1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Access SD/MMC cards through SPI master controllers
5 * (C) Copyright 2005, Intec Automation,
6 * Mike Lavender (mike@steroidmicros)
7 * (C) Copyright 2006-2007, David Brownell
8 * (C) Copyright 2007, Axis Communications,
9 * Hans-Peter Nilsson (hp@axis.com)
10 * (C) Copyright 2007, ATRON electronic GmbH,
11 * Jan Nikitenko <jan.nikitenko@gmail.com>
13 #include <linux/sched.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/crc7.h>
20 #include <linux/crc-itu-t.h>
21 #include <linux/scatterlist.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
25 #include <linux/mmc/slot-gpio.h>
27 #include <linux/spi/spi.h>
28 #include <linux/spi/mmc_spi.h>
30 #include <asm/unaligned.h>
35 * - For now, we won't try to interoperate with a real mmc/sd/sdio
36 * controller, although some of them do have hardware support for
37 * SPI protocol. The main reason for such configs would be mmc-ish
38 * cards like DataFlash, which don't support that "native" protocol.
40 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
41 * switch between driver stacks, and in any case if "native" mode
42 * is available, it will be faster and hence preferable.
44 * - MMC depends on a different chipselect management policy than the
45 * SPI interface currently supports for shared bus segments: it needs
46 * to issue multiple spi_message requests with the chipselect active,
47 * using the results of one message to decide the next one to issue.
49 * Pending updates to the programming interface, this driver expects
50 * that it not share the bus with other drivers (precluding conflicts).
52 * - We tell the controller to keep the chipselect active from the
53 * beginning of an mmc_host_ops.request until the end. So beware
54 * of SPI controller drivers that mis-handle the cs_change flag!
56 * However, many cards seem OK with chipselect flapping up/down
57 * during that time ... at least on unshared bus segments.
62 * Local protocol constants, internal to data block protocols.
65 /* Response tokens used to ack each block written: */
66 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
67 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
68 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
69 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
71 /* Read and write blocks start with these tokens and end with crc;
72 * on error, read tokens act like a subset of R2_SPI_* values.
74 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
75 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
76 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
78 #define MMC_SPI_BLOCKSIZE 512
81 /* These fixed timeouts come from the latest SD specs, which say to ignore
82 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the
83 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
84 * reads which takes nowhere near that long. Older cards may be able to use
85 * shorter timeouts ... but why bother?
87 #define r1b_timeout (HZ * 3)
89 /* One of the critical speed parameters is the amount of data which may
90 * be transferred in one command. If this value is too low, the SD card
91 * controller has to do multiple partial block writes (argggh!). With
92 * today (2008) SD cards there is little speed gain if we transfer more
93 * than 64 KBytes at a time. So use this value until there is any indication
94 * that we should do more here.
96 #define MMC_SPI_BLOCKSATONCE 128
98 /****************************************************************************/
101 * Local Data Structures
104 /* "scratch" is per-{command,block} data exchanged with the card */
111 struct mmc_spi_host
{
112 struct mmc_host
*mmc
;
113 struct spi_device
*spi
;
115 unsigned char power_mode
;
118 struct mmc_spi_platform_data
*pdata
;
120 /* for bulk data transfers */
121 struct spi_transfer token
, t
, crc
, early_status
;
122 struct spi_message m
;
124 /* for status readback */
125 struct spi_transfer status
;
126 struct spi_message readback
;
128 /* underlying DMA-aware controller, or null */
129 struct device
*dma_dev
;
131 /* buffer used for commands and for message "overhead" */
132 struct scratch
*data
;
135 /* Specs say to write ones most of the time, even when the card
136 * has no need to read its input data; and many cards won't care.
137 * This is our source of those ones.
144 /****************************************************************************/
147 * MMC-over-SPI protocol glue, used by the MMC stack interface
150 static inline int mmc_cs_off(struct mmc_spi_host
*host
)
152 /* chipselect will always be inactive after setup() */
153 return spi_setup(host
->spi
);
157 mmc_spi_readbytes(struct mmc_spi_host
*host
, unsigned len
)
161 if (len
> sizeof(*host
->data
)) {
166 host
->status
.len
= len
;
169 dma_sync_single_for_device(host
->dma_dev
,
170 host
->data_dma
, sizeof(*host
->data
),
173 status
= spi_sync_locked(host
->spi
, &host
->readback
);
176 dma_sync_single_for_cpu(host
->dma_dev
,
177 host
->data_dma
, sizeof(*host
->data
),
183 static int mmc_spi_skip(struct mmc_spi_host
*host
, unsigned long timeout
,
186 u8
*cp
= host
->data
->status
;
187 unsigned long start
= jiffies
;
193 status
= mmc_spi_readbytes(host
, n
);
197 for (i
= 0; i
< n
; i
++) {
202 if (time_is_before_jiffies(start
+ timeout
))
205 /* If we need long timeouts, we may release the CPU.
206 * We use jiffies here because we want to have a relation
207 * between elapsed time and the blocking of the scheduler.
209 if (time_is_before_jiffies(start
+ 1))
216 mmc_spi_wait_unbusy(struct mmc_spi_host
*host
, unsigned long timeout
)
218 return mmc_spi_skip(host
, timeout
, sizeof(host
->data
->status
), 0);
221 static int mmc_spi_readtoken(struct mmc_spi_host
*host
, unsigned long timeout
)
223 return mmc_spi_skip(host
, timeout
, 1, 0xff);
228 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
229 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
230 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
232 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
233 * newer cards R7 (IF_COND).
236 static char *maptype(struct mmc_command
*cmd
)
238 switch (mmc_spi_resp_type(cmd
)) {
239 case MMC_RSP_SPI_R1
: return "R1";
240 case MMC_RSP_SPI_R1B
: return "R1B";
241 case MMC_RSP_SPI_R2
: return "R2/R5";
242 case MMC_RSP_SPI_R3
: return "R3/R4/R7";
247 /* return zero, else negative errno after setting cmd->error */
248 static int mmc_spi_response_get(struct mmc_spi_host
*host
,
249 struct mmc_command
*cmd
, int cs_on
)
251 u8
*cp
= host
->data
->status
;
252 u8
*end
= cp
+ host
->t
.len
;
256 unsigned short rotator
;
260 snprintf(tag
, sizeof(tag
), " ... CMD%d response SPI_%s",
261 cmd
->opcode
, maptype(cmd
));
263 /* Except for data block reads, the whole response will already
264 * be stored in the scratch buffer. It's somewhere after the
265 * command and the first byte we read after it. We ignore that
266 * first byte. After STOP_TRANSMISSION command it may include
267 * two data bits, but otherwise it's all ones.
270 while (cp
< end
&& *cp
== 0xff)
273 /* Data block reads (R1 response types) may need more data... */
275 cp
= host
->data
->status
;
278 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
279 * status byte ... and we already scanned 2 bytes.
281 * REVISIT block read paths use nasty byte-at-a-time I/O
282 * so it can always DMA directly into the target buffer.
283 * It'd probably be better to memcpy() the first chunk and
284 * avoid extra i/o calls...
286 * Note we check for more than 8 bytes, because in practice,
287 * some SD cards are slow...
289 for (i
= 2; i
< 16; i
++) {
290 value
= mmc_spi_readbytes(host
, 1);
303 /* Houston, we have an ugly card with a bit-shifted response */
304 rotator
= *cp
++ << 8;
305 /* read the next byte */
307 value
= mmc_spi_readbytes(host
, 1);
310 cp
= host
->data
->status
;
314 while (rotator
& 0x8000) {
318 cmd
->resp
[0] = rotator
>> 8;
321 cmd
->resp
[0] = *cp
++;
325 /* Status byte: the entire seven-bit R1 response. */
326 if (cmd
->resp
[0] != 0) {
327 if ((R1_SPI_PARAMETER
| R1_SPI_ADDRESS
)
329 value
= -EFAULT
; /* Bad address */
330 else if (R1_SPI_ILLEGAL_COMMAND
& cmd
->resp
[0])
331 value
= -ENOSYS
; /* Function not implemented */
332 else if (R1_SPI_COM_CRC
& cmd
->resp
[0])
333 value
= -EILSEQ
; /* Illegal byte sequence */
334 else if ((R1_SPI_ERASE_SEQ
| R1_SPI_ERASE_RESET
)
336 value
= -EIO
; /* I/O error */
337 /* else R1_SPI_IDLE, "it's resetting" */
340 switch (mmc_spi_resp_type(cmd
)) {
342 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
343 * and less-common stuff like various erase operations.
345 case MMC_RSP_SPI_R1B
:
346 /* maybe we read all the busy tokens already */
347 while (cp
< end
&& *cp
== 0)
350 mmc_spi_wait_unbusy(host
, r1b_timeout
);
353 /* SPI R2 == R1 + second status byte; SEND_STATUS
354 * SPI R5 == R1 + data byte; IO_RW_DIRECT
357 /* read the next byte */
359 value
= mmc_spi_readbytes(host
, 1);
362 cp
= host
->data
->status
;
366 rotator
= leftover
<< 8;
367 rotator
|= *cp
<< bitshift
;
368 cmd
->resp
[0] |= (rotator
& 0xFF00);
370 cmd
->resp
[0] |= *cp
<< 8;
374 /* SPI R3, R4, or R7 == R1 + 4 bytes */
376 rotator
= leftover
<< 8;
378 for (i
= 0; i
< 4; i
++) {
380 /* read the next byte */
382 value
= mmc_spi_readbytes(host
, 1);
385 cp
= host
->data
->status
;
389 rotator
|= *cp
++ << bitshift
;
390 cmd
->resp
[1] |= (rotator
>> 8);
393 cmd
->resp
[1] |= *cp
++;
398 /* SPI R1 == just one status byte */
403 dev_dbg(&host
->spi
->dev
, "bad response type %04x\n",
404 mmc_spi_resp_type(cmd
));
411 dev_dbg(&host
->spi
->dev
, "%s: resp %04x %08x\n",
412 tag
, cmd
->resp
[0], cmd
->resp
[1]);
414 /* disable chipselect on errors and some success cases */
415 if (value
>= 0 && cs_on
)
424 /* Issue command and read its response.
425 * Returns zero on success, negative for error.
427 * On error, caller must cope with mmc core retry mechanism. That
428 * means immediate low-level resubmit, which affects the bus lock...
431 mmc_spi_command_send(struct mmc_spi_host
*host
,
432 struct mmc_request
*mrq
,
433 struct mmc_command
*cmd
, int cs_on
)
435 struct scratch
*data
= host
->data
;
436 u8
*cp
= data
->status
;
438 struct spi_transfer
*t
;
440 /* We can handle most commands (except block reads) in one full
441 * duplex I/O operation before either starting the next transfer
442 * (data block or command) or else deselecting the card.
444 * First, write 7 bytes:
445 * - an all-ones byte to ensure the card is ready
446 * - opcode byte (plus start and transmission bits)
447 * - four bytes of big-endian argument
448 * - crc7 (plus end bit) ... always computed, it's cheap
450 * We init the whole buffer to all-ones, which is what we need
451 * to write while we're reading (later) response data.
453 memset(cp
, 0xff, sizeof(data
->status
));
455 cp
[1] = 0x40 | cmd
->opcode
;
456 put_unaligned_be32(cmd
->arg
, cp
+ 2);
457 cp
[6] = crc7_be(0, cp
+ 1, 5) | 0x01;
460 /* Then, read up to 13 bytes (while writing all-ones):
461 * - N(CR) (== 1..8) bytes of all-ones
462 * - status byte (for all response types)
463 * - the rest of the response, either:
464 * + nothing, for R1 or R1B responses
465 * + second status byte, for R2 responses
466 * + four data bytes, for R3 and R7 responses
468 * Finally, read some more bytes ... in the nice cases we know in
469 * advance how many, and reading 1 more is always OK:
470 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
471 * - N(RC) (== 1..N) bytes of all-ones, before next command
472 * - N(WR) (== 1..N) bytes of all-ones, before data write
474 * So in those cases one full duplex I/O of at most 21 bytes will
475 * handle the whole command, leaving the card ready to receive a
476 * data block or new command. We do that whenever we can, shaving
477 * CPU and IRQ costs (especially when using DMA or FIFOs).
479 * There are two other cases, where it's not generally practical
480 * to rely on a single I/O:
482 * - R1B responses need at least N(EC) bytes of all-zeroes.
484 * In this case we can *try* to fit it into one I/O, then
485 * maybe read more data later.
487 * - Data block reads are more troublesome, since a variable
488 * number of padding bytes precede the token and data.
489 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
490 * + N(AC) (== 1..many) bytes of all-ones
492 * In this case we currently only have minimal speedups here:
493 * when N(CR) == 1 we can avoid I/O in response_get().
495 if (cs_on
&& (mrq
->data
->flags
& MMC_DATA_READ
)) {
496 cp
+= 2; /* min(N(CR)) + status */
499 cp
+= 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
500 if (cmd
->flags
& MMC_RSP_SPI_S2
) /* R2/R5 */
502 else if (cmd
->flags
& MMC_RSP_SPI_B4
) /* R3/R4/R7 */
504 else if (cmd
->flags
& MMC_RSP_BUSY
) /* R1B */
505 cp
= data
->status
+ sizeof(data
->status
);
506 /* else: R1 (most commands) */
509 dev_dbg(&host
->spi
->dev
, " mmc_spi: CMD%d, resp %s\n",
510 cmd
->opcode
, maptype(cmd
));
512 /* send command, leaving chipselect active */
513 spi_message_init(&host
->m
);
516 memset(t
, 0, sizeof(*t
));
517 t
->tx_buf
= t
->rx_buf
= data
->status
;
518 t
->tx_dma
= t
->rx_dma
= host
->data_dma
;
519 t
->len
= cp
- data
->status
;
521 spi_message_add_tail(t
, &host
->m
);
524 host
->m
.is_dma_mapped
= 1;
525 dma_sync_single_for_device(host
->dma_dev
,
526 host
->data_dma
, sizeof(*host
->data
),
529 status
= spi_sync_locked(host
->spi
, &host
->m
);
532 dma_sync_single_for_cpu(host
->dma_dev
,
533 host
->data_dma
, sizeof(*host
->data
),
536 dev_dbg(&host
->spi
->dev
, " ... write returned %d\n", status
);
541 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
542 return mmc_spi_response_get(host
, cmd
, cs_on
);
545 /* Build data message with up to four separate transfers. For TX, we
546 * start by writing the data token. And in most cases, we finish with
549 * We always provide TX data for data and CRC. The MMC/SD protocol
550 * requires us to write ones; but Linux defaults to writing zeroes;
551 * so we explicitly initialize it to all ones on RX paths.
553 * We also handle DMA mapping, so the underlying SPI controller does
554 * not need to (re)do it for each message.
557 mmc_spi_setup_data_message(
558 struct mmc_spi_host
*host
,
560 enum dma_data_direction direction
)
562 struct spi_transfer
*t
;
563 struct scratch
*scratch
= host
->data
;
564 dma_addr_t dma
= host
->data_dma
;
566 spi_message_init(&host
->m
);
568 host
->m
.is_dma_mapped
= 1;
570 /* for reads, readblock() skips 0xff bytes before finding
571 * the token; for writes, this transfer issues that token.
573 if (direction
== DMA_TO_DEVICE
) {
575 memset(t
, 0, sizeof(*t
));
578 scratch
->data_token
= SPI_TOKEN_MULTI_WRITE
;
580 scratch
->data_token
= SPI_TOKEN_SINGLE
;
581 t
->tx_buf
= &scratch
->data_token
;
583 t
->tx_dma
= dma
+ offsetof(struct scratch
, data_token
);
584 spi_message_add_tail(t
, &host
->m
);
587 /* Body of transfer is buffer, then CRC ...
588 * either TX-only, or RX with TX-ones.
591 memset(t
, 0, sizeof(*t
));
592 t
->tx_buf
= host
->ones
;
593 t
->tx_dma
= host
->ones_dma
;
594 /* length and actual buffer info are written later */
595 spi_message_add_tail(t
, &host
->m
);
598 memset(t
, 0, sizeof(*t
));
600 if (direction
== DMA_TO_DEVICE
) {
601 /* the actual CRC may get written later */
602 t
->tx_buf
= &scratch
->crc_val
;
604 t
->tx_dma
= dma
+ offsetof(struct scratch
, crc_val
);
606 t
->tx_buf
= host
->ones
;
607 t
->tx_dma
= host
->ones_dma
;
608 t
->rx_buf
= &scratch
->crc_val
;
610 t
->rx_dma
= dma
+ offsetof(struct scratch
, crc_val
);
612 spi_message_add_tail(t
, &host
->m
);
615 * A single block read is followed by N(EC) [0+] all-ones bytes
616 * before deselect ... don't bother.
618 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
619 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
620 * collect that single byte, so readblock() doesn't need to.
622 * For a write, the one-byte data response follows immediately, then
623 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
624 * Then single block reads may deselect, and multiblock ones issue
625 * the next token (next data block, or STOP_TRAN). We can try to
626 * minimize I/O ops by using a single read to collect end-of-busy.
628 if (multiple
|| direction
== DMA_TO_DEVICE
) {
629 t
= &host
->early_status
;
630 memset(t
, 0, sizeof(*t
));
631 t
->len
= (direction
== DMA_TO_DEVICE
) ? sizeof(scratch
->status
) : 1;
632 t
->tx_buf
= host
->ones
;
633 t
->tx_dma
= host
->ones_dma
;
634 t
->rx_buf
= scratch
->status
;
636 t
->rx_dma
= dma
+ offsetof(struct scratch
, status
);
638 spi_message_add_tail(t
, &host
->m
);
644 * - caller handled preceding N(WR) [1+] all-ones bytes
649 * - an all-ones byte ... card writes a data-response byte
650 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
652 * Return negative errno, else success.
655 mmc_spi_writeblock(struct mmc_spi_host
*host
, struct spi_transfer
*t
,
656 unsigned long timeout
)
658 struct spi_device
*spi
= host
->spi
;
660 struct scratch
*scratch
= host
->data
;
663 if (host
->mmc
->use_spi_crc
)
664 scratch
->crc_val
= cpu_to_be16(crc_itu_t(0, t
->tx_buf
, t
->len
));
666 dma_sync_single_for_device(host
->dma_dev
,
667 host
->data_dma
, sizeof(*scratch
),
670 status
= spi_sync_locked(spi
, &host
->m
);
673 dev_dbg(&spi
->dev
, "write error (%d)\n", status
);
678 dma_sync_single_for_cpu(host
->dma_dev
,
679 host
->data_dma
, sizeof(*scratch
),
683 * Get the transmission data-response reply. It must follow
684 * immediately after the data block we transferred. This reply
685 * doesn't necessarily tell whether the write operation succeeded;
686 * it just says if the transmission was ok and whether *earlier*
687 * writes succeeded; see the standard.
689 * In practice, there are (even modern SDHC-)cards which are late
690 * in sending the response, and miss the time frame by a few bits,
691 * so we have to cope with this situation and check the response
692 * bit-by-bit. Arggh!!!
694 pattern
= get_unaligned_be32(scratch
->status
);
696 /* First 3 bit of pattern are undefined */
697 pattern
|= 0xE0000000;
699 /* left-adjust to leading 0 bit */
700 while (pattern
& 0x80000000)
702 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
706 case SPI_RESPONSE_ACCEPTED
:
709 case SPI_RESPONSE_CRC_ERR
:
710 /* host shall then issue MMC_STOP_TRANSMISSION */
713 case SPI_RESPONSE_WRITE_ERR
:
714 /* host shall then issue MMC_STOP_TRANSMISSION,
715 * and should MMC_SEND_STATUS to sort it out
724 dev_dbg(&spi
->dev
, "write error %02x (%d)\n",
725 scratch
->status
[0], status
);
733 /* Return when not busy. If we didn't collect that status yet,
734 * we'll need some more I/O.
736 for (i
= 4; i
< sizeof(scratch
->status
); i
++) {
737 /* card is non-busy if the most recent bit is 1 */
738 if (scratch
->status
[i
] & 0x01)
741 return mmc_spi_wait_unbusy(host
, timeout
);
746 * - skip leading all-ones bytes ... either
747 * + N(AC) [1..f(clock,CSD)] usually, else
748 * + N(CX) [0..8] when reading CSD or CID
750 * + token ... if error token, no data or crc
754 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
755 * before dropping chipselect.
757 * For multiblock reads, caller either reads the next block or issues a
758 * STOP_TRANSMISSION command.
761 mmc_spi_readblock(struct mmc_spi_host
*host
, struct spi_transfer
*t
,
762 unsigned long timeout
)
764 struct spi_device
*spi
= host
->spi
;
766 struct scratch
*scratch
= host
->data
;
767 unsigned int bitshift
;
770 /* At least one SD card sends an all-zeroes byte when N(CX)
771 * applies, before the all-ones bytes ... just cope with that.
773 status
= mmc_spi_readbytes(host
, 1);
776 status
= scratch
->status
[0];
777 if (status
== 0xff || status
== 0)
778 status
= mmc_spi_readtoken(host
, timeout
);
781 dev_dbg(&spi
->dev
, "read error %02x (%d)\n", status
, status
);
785 /* The token may be bit-shifted...
786 * the first 0-bit precedes the data stream.
789 while (status
& 0x80) {
793 leftover
= status
<< 1;
796 dma_sync_single_for_device(host
->dma_dev
,
797 host
->data_dma
, sizeof(*scratch
),
799 dma_sync_single_for_device(host
->dma_dev
,
804 status
= spi_sync_locked(spi
, &host
->m
);
806 dev_dbg(&spi
->dev
, "read error %d\n", status
);
811 dma_sync_single_for_cpu(host
->dma_dev
,
812 host
->data_dma
, sizeof(*scratch
),
814 dma_sync_single_for_cpu(host
->dma_dev
,
820 /* Walk through the data and the crc and do
821 * all the magic to get byte-aligned data.
825 unsigned int bitright
= 8 - bitshift
;
827 for (len
= t
->len
; len
; len
--) {
829 *cp
++ = leftover
| (temp
>> bitshift
);
830 leftover
= temp
<< bitright
;
832 cp
= (u8
*) &scratch
->crc_val
;
834 *cp
++ = leftover
| (temp
>> bitshift
);
835 leftover
= temp
<< bitright
;
837 *cp
= leftover
| (temp
>> bitshift
);
840 if (host
->mmc
->use_spi_crc
) {
841 u16 crc
= crc_itu_t(0, t
->rx_buf
, t
->len
);
843 be16_to_cpus(&scratch
->crc_val
);
844 if (scratch
->crc_val
!= crc
) {
846 "read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
847 scratch
->crc_val
, crc
, t
->len
);
860 * An MMC/SD data stage includes one or more blocks, optional CRCs,
861 * and inline handshaking. That handhaking makes it unlike most
862 * other SPI protocol stacks.
865 mmc_spi_data_do(struct mmc_spi_host
*host
, struct mmc_command
*cmd
,
866 struct mmc_data
*data
, u32 blk_size
)
868 struct spi_device
*spi
= host
->spi
;
869 struct device
*dma_dev
= host
->dma_dev
;
870 struct spi_transfer
*t
;
871 enum dma_data_direction direction
;
872 struct scatterlist
*sg
;
874 int multiple
= (data
->blocks
> 1);
876 unsigned long timeout
;
878 direction
= mmc_get_dma_dir(data
);
879 mmc_spi_setup_data_message(host
, multiple
, direction
);
883 clock_rate
= t
->speed_hz
;
885 clock_rate
= spi
->max_speed_hz
;
887 timeout
= data
->timeout_ns
+
888 data
->timeout_clks
* 1000000 / clock_rate
;
889 timeout
= usecs_to_jiffies((unsigned int)(timeout
/ 1000)) + 1;
891 /* Handle scatterlist segments one at a time, with synch for
892 * each 512-byte block
894 for_each_sg(data
->sg
, sg
, data
->sg_len
, n_sg
) {
896 dma_addr_t dma_addr
= 0;
898 unsigned length
= sg
->length
;
899 enum dma_data_direction dir
= direction
;
901 /* set up dma mapping for controller drivers that might
902 * use DMA ... though they may fall back to PIO
905 /* never invalidate whole *shared* pages ... */
906 if ((sg
->offset
!= 0 || length
!= PAGE_SIZE
)
907 && dir
== DMA_FROM_DEVICE
)
908 dir
= DMA_BIDIRECTIONAL
;
910 dma_addr
= dma_map_page(dma_dev
, sg_page(sg
), 0,
912 if (dma_mapping_error(dma_dev
, dma_addr
)) {
913 data
->error
= -EFAULT
;
916 if (direction
== DMA_TO_DEVICE
)
917 t
->tx_dma
= dma_addr
+ sg
->offset
;
919 t
->rx_dma
= dma_addr
+ sg
->offset
;
922 /* allow pio too; we don't allow highmem */
923 kmap_addr
= kmap(sg_page(sg
));
924 if (direction
== DMA_TO_DEVICE
)
925 t
->tx_buf
= kmap_addr
+ sg
->offset
;
927 t
->rx_buf
= kmap_addr
+ sg
->offset
;
929 /* transfer each block, and update request status */
931 t
->len
= min(length
, blk_size
);
933 dev_dbg(&host
->spi
->dev
,
934 " mmc_spi: %s block, %d bytes\n",
935 (direction
== DMA_TO_DEVICE
) ? "write" : "read",
938 if (direction
== DMA_TO_DEVICE
)
939 status
= mmc_spi_writeblock(host
, t
, timeout
);
941 status
= mmc_spi_readblock(host
, t
, timeout
);
945 data
->bytes_xfered
+= t
->len
;
952 /* discard mappings */
953 if (direction
== DMA_FROM_DEVICE
)
954 flush_kernel_dcache_page(sg_page(sg
));
957 dma_unmap_page(dma_dev
, dma_addr
, PAGE_SIZE
, dir
);
960 data
->error
= status
;
961 dev_dbg(&spi
->dev
, "%s status %d\n",
962 (direction
== DMA_TO_DEVICE
) ? "write" : "read",
968 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
969 * can be issued before multiblock writes. Unlike its more widely
970 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
971 * that can affect the STOP_TRAN logic. Complete (and current)
972 * MMC specs should sort that out before Linux starts using CMD23.
974 if (direction
== DMA_TO_DEVICE
&& multiple
) {
975 struct scratch
*scratch
= host
->data
;
977 const unsigned statlen
= sizeof(scratch
->status
);
979 dev_dbg(&spi
->dev
, " mmc_spi: STOP_TRAN\n");
981 /* Tweak the per-block message we set up earlier by morphing
982 * it to hold single buffer with the token followed by some
983 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
984 * "not busy any longer" status, and leave chip selected.
986 INIT_LIST_HEAD(&host
->m
.transfers
);
987 list_add(&host
->early_status
.transfer_list
,
990 memset(scratch
->status
, 0xff, statlen
);
991 scratch
->status
[0] = SPI_TOKEN_STOP_TRAN
;
993 host
->early_status
.tx_buf
= host
->early_status
.rx_buf
;
994 host
->early_status
.tx_dma
= host
->early_status
.rx_dma
;
995 host
->early_status
.len
= statlen
;
998 dma_sync_single_for_device(host
->dma_dev
,
999 host
->data_dma
, sizeof(*scratch
),
1002 tmp
= spi_sync_locked(spi
, &host
->m
);
1005 dma_sync_single_for_cpu(host
->dma_dev
,
1006 host
->data_dma
, sizeof(*scratch
),
1015 /* Ideally we collected "not busy" status with one I/O,
1016 * avoiding wasteful byte-at-a-time scanning... but more
1017 * I/O is often needed.
1019 for (tmp
= 2; tmp
< statlen
; tmp
++) {
1020 if (scratch
->status
[tmp
] != 0)
1023 tmp
= mmc_spi_wait_unbusy(host
, timeout
);
1024 if (tmp
< 0 && !data
->error
)
1029 /****************************************************************************/
1032 * MMC driver implementation -- the interface to the MMC stack
1035 static void mmc_spi_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1037 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1038 int status
= -EINVAL
;
1040 struct mmc_command stop
;
1043 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1045 struct mmc_command
*cmd
;
1049 if (!mmc_spi_resp_type(cmd
)) {
1050 dev_dbg(&host
->spi
->dev
, "bogus command\n");
1051 cmd
->error
= -EINVAL
;
1056 if (cmd
&& !mmc_spi_resp_type(cmd
)) {
1057 dev_dbg(&host
->spi
->dev
, "bogus STOP command\n");
1058 cmd
->error
= -EINVAL
;
1064 mmc_request_done(host
->mmc
, mrq
);
1070 /* request exclusive bus access */
1071 spi_bus_lock(host
->spi
->master
);
1074 /* issue command; then optionally data and stop */
1075 status
= mmc_spi_command_send(host
, mrq
, mrq
->cmd
, mrq
->data
!= NULL
);
1076 if (status
== 0 && mrq
->data
) {
1077 mmc_spi_data_do(host
, mrq
->cmd
, mrq
->data
, mrq
->data
->blksz
);
1080 * The SPI bus is not always reliable for large data transfers.
1081 * If an occasional crc error is reported by the SD device with
1082 * data read/write over SPI, it may be recovered by repeating
1083 * the last SD command again. The retry count is set to 5 to
1084 * ensure the driver passes stress tests.
1086 if (mrq
->data
->error
== -EILSEQ
&& crc_retry
) {
1087 stop
.opcode
= MMC_STOP_TRANSMISSION
;
1089 stop
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
1090 status
= mmc_spi_command_send(host
, mrq
, &stop
, 0);
1092 mrq
->data
->error
= 0;
1097 status
= mmc_spi_command_send(host
, mrq
, mrq
->stop
, 0);
1102 /* release the bus */
1103 spi_bus_unlock(host
->spi
->master
);
1105 mmc_request_done(host
->mmc
, mrq
);
1108 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1110 * NOTE that here we can't know that the card has just been powered up;
1111 * not all MMC/SD sockets support power switching.
1113 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1114 * this doesn't seem to do the right thing at all...
1116 static void mmc_spi_initsequence(struct mmc_spi_host
*host
)
1118 /* Try to be very sure any previous command has completed;
1119 * wait till not-busy, skip debris from any old commands.
1121 mmc_spi_wait_unbusy(host
, r1b_timeout
);
1122 mmc_spi_readbytes(host
, 10);
1125 * Do a burst with chipselect active-high. We need to do this to
1126 * meet the requirement of 74 clock cycles with both chipselect
1127 * and CMD (MOSI) high before CMD0 ... after the card has been
1128 * powered up to Vdd(min), and so is ready to take commands.
1130 * Some cards are particularly needy of this (e.g. Viking "SD256")
1131 * while most others don't seem to care.
1133 * Note that this is one of the places MMC/SD plays games with the
1134 * SPI protocol. Another is that when chipselect is released while
1135 * the card returns BUSY status, the clock must issue several cycles
1136 * with chipselect high before the card will stop driving its output.
1138 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1139 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1140 * inverted by gpiolib, so if we want to ascertain to drive it high
1141 * we should toggle the default with an XOR as we do here.
1143 host
->spi
->mode
^= SPI_CS_HIGH
;
1144 if (spi_setup(host
->spi
) != 0) {
1145 /* Just warn; most cards work without it. */
1146 dev_warn(&host
->spi
->dev
,
1147 "can't change chip-select polarity\n");
1148 host
->spi
->mode
^= SPI_CS_HIGH
;
1150 mmc_spi_readbytes(host
, 18);
1152 host
->spi
->mode
^= SPI_CS_HIGH
;
1153 if (spi_setup(host
->spi
) != 0) {
1154 /* Wot, we can't get the same setup we had before? */
1155 dev_err(&host
->spi
->dev
,
1156 "can't restore chip-select polarity\n");
1161 static char *mmc_powerstring(u8 power_mode
)
1163 switch (power_mode
) {
1164 case MMC_POWER_OFF
: return "off";
1165 case MMC_POWER_UP
: return "up";
1166 case MMC_POWER_ON
: return "on";
1171 static void mmc_spi_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1173 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1175 if (host
->power_mode
!= ios
->power_mode
) {
1178 canpower
= host
->pdata
&& host
->pdata
->setpower
;
1180 dev_dbg(&host
->spi
->dev
, "mmc_spi: power %s (%d)%s\n",
1181 mmc_powerstring(ios
->power_mode
),
1183 canpower
? ", can switch" : "");
1185 /* switch power on/off if possible, accounting for
1186 * max 250msec powerup time if needed.
1189 switch (ios
->power_mode
) {
1192 host
->pdata
->setpower(&host
->spi
->dev
,
1194 if (ios
->power_mode
== MMC_POWER_UP
)
1195 msleep(host
->powerup_msecs
);
1199 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1200 if (ios
->power_mode
== MMC_POWER_ON
)
1201 mmc_spi_initsequence(host
);
1203 /* If powering down, ground all card inputs to avoid power
1204 * delivery from data lines! On a shared SPI bus, this
1205 * will probably be temporary; 6.4.2 of the simplified SD
1206 * spec says this must last at least 1msec.
1208 * - Clock low means CPOL 0, e.g. mode 0
1209 * - MOSI low comes from writing zero
1210 * - Chipselect is usually active low...
1212 if (canpower
&& ios
->power_mode
== MMC_POWER_OFF
) {
1216 host
->spi
->mode
&= ~(SPI_CPOL
|SPI_CPHA
);
1217 mres
= spi_setup(host
->spi
);
1219 dev_dbg(&host
->spi
->dev
,
1220 "switch to SPI mode 0 failed\n");
1222 if (spi_write(host
->spi
, &nullbyte
, 1) < 0)
1223 dev_dbg(&host
->spi
->dev
,
1224 "put spi signals to low failed\n");
1227 * Now clock should be low due to spi mode 0;
1228 * MOSI should be low because of written 0x00;
1229 * chipselect should be low (it is active low)
1230 * power supply is off, so now MMC is off too!
1232 * FIXME no, chipselect can be high since the
1233 * device is inactive and SPI_CS_HIGH is clear...
1237 host
->spi
->mode
|= (SPI_CPOL
|SPI_CPHA
);
1238 mres
= spi_setup(host
->spi
);
1240 dev_dbg(&host
->spi
->dev
,
1241 "switch back to SPI mode 3 failed\n");
1245 host
->power_mode
= ios
->power_mode
;
1248 if (host
->spi
->max_speed_hz
!= ios
->clock
&& ios
->clock
!= 0) {
1251 host
->spi
->max_speed_hz
= ios
->clock
;
1252 status
= spi_setup(host
->spi
);
1253 dev_dbg(&host
->spi
->dev
,
1254 "mmc_spi: clock to %d Hz, %d\n",
1255 host
->spi
->max_speed_hz
, status
);
1259 static const struct mmc_host_ops mmc_spi_ops
= {
1260 .request
= mmc_spi_request
,
1261 .set_ios
= mmc_spi_set_ios
,
1262 .get_ro
= mmc_gpio_get_ro
,
1263 .get_cd
= mmc_gpio_get_cd
,
1267 /****************************************************************************/
1270 * SPI driver implementation
1274 mmc_spi_detect_irq(int irq
, void *mmc
)
1276 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1277 u16 delay_msec
= max(host
->pdata
->detect_delay
, (u16
)100);
1279 mmc_detect_change(mmc
, msecs_to_jiffies(delay_msec
));
1283 static int mmc_spi_probe(struct spi_device
*spi
)
1286 struct mmc_host
*mmc
;
1287 struct mmc_spi_host
*host
;
1289 bool has_ro
= false;
1291 /* We rely on full duplex transfers, mostly to reduce
1292 * per-transfer overheads (by making fewer transfers).
1294 if (spi
->master
->flags
& SPI_MASTER_HALF_DUPLEX
)
1297 /* MMC and SD specs only seem to care that sampling is on the
1298 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1299 * should be legit. We'll use mode 0 since the steady state is 0,
1300 * which is appropriate for hotplugging, unless the platform data
1301 * specify mode 3 (if hardware is not compatible to mode 0).
1303 if (spi
->mode
!= SPI_MODE_3
)
1304 spi
->mode
= SPI_MODE_0
;
1305 spi
->bits_per_word
= 8;
1307 status
= spi_setup(spi
);
1309 dev_dbg(&spi
->dev
, "needs SPI mode %02x, %d KHz; %d\n",
1310 spi
->mode
, spi
->max_speed_hz
/ 1000,
1315 /* We need a supply of ones to transmit. This is the only time
1316 * the CPU touches these, so cache coherency isn't a concern.
1318 * NOTE if many systems use more than one MMC-over-SPI connector
1319 * it'd save some memory to share this. That's evidently rare.
1322 ones
= kmalloc(MMC_SPI_BLOCKSIZE
, GFP_KERNEL
);
1325 memset(ones
, 0xff, MMC_SPI_BLOCKSIZE
);
1327 mmc
= mmc_alloc_host(sizeof(*host
), &spi
->dev
);
1331 mmc
->ops
= &mmc_spi_ops
;
1332 mmc
->max_blk_size
= MMC_SPI_BLOCKSIZE
;
1333 mmc
->max_segs
= MMC_SPI_BLOCKSATONCE
;
1334 mmc
->max_req_size
= MMC_SPI_BLOCKSATONCE
* MMC_SPI_BLOCKSIZE
;
1335 mmc
->max_blk_count
= MMC_SPI_BLOCKSATONCE
;
1337 mmc
->caps
= MMC_CAP_SPI
;
1339 /* SPI doesn't need the lowspeed device identification thing for
1340 * MMC or SD cards, since it never comes up in open drain mode.
1341 * That's good; some SPI masters can't handle very low speeds!
1343 * However, low speed SDIO cards need not handle over 400 KHz;
1344 * that's the only reason not to use a few MHz for f_min (until
1345 * the upper layer reads the target frequency from the CSD).
1347 mmc
->f_min
= 400000;
1348 mmc
->f_max
= spi
->max_speed_hz
;
1350 host
= mmc_priv(mmc
);
1356 /* Platform data is used to hook up things like card sensing
1357 * and power switching gpios.
1359 host
->pdata
= mmc_spi_get_pdata(spi
);
1361 mmc
->ocr_avail
= host
->pdata
->ocr_mask
;
1362 if (!mmc
->ocr_avail
) {
1363 dev_warn(&spi
->dev
, "ASSUMING 3.2-3.4 V slot power\n");
1364 mmc
->ocr_avail
= MMC_VDD_32_33
|MMC_VDD_33_34
;
1366 if (host
->pdata
&& host
->pdata
->setpower
) {
1367 host
->powerup_msecs
= host
->pdata
->powerup_msecs
;
1368 if (!host
->powerup_msecs
|| host
->powerup_msecs
> 250)
1369 host
->powerup_msecs
= 250;
1372 dev_set_drvdata(&spi
->dev
, mmc
);
1374 /* preallocate dma buffers */
1375 host
->data
= kmalloc(sizeof(*host
->data
), GFP_KERNEL
);
1379 if (spi
->master
->dev
.parent
->dma_mask
) {
1380 struct device
*dev
= spi
->master
->dev
.parent
;
1382 host
->dma_dev
= dev
;
1383 host
->ones_dma
= dma_map_single(dev
, ones
,
1384 MMC_SPI_BLOCKSIZE
, DMA_TO_DEVICE
);
1385 if (dma_mapping_error(dev
, host
->ones_dma
))
1387 host
->data_dma
= dma_map_single(dev
, host
->data
,
1388 sizeof(*host
->data
), DMA_BIDIRECTIONAL
);
1389 if (dma_mapping_error(dev
, host
->data_dma
))
1392 dma_sync_single_for_cpu(host
->dma_dev
,
1393 host
->data_dma
, sizeof(*host
->data
),
1397 /* setup message for status/busy readback */
1398 spi_message_init(&host
->readback
);
1399 host
->readback
.is_dma_mapped
= (host
->dma_dev
!= NULL
);
1401 spi_message_add_tail(&host
->status
, &host
->readback
);
1402 host
->status
.tx_buf
= host
->ones
;
1403 host
->status
.tx_dma
= host
->ones_dma
;
1404 host
->status
.rx_buf
= &host
->data
->status
;
1405 host
->status
.rx_dma
= host
->data_dma
+ offsetof(struct scratch
, status
);
1406 host
->status
.cs_change
= 1;
1408 /* register card detect irq */
1409 if (host
->pdata
&& host
->pdata
->init
) {
1410 status
= host
->pdata
->init(&spi
->dev
, mmc_spi_detect_irq
, mmc
);
1412 goto fail_glue_init
;
1415 /* pass platform capabilities, if any */
1417 mmc
->caps
|= host
->pdata
->caps
;
1418 mmc
->caps2
|= host
->pdata
->caps2
;
1421 status
= mmc_add_host(mmc
);
1426 * Index 0 is card detect
1427 * Old boardfiles were specifying 1 ms as debounce
1429 status
= mmc_gpiod_request_cd(mmc
, NULL
, 0, false, 1000);
1430 if (status
== -EPROBE_DEFER
)
1434 * The platform has a CD GPIO signal that may support
1435 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1436 * if polling is needed or not.
1438 mmc
->caps
&= ~MMC_CAP_NEEDS_POLL
;
1439 mmc_gpiod_request_cd_irq(mmc
);
1441 mmc_detect_change(mmc
, 0);
1443 /* Index 1 is write protect/read only */
1444 status
= mmc_gpiod_request_ro(mmc
, NULL
, 1, 0);
1445 if (status
== -EPROBE_DEFER
)
1450 dev_info(&spi
->dev
, "SD/MMC host %s%s%s%s%s\n",
1451 dev_name(&mmc
->class_dev
),
1452 host
->dma_dev
? "" : ", no DMA",
1453 has_ro
? "" : ", no WP",
1454 (host
->pdata
&& host
->pdata
->setpower
)
1455 ? "" : ", no poweroff",
1456 (mmc
->caps
& MMC_CAP_NEEDS_POLL
)
1457 ? ", cd polling" : "");
1461 mmc_remove_host(mmc
);
1464 dma_unmap_single(host
->dma_dev
, host
->data_dma
,
1465 sizeof(*host
->data
), DMA_BIDIRECTIONAL
);
1468 dma_unmap_single(host
->dma_dev
, host
->ones_dma
,
1469 MMC_SPI_BLOCKSIZE
, DMA_TO_DEVICE
);
1475 mmc_spi_put_pdata(spi
);
1483 static int mmc_spi_remove(struct spi_device
*spi
)
1485 struct mmc_host
*mmc
= dev_get_drvdata(&spi
->dev
);
1486 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1488 /* prevent new mmc_detect_change() calls */
1489 if (host
->pdata
&& host
->pdata
->exit
)
1490 host
->pdata
->exit(&spi
->dev
, mmc
);
1492 mmc_remove_host(mmc
);
1494 if (host
->dma_dev
) {
1495 dma_unmap_single(host
->dma_dev
, host
->ones_dma
,
1496 MMC_SPI_BLOCKSIZE
, DMA_TO_DEVICE
);
1497 dma_unmap_single(host
->dma_dev
, host
->data_dma
,
1498 sizeof(*host
->data
), DMA_BIDIRECTIONAL
);
1504 spi
->max_speed_hz
= mmc
->f_max
;
1506 mmc_spi_put_pdata(spi
);
1510 static const struct of_device_id mmc_spi_of_match_table
[] = {
1511 { .compatible
= "mmc-spi-slot", },
1514 MODULE_DEVICE_TABLE(of
, mmc_spi_of_match_table
);
1516 static struct spi_driver mmc_spi_driver
= {
1519 .of_match_table
= mmc_spi_of_match_table
,
1521 .probe
= mmc_spi_probe
,
1522 .remove
= mmc_spi_remove
,
1525 module_spi_driver(mmc_spi_driver
);
1527 MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1528 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1529 MODULE_LICENSE("GPL");
1530 MODULE_ALIAS("spi:mmc_spi");