treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / mmc / core / mmc.c
blobf6912ded652dcd3e60081e0f9504fd8ed105d163
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/mmc.c
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 */
10 #include <linux/err.h>
11 #include <linux/of.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
16 #include <linux/mmc/host.h>
17 #include <linux/mmc/card.h>
18 #include <linux/mmc/mmc.h>
20 #include "core.h"
21 #include "card.h"
22 #include "host.h"
23 #include "bus.h"
24 #include "mmc_ops.h"
25 #include "quirks.h"
26 #include "sd_ops.h"
27 #include "pwrseq.h"
29 #define DEFAULT_CMD6_TIMEOUT_MS 500
30 #define MIN_CACHE_EN_TIMEOUT_MS 1600
32 static const unsigned int tran_exp[] = {
33 10000, 100000, 1000000, 10000000,
34 0, 0, 0, 0
37 static const unsigned char tran_mant[] = {
38 0, 10, 12, 13, 15, 20, 25, 30,
39 35, 40, 45, 50, 55, 60, 70, 80,
42 static const unsigned int taac_exp[] = {
43 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
46 static const unsigned int taac_mant[] = {
47 0, 10, 12, 13, 15, 20, 25, 30,
48 35, 40, 45, 50, 55, 60, 70, 80,
51 #define UNSTUFF_BITS(resp,start,size) \
52 ({ \
53 const int __size = size; \
54 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
55 const int __off = 3 - ((start) / 32); \
56 const int __shft = (start) & 31; \
57 u32 __res; \
59 __res = resp[__off] >> __shft; \
60 if (__size + __shft > 32) \
61 __res |= resp[__off-1] << ((32 - __shft) % 32); \
62 __res & __mask; \
66 * Given the decoded CSD structure, decode the raw CID to our CID structure.
68 static int mmc_decode_cid(struct mmc_card *card)
70 u32 *resp = card->raw_cid;
73 * The selection of the format here is based upon published
74 * specs from sandisk and from what people have reported.
76 switch (card->csd.mmca_vsn) {
77 case 0: /* MMC v1.0 - v1.2 */
78 case 1: /* MMC v1.4 */
79 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
80 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
81 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
82 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
83 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
84 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
85 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
86 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
87 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
88 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
89 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
90 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
91 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
92 break;
94 case 2: /* MMC v2.0 - v2.2 */
95 case 3: /* MMC v3.1 - v3.3 */
96 case 4: /* MMC v4 */
97 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
98 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
99 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
100 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
101 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
102 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
103 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
104 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
105 card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
106 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
107 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
108 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
109 break;
111 default:
112 pr_err("%s: card has unknown MMCA version %d\n",
113 mmc_hostname(card->host), card->csd.mmca_vsn);
114 return -EINVAL;
117 return 0;
120 static void mmc_set_erase_size(struct mmc_card *card)
122 if (card->ext_csd.erase_group_def & 1)
123 card->erase_size = card->ext_csd.hc_erase_size;
124 else
125 card->erase_size = card->csd.erase_size;
127 mmc_init_erase(card);
131 * Given a 128-bit response, decode to our card CSD structure.
133 static int mmc_decode_csd(struct mmc_card *card)
135 struct mmc_csd *csd = &card->csd;
136 unsigned int e, m, a, b;
137 u32 *resp = card->raw_csd;
140 * We only understand CSD structure v1.1 and v1.2.
141 * v1.2 has extra information in bits 15, 11 and 10.
142 * We also support eMMC v4.4 & v4.41.
144 csd->structure = UNSTUFF_BITS(resp, 126, 2);
145 if (csd->structure == 0) {
146 pr_err("%s: unrecognised CSD structure version %d\n",
147 mmc_hostname(card->host), csd->structure);
148 return -EINVAL;
151 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
152 m = UNSTUFF_BITS(resp, 115, 4);
153 e = UNSTUFF_BITS(resp, 112, 3);
154 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
155 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
157 m = UNSTUFF_BITS(resp, 99, 4);
158 e = UNSTUFF_BITS(resp, 96, 3);
159 csd->max_dtr = tran_exp[e] * tran_mant[m];
160 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
162 e = UNSTUFF_BITS(resp, 47, 3);
163 m = UNSTUFF_BITS(resp, 62, 12);
164 csd->capacity = (1 + m) << (e + 2);
166 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
167 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
168 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
169 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
170 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
171 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
172 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
173 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
175 if (csd->write_blkbits >= 9) {
176 a = UNSTUFF_BITS(resp, 42, 5);
177 b = UNSTUFF_BITS(resp, 37, 5);
178 csd->erase_size = (a + 1) * (b + 1);
179 csd->erase_size <<= csd->write_blkbits - 9;
182 return 0;
185 static void mmc_select_card_type(struct mmc_card *card)
187 struct mmc_host *host = card->host;
188 u8 card_type = card->ext_csd.raw_card_type;
189 u32 caps = host->caps, caps2 = host->caps2;
190 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
191 unsigned int avail_type = 0;
193 if (caps & MMC_CAP_MMC_HIGHSPEED &&
194 card_type & EXT_CSD_CARD_TYPE_HS_26) {
195 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
196 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
199 if (caps & MMC_CAP_MMC_HIGHSPEED &&
200 card_type & EXT_CSD_CARD_TYPE_HS_52) {
201 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
202 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
205 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
206 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
207 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
208 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
211 if (caps & MMC_CAP_1_2V_DDR &&
212 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
213 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
214 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
217 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
218 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
219 hs200_max_dtr = MMC_HS200_MAX_DTR;
220 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
223 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
224 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
225 hs200_max_dtr = MMC_HS200_MAX_DTR;
226 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
229 if (caps2 & MMC_CAP2_HS400_1_8V &&
230 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
231 hs200_max_dtr = MMC_HS200_MAX_DTR;
232 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
235 if (caps2 & MMC_CAP2_HS400_1_2V &&
236 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
237 hs200_max_dtr = MMC_HS200_MAX_DTR;
238 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
241 if ((caps2 & MMC_CAP2_HS400_ES) &&
242 card->ext_csd.strobe_support &&
243 (avail_type & EXT_CSD_CARD_TYPE_HS400))
244 avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
246 card->ext_csd.hs_max_dtr = hs_max_dtr;
247 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
248 card->mmc_avail_type = avail_type;
251 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
253 u8 hc_erase_grp_sz, hc_wp_grp_sz;
256 * Disable these attributes by default
258 card->ext_csd.enhanced_area_offset = -EINVAL;
259 card->ext_csd.enhanced_area_size = -EINVAL;
262 * Enhanced area feature support -- check whether the eMMC
263 * card has the Enhanced area enabled. If so, export enhanced
264 * area offset and size to user by adding sysfs interface.
266 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
267 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
268 if (card->ext_csd.partition_setting_completed) {
269 hc_erase_grp_sz =
270 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
271 hc_wp_grp_sz =
272 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
275 * calculate the enhanced data area offset, in bytes
277 card->ext_csd.enhanced_area_offset =
278 (((unsigned long long)ext_csd[139]) << 24) +
279 (((unsigned long long)ext_csd[138]) << 16) +
280 (((unsigned long long)ext_csd[137]) << 8) +
281 (((unsigned long long)ext_csd[136]));
282 if (mmc_card_blockaddr(card))
283 card->ext_csd.enhanced_area_offset <<= 9;
285 * calculate the enhanced data area size, in kilobytes
287 card->ext_csd.enhanced_area_size =
288 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
289 ext_csd[140];
290 card->ext_csd.enhanced_area_size *=
291 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
292 card->ext_csd.enhanced_area_size <<= 9;
293 } else {
294 pr_warn("%s: defines enhanced area without partition setting complete\n",
295 mmc_hostname(card->host));
300 static void mmc_part_add(struct mmc_card *card, u64 size,
301 unsigned int part_cfg, char *name, int idx, bool ro,
302 int area_type)
304 card->part[card->nr_parts].size = size;
305 card->part[card->nr_parts].part_cfg = part_cfg;
306 sprintf(card->part[card->nr_parts].name, name, idx);
307 card->part[card->nr_parts].force_ro = ro;
308 card->part[card->nr_parts].area_type = area_type;
309 card->nr_parts++;
312 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
314 int idx;
315 u8 hc_erase_grp_sz, hc_wp_grp_sz;
316 u64 part_size;
319 * General purpose partition feature support --
320 * If ext_csd has the size of general purpose partitions,
321 * set size, part_cfg, partition name in mmc_part.
323 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
324 EXT_CSD_PART_SUPPORT_PART_EN) {
325 hc_erase_grp_sz =
326 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
327 hc_wp_grp_sz =
328 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
330 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
331 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
332 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
333 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
334 continue;
335 if (card->ext_csd.partition_setting_completed == 0) {
336 pr_warn("%s: has partition size defined without partition complete\n",
337 mmc_hostname(card->host));
338 break;
340 part_size =
341 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
342 << 16) +
343 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
344 << 8) +
345 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
346 part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
347 mmc_part_add(card, part_size << 19,
348 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
349 "gp%d", idx, false,
350 MMC_BLK_DATA_AREA_GP);
355 /* Minimum partition switch timeout in milliseconds */
356 #define MMC_MIN_PART_SWITCH_TIME 300
359 * Decode extended CSD.
361 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
363 int err = 0, idx;
364 u64 part_size;
365 struct device_node *np;
366 bool broken_hpi = false;
368 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
369 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
370 if (card->csd.structure == 3) {
371 if (card->ext_csd.raw_ext_csd_structure > 2) {
372 pr_err("%s: unrecognised EXT_CSD structure "
373 "version %d\n", mmc_hostname(card->host),
374 card->ext_csd.raw_ext_csd_structure);
375 err = -EINVAL;
376 goto out;
380 np = mmc_of_find_child_device(card->host, 0);
381 if (np && of_device_is_compatible(np, "mmc-card"))
382 broken_hpi = of_property_read_bool(np, "broken-hpi");
383 of_node_put(np);
386 * The EXT_CSD format is meant to be forward compatible. As long
387 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
388 * are authorized, see JEDEC JESD84-B50 section B.8.
390 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
392 /* fixup device after ext_csd revision field is updated */
393 mmc_fixup_device(card, mmc_ext_csd_fixups);
395 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
396 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
397 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
398 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
399 if (card->ext_csd.rev >= 2) {
400 card->ext_csd.sectors =
401 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
402 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
403 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
404 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
406 /* Cards with density > 2GiB are sector addressed */
407 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
408 mmc_card_set_blockaddr(card);
411 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
412 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
413 mmc_select_card_type(card);
415 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
416 card->ext_csd.raw_erase_timeout_mult =
417 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
418 card->ext_csd.raw_hc_erase_grp_size =
419 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
420 if (card->ext_csd.rev >= 3) {
421 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
422 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
424 /* EXT_CSD value is in units of 10ms, but we store in ms */
425 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
426 /* Some eMMC set the value too low so set a minimum */
427 if (card->ext_csd.part_time &&
428 card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
429 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
431 /* Sleep / awake timeout in 100ns units */
432 if (sa_shift > 0 && sa_shift <= 0x17)
433 card->ext_csd.sa_timeout =
434 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
435 card->ext_csd.erase_group_def =
436 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
437 card->ext_csd.hc_erase_timeout = 300 *
438 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
439 card->ext_csd.hc_erase_size =
440 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
442 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
445 * There are two boot regions of equal size, defined in
446 * multiples of 128K.
448 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
449 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
450 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
451 mmc_part_add(card, part_size,
452 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
453 "boot%d", idx, true,
454 MMC_BLK_DATA_AREA_BOOT);
459 card->ext_csd.raw_hc_erase_gap_size =
460 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
461 card->ext_csd.raw_sec_trim_mult =
462 ext_csd[EXT_CSD_SEC_TRIM_MULT];
463 card->ext_csd.raw_sec_erase_mult =
464 ext_csd[EXT_CSD_SEC_ERASE_MULT];
465 card->ext_csd.raw_sec_feature_support =
466 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
467 card->ext_csd.raw_trim_mult =
468 ext_csd[EXT_CSD_TRIM_MULT];
469 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
470 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
471 if (card->ext_csd.rev >= 4) {
472 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
473 EXT_CSD_PART_SETTING_COMPLETED)
474 card->ext_csd.partition_setting_completed = 1;
475 else
476 card->ext_csd.partition_setting_completed = 0;
478 mmc_manage_enhanced_area(card, ext_csd);
480 mmc_manage_gp_partitions(card, ext_csd);
482 card->ext_csd.sec_trim_mult =
483 ext_csd[EXT_CSD_SEC_TRIM_MULT];
484 card->ext_csd.sec_erase_mult =
485 ext_csd[EXT_CSD_SEC_ERASE_MULT];
486 card->ext_csd.sec_feature_support =
487 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
488 card->ext_csd.trim_timeout = 300 *
489 ext_csd[EXT_CSD_TRIM_MULT];
492 * Note that the call to mmc_part_add above defaults to read
493 * only. If this default assumption is changed, the call must
494 * take into account the value of boot_locked below.
496 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
497 card->ext_csd.boot_ro_lockable = true;
499 /* Save power class values */
500 card->ext_csd.raw_pwr_cl_52_195 =
501 ext_csd[EXT_CSD_PWR_CL_52_195];
502 card->ext_csd.raw_pwr_cl_26_195 =
503 ext_csd[EXT_CSD_PWR_CL_26_195];
504 card->ext_csd.raw_pwr_cl_52_360 =
505 ext_csd[EXT_CSD_PWR_CL_52_360];
506 card->ext_csd.raw_pwr_cl_26_360 =
507 ext_csd[EXT_CSD_PWR_CL_26_360];
508 card->ext_csd.raw_pwr_cl_200_195 =
509 ext_csd[EXT_CSD_PWR_CL_200_195];
510 card->ext_csd.raw_pwr_cl_200_360 =
511 ext_csd[EXT_CSD_PWR_CL_200_360];
512 card->ext_csd.raw_pwr_cl_ddr_52_195 =
513 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
514 card->ext_csd.raw_pwr_cl_ddr_52_360 =
515 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
516 card->ext_csd.raw_pwr_cl_ddr_200_360 =
517 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
520 if (card->ext_csd.rev >= 5) {
521 /* Adjust production date as per JEDEC JESD84-B451 */
522 if (card->cid.year < 2010)
523 card->cid.year += 16;
525 /* check whether the eMMC card supports BKOPS */
526 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
527 card->ext_csd.bkops = 1;
528 card->ext_csd.man_bkops_en =
529 (ext_csd[EXT_CSD_BKOPS_EN] &
530 EXT_CSD_MANUAL_BKOPS_MASK);
531 card->ext_csd.raw_bkops_status =
532 ext_csd[EXT_CSD_BKOPS_STATUS];
533 if (card->ext_csd.man_bkops_en)
534 pr_debug("%s: MAN_BKOPS_EN bit is set\n",
535 mmc_hostname(card->host));
536 card->ext_csd.auto_bkops_en =
537 (ext_csd[EXT_CSD_BKOPS_EN] &
538 EXT_CSD_AUTO_BKOPS_MASK);
539 if (card->ext_csd.auto_bkops_en)
540 pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
541 mmc_hostname(card->host));
544 /* check whether the eMMC card supports HPI */
545 if (!mmc_card_broken_hpi(card) &&
546 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
547 card->ext_csd.hpi = 1;
548 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
549 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
550 else
551 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
553 * Indicate the maximum timeout to close
554 * a command interrupted by HPI
556 card->ext_csd.out_of_int_time =
557 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
560 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
561 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
564 * RPMB regions are defined in multiples of 128K.
566 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
567 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
568 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
569 EXT_CSD_PART_CONFIG_ACC_RPMB,
570 "rpmb", 0, false,
571 MMC_BLK_DATA_AREA_RPMB);
575 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
576 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
577 card->erased_byte = 0xFF;
578 else
579 card->erased_byte = 0x0;
581 /* eMMC v4.5 or later */
582 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
583 if (card->ext_csd.rev >= 6) {
584 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
586 card->ext_csd.generic_cmd6_time = 10 *
587 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
588 card->ext_csd.power_off_longtime = 10 *
589 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
591 card->ext_csd.cache_size =
592 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
593 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
594 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
595 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
597 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
598 card->ext_csd.data_sector_size = 4096;
599 else
600 card->ext_csd.data_sector_size = 512;
602 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
603 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
604 card->ext_csd.data_tag_unit_size =
605 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
606 (card->ext_csd.data_sector_size);
607 } else {
608 card->ext_csd.data_tag_unit_size = 0;
611 card->ext_csd.max_packed_writes =
612 ext_csd[EXT_CSD_MAX_PACKED_WRITES];
613 card->ext_csd.max_packed_reads =
614 ext_csd[EXT_CSD_MAX_PACKED_READS];
615 } else {
616 card->ext_csd.data_sector_size = 512;
619 /* eMMC v5 or later */
620 if (card->ext_csd.rev >= 7) {
621 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
622 MMC_FIRMWARE_LEN);
623 card->ext_csd.ffu_capable =
624 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
625 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
627 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
628 card->ext_csd.device_life_time_est_typ_a =
629 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
630 card->ext_csd.device_life_time_est_typ_b =
631 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
634 /* eMMC v5.1 or later */
635 if (card->ext_csd.rev >= 8) {
636 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
637 EXT_CSD_CMDQ_SUPPORTED;
638 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
639 EXT_CSD_CMDQ_DEPTH_MASK) + 1;
640 /* Exclude inefficiently small queue depths */
641 if (card->ext_csd.cmdq_depth <= 2) {
642 card->ext_csd.cmdq_support = false;
643 card->ext_csd.cmdq_depth = 0;
645 if (card->ext_csd.cmdq_support) {
646 pr_debug("%s: Command Queue supported depth %u\n",
647 mmc_hostname(card->host),
648 card->ext_csd.cmdq_depth);
651 out:
652 return err;
655 static int mmc_read_ext_csd(struct mmc_card *card)
657 u8 *ext_csd;
658 int err;
660 if (!mmc_can_ext_csd(card))
661 return 0;
663 err = mmc_get_ext_csd(card, &ext_csd);
664 if (err) {
665 /* If the host or the card can't do the switch,
666 * fail more gracefully. */
667 if ((err != -EINVAL)
668 && (err != -ENOSYS)
669 && (err != -EFAULT))
670 return err;
673 * High capacity cards should have this "magic" size
674 * stored in their CSD.
676 if (card->csd.capacity == (4096 * 512)) {
677 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
678 mmc_hostname(card->host));
679 } else {
680 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
681 mmc_hostname(card->host));
682 err = 0;
685 return err;
688 err = mmc_decode_ext_csd(card, ext_csd);
689 kfree(ext_csd);
690 return err;
693 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
695 u8 *bw_ext_csd;
696 int err;
698 if (bus_width == MMC_BUS_WIDTH_1)
699 return 0;
701 err = mmc_get_ext_csd(card, &bw_ext_csd);
702 if (err)
703 return err;
705 /* only compare read only fields */
706 err = !((card->ext_csd.raw_partition_support ==
707 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
708 (card->ext_csd.raw_erased_mem_count ==
709 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
710 (card->ext_csd.rev ==
711 bw_ext_csd[EXT_CSD_REV]) &&
712 (card->ext_csd.raw_ext_csd_structure ==
713 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
714 (card->ext_csd.raw_card_type ==
715 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
716 (card->ext_csd.raw_s_a_timeout ==
717 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
718 (card->ext_csd.raw_hc_erase_gap_size ==
719 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
720 (card->ext_csd.raw_erase_timeout_mult ==
721 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
722 (card->ext_csd.raw_hc_erase_grp_size ==
723 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
724 (card->ext_csd.raw_sec_trim_mult ==
725 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
726 (card->ext_csd.raw_sec_erase_mult ==
727 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
728 (card->ext_csd.raw_sec_feature_support ==
729 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
730 (card->ext_csd.raw_trim_mult ==
731 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
732 (card->ext_csd.raw_sectors[0] ==
733 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
734 (card->ext_csd.raw_sectors[1] ==
735 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
736 (card->ext_csd.raw_sectors[2] ==
737 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
738 (card->ext_csd.raw_sectors[3] ==
739 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
740 (card->ext_csd.raw_pwr_cl_52_195 ==
741 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
742 (card->ext_csd.raw_pwr_cl_26_195 ==
743 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
744 (card->ext_csd.raw_pwr_cl_52_360 ==
745 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
746 (card->ext_csd.raw_pwr_cl_26_360 ==
747 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
748 (card->ext_csd.raw_pwr_cl_200_195 ==
749 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
750 (card->ext_csd.raw_pwr_cl_200_360 ==
751 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
752 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
753 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
754 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
755 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
756 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
757 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
759 if (err)
760 err = -EINVAL;
762 kfree(bw_ext_csd);
763 return err;
766 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
767 card->raw_cid[2], card->raw_cid[3]);
768 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
769 card->raw_csd[2], card->raw_csd[3]);
770 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
771 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
772 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
773 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
774 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
775 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
776 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
777 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
778 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
779 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
780 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
781 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
782 card->ext_csd.device_life_time_est_typ_a,
783 card->ext_csd.device_life_time_est_typ_b);
784 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
785 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
786 card->ext_csd.enhanced_area_offset);
787 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
788 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
789 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
790 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
791 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
792 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
794 static ssize_t mmc_fwrev_show(struct device *dev,
795 struct device_attribute *attr,
796 char *buf)
798 struct mmc_card *card = mmc_dev_to_card(dev);
800 if (card->ext_csd.rev < 7) {
801 return sprintf(buf, "0x%x\n", card->cid.fwrev);
802 } else {
803 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
804 card->ext_csd.fwrev);
808 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
810 static ssize_t mmc_dsr_show(struct device *dev,
811 struct device_attribute *attr,
812 char *buf)
814 struct mmc_card *card = mmc_dev_to_card(dev);
815 struct mmc_host *host = card->host;
817 if (card->csd.dsr_imp && host->dsr_req)
818 return sprintf(buf, "0x%x\n", host->dsr);
819 else
820 /* return default DSR value */
821 return sprintf(buf, "0x%x\n", 0x404);
824 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
826 static struct attribute *mmc_std_attrs[] = {
827 &dev_attr_cid.attr,
828 &dev_attr_csd.attr,
829 &dev_attr_date.attr,
830 &dev_attr_erase_size.attr,
831 &dev_attr_preferred_erase_size.attr,
832 &dev_attr_fwrev.attr,
833 &dev_attr_ffu_capable.attr,
834 &dev_attr_hwrev.attr,
835 &dev_attr_manfid.attr,
836 &dev_attr_name.attr,
837 &dev_attr_oemid.attr,
838 &dev_attr_prv.attr,
839 &dev_attr_rev.attr,
840 &dev_attr_pre_eol_info.attr,
841 &dev_attr_life_time.attr,
842 &dev_attr_serial.attr,
843 &dev_attr_enhanced_area_offset.attr,
844 &dev_attr_enhanced_area_size.attr,
845 &dev_attr_raw_rpmb_size_mult.attr,
846 &dev_attr_rel_sectors.attr,
847 &dev_attr_ocr.attr,
848 &dev_attr_rca.attr,
849 &dev_attr_dsr.attr,
850 &dev_attr_cmdq_en.attr,
851 NULL,
853 ATTRIBUTE_GROUPS(mmc_std);
855 static struct device_type mmc_type = {
856 .groups = mmc_std_groups,
860 * Select the PowerClass for the current bus width
861 * If power class is defined for 4/8 bit bus in the
862 * extended CSD register, select it by executing the
863 * mmc_switch command.
865 static int __mmc_select_powerclass(struct mmc_card *card,
866 unsigned int bus_width)
868 struct mmc_host *host = card->host;
869 struct mmc_ext_csd *ext_csd = &card->ext_csd;
870 unsigned int pwrclass_val = 0;
871 int err = 0;
873 switch (1 << host->ios.vdd) {
874 case MMC_VDD_165_195:
875 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
876 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
877 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
878 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
879 ext_csd->raw_pwr_cl_52_195 :
880 ext_csd->raw_pwr_cl_ddr_52_195;
881 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
882 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
883 break;
884 case MMC_VDD_27_28:
885 case MMC_VDD_28_29:
886 case MMC_VDD_29_30:
887 case MMC_VDD_30_31:
888 case MMC_VDD_31_32:
889 case MMC_VDD_32_33:
890 case MMC_VDD_33_34:
891 case MMC_VDD_34_35:
892 case MMC_VDD_35_36:
893 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
894 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
895 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
896 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
897 ext_csd->raw_pwr_cl_52_360 :
898 ext_csd->raw_pwr_cl_ddr_52_360;
899 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
900 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
901 ext_csd->raw_pwr_cl_ddr_200_360 :
902 ext_csd->raw_pwr_cl_200_360;
903 break;
904 default:
905 pr_warn("%s: Voltage range not supported for power class\n",
906 mmc_hostname(host));
907 return -EINVAL;
910 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
911 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
912 EXT_CSD_PWR_CL_8BIT_SHIFT;
913 else
914 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
915 EXT_CSD_PWR_CL_4BIT_SHIFT;
917 /* If the power class is different from the default value */
918 if (pwrclass_val > 0) {
919 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
920 EXT_CSD_POWER_CLASS,
921 pwrclass_val,
922 card->ext_csd.generic_cmd6_time);
925 return err;
928 static int mmc_select_powerclass(struct mmc_card *card)
930 struct mmc_host *host = card->host;
931 u32 bus_width, ext_csd_bits;
932 int err, ddr;
934 /* Power class selection is supported for versions >= 4.0 */
935 if (!mmc_can_ext_csd(card))
936 return 0;
938 bus_width = host->ios.bus_width;
939 /* Power class values are defined only for 4/8 bit bus */
940 if (bus_width == MMC_BUS_WIDTH_1)
941 return 0;
943 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
944 if (ddr)
945 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
946 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
947 else
948 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
949 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
951 err = __mmc_select_powerclass(card, ext_csd_bits);
952 if (err)
953 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
954 mmc_hostname(host), 1 << bus_width, ddr);
956 return err;
960 * Set the bus speed for the selected speed mode.
962 static void mmc_set_bus_speed(struct mmc_card *card)
964 unsigned int max_dtr = (unsigned int)-1;
966 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
967 max_dtr > card->ext_csd.hs200_max_dtr)
968 max_dtr = card->ext_csd.hs200_max_dtr;
969 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
970 max_dtr = card->ext_csd.hs_max_dtr;
971 else if (max_dtr > card->csd.max_dtr)
972 max_dtr = card->csd.max_dtr;
974 mmc_set_clock(card->host, max_dtr);
978 * Select the bus width amoung 4-bit and 8-bit(SDR).
979 * If the bus width is changed successfully, return the selected width value.
980 * Zero is returned instead of error value if the wide width is not supported.
982 static int mmc_select_bus_width(struct mmc_card *card)
984 static unsigned ext_csd_bits[] = {
985 EXT_CSD_BUS_WIDTH_8,
986 EXT_CSD_BUS_WIDTH_4,
988 static unsigned bus_widths[] = {
989 MMC_BUS_WIDTH_8,
990 MMC_BUS_WIDTH_4,
992 struct mmc_host *host = card->host;
993 unsigned idx, bus_width = 0;
994 int err = 0;
996 if (!mmc_can_ext_csd(card) ||
997 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
998 return 0;
1000 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1003 * Unlike SD, MMC cards dont have a configuration register to notify
1004 * supported bus width. So bus test command should be run to identify
1005 * the supported bus width or compare the ext csd values of current
1006 * bus width and ext csd values of 1 bit mode read earlier.
1008 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1010 * Host is capable of 8bit transfer, then switch
1011 * the device to work in 8bit transfer mode. If the
1012 * mmc switch command returns error then switch to
1013 * 4bit transfer mode. On success set the corresponding
1014 * bus width on the host.
1016 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1017 EXT_CSD_BUS_WIDTH,
1018 ext_csd_bits[idx],
1019 card->ext_csd.generic_cmd6_time);
1020 if (err)
1021 continue;
1023 bus_width = bus_widths[idx];
1024 mmc_set_bus_width(host, bus_width);
1027 * If controller can't handle bus width test,
1028 * compare ext_csd previously read in 1 bit mode
1029 * against ext_csd at new bus width
1031 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1032 err = mmc_compare_ext_csds(card, bus_width);
1033 else
1034 err = mmc_bus_test(card, bus_width);
1036 if (!err) {
1037 err = bus_width;
1038 break;
1039 } else {
1040 pr_warn("%s: switch to bus width %d failed\n",
1041 mmc_hostname(host), 1 << bus_width);
1045 return err;
1049 * Switch to the high-speed mode
1051 static int mmc_select_hs(struct mmc_card *card)
1053 int err;
1055 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1056 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1057 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1058 true, true, true);
1059 if (err)
1060 pr_warn("%s: switch to high-speed failed, err:%d\n",
1061 mmc_hostname(card->host), err);
1063 return err;
1067 * Activate wide bus and DDR if supported.
1069 static int mmc_select_hs_ddr(struct mmc_card *card)
1071 struct mmc_host *host = card->host;
1072 u32 bus_width, ext_csd_bits;
1073 int err = 0;
1075 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1076 return 0;
1078 bus_width = host->ios.bus_width;
1079 if (bus_width == MMC_BUS_WIDTH_1)
1080 return 0;
1082 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1083 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1085 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1086 EXT_CSD_BUS_WIDTH,
1087 ext_csd_bits,
1088 card->ext_csd.generic_cmd6_time,
1089 MMC_TIMING_MMC_DDR52,
1090 true, true, true);
1091 if (err) {
1092 pr_err("%s: switch to bus width %d ddr failed\n",
1093 mmc_hostname(host), 1 << bus_width);
1094 return err;
1098 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1099 * signaling.
1101 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1103 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1104 * in the JEDEC spec for DDR.
1106 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1107 * host controller can support this, like some of the SDHCI
1108 * controller which connect to an eMMC device. Some of these
1109 * host controller still needs to use 1.8v vccq for supporting
1110 * DDR mode.
1112 * So the sequence will be:
1113 * if (host and device can both support 1.2v IO)
1114 * use 1.2v IO;
1115 * else if (host and device can both support 1.8v IO)
1116 * use 1.8v IO;
1117 * so if host and device can only support 3.3v IO, this is the
1118 * last choice.
1120 * WARNING: eMMC rules are NOT the same as SD DDR
1122 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1123 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1124 if (!err)
1125 return 0;
1128 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1129 host->caps & MMC_CAP_1_8V_DDR)
1130 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1132 /* make sure vccq is 3.3v after switching disaster */
1133 if (err)
1134 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1136 return err;
1139 static int mmc_select_hs400(struct mmc_card *card)
1141 struct mmc_host *host = card->host;
1142 unsigned int max_dtr;
1143 int err = 0;
1144 u8 val;
1147 * HS400 mode requires 8-bit bus width
1149 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1150 host->ios.bus_width == MMC_BUS_WIDTH_8))
1151 return 0;
1153 /* Switch card to HS mode */
1154 val = EXT_CSD_TIMING_HS;
1155 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1156 EXT_CSD_HS_TIMING, val,
1157 card->ext_csd.generic_cmd6_time, 0,
1158 true, false, true);
1159 if (err) {
1160 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1161 mmc_hostname(host), err);
1162 return err;
1165 /* Set host controller to HS timing */
1166 mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1168 /* Prepare host to downgrade to HS timing */
1169 if (host->ops->hs400_downgrade)
1170 host->ops->hs400_downgrade(host);
1172 /* Reduce frequency to HS frequency */
1173 max_dtr = card->ext_csd.hs_max_dtr;
1174 mmc_set_clock(host, max_dtr);
1176 err = mmc_switch_status(card);
1177 if (err)
1178 goto out_err;
1180 if (host->ops->hs400_prepare_ddr)
1181 host->ops->hs400_prepare_ddr(host);
1183 /* Switch card to DDR */
1184 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1185 EXT_CSD_BUS_WIDTH,
1186 EXT_CSD_DDR_BUS_WIDTH_8,
1187 card->ext_csd.generic_cmd6_time);
1188 if (err) {
1189 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1190 mmc_hostname(host), err);
1191 return err;
1194 /* Switch card to HS400 */
1195 val = EXT_CSD_TIMING_HS400 |
1196 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1197 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1198 EXT_CSD_HS_TIMING, val,
1199 card->ext_csd.generic_cmd6_time, 0,
1200 true, false, true);
1201 if (err) {
1202 pr_err("%s: switch to hs400 failed, err:%d\n",
1203 mmc_hostname(host), err);
1204 return err;
1207 /* Set host controller to HS400 timing and frequency */
1208 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1209 mmc_set_bus_speed(card);
1211 if (host->ops->hs400_complete)
1212 host->ops->hs400_complete(host);
1214 err = mmc_switch_status(card);
1215 if (err)
1216 goto out_err;
1218 return 0;
1220 out_err:
1221 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1222 __func__, err);
1223 return err;
1226 int mmc_hs200_to_hs400(struct mmc_card *card)
1228 return mmc_select_hs400(card);
1231 int mmc_hs400_to_hs200(struct mmc_card *card)
1233 struct mmc_host *host = card->host;
1234 unsigned int max_dtr;
1235 int err;
1236 u8 val;
1238 /* Reduce frequency to HS */
1239 max_dtr = card->ext_csd.hs_max_dtr;
1240 mmc_set_clock(host, max_dtr);
1242 /* Switch HS400 to HS DDR */
1243 val = EXT_CSD_TIMING_HS;
1244 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1245 val, card->ext_csd.generic_cmd6_time, 0,
1246 true, false, true);
1247 if (err)
1248 goto out_err;
1250 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1252 err = mmc_switch_status(card);
1253 if (err)
1254 goto out_err;
1256 /* Switch HS DDR to HS */
1257 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1258 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1259 0, true, false, true);
1260 if (err)
1261 goto out_err;
1263 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1265 if (host->ops->hs400_downgrade)
1266 host->ops->hs400_downgrade(host);
1268 err = mmc_switch_status(card);
1269 if (err)
1270 goto out_err;
1272 /* Switch HS to HS200 */
1273 val = EXT_CSD_TIMING_HS200 |
1274 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1275 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1276 val, card->ext_csd.generic_cmd6_time, 0,
1277 true, false, true);
1278 if (err)
1279 goto out_err;
1281 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1284 * For HS200, CRC errors are not a reliable way to know the switch
1285 * failed. If there really is a problem, we would expect tuning will
1286 * fail and the result ends up the same.
1288 err = __mmc_switch_status(card, false);
1289 if (err)
1290 goto out_err;
1292 mmc_set_bus_speed(card);
1294 /* Prepare tuning for HS400 mode. */
1295 if (host->ops->prepare_hs400_tuning)
1296 host->ops->prepare_hs400_tuning(host, &host->ios);
1298 return 0;
1300 out_err:
1301 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1302 __func__, err);
1303 return err;
1306 static void mmc_select_driver_type(struct mmc_card *card)
1308 int card_drv_type, drive_strength, drv_type = 0;
1309 int fixed_drv_type = card->host->fixed_drv_type;
1311 card_drv_type = card->ext_csd.raw_driver_strength |
1312 mmc_driver_type_mask(0);
1314 if (fixed_drv_type >= 0)
1315 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1316 ? fixed_drv_type : 0;
1317 else
1318 drive_strength = mmc_select_drive_strength(card,
1319 card->ext_csd.hs200_max_dtr,
1320 card_drv_type, &drv_type);
1322 card->drive_strength = drive_strength;
1324 if (drv_type)
1325 mmc_set_driver_type(card->host, drv_type);
1328 static int mmc_select_hs400es(struct mmc_card *card)
1330 struct mmc_host *host = card->host;
1331 int err = -EINVAL;
1332 u8 val;
1334 if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1335 err = -ENOTSUPP;
1336 goto out_err;
1339 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1340 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1342 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1343 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1345 /* If fails try again during next card power cycle */
1346 if (err)
1347 goto out_err;
1349 err = mmc_select_bus_width(card);
1350 if (err != MMC_BUS_WIDTH_8) {
1351 pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1352 mmc_hostname(host), err);
1353 err = err < 0 ? err : -ENOTSUPP;
1354 goto out_err;
1357 /* Switch card to HS mode */
1358 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1359 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1360 card->ext_csd.generic_cmd6_time, 0,
1361 true, false, true);
1362 if (err) {
1363 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1364 mmc_hostname(host), err);
1365 goto out_err;
1368 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1369 err = mmc_switch_status(card);
1370 if (err)
1371 goto out_err;
1373 mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1375 /* Switch card to DDR with strobe bit */
1376 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1377 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1378 EXT_CSD_BUS_WIDTH,
1379 val,
1380 card->ext_csd.generic_cmd6_time);
1381 if (err) {
1382 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1383 mmc_hostname(host), err);
1384 goto out_err;
1387 mmc_select_driver_type(card);
1389 /* Switch card to HS400 */
1390 val = EXT_CSD_TIMING_HS400 |
1391 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1392 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1393 EXT_CSD_HS_TIMING, val,
1394 card->ext_csd.generic_cmd6_time, 0,
1395 true, false, true);
1396 if (err) {
1397 pr_err("%s: switch to hs400es failed, err:%d\n",
1398 mmc_hostname(host), err);
1399 goto out_err;
1402 /* Set host controller to HS400 timing and frequency */
1403 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1405 /* Controller enable enhanced strobe function */
1406 host->ios.enhanced_strobe = true;
1407 if (host->ops->hs400_enhanced_strobe)
1408 host->ops->hs400_enhanced_strobe(host, &host->ios);
1410 err = mmc_switch_status(card);
1411 if (err)
1412 goto out_err;
1414 return 0;
1416 out_err:
1417 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1418 __func__, err);
1419 return err;
1423 * For device supporting HS200 mode, the following sequence
1424 * should be done before executing the tuning process.
1425 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1426 * 2. switch to HS200 mode
1427 * 3. set the clock to > 52Mhz and <=200MHz
1429 static int mmc_select_hs200(struct mmc_card *card)
1431 struct mmc_host *host = card->host;
1432 unsigned int old_timing, old_signal_voltage;
1433 int err = -EINVAL;
1434 u8 val;
1436 old_signal_voltage = host->ios.signal_voltage;
1437 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1438 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1440 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1441 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1443 /* If fails try again during next card power cycle */
1444 if (err)
1445 return err;
1447 mmc_select_driver_type(card);
1450 * Set the bus width(4 or 8) with host's support and
1451 * switch to HS200 mode if bus width is set successfully.
1453 err = mmc_select_bus_width(card);
1454 if (err > 0) {
1455 val = EXT_CSD_TIMING_HS200 |
1456 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1457 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1458 EXT_CSD_HS_TIMING, val,
1459 card->ext_csd.generic_cmd6_time, 0,
1460 true, false, true);
1461 if (err)
1462 goto err;
1463 old_timing = host->ios.timing;
1464 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1467 * For HS200, CRC errors are not a reliable way to know the
1468 * switch failed. If there really is a problem, we would expect
1469 * tuning will fail and the result ends up the same.
1471 err = __mmc_switch_status(card, false);
1474 * mmc_select_timing() assumes timing has not changed if
1475 * it is a switch error.
1477 if (err == -EBADMSG)
1478 mmc_set_timing(host, old_timing);
1480 err:
1481 if (err) {
1482 /* fall back to the old signal voltage, if fails report error */
1483 if (mmc_set_signal_voltage(host, old_signal_voltage))
1484 err = -EIO;
1486 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1487 __func__, err);
1489 return err;
1493 * Activate High Speed, HS200 or HS400ES mode if supported.
1495 static int mmc_select_timing(struct mmc_card *card)
1497 int err = 0;
1499 if (!mmc_can_ext_csd(card))
1500 goto bus_speed;
1502 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1503 err = mmc_select_hs400es(card);
1504 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1505 err = mmc_select_hs200(card);
1506 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1507 err = mmc_select_hs(card);
1509 if (err && err != -EBADMSG)
1510 return err;
1512 bus_speed:
1514 * Set the bus speed to the selected bus timing.
1515 * If timing is not selected, backward compatible is the default.
1517 mmc_set_bus_speed(card);
1518 return 0;
1522 * Execute tuning sequence to seek the proper bus operating
1523 * conditions for HS200 and HS400, which sends CMD21 to the device.
1525 static int mmc_hs200_tuning(struct mmc_card *card)
1527 struct mmc_host *host = card->host;
1530 * Timing should be adjusted to the HS400 target
1531 * operation frequency for tuning process
1533 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1534 host->ios.bus_width == MMC_BUS_WIDTH_8)
1535 if (host->ops->prepare_hs400_tuning)
1536 host->ops->prepare_hs400_tuning(host, &host->ios);
1538 return mmc_execute_tuning(card);
1542 * Handle the detection and initialisation of a card.
1544 * In the case of a resume, "oldcard" will contain the card
1545 * we're trying to reinitialise.
1547 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1548 struct mmc_card *oldcard)
1550 struct mmc_card *card;
1551 int err;
1552 u32 cid[4];
1553 u32 rocr;
1555 WARN_ON(!host->claimed);
1557 /* Set correct bus mode for MMC before attempting init */
1558 if (!mmc_host_is_spi(host))
1559 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1562 * Since we're changing the OCR value, we seem to
1563 * need to tell some cards to go back to the idle
1564 * state. We wait 1ms to give cards time to
1565 * respond.
1566 * mmc_go_idle is needed for eMMC that are asleep
1568 mmc_go_idle(host);
1570 /* The extra bit indicates that we support high capacity */
1571 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1572 if (err)
1573 goto err;
1576 * For SPI, enable CRC as appropriate.
1578 if (mmc_host_is_spi(host)) {
1579 err = mmc_spi_set_crc(host, use_spi_crc);
1580 if (err)
1581 goto err;
1585 * Fetch CID from card.
1587 err = mmc_send_cid(host, cid);
1588 if (err)
1589 goto err;
1591 if (oldcard) {
1592 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1593 pr_debug("%s: Perhaps the card was replaced\n",
1594 mmc_hostname(host));
1595 err = -ENOENT;
1596 goto err;
1599 card = oldcard;
1600 } else {
1602 * Allocate card structure.
1604 card = mmc_alloc_card(host, &mmc_type);
1605 if (IS_ERR(card)) {
1606 err = PTR_ERR(card);
1607 goto err;
1610 card->ocr = ocr;
1611 card->type = MMC_TYPE_MMC;
1612 card->rca = 1;
1613 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1617 * Call the optional HC's init_card function to handle quirks.
1619 if (host->ops->init_card)
1620 host->ops->init_card(host, card);
1623 * For native busses: set card RCA and quit open drain mode.
1625 if (!mmc_host_is_spi(host)) {
1626 err = mmc_set_relative_addr(card);
1627 if (err)
1628 goto free_card;
1630 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1633 if (!oldcard) {
1635 * Fetch CSD from card.
1637 err = mmc_send_csd(card, card->raw_csd);
1638 if (err)
1639 goto free_card;
1641 err = mmc_decode_csd(card);
1642 if (err)
1643 goto free_card;
1644 err = mmc_decode_cid(card);
1645 if (err)
1646 goto free_card;
1650 * handling only for cards supporting DSR and hosts requesting
1651 * DSR configuration
1653 if (card->csd.dsr_imp && host->dsr_req)
1654 mmc_set_dsr(host);
1657 * Select card, as all following commands rely on that.
1659 if (!mmc_host_is_spi(host)) {
1660 err = mmc_select_card(card);
1661 if (err)
1662 goto free_card;
1665 if (!oldcard) {
1666 /* Read extended CSD. */
1667 err = mmc_read_ext_csd(card);
1668 if (err)
1669 goto free_card;
1672 * If doing byte addressing, check if required to do sector
1673 * addressing. Handle the case of <2GB cards needing sector
1674 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1675 * ocr register has bit 30 set for sector addressing.
1677 if (rocr & BIT(30))
1678 mmc_card_set_blockaddr(card);
1680 /* Erase size depends on CSD and Extended CSD */
1681 mmc_set_erase_size(card);
1684 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1685 if (card->ext_csd.rev >= 3) {
1686 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1687 EXT_CSD_ERASE_GROUP_DEF, 1,
1688 card->ext_csd.generic_cmd6_time);
1690 if (err && err != -EBADMSG)
1691 goto free_card;
1693 if (err) {
1694 err = 0;
1696 * Just disable enhanced area off & sz
1697 * will try to enable ERASE_GROUP_DEF
1698 * during next time reinit
1700 card->ext_csd.enhanced_area_offset = -EINVAL;
1701 card->ext_csd.enhanced_area_size = -EINVAL;
1702 } else {
1703 card->ext_csd.erase_group_def = 1;
1705 * enable ERASE_GRP_DEF successfully.
1706 * This will affect the erase size, so
1707 * here need to reset erase size
1709 mmc_set_erase_size(card);
1714 * Ensure eMMC user default partition is enabled
1716 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1717 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1718 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1719 card->ext_csd.part_config,
1720 card->ext_csd.part_time);
1721 if (err && err != -EBADMSG)
1722 goto free_card;
1726 * Enable power_off_notification byte in the ext_csd register
1728 if (card->ext_csd.rev >= 6) {
1729 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1730 EXT_CSD_POWER_OFF_NOTIFICATION,
1731 EXT_CSD_POWER_ON,
1732 card->ext_csd.generic_cmd6_time);
1733 if (err && err != -EBADMSG)
1734 goto free_card;
1737 * The err can be -EBADMSG or 0,
1738 * so check for success and update the flag
1740 if (!err)
1741 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1744 /* set erase_arg */
1745 if (mmc_can_discard(card))
1746 card->erase_arg = MMC_DISCARD_ARG;
1747 else if (mmc_can_trim(card))
1748 card->erase_arg = MMC_TRIM_ARG;
1749 else
1750 card->erase_arg = MMC_ERASE_ARG;
1753 * Select timing interface
1755 err = mmc_select_timing(card);
1756 if (err)
1757 goto free_card;
1759 if (mmc_card_hs200(card)) {
1760 err = mmc_hs200_tuning(card);
1761 if (err)
1762 goto free_card;
1764 err = mmc_select_hs400(card);
1765 if (err)
1766 goto free_card;
1767 } else if (!mmc_card_hs400es(card)) {
1768 /* Select the desired bus width optionally */
1769 err = mmc_select_bus_width(card);
1770 if (err > 0 && mmc_card_hs(card)) {
1771 err = mmc_select_hs_ddr(card);
1772 if (err)
1773 goto free_card;
1778 * Choose the power class with selected bus interface
1780 mmc_select_powerclass(card);
1783 * Enable HPI feature (if supported)
1785 if (card->ext_csd.hpi) {
1786 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1787 EXT_CSD_HPI_MGMT, 1,
1788 card->ext_csd.generic_cmd6_time);
1789 if (err && err != -EBADMSG)
1790 goto free_card;
1791 if (err) {
1792 pr_warn("%s: Enabling HPI failed\n",
1793 mmc_hostname(card->host));
1794 card->ext_csd.hpi_en = 0;
1795 err = 0;
1796 } else {
1797 card->ext_csd.hpi_en = 1;
1802 * If cache size is higher than 0, this indicates the existence of cache
1803 * and it can be turned on. Note that some eMMCs from Micron has been
1804 * reported to need ~800 ms timeout, while enabling the cache after
1805 * sudden power failure tests. Let's extend the timeout to a minimum of
1806 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1808 if (card->ext_csd.cache_size > 0) {
1809 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1811 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1812 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1813 EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1814 if (err && err != -EBADMSG)
1815 goto free_card;
1818 * Only if no error, cache is turned on successfully.
1820 if (err) {
1821 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1822 mmc_hostname(card->host), err);
1823 card->ext_csd.cache_ctrl = 0;
1824 err = 0;
1825 } else {
1826 card->ext_csd.cache_ctrl = 1;
1831 * Enable Command Queue if supported. Note that Packed Commands cannot
1832 * be used with Command Queue.
1834 card->ext_csd.cmdq_en = false;
1835 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1836 err = mmc_cmdq_enable(card);
1837 if (err && err != -EBADMSG)
1838 goto free_card;
1839 if (err) {
1840 pr_warn("%s: Enabling CMDQ failed\n",
1841 mmc_hostname(card->host));
1842 card->ext_csd.cmdq_support = false;
1843 card->ext_csd.cmdq_depth = 0;
1844 err = 0;
1848 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1849 * disabled for a time, so a flag is needed to indicate to re-enable the
1850 * Command Queue.
1852 card->reenable_cmdq = card->ext_csd.cmdq_en;
1854 if (card->ext_csd.cmdq_en && !host->cqe_enabled) {
1855 err = host->cqe_ops->cqe_enable(host, card);
1856 if (err) {
1857 pr_err("%s: Failed to enable CQE, error %d\n",
1858 mmc_hostname(host), err);
1859 } else {
1860 host->cqe_enabled = true;
1861 pr_info("%s: Command Queue Engine enabled\n",
1862 mmc_hostname(host));
1866 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1867 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1868 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1869 mmc_hostname(host));
1870 err = -EINVAL;
1871 goto free_card;
1874 if (!oldcard)
1875 host->card = card;
1877 return 0;
1879 free_card:
1880 if (!oldcard)
1881 mmc_remove_card(card);
1882 err:
1883 return err;
1886 static int mmc_can_sleep(struct mmc_card *card)
1888 return (card && card->ext_csd.rev >= 3);
1891 static int mmc_sleep(struct mmc_host *host)
1893 struct mmc_command cmd = {};
1894 struct mmc_card *card = host->card;
1895 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1896 int err;
1898 /* Re-tuning can't be done once the card is deselected */
1899 mmc_retune_hold(host);
1901 err = mmc_deselect_cards(host);
1902 if (err)
1903 goto out_release;
1905 cmd.opcode = MMC_SLEEP_AWAKE;
1906 cmd.arg = card->rca << 16;
1907 cmd.arg |= 1 << 15;
1910 * If the max_busy_timeout of the host is specified, validate it against
1911 * the sleep cmd timeout. A failure means we need to prevent the host
1912 * from doing hw busy detection, which is done by converting to a R1
1913 * response instead of a R1B.
1915 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1916 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1917 } else {
1918 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1919 cmd.busy_timeout = timeout_ms;
1922 err = mmc_wait_for_cmd(host, &cmd, 0);
1923 if (err)
1924 goto out_release;
1927 * If the host does not wait while the card signals busy, then we will
1928 * will have to wait the sleep/awake timeout. Note, we cannot use the
1929 * SEND_STATUS command to poll the status because that command (and most
1930 * others) is invalid while the card sleeps.
1932 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1933 mmc_delay(timeout_ms);
1935 out_release:
1936 mmc_retune_release(host);
1937 return err;
1940 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1942 return card &&
1943 mmc_card_mmc(card) &&
1944 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1947 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1949 unsigned int timeout = card->ext_csd.generic_cmd6_time;
1950 int err;
1952 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1953 if (notify_type == EXT_CSD_POWER_OFF_LONG)
1954 timeout = card->ext_csd.power_off_longtime;
1956 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1957 EXT_CSD_POWER_OFF_NOTIFICATION,
1958 notify_type, timeout, 0, true, false, false);
1959 if (err)
1960 pr_err("%s: Power Off Notification timed out, %u\n",
1961 mmc_hostname(card->host), timeout);
1963 /* Disable the power off notification after the switch operation. */
1964 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1966 return err;
1970 * Host is being removed. Free up the current card.
1972 static void mmc_remove(struct mmc_host *host)
1974 mmc_remove_card(host->card);
1975 host->card = NULL;
1979 * Card detection - card is alive.
1981 static int mmc_alive(struct mmc_host *host)
1983 return mmc_send_status(host->card, NULL);
1987 * Card detection callback from host.
1989 static void mmc_detect(struct mmc_host *host)
1991 int err;
1993 mmc_get_card(host->card, NULL);
1996 * Just check if our card has been removed.
1998 err = _mmc_detect_card_removed(host);
2000 mmc_put_card(host->card, NULL);
2002 if (err) {
2003 mmc_remove(host);
2005 mmc_claim_host(host);
2006 mmc_detach_bus(host);
2007 mmc_power_off(host);
2008 mmc_release_host(host);
2012 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2014 int err = 0;
2015 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2016 EXT_CSD_POWER_OFF_LONG;
2018 mmc_claim_host(host);
2020 if (mmc_card_suspended(host->card))
2021 goto out;
2023 err = mmc_flush_cache(host->card);
2024 if (err)
2025 goto out;
2027 if (mmc_can_poweroff_notify(host->card) &&
2028 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
2029 err = mmc_poweroff_notify(host->card, notify_type);
2030 else if (mmc_can_sleep(host->card))
2031 err = mmc_sleep(host);
2032 else if (!mmc_host_is_spi(host))
2033 err = mmc_deselect_cards(host);
2035 if (!err) {
2036 mmc_power_off(host);
2037 mmc_card_set_suspended(host->card);
2039 out:
2040 mmc_release_host(host);
2041 return err;
2045 * Suspend callback
2047 static int mmc_suspend(struct mmc_host *host)
2049 int err;
2051 err = _mmc_suspend(host, true);
2052 if (!err) {
2053 pm_runtime_disable(&host->card->dev);
2054 pm_runtime_set_suspended(&host->card->dev);
2057 return err;
2061 * This function tries to determine if the same card is still present
2062 * and, if so, restore all state to it.
2064 static int _mmc_resume(struct mmc_host *host)
2066 int err = 0;
2068 mmc_claim_host(host);
2070 if (!mmc_card_suspended(host->card))
2071 goto out;
2073 mmc_power_up(host, host->card->ocr);
2074 err = mmc_init_card(host, host->card->ocr, host->card);
2075 mmc_card_clr_suspended(host->card);
2077 out:
2078 mmc_release_host(host);
2079 return err;
2083 * Shutdown callback
2085 static int mmc_shutdown(struct mmc_host *host)
2087 int err = 0;
2090 * In a specific case for poweroff notify, we need to resume the card
2091 * before we can shutdown it properly.
2093 if (mmc_can_poweroff_notify(host->card) &&
2094 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2095 err = _mmc_resume(host);
2097 if (!err)
2098 err = _mmc_suspend(host, false);
2100 return err;
2104 * Callback for resume.
2106 static int mmc_resume(struct mmc_host *host)
2108 pm_runtime_enable(&host->card->dev);
2109 return 0;
2113 * Callback for runtime_suspend.
2115 static int mmc_runtime_suspend(struct mmc_host *host)
2117 int err;
2119 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2120 return 0;
2122 err = _mmc_suspend(host, true);
2123 if (err)
2124 pr_err("%s: error %d doing aggressive suspend\n",
2125 mmc_hostname(host), err);
2127 return err;
2131 * Callback for runtime_resume.
2133 static int mmc_runtime_resume(struct mmc_host *host)
2135 int err;
2137 err = _mmc_resume(host);
2138 if (err && err != -ENOMEDIUM)
2139 pr_err("%s: error %d doing runtime resume\n",
2140 mmc_hostname(host), err);
2142 return 0;
2145 static int mmc_can_reset(struct mmc_card *card)
2147 u8 rst_n_function;
2149 rst_n_function = card->ext_csd.rst_n_function;
2150 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2151 return 0;
2152 return 1;
2155 static int _mmc_hw_reset(struct mmc_host *host)
2157 struct mmc_card *card = host->card;
2160 * In the case of recovery, we can't expect flushing the cache to work
2161 * always, but we have a go and ignore errors.
2163 mmc_flush_cache(host->card);
2165 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2166 mmc_can_reset(card)) {
2167 /* If the card accept RST_n signal, send it. */
2168 mmc_set_clock(host, host->f_init);
2169 host->ops->hw_reset(host);
2170 /* Set initial state and call mmc_set_ios */
2171 mmc_set_initial_state(host);
2172 } else {
2173 /* Do a brute force power cycle */
2174 mmc_power_cycle(host, card->ocr);
2175 mmc_pwrseq_reset(host);
2177 return mmc_init_card(host, card->ocr, card);
2180 static const struct mmc_bus_ops mmc_ops = {
2181 .remove = mmc_remove,
2182 .detect = mmc_detect,
2183 .suspend = mmc_suspend,
2184 .resume = mmc_resume,
2185 .runtime_suspend = mmc_runtime_suspend,
2186 .runtime_resume = mmc_runtime_resume,
2187 .alive = mmc_alive,
2188 .shutdown = mmc_shutdown,
2189 .hw_reset = _mmc_hw_reset,
2193 * Starting point for MMC card init.
2195 int mmc_attach_mmc(struct mmc_host *host)
2197 int err;
2198 u32 ocr, rocr;
2200 WARN_ON(!host->claimed);
2202 /* Set correct bus mode for MMC before attempting attach */
2203 if (!mmc_host_is_spi(host))
2204 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2206 err = mmc_send_op_cond(host, 0, &ocr);
2207 if (err)
2208 return err;
2210 mmc_attach_bus(host, &mmc_ops);
2211 if (host->ocr_avail_mmc)
2212 host->ocr_avail = host->ocr_avail_mmc;
2215 * We need to get OCR a different way for SPI.
2217 if (mmc_host_is_spi(host)) {
2218 err = mmc_spi_read_ocr(host, 1, &ocr);
2219 if (err)
2220 goto err;
2223 rocr = mmc_select_voltage(host, ocr);
2226 * Can we support the voltage of the card?
2228 if (!rocr) {
2229 err = -EINVAL;
2230 goto err;
2234 * Detect and init the card.
2236 err = mmc_init_card(host, rocr, NULL);
2237 if (err)
2238 goto err;
2240 mmc_release_host(host);
2241 err = mmc_add_card(host->card);
2242 if (err)
2243 goto remove_card;
2245 mmc_claim_host(host);
2246 return 0;
2248 remove_card:
2249 mmc_remove_card(host->card);
2250 mmc_claim_host(host);
2251 host->card = NULL;
2252 err:
2253 mmc_detach_bus(host);
2255 pr_err("%s: error %d whilst initialising MMC card\n",
2256 mmc_hostname(host), err);
2258 return err;