7) {
801 return sprintf(buf
, "0x%x\n", card
->cid
.fwrev
);
803 return sprintf(buf
, "0x%*phN\n", MMC_FIRMWARE_LEN
,
804 card
->ext_csd
.fwrev
);
808 static DEVICE_ATTR(fwrev
, S_IRUGO
, mmc_fwrev_show
, NULL
);
810 static ssize_t
mmc_dsr_show(struct device
*dev
,
811 struct device_attribute
*attr
,
814 struct mmc_card
*card
= mmc_dev_to_card(dev
);
815 struct mmc_host
*host
= card
->host
;
817 if (card
->csd
.dsr_imp
&& host
->dsr_req
)
818 return sprintf(buf
, "0x%x\n", host
->dsr
);
820 /* return default DSR value */
821 return sprintf(buf
, "0x%x\n", 0x404);
824 static DEVICE_ATTR(dsr
, S_IRUGO
, mmc_dsr_show
, NULL
);
826 static struct attribute
*mmc_std_attrs
[] = {
830 &dev_attr_erase_size
.attr
,
831 &dev_attr_preferred_erase_size
.attr
,
832 &dev_attr_fwrev
.attr
,
833 &dev_attr_ffu_capable
.attr
,
834 &dev_attr_hwrev
.attr
,
835 &dev_attr_manfid
.attr
,
837 &dev_attr_oemid
.attr
,
840 &dev_attr_pre_eol_info
.attr
,
841 &dev_attr_life_time
.attr
,
842 &dev_attr_serial
.attr
,
843 &dev_attr_enhanced_area_offset
.attr
,
844 &dev_attr_enhanced_area_size
.attr
,
845 &dev_attr_raw_rpmb_size_mult
.attr
,
846 &dev_attr_rel_sectors
.attr
,
850 &dev_attr_cmdq_en
.attr
,
853 ATTRIBUTE_GROUPS(mmc_std
);
855 static struct device_type mmc_type
= {
856 .groups
= mmc_std_groups
,
860 * Select the PowerClass for the current bus width
861 * If power class is defined for 4/8 bit bus in the
862 * extended CSD register, select it by executing the
863 * mmc_switch command.
865 static int __mmc_select_powerclass(struct mmc_card
*card
,
866 unsigned int bus_width
)
868 struct mmc_host
*host
= card
->host
;
869 struct mmc_ext_csd
*ext_csd
= &card
->ext_csd
;
870 unsigned int pwrclass_val
= 0;
873 switch (1 << host
->ios
.vdd
) {
874 case MMC_VDD_165_195
:
875 if (host
->ios
.clock
<= MMC_HIGH_26_MAX_DTR
)
876 pwrclass_val
= ext_csd
->raw_pwr_cl_26_195
;
877 else if (host
->ios
.clock
<= MMC_HIGH_52_MAX_DTR
)
878 pwrclass_val
= (bus_width
<= EXT_CSD_BUS_WIDTH_8
) ?
879 ext_csd
->raw_pwr_cl_52_195
:
880 ext_csd
->raw_pwr_cl_ddr_52_195
;
881 else if (host
->ios
.clock
<= MMC_HS200_MAX_DTR
)
882 pwrclass_val
= ext_csd
->raw_pwr_cl_200_195
;
893 if (host
->ios
.clock
<= MMC_HIGH_26_MAX_DTR
)
894 pwrclass_val
= ext_csd
->raw_pwr_cl_26_360
;
895 else if (host
->ios
.clock
<= MMC_HIGH_52_MAX_DTR
)
896 pwrclass_val
= (bus_width
<= EXT_CSD_BUS_WIDTH_8
) ?
897 ext_csd
->raw_pwr_cl_52_360
:
898 ext_csd
->raw_pwr_cl_ddr_52_360
;
899 else if (host
->ios
.clock
<= MMC_HS200_MAX_DTR
)
900 pwrclass_val
= (bus_width
== EXT_CSD_DDR_BUS_WIDTH_8
) ?
901 ext_csd
->raw_pwr_cl_ddr_200_360
:
902 ext_csd
->raw_pwr_cl_200_360
;
905 pr_warn("%s: Voltage range not supported for power class\n",
910 if (bus_width
& (EXT_CSD_BUS_WIDTH_8
| EXT_CSD_DDR_BUS_WIDTH_8
))
911 pwrclass_val
= (pwrclass_val
& EXT_CSD_PWR_CL_8BIT_MASK
) >>
912 EXT_CSD_PWR_CL_8BIT_SHIFT
;
914 pwrclass_val
= (pwrclass_val
& EXT_CSD_PWR_CL_4BIT_MASK
) >>
915 EXT_CSD_PWR_CL_4BIT_SHIFT
;
917 /* If the power class is different from the default value */
918 if (pwrclass_val
> 0) {
919 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
922 card
->ext_csd
.generic_cmd6_time
);
928 static int mmc_select_powerclass(struct mmc_card
*card
)
930 struct mmc_host
*host
= card
->host
;
931 u32 bus_width
, ext_csd_bits
;
934 /* Power class selection is supported for versions >= 4.0 */
935 if (!mmc_can_ext_csd(card
))
938 bus_width
= host
->ios
.bus_width
;
939 /* Power class values are defined only for 4/8 bit bus */
940 if (bus_width
== MMC_BUS_WIDTH_1
)
943 ddr
= card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_DDR_52
;
945 ext_csd_bits
= (bus_width
== MMC_BUS_WIDTH_8
) ?
946 EXT_CSD_DDR_BUS_WIDTH_8
: EXT_CSD_DDR_BUS_WIDTH_4
;
948 ext_csd_bits
= (bus_width
== MMC_BUS_WIDTH_8
) ?
949 EXT_CSD_BUS_WIDTH_8
: EXT_CSD_BUS_WIDTH_4
;
951 err
= __mmc_select_powerclass(card
, ext_csd_bits
);
953 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
954 mmc_hostname(host
), 1 << bus_width
, ddr
);
960 * Set the bus speed for the selected speed mode.
962 static void mmc_set_bus_speed(struct mmc_card
*card
)
964 unsigned int max_dtr
= (unsigned int)-1;
966 if ((mmc_card_hs200(card
) || mmc_card_hs400(card
)) &&
967 max_dtr
> card
->ext_csd
.hs200_max_dtr
)
968 max_dtr
= card
->ext_csd
.hs200_max_dtr
;
969 else if (mmc_card_hs(card
) && max_dtr
> card
->ext_csd
.hs_max_dtr
)
970 max_dtr
= card
->ext_csd
.hs_max_dtr
;
971 else if (max_dtr
> card
->csd
.max_dtr
)
972 max_dtr
= card
->csd
.max_dtr
;
974 mmc_set_clock(card
->host
, max_dtr
);
978 * Select the bus width amoung 4-bit and 8-bit(SDR).
979 * If the bus width is changed successfully, return the selected width value.
980 * Zero is returned instead of error value if the wide width is not supported.
982 static int mmc_select_bus_width(struct mmc_card
*card
)
984 static unsigned ext_csd_bits
[] = {
988 static unsigned bus_widths
[] = {
992 struct mmc_host
*host
= card
->host
;
993 unsigned idx
, bus_width
= 0;
996 if (!mmc_can_ext_csd(card
) ||
997 !(host
->caps
& (MMC_CAP_4_BIT_DATA
| MMC_CAP_8_BIT_DATA
)))
1000 idx
= (host
->caps
& MMC_CAP_8_BIT_DATA
) ? 0 : 1;
1003 * Unlike SD, MMC cards dont have a configuration register to notify
1004 * supported bus width. So bus test command should be run to identify
1005 * the supported bus width or compare the ext csd values of current
1006 * bus width and ext csd values of 1 bit mode read earlier.
1008 for (; idx
< ARRAY_SIZE(bus_widths
); idx
++) {
1010 * Host is capable of 8bit transfer, then switch
1011 * the device to work in 8bit transfer mode. If the
1012 * mmc switch command returns error then switch to
1013 * 4bit transfer mode. On success set the corresponding
1014 * bus width on the host.
1016 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1019 card
->ext_csd
.generic_cmd6_time
);
1023 bus_width
= bus_widths
[idx
];
1024 mmc_set_bus_width(host
, bus_width
);
1027 * If controller can't handle bus width test,
1028 * compare ext_csd previously read in 1 bit mode
1029 * against ext_csd at new bus width
1031 if (!(host
->caps
& MMC_CAP_BUS_WIDTH_TEST
))
1032 err
= mmc_compare_ext_csds(card
, bus_width
);
1034 err
= mmc_bus_test(card
, bus_width
);
1040 pr_warn("%s: switch to bus width %d failed\n",
1041 mmc_hostname(host
), 1 << bus_width
);
1049 * Switch to the high-speed mode
1051 static int mmc_select_hs(struct mmc_card
*card
)
1055 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1056 EXT_CSD_HS_TIMING
, EXT_CSD_TIMING_HS
,
1057 card
->ext_csd
.generic_cmd6_time
, MMC_TIMING_MMC_HS
,
1060 pr_warn("%s: switch to high-speed failed, err:%d\n",
1061 mmc_hostname(card
->host
), err
);
1067 * Activate wide bus and DDR if supported.
1069 static int mmc_select_hs_ddr(struct mmc_card
*card
)
1071 struct mmc_host
*host
= card
->host
;
1072 u32 bus_width
, ext_csd_bits
;
1075 if (!(card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_DDR_52
))
1078 bus_width
= host
->ios
.bus_width
;
1079 if (bus_width
== MMC_BUS_WIDTH_1
)
1082 ext_csd_bits
= (bus_width
== MMC_BUS_WIDTH_8
) ?
1083 EXT_CSD_DDR_BUS_WIDTH_8
: EXT_CSD_DDR_BUS_WIDTH_4
;
1085 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1088 card
->ext_csd
.generic_cmd6_time
,
1089 MMC_TIMING_MMC_DDR52
,
1092 pr_err("%s: switch to bus width %d ddr failed\n",
1093 mmc_hostname(host
), 1 << bus_width
);
1098 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1101 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1103 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1104 * in the JEDEC spec for DDR.
1106 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1107 * host controller can support this, like some of the SDHCI
1108 * controller which connect to an eMMC device. Some of these
1109 * host controller still needs to use 1.8v vccq for supporting
1112 * So the sequence will be:
1113 * if (host and device can both support 1.2v IO)
1115 * else if (host and device can both support 1.8v IO)
1117 * so if host and device can only support 3.3v IO, this is the
1120 * WARNING: eMMC rules are NOT the same as SD DDR
1122 if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_DDR_1_2V
) {
1123 err
= mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_120
);
1128 if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_DDR_1_8V
&&
1129 host
->caps
& MMC_CAP_1_8V_DDR
)
1130 err
= mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
);
1132 /* make sure vccq is 3.3v after switching disaster */
1134 err
= mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_330
);
1139 static int mmc_select_hs400(struct mmc_card
*card
)
1141 struct mmc_host
*host
= card
->host
;
1142 unsigned int max_dtr
;
1147 * HS400 mode requires 8-bit bus width
1149 if (!(card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS400
&&
1150 host
->ios
.bus_width
== MMC_BUS_WIDTH_8
))
1153 /* Switch card to HS mode */
1154 val
= EXT_CSD_TIMING_HS
;
1155 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1156 EXT_CSD_HS_TIMING
, val
,
1157 card
->ext_csd
.generic_cmd6_time
, 0,
1160 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1161 mmc_hostname(host
), err
);
1165 /* Set host controller to HS timing */
1166 mmc_set_timing(card
->host
, MMC_TIMING_MMC_HS
);
1168 /* Prepare host to downgrade to HS timing */
1169 if (host
->ops
->hs400_downgrade
)
1170 host
->ops
->hs400_downgrade(host
);
1172 /* Reduce frequency to HS frequency */
1173 max_dtr
= card
->ext_csd
.hs_max_dtr
;
1174 mmc_set_clock(host
, max_dtr
);
1176 err
= mmc_switch_status(card
);
1180 if (host
->ops
->hs400_prepare_ddr
)
1181 host
->ops
->hs400_prepare_ddr(host
);
1183 /* Switch card to DDR */
1184 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1186 EXT_CSD_DDR_BUS_WIDTH_8
,
1187 card
->ext_csd
.generic_cmd6_time
);
1189 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1190 mmc_hostname(host
), err
);
1194 /* Switch card to HS400 */
1195 val
= EXT_CSD_TIMING_HS400
|
1196 card
->drive_strength
<< EXT_CSD_DRV_STR_SHIFT
;
1197 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1198 EXT_CSD_HS_TIMING
, val
,
1199 card
->ext_csd
.generic_cmd6_time
, 0,
1202 pr_err("%s: switch to hs400 failed, err:%d\n",
1203 mmc_hostname(host
), err
);
1207 /* Set host controller to HS400 timing and frequency */
1208 mmc_set_timing(host
, MMC_TIMING_MMC_HS400
);
1209 mmc_set_bus_speed(card
);
1211 if (host
->ops
->hs400_complete
)
1212 host
->ops
->hs400_complete(host
);
1214 err
= mmc_switch_status(card
);
1221 pr_err("%s: %s failed, error %d\n", mmc_hostname(card
->host
),
1226 int mmc_hs200_to_hs400(struct mmc_card
*card
)
1228 return mmc_select_hs400(card
);
1231 int mmc_hs400_to_hs200(struct mmc_card
*card
)
1233 struct mmc_host
*host
= card
->host
;
1234 unsigned int max_dtr
;
1238 /* Reduce frequency to HS */
1239 max_dtr
= card
->ext_csd
.hs_max_dtr
;
1240 mmc_set_clock(host
, max_dtr
);
1242 /* Switch HS400 to HS DDR */
1243 val
= EXT_CSD_TIMING_HS
;
1244 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
, EXT_CSD_HS_TIMING
,
1245 val
, card
->ext_csd
.generic_cmd6_time
, 0,
1250 mmc_set_timing(host
, MMC_TIMING_MMC_DDR52
);
1252 err
= mmc_switch_status(card
);
1256 /* Switch HS DDR to HS */
1257 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
, EXT_CSD_BUS_WIDTH
,
1258 EXT_CSD_BUS_WIDTH_8
, card
->ext_csd
.generic_cmd6_time
,
1259 0, true, false, true);
1263 mmc_set_timing(host
, MMC_TIMING_MMC_HS
);
1265 if (host
->ops
->hs400_downgrade
)
1266 host
->ops
->hs400_downgrade(host
);
1268 err
= mmc_switch_status(card
);
1272 /* Switch HS to HS200 */
1273 val
= EXT_CSD_TIMING_HS200
|
1274 card
->drive_strength
<< EXT_CSD_DRV_STR_SHIFT
;
1275 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
, EXT_CSD_HS_TIMING
,
1276 val
, card
->ext_csd
.generic_cmd6_time
, 0,
1281 mmc_set_timing(host
, MMC_TIMING_MMC_HS200
);
1284 * For HS200, CRC errors are not a reliable way to know the switch
1285 * failed. If there really is a problem, we would expect tuning will
1286 * fail and the result ends up the same.
1288 err
= __mmc_switch_status(card
, false);
1292 mmc_set_bus_speed(card
);
1294 /* Prepare tuning for HS400 mode. */
1295 if (host
->ops
->prepare_hs400_tuning
)
1296 host
->ops
->prepare_hs400_tuning(host
, &host
->ios
);
1301 pr_err("%s: %s failed, error %d\n", mmc_hostname(card
->host
),
1306 static void mmc_select_driver_type(struct mmc_card
*card
)
1308 int card_drv_type
, drive_strength
, drv_type
= 0;
1309 int fixed_drv_type
= card
->host
->fixed_drv_type
;
1311 card_drv_type
= card
->ext_csd
.raw_driver_strength
|
1312 mmc_driver_type_mask(0);
1314 if (fixed_drv_type
>= 0)
1315 drive_strength
= card_drv_type
& mmc_driver_type_mask(fixed_drv_type
)
1316 ? fixed_drv_type
: 0;
1318 drive_strength
= mmc_select_drive_strength(card
,
1319 card
->ext_csd
.hs200_max_dtr
,
1320 card_drv_type
, &drv_type
);
1322 card
->drive_strength
= drive_strength
;
1325 mmc_set_driver_type(card
->host
, drv_type
);
1328 static int mmc_select_hs400es(struct mmc_card
*card
)
1330 struct mmc_host
*host
= card
->host
;
1334 if (!(host
->caps
& MMC_CAP_8_BIT_DATA
)) {
1339 if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS400_1_2V
)
1340 err
= mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_120
);
1342 if (err
&& card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS400_1_8V
)
1343 err
= mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
);
1345 /* If fails try again during next card power cycle */
1349 err
= mmc_select_bus_width(card
);
1350 if (err
!= MMC_BUS_WIDTH_8
) {
1351 pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1352 mmc_hostname(host
), err
);
1353 err
= err
< 0 ? err
: -ENOTSUPP
;
1357 /* Switch card to HS mode */
1358 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1359 EXT_CSD_HS_TIMING
, EXT_CSD_TIMING_HS
,
1360 card
->ext_csd
.generic_cmd6_time
, 0,
1363 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1364 mmc_hostname(host
), err
);
1368 mmc_set_timing(host
, MMC_TIMING_MMC_HS
);
1369 err
= mmc_switch_status(card
);
1373 mmc_set_clock(host
, card
->ext_csd
.hs_max_dtr
);
1375 /* Switch card to DDR with strobe bit */
1376 val
= EXT_CSD_DDR_BUS_WIDTH_8
| EXT_CSD_BUS_WIDTH_STROBE
;
1377 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1380 card
->ext_csd
.generic_cmd6_time
);
1382 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1383 mmc_hostname(host
), err
);
1387 mmc_select_driver_type(card
);
1389 /* Switch card to HS400 */
1390 val
= EXT_CSD_TIMING_HS400
|
1391 card
->drive_strength
<< EXT_CSD_DRV_STR_SHIFT
;
1392 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1393 EXT_CSD_HS_TIMING
, val
,
1394 card
->ext_csd
.generic_cmd6_time
, 0,
1397 pr_err("%s: switch to hs400es failed, err:%d\n",
1398 mmc_hostname(host
), err
);
1402 /* Set host controller to HS400 timing and frequency */
1403 mmc_set_timing(host
, MMC_TIMING_MMC_HS400
);
1405 /* Controller enable enhanced strobe function */
1406 host
->ios
.enhanced_strobe
= true;
1407 if (host
->ops
->hs400_enhanced_strobe
)
1408 host
->ops
->hs400_enhanced_strobe(host
, &host
->ios
);
1410 err
= mmc_switch_status(card
);
1417 pr_err("%s: %s failed, error %d\n", mmc_hostname(card
->host
),
1423 * For device supporting HS200 mode, the following sequence
1424 * should be done before executing the tuning process.
1425 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1426 * 2. switch to HS200 mode
1427 * 3. set the clock to > 52Mhz and <=200MHz
1429 static int mmc_select_hs200(struct mmc_card
*card
)
1431 struct mmc_host
*host
= card
->host
;
1432 unsigned int old_timing
, old_signal_voltage
;
1436 old_signal_voltage
= host
->ios
.signal_voltage
;
1437 if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS200_1_2V
)
1438 err
= mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_120
);
1440 if (err
&& card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS200_1_8V
)
1441 err
= mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
);
1443 /* If fails try again during next card power cycle */
1447 mmc_select_driver_type(card
);
1450 * Set the bus width(4 or 8) with host's support and
1451 * switch to HS200 mode if bus width is set successfully.
1453 err
= mmc_select_bus_width(card
);
1455 val
= EXT_CSD_TIMING_HS200
|
1456 card
->drive_strength
<< EXT_CSD_DRV_STR_SHIFT
;
1457 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1458 EXT_CSD_HS_TIMING
, val
,
1459 card
->ext_csd
.generic_cmd6_time
, 0,
1463 old_timing
= host
->ios
.timing
;
1464 mmc_set_timing(host
, MMC_TIMING_MMC_HS200
);
1467 * For HS200, CRC errors are not a reliable way to know the
1468 * switch failed. If there really is a problem, we would expect
1469 * tuning will fail and the result ends up the same.
1471 err
= __mmc_switch_status(card
, false);
1474 * mmc_select_timing() assumes timing has not changed if
1475 * it is a switch error.
1477 if (err
== -EBADMSG
)
1478 mmc_set_timing(host
, old_timing
);
1482 /* fall back to the old signal voltage, if fails report error */
1483 if (mmc_set_signal_voltage(host
, old_signal_voltage
))
1486 pr_err("%s: %s failed, error %d\n", mmc_hostname(card
->host
),
1493 * Activate High Speed, HS200 or HS400ES mode if supported.
1495 static int mmc_select_timing(struct mmc_card
*card
)
1499 if (!mmc_can_ext_csd(card
))
1502 if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS400ES
)
1503 err
= mmc_select_hs400es(card
);
1504 else if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS200
)
1505 err
= mmc_select_hs200(card
);
1506 else if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS
)
1507 err
= mmc_select_hs(card
);
1509 if (err
&& err
!= -EBADMSG
)
1514 * Set the bus speed to the selected bus timing.
1515 * If timing is not selected, backward compatible is the default.
1517 mmc_set_bus_speed(card
);
1522 * Execute tuning sequence to seek the proper bus operating
1523 * conditions for HS200 and HS400, which sends CMD21 to the device.
1525 static int mmc_hs200_tuning(struct mmc_card
*card
)
1527 struct mmc_host
*host
= card
->host
;
1530 * Timing should be adjusted to the HS400 target
1531 * operation frequency for tuning process
1533 if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS400
&&
1534 host
->ios
.bus_width
== MMC_BUS_WIDTH_8
)
1535 if (host
->ops
->prepare_hs400_tuning
)
1536 host
->ops
->prepare_hs400_tuning(host
, &host
->ios
);
1538 return mmc_execute_tuning(card
);
1542 * Handle the detection and initialisation of a card.
1544 * In the case of a resume, "oldcard" will contain the card
1545 * we're trying to reinitialise.
1547 static int mmc_init_card(struct mmc_host
*host
, u32 ocr
,
1548 struct mmc_card
*oldcard
)
1550 struct mmc_card
*card
;
1555 WARN_ON(!host
->claimed
);
1557 /* Set correct bus mode for MMC before attempting init */
1558 if (!mmc_host_is_spi(host
))
1559 mmc_set_bus_mode(host
, MMC_BUSMODE_OPENDRAIN
);
1562 * Since we're changing the OCR value, we seem to
1563 * need to tell some cards to go back to the idle
1564 * state. We wait 1ms to give cards time to
1566 * mmc_go_idle is needed for eMMC that are asleep
1570 /* The extra bit indicates that we support high capacity */
1571 err
= mmc_send_op_cond(host
, ocr
| (1 << 30), &rocr
);
1576 * For SPI, enable CRC as appropriate.
1578 if (mmc_host_is_spi(host
)) {
1579 err
= mmc_spi_set_crc(host
, use_spi_crc
);
1585 * Fetch CID from card.
1587 err
= mmc_send_cid(host
, cid
);
1592 if (memcmp(cid
, oldcard
->raw_cid
, sizeof(cid
)) != 0) {
1593 pr_debug("%s: Perhaps the card was replaced\n",
1594 mmc_hostname(host
));
1602 * Allocate card structure.
1604 card
= mmc_alloc_card(host
, &mmc_type
);
1606 err
= PTR_ERR(card
);
1611 card
->type
= MMC_TYPE_MMC
;
1613 memcpy(card
->raw_cid
, cid
, sizeof(card
->raw_cid
));
1617 * Call the optional HC's init_card function to handle quirks.
1619 if (host
->ops
->init_card
)
1620 host
->ops
->init_card(host
, card
);
1623 * For native busses: set card RCA and quit open drain mode.
1625 if (!mmc_host_is_spi(host
)) {
1626 err
= mmc_set_relative_addr(card
);
1630 mmc_set_bus_mode(host
, MMC_BUSMODE_PUSHPULL
);
1635 * Fetch CSD from card.
1637 err
= mmc_send_csd(card
, card
->raw_csd
);
1641 err
= mmc_decode_csd(card
);
1644 err
= mmc_decode_cid(card
);
1650 * handling only for cards supporting DSR and hosts requesting
1653 if (card
->csd
.dsr_imp
&& host
->dsr_req
)
1657 * Select card, as all following commands rely on that.
1659 if (!mmc_host_is_spi(host
)) {
1660 err
= mmc_select_card(card
);
1666 /* Read extended CSD. */
1667 err
= mmc_read_ext_csd(card
);
1672 * If doing byte addressing, check if required to do sector
1673 * addressing. Handle the case of <2GB cards needing sector
1674 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1675 * ocr register has bit 30 set for sector addressing.
1678 mmc_card_set_blockaddr(card
);
1680 /* Erase size depends on CSD and Extended CSD */
1681 mmc_set_erase_size(card
);
1684 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1685 if (card
->ext_csd
.rev
>= 3) {
1686 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1687 EXT_CSD_ERASE_GROUP_DEF
, 1,
1688 card
->ext_csd
.generic_cmd6_time
);
1690 if (err
&& err
!= -EBADMSG
)
1696 * Just disable enhanced area off & sz
1697 * will try to enable ERASE_GROUP_DEF
1698 * during next time reinit
1700 card
->ext_csd
.enhanced_area_offset
= -EINVAL
;
1701 card
->ext_csd
.enhanced_area_size
= -EINVAL
;
1703 card
->ext_csd
.erase_group_def
= 1;
1705 * enable ERASE_GRP_DEF successfully.
1706 * This will affect the erase size, so
1707 * here need to reset erase size
1709 mmc_set_erase_size(card
);
1714 * Ensure eMMC user default partition is enabled
1716 if (card
->ext_csd
.part_config
& EXT_CSD_PART_CONFIG_ACC_MASK
) {
1717 card
->ext_csd
.part_config
&= ~EXT_CSD_PART_CONFIG_ACC_MASK
;
1718 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
, EXT_CSD_PART_CONFIG
,
1719 card
->ext_csd
.part_config
,
1720 card
->ext_csd
.part_time
);
1721 if (err
&& err
!= -EBADMSG
)
1726 * Enable power_off_notification byte in the ext_csd register
1728 if (card
->ext_csd
.rev
>= 6) {
1729 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1730 EXT_CSD_POWER_OFF_NOTIFICATION
,
1732 card
->ext_csd
.generic_cmd6_time
);
1733 if (err
&& err
!= -EBADMSG
)
1737 * The err can be -EBADMSG or 0,
1738 * so check for success and update the flag
1741 card
->ext_csd
.power_off_notification
= EXT_CSD_POWER_ON
;
1745 if (mmc_can_discard(card
))
1746 card
->erase_arg
= MMC_DISCARD_ARG
;
1747 else if (mmc_can_trim(card
))
1748 card
->erase_arg
= MMC_TRIM_ARG
;
1750 card
->erase_arg
= MMC_ERASE_ARG
;
1753 * Select timing interface
1755 err
= mmc_select_timing(card
);
1759 if (mmc_card_hs200(card
)) {
1760 err
= mmc_hs200_tuning(card
);
1764 err
= mmc_select_hs400(card
);
1767 } else if (!mmc_card_hs400es(card
)) {
1768 /* Select the desired bus width optionally */
1769 err
= mmc_select_bus_width(card
);
1770 if (err
> 0 && mmc_card_hs(card
)) {
1771 err
= mmc_select_hs_ddr(card
);
1778 * Choose the power class with selected bus interface
1780 mmc_select_powerclass(card
);
1783 * Enable HPI feature (if supported)
1785 if (card
->ext_csd
.hpi
) {
1786 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1787 EXT_CSD_HPI_MGMT
, 1,
1788 card
->ext_csd
.generic_cmd6_time
);
1789 if (err
&& err
!= -EBADMSG
)
1792 pr_warn("%s: Enabling HPI failed\n",
1793 mmc_hostname(card
->host
));
1794 card
->ext_csd
.hpi_en
= 0;
1797 card
->ext_csd
.hpi_en
= 1;
1802 * If cache size is higher than 0, this indicates the existence of cache
1803 * and it can be turned on. Note that some eMMCs from Micron has been
1804 * reported to need ~800 ms timeout, while enabling the cache after
1805 * sudden power failure tests. Let's extend the timeout to a minimum of
1806 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1808 if (card
->ext_csd
.cache_size
> 0) {
1809 unsigned int timeout_ms
= MIN_CACHE_EN_TIMEOUT_MS
;
1811 timeout_ms
= max(card
->ext_csd
.generic_cmd6_time
, timeout_ms
);
1812 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1813 EXT_CSD_CACHE_CTRL
, 1, timeout_ms
);
1814 if (err
&& err
!= -EBADMSG
)
1818 * Only if no error, cache is turned on successfully.
1821 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1822 mmc_hostname(card
->host
), err
);
1823 card
->ext_csd
.cache_ctrl
= 0;
1826 card
->ext_csd
.cache_ctrl
= 1;
1831 * Enable Command Queue if supported. Note that Packed Commands cannot
1832 * be used with Command Queue.
1834 card
->ext_csd
.cmdq_en
= false;
1835 if (card
->ext_csd
.cmdq_support
&& host
->caps2
& MMC_CAP2_CQE
) {
1836 err
= mmc_cmdq_enable(card
);
1837 if (err
&& err
!= -EBADMSG
)
1840 pr_warn("%s: Enabling CMDQ failed\n",
1841 mmc_hostname(card
->host
));
1842 card
->ext_csd
.cmdq_support
= false;
1843 card
->ext_csd
.cmdq_depth
= 0;
1848 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1849 * disabled for a time, so a flag is needed to indicate to re-enable the
1852 card
->reenable_cmdq
= card
->ext_csd
.cmdq_en
;
1854 if (card
->ext_csd
.cmdq_en
&& !host
->cqe_enabled
) {
1855 err
= host
->cqe_ops
->cqe_enable(host
, card
);
1857 pr_err("%s: Failed to enable CQE, error %d\n",
1858 mmc_hostname(host
), err
);
1860 host
->cqe_enabled
= true;
1861 pr_info("%s: Command Queue Engine enabled\n",
1862 mmc_hostname(host
));
1866 if (host
->caps2
& MMC_CAP2_AVOID_3_3V
&&
1867 host
->ios
.signal_voltage
== MMC_SIGNAL_VOLTAGE_330
) {
1868 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1869 mmc_hostname(host
));
1881 mmc_remove_card(card
);
1886 static int mmc_can_sleep(struct mmc_card
*card
)
1888 return (card
&& card
->ext_csd
.rev
>= 3);
1891 static int mmc_sleep(struct mmc_host
*host
)
1893 struct mmc_command cmd
= {};
1894 struct mmc_card
*card
= host
->card
;
1895 unsigned int timeout_ms
= DIV_ROUND_UP(card
->ext_csd
.sa_timeout
, 10000);
1898 /* Re-tuning can't be done once the card is deselected */
1899 mmc_retune_hold(host
);
1901 err
= mmc_deselect_cards(host
);
1905 cmd
.opcode
= MMC_SLEEP_AWAKE
;
1906 cmd
.arg
= card
->rca
<< 16;
1910 * If the max_busy_timeout of the host is specified, validate it against
1911 * the sleep cmd timeout. A failure means we need to prevent the host
1912 * from doing hw busy detection, which is done by converting to a R1
1913 * response instead of a R1B.
1915 if (host
->max_busy_timeout
&& (timeout_ms
> host
->max_busy_timeout
)) {
1916 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1918 cmd
.flags
= MMC_RSP_R1B
| MMC_CMD_AC
;
1919 cmd
.busy_timeout
= timeout_ms
;
1922 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
1927 * If the host does not wait while the card signals busy, then we will
1928 * will have to wait the sleep/awake timeout. Note, we cannot use the
1929 * SEND_STATUS command to poll the status because that command (and most
1930 * others) is invalid while the card sleeps.
1932 if (!cmd
.busy_timeout
|| !(host
->caps
& MMC_CAP_WAIT_WHILE_BUSY
))
1933 mmc_delay(timeout_ms
);
1936 mmc_retune_release(host
);
1940 static int mmc_can_poweroff_notify(const struct mmc_card
*card
)
1943 mmc_card_mmc(card
) &&
1944 (card
->ext_csd
.power_off_notification
== EXT_CSD_POWER_ON
);
1947 static int mmc_poweroff_notify(struct mmc_card
*card
, unsigned int notify_type
)
1949 unsigned int timeout
= card
->ext_csd
.generic_cmd6_time
;
1952 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1953 if (notify_type
== EXT_CSD_POWER_OFF_LONG
)
1954 timeout
= card
->ext_csd
.power_off_longtime
;
1956 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1957 EXT_CSD_POWER_OFF_NOTIFICATION
,
1958 notify_type
, timeout
, 0, true, false, false);
1960 pr_err("%s: Power Off Notification timed out, %u\n",
1961 mmc_hostname(card
->host
), timeout
);
1963 /* Disable the power off notification after the switch operation. */
1964 card
->ext_csd
.power_off_notification
= EXT_CSD_NO_POWER_NOTIFICATION
;
1970 * Host is being removed. Free up the current card.
1972 static void mmc_remove(struct mmc_host
*host
)
1974 mmc_remove_card(host
->card
);
1979 * Card detection - card is alive.
1981 static int mmc_alive(struct mmc_host
*host
)
1983 return mmc_send_status(host
->card
, NULL
);
1987 * Card detection callback from host.
1989 static void mmc_detect(struct mmc_host
*host
)
1993 mmc_get_card(host
->card
, NULL
);
1996 * Just check if our card has been removed.
1998 err
= _mmc_detect_card_removed(host
);
2000 mmc_put_card(host
->card
, NULL
);
2005 mmc_claim_host(host
);
2006 mmc_detach_bus(host
);
2007 mmc_power_off(host
);
2008 mmc_release_host(host
);
2012 static int _mmc_suspend(struct mmc_host
*host
, bool is_suspend
)
2015 unsigned int notify_type
= is_suspend
? EXT_CSD_POWER_OFF_SHORT
:
2016 EXT_CSD_POWER_OFF_LONG
;
2018 mmc_claim_host(host
);
2020 if (mmc_card_suspended(host
->card
))
2023 err
= mmc_flush_cache(host
->card
);
2027 if (mmc_can_poweroff_notify(host
->card
) &&
2028 ((host
->caps2
& MMC_CAP2_FULL_PWR_CYCLE
) || !is_suspend
))
2029 err
= mmc_poweroff_notify(host
->card
, notify_type
);
2030 else if (mmc_can_sleep(host
->card
))
2031 err
= mmc_sleep(host
);
2032 else if (!mmc_host_is_spi(host
))
2033 err
= mmc_deselect_cards(host
);
2036 mmc_power_off(host
);
2037 mmc_card_set_suspended(host
->card
);
2040 mmc_release_host(host
);
2047 static int mmc_suspend(struct mmc_host
*host
)
2051 err
= _mmc_suspend(host
, true);
2053 pm_runtime_disable(&host
->card
->dev
);
2054 pm_runtime_set_suspended(&host
->card
->dev
);
2061 * This function tries to determine if the same card is still present
2062 * and, if so, restore all state to it.
2064 static int _mmc_resume(struct mmc_host
*host
)
2068 mmc_claim_host(host
);
2070 if (!mmc_card_suspended(host
->card
))
2073 mmc_power_up(host
, host
->card
->ocr
);
2074 err
= mmc_init_card(host
, host
->card
->ocr
, host
->card
);
2075 mmc_card_clr_suspended(host
->card
);
2078 mmc_release_host(host
);
2085 static int mmc_shutdown(struct mmc_host
*host
)
2090 * In a specific case for poweroff notify, we need to resume the card
2091 * before we can shutdown it properly.
2093 if (mmc_can_poweroff_notify(host
->card
) &&
2094 !(host
->caps2
& MMC_CAP2_FULL_PWR_CYCLE
))
2095 err
= _mmc_resume(host
);
2098 err
= _mmc_suspend(host
, false);
2104 * Callback for resume.
2106 static int mmc_resume(struct mmc_host
*host
)
2108 pm_runtime_enable(&host
->card
->dev
);
2113 * Callback for runtime_suspend.
2115 static int mmc_runtime_suspend(struct mmc_host
*host
)
2119 if (!(host
->caps
& MMC_CAP_AGGRESSIVE_PM
))
2122 err
= _mmc_suspend(host
, true);
2124 pr_err("%s: error %d doing aggressive suspend\n",
2125 mmc_hostname(host
), err
);
2131 * Callback for runtime_resume.
2133 static int mmc_runtime_resume(struct mmc_host
*host
)
2137 err
= _mmc_resume(host
);
2138 if (err
&& err
!= -ENOMEDIUM
)
2139 pr_err("%s: error %d doing runtime resume\n",
2140 mmc_hostname(host
), err
);
2145 static int mmc_can_reset(struct mmc_card
*card
)
2149 rst_n_function
= card
->ext_csd
.rst_n_function
;
2150 if ((rst_n_function
& EXT_CSD_RST_N_EN_MASK
) != EXT_CSD_RST_N_ENABLED
)
2155 static int _mmc_hw_reset(struct mmc_host
*host
)
2157 struct mmc_card
*card
= host
->card
;
2160 * In the case of recovery, we can't expect flushing the cache to work
2161 * always, but we have a go and ignore errors.
2163 mmc_flush_cache(host
->card
);
2165 if ((host
->caps
& MMC_CAP_HW_RESET
) && host
->ops
->hw_reset
&&
2166 mmc_can_reset(card
)) {
2167 /* If the card accept RST_n signal, send it. */
2168 mmc_set_clock(host
, host
->f_init
);
2169 host
->ops
->hw_reset(host
);
2170 /* Set initial state and call mmc_set_ios */
2171 mmc_set_initial_state(host
);
2173 /* Do a brute force power cycle */
2174 mmc_power_cycle(host
, card
->ocr
);
2175 mmc_pwrseq_reset(host
);
2177 return mmc_init_card(host
, card
->ocr
, card
);
2180 static const struct mmc_bus_ops mmc_ops
= {
2181 .remove
= mmc_remove
,
2182 .detect
= mmc_detect
,
2183 .suspend
= mmc_suspend
,
2184 .resume
= mmc_resume
,
2185 .runtime_suspend
= mmc_runtime_suspend
,
2186 .runtime_resume
= mmc_runtime_resume
,
2188 .shutdown
= mmc_shutdown
,
2189 .hw_reset
= _mmc_hw_reset
,
2193 * Starting point for MMC card init.
2195 int mmc_attach_mmc(struct mmc_host
*host
)
2200 WARN_ON(!host
->claimed
);
2202 /* Set correct bus mode for MMC before attempting attach */
2203 if (!mmc_host_is_spi(host
))
2204 mmc_set_bus_mode(host
, MMC_BUSMODE_OPENDRAIN
);
2206 err
= mmc_send_op_cond(host
, 0, &ocr
);
2210 mmc_attach_bus(host
, &mmc_ops
);
2211 if (host
->ocr_avail_mmc
)
2212 host
->ocr_avail
= host
->ocr_avail_mmc
;
2215 * We need to get OCR a different way for SPI.
2217 if (mmc_host_is_spi(host
)) {
2218 err
= mmc_spi_read_ocr(host
, 1, &ocr
);
2223 rocr
= mmc_select_voltage(host
, ocr
);
2226 * Can we support the voltage of the card?
2234 * Detect and init the card.
2236 err
= mmc_init_card(host
, rocr
, NULL
);
2240 mmc_release_host(host
);
2241 err
= mmc_add_card(host
->card
);
2245 mmc_claim_host(host
);
2249 mmc_remove_card(host
->card
);
2250 mmc_claim_host(host
);
2253 mmc_detach_bus(host
);
2255 pr_err("%s: error %d whilst initialising MMC card\n",
2256 mmc_hostname(host
), err
);