treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / mmc / host / mmci.c
blobe9ffce8d41ea072bf6a2c792353401fc364fd0e2
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
5 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6 * Copyright (C) 2010 ST-Ericsson SA
7 */
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
13 #include <linux/io.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/slot-gpio.h>
26 #include <linux/amba/bus.h>
27 #include <linux/clk.h>
28 #include <linux/scatterlist.h>
29 #include <linux/of.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/dmaengine.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/amba/mmci.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/types.h>
36 #include <linux/pinctrl/consumer.h>
37 #include <linux/reset.h>
39 #include <asm/div64.h>
40 #include <asm/io.h>
42 #include "mmci.h"
44 #define DRIVER_NAME "mmci-pl18x"
46 static void mmci_variant_init(struct mmci_host *host);
47 static void ux500_variant_init(struct mmci_host *host);
48 static void ux500v2_variant_init(struct mmci_host *host);
50 static unsigned int fmax = 515633;
52 static struct variant_data variant_arm = {
53 .fifosize = 16 * 4,
54 .fifohalfsize = 8 * 4,
55 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
56 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
57 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
58 .cmdreg_srsp = MCI_CPSM_RESPONSE,
59 .datalength_bits = 16,
60 .datactrl_blocksz = 11,
61 .pwrreg_powerup = MCI_PWR_UP,
62 .f_max = 100000000,
63 .reversed_irq_handling = true,
64 .mmcimask1 = true,
65 .irq_pio_mask = MCI_IRQ_PIO_MASK,
66 .start_err = MCI_STARTBITERR,
67 .opendrain = MCI_ROD,
68 .init = mmci_variant_init,
71 static struct variant_data variant_arm_extended_fifo = {
72 .fifosize = 128 * 4,
73 .fifohalfsize = 64 * 4,
74 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
75 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
76 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
77 .cmdreg_srsp = MCI_CPSM_RESPONSE,
78 .datalength_bits = 16,
79 .datactrl_blocksz = 11,
80 .pwrreg_powerup = MCI_PWR_UP,
81 .f_max = 100000000,
82 .mmcimask1 = true,
83 .irq_pio_mask = MCI_IRQ_PIO_MASK,
84 .start_err = MCI_STARTBITERR,
85 .opendrain = MCI_ROD,
86 .init = mmci_variant_init,
89 static struct variant_data variant_arm_extended_fifo_hwfc = {
90 .fifosize = 128 * 4,
91 .fifohalfsize = 64 * 4,
92 .clkreg_enable = MCI_ARM_HWFCEN,
93 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
94 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
95 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
96 .cmdreg_srsp = MCI_CPSM_RESPONSE,
97 .datalength_bits = 16,
98 .datactrl_blocksz = 11,
99 .pwrreg_powerup = MCI_PWR_UP,
100 .f_max = 100000000,
101 .mmcimask1 = true,
102 .irq_pio_mask = MCI_IRQ_PIO_MASK,
103 .start_err = MCI_STARTBITERR,
104 .opendrain = MCI_ROD,
105 .init = mmci_variant_init,
108 static struct variant_data variant_u300 = {
109 .fifosize = 16 * 4,
110 .fifohalfsize = 8 * 4,
111 .clkreg_enable = MCI_ST_U300_HWFCEN,
112 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
113 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
114 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
115 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
116 .cmdreg_srsp = MCI_CPSM_RESPONSE,
117 .datalength_bits = 16,
118 .datactrl_blocksz = 11,
119 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
120 .st_sdio = true,
121 .pwrreg_powerup = MCI_PWR_ON,
122 .f_max = 100000000,
123 .signal_direction = true,
124 .pwrreg_clkgate = true,
125 .pwrreg_nopower = true,
126 .mmcimask1 = true,
127 .irq_pio_mask = MCI_IRQ_PIO_MASK,
128 .start_err = MCI_STARTBITERR,
129 .opendrain = MCI_OD,
130 .init = mmci_variant_init,
133 static struct variant_data variant_nomadik = {
134 .fifosize = 16 * 4,
135 .fifohalfsize = 8 * 4,
136 .clkreg = MCI_CLK_ENABLE,
137 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
138 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
139 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
140 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
141 .cmdreg_srsp = MCI_CPSM_RESPONSE,
142 .datalength_bits = 24,
143 .datactrl_blocksz = 11,
144 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
145 .st_sdio = true,
146 .st_clkdiv = true,
147 .pwrreg_powerup = MCI_PWR_ON,
148 .f_max = 100000000,
149 .signal_direction = true,
150 .pwrreg_clkgate = true,
151 .pwrreg_nopower = true,
152 .mmcimask1 = true,
153 .irq_pio_mask = MCI_IRQ_PIO_MASK,
154 .start_err = MCI_STARTBITERR,
155 .opendrain = MCI_OD,
156 .init = mmci_variant_init,
159 static struct variant_data variant_ux500 = {
160 .fifosize = 30 * 4,
161 .fifohalfsize = 8 * 4,
162 .clkreg = MCI_CLK_ENABLE,
163 .clkreg_enable = MCI_ST_UX500_HWFCEN,
164 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
165 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
166 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
167 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
168 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
169 .cmdreg_srsp = MCI_CPSM_RESPONSE,
170 .datalength_bits = 24,
171 .datactrl_blocksz = 11,
172 .datactrl_any_blocksz = true,
173 .dma_power_of_2 = true,
174 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
175 .st_sdio = true,
176 .st_clkdiv = true,
177 .pwrreg_powerup = MCI_PWR_ON,
178 .f_max = 100000000,
179 .signal_direction = true,
180 .pwrreg_clkgate = true,
181 .busy_detect = true,
182 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
183 .busy_detect_flag = MCI_ST_CARDBUSY,
184 .busy_detect_mask = MCI_ST_BUSYENDMASK,
185 .pwrreg_nopower = true,
186 .mmcimask1 = true,
187 .irq_pio_mask = MCI_IRQ_PIO_MASK,
188 .start_err = MCI_STARTBITERR,
189 .opendrain = MCI_OD,
190 .init = ux500_variant_init,
193 static struct variant_data variant_ux500v2 = {
194 .fifosize = 30 * 4,
195 .fifohalfsize = 8 * 4,
196 .clkreg = MCI_CLK_ENABLE,
197 .clkreg_enable = MCI_ST_UX500_HWFCEN,
198 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
199 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
200 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
201 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
202 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
203 .cmdreg_srsp = MCI_CPSM_RESPONSE,
204 .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE,
205 .datalength_bits = 24,
206 .datactrl_blocksz = 11,
207 .datactrl_any_blocksz = true,
208 .dma_power_of_2 = true,
209 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
210 .st_sdio = true,
211 .st_clkdiv = true,
212 .pwrreg_powerup = MCI_PWR_ON,
213 .f_max = 100000000,
214 .signal_direction = true,
215 .pwrreg_clkgate = true,
216 .busy_detect = true,
217 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
218 .busy_detect_flag = MCI_ST_CARDBUSY,
219 .busy_detect_mask = MCI_ST_BUSYENDMASK,
220 .pwrreg_nopower = true,
221 .mmcimask1 = true,
222 .irq_pio_mask = MCI_IRQ_PIO_MASK,
223 .start_err = MCI_STARTBITERR,
224 .opendrain = MCI_OD,
225 .init = ux500v2_variant_init,
228 static struct variant_data variant_stm32 = {
229 .fifosize = 32 * 4,
230 .fifohalfsize = 8 * 4,
231 .clkreg = MCI_CLK_ENABLE,
232 .clkreg_enable = MCI_ST_UX500_HWFCEN,
233 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
234 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
235 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
236 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
237 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
238 .cmdreg_srsp = MCI_CPSM_RESPONSE,
239 .irq_pio_mask = MCI_IRQ_PIO_MASK,
240 .datalength_bits = 24,
241 .datactrl_blocksz = 11,
242 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
243 .st_sdio = true,
244 .st_clkdiv = true,
245 .pwrreg_powerup = MCI_PWR_ON,
246 .f_max = 48000000,
247 .pwrreg_clkgate = true,
248 .pwrreg_nopower = true,
249 .init = mmci_variant_init,
252 static struct variant_data variant_stm32_sdmmc = {
253 .fifosize = 16 * 4,
254 .fifohalfsize = 8 * 4,
255 .f_max = 208000000,
256 .stm32_clkdiv = true,
257 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE,
258 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC,
259 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC,
260 .cmdreg_srsp = MCI_CPSM_STM32_SRSP,
261 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP,
262 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS,
263 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK,
264 .datactrl_first = true,
265 .datacnt_useless = true,
266 .datalength_bits = 25,
267 .datactrl_blocksz = 14,
268 .datactrl_any_blocksz = true,
269 .stm32_idmabsize_mask = GENMASK(12, 5),
270 .busy_timeout = true,
271 .busy_detect = true,
272 .busy_detect_flag = MCI_STM32_BUSYD0,
273 .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK,
274 .init = sdmmc_variant_init,
277 static struct variant_data variant_qcom = {
278 .fifosize = 16 * 4,
279 .fifohalfsize = 8 * 4,
280 .clkreg = MCI_CLK_ENABLE,
281 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
282 MCI_QCOM_CLK_SELECT_IN_FBCLK,
283 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
284 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
285 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
286 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
287 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
288 .cmdreg_srsp = MCI_CPSM_RESPONSE,
289 .data_cmd_enable = MCI_CPSM_QCOM_DATCMD,
290 .datalength_bits = 24,
291 .datactrl_blocksz = 11,
292 .datactrl_any_blocksz = true,
293 .pwrreg_powerup = MCI_PWR_UP,
294 .f_max = 208000000,
295 .explicit_mclk_control = true,
296 .qcom_fifo = true,
297 .qcom_dml = true,
298 .mmcimask1 = true,
299 .irq_pio_mask = MCI_IRQ_PIO_MASK,
300 .start_err = MCI_STARTBITERR,
301 .opendrain = MCI_ROD,
302 .init = qcom_variant_init,
305 /* Busy detection for the ST Micro variant */
306 static int mmci_card_busy(struct mmc_host *mmc)
308 struct mmci_host *host = mmc_priv(mmc);
309 unsigned long flags;
310 int busy = 0;
312 spin_lock_irqsave(&host->lock, flags);
313 if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
314 busy = 1;
315 spin_unlock_irqrestore(&host->lock, flags);
317 return busy;
320 static void mmci_reg_delay(struct mmci_host *host)
323 * According to the spec, at least three feedback clock cycles
324 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
325 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
326 * Worst delay time during card init is at 100 kHz => 30 us.
327 * Worst delay time when up and running is at 25 MHz => 120 ns.
329 if (host->cclk < 25000000)
330 udelay(30);
331 else
332 ndelay(120);
336 * This must be called with host->lock held
338 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
340 if (host->clk_reg != clk) {
341 host->clk_reg = clk;
342 writel(clk, host->base + MMCICLOCK);
347 * This must be called with host->lock held
349 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
351 if (host->pwr_reg != pwr) {
352 host->pwr_reg = pwr;
353 writel(pwr, host->base + MMCIPOWER);
358 * This must be called with host->lock held
360 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
362 /* Keep busy mode in DPSM if enabled */
363 datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
365 if (host->datactrl_reg != datactrl) {
366 host->datactrl_reg = datactrl;
367 writel(datactrl, host->base + MMCIDATACTRL);
372 * This must be called with host->lock held
374 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
376 struct variant_data *variant = host->variant;
377 u32 clk = variant->clkreg;
379 /* Make sure cclk reflects the current calculated clock */
380 host->cclk = 0;
382 if (desired) {
383 if (variant->explicit_mclk_control) {
384 host->cclk = host->mclk;
385 } else if (desired >= host->mclk) {
386 clk = MCI_CLK_BYPASS;
387 if (variant->st_clkdiv)
388 clk |= MCI_ST_UX500_NEG_EDGE;
389 host->cclk = host->mclk;
390 } else if (variant->st_clkdiv) {
392 * DB8500 TRM says f = mclk / (clkdiv + 2)
393 * => clkdiv = (mclk / f) - 2
394 * Round the divider up so we don't exceed the max
395 * frequency
397 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
398 if (clk >= 256)
399 clk = 255;
400 host->cclk = host->mclk / (clk + 2);
401 } else {
403 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
404 * => clkdiv = mclk / (2 * f) - 1
406 clk = host->mclk / (2 * desired) - 1;
407 if (clk >= 256)
408 clk = 255;
409 host->cclk = host->mclk / (2 * (clk + 1));
412 clk |= variant->clkreg_enable;
413 clk |= MCI_CLK_ENABLE;
414 /* This hasn't proven to be worthwhile */
415 /* clk |= MCI_CLK_PWRSAVE; */
418 /* Set actual clock for debug */
419 host->mmc->actual_clock = host->cclk;
421 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
422 clk |= MCI_4BIT_BUS;
423 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
424 clk |= variant->clkreg_8bit_bus_enable;
426 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
427 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
428 clk |= variant->clkreg_neg_edge_enable;
430 mmci_write_clkreg(host, clk);
433 static void mmci_dma_release(struct mmci_host *host)
435 if (host->ops && host->ops->dma_release)
436 host->ops->dma_release(host);
438 host->use_dma = false;
441 static void mmci_dma_setup(struct mmci_host *host)
443 if (!host->ops || !host->ops->dma_setup)
444 return;
446 if (host->ops->dma_setup(host))
447 return;
449 /* initialize pre request cookie */
450 host->next_cookie = 1;
452 host->use_dma = true;
456 * Validate mmc prerequisites
458 static int mmci_validate_data(struct mmci_host *host,
459 struct mmc_data *data)
461 struct variant_data *variant = host->variant;
463 if (!data)
464 return 0;
465 if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
466 dev_err(mmc_dev(host->mmc),
467 "unsupported block size (%d bytes)\n", data->blksz);
468 return -EINVAL;
471 if (host->ops && host->ops->validate_data)
472 return host->ops->validate_data(host, data);
474 return 0;
477 static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
479 int err;
481 if (!host->ops || !host->ops->prep_data)
482 return 0;
484 err = host->ops->prep_data(host, data, next);
486 if (next && !err)
487 data->host_cookie = ++host->next_cookie < 0 ?
488 1 : host->next_cookie;
490 return err;
493 static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
494 int err)
496 if (host->ops && host->ops->unprep_data)
497 host->ops->unprep_data(host, data, err);
499 data->host_cookie = 0;
502 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
504 WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
506 if (host->ops && host->ops->get_next_data)
507 host->ops->get_next_data(host, data);
510 static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
512 struct mmc_data *data = host->data;
513 int ret;
515 if (!host->use_dma)
516 return -EINVAL;
518 ret = mmci_prep_data(host, data, false);
519 if (ret)
520 return ret;
522 if (!host->ops || !host->ops->dma_start)
523 return -EINVAL;
525 /* Okay, go for it. */
526 dev_vdbg(mmc_dev(host->mmc),
527 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
528 data->sg_len, data->blksz, data->blocks, data->flags);
530 ret = host->ops->dma_start(host, &datactrl);
531 if (ret)
532 return ret;
534 /* Trigger the DMA transfer */
535 mmci_write_datactrlreg(host, datactrl);
538 * Let the MMCI say when the data is ended and it's time
539 * to fire next DMA request. When that happens, MMCI will
540 * call mmci_data_end()
542 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
543 host->base + MMCIMASK0);
544 return 0;
547 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
549 if (!host->use_dma)
550 return;
552 if (host->ops && host->ops->dma_finalize)
553 host->ops->dma_finalize(host, data);
556 static void mmci_dma_error(struct mmci_host *host)
558 if (!host->use_dma)
559 return;
561 if (host->ops && host->ops->dma_error)
562 host->ops->dma_error(host);
565 static void
566 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
568 writel(0, host->base + MMCICOMMAND);
570 BUG_ON(host->data);
572 host->mrq = NULL;
573 host->cmd = NULL;
575 mmc_request_done(host->mmc, mrq);
578 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
580 void __iomem *base = host->base;
581 struct variant_data *variant = host->variant;
583 if (host->singleirq) {
584 unsigned int mask0 = readl(base + MMCIMASK0);
586 mask0 &= ~variant->irq_pio_mask;
587 mask0 |= mask;
589 writel(mask0, base + MMCIMASK0);
592 if (variant->mmcimask1)
593 writel(mask, base + MMCIMASK1);
595 host->mask1_reg = mask;
598 static void mmci_stop_data(struct mmci_host *host)
600 mmci_write_datactrlreg(host, 0);
601 mmci_set_mask1(host, 0);
602 host->data = NULL;
605 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
607 unsigned int flags = SG_MITER_ATOMIC;
609 if (data->flags & MMC_DATA_READ)
610 flags |= SG_MITER_TO_SG;
611 else
612 flags |= SG_MITER_FROM_SG;
614 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
617 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
619 return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
622 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
624 return MCI_DPSM_ENABLE | (host->data->blksz << 16);
627 static bool ux500_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
629 void __iomem *base = host->base;
632 * Before unmasking for the busy end IRQ, confirm that the
633 * command was sent successfully. To keep track of having a
634 * command in-progress, waiting for busy signaling to end,
635 * store the status in host->busy_status.
637 * Note that, the card may need a couple of clock cycles before
638 * it starts signaling busy on DAT0, hence re-read the
639 * MMCISTATUS register here, to allow the busy bit to be set.
640 * Potentially we may even need to poll the register for a
641 * while, to allow it to be set, but tests indicates that it
642 * isn't needed.
644 if (!host->busy_status && !(status & err_msk) &&
645 (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
646 writel(readl(base + MMCIMASK0) |
647 host->variant->busy_detect_mask,
648 base + MMCIMASK0);
650 host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
651 return false;
655 * If there is a command in-progress that has been successfully
656 * sent, then bail out if busy status is set and wait for the
657 * busy end IRQ.
659 * Note that, the HW triggers an IRQ on both edges while
660 * monitoring DAT0 for busy completion, but there is only one
661 * status bit in MMCISTATUS for the busy state. Therefore
662 * both the start and the end interrupts needs to be cleared,
663 * one after the other. So, clear the busy start IRQ here.
665 if (host->busy_status &&
666 (status & host->variant->busy_detect_flag)) {
667 writel(host->variant->busy_detect_mask, base + MMCICLEAR);
668 return false;
672 * If there is a command in-progress that has been successfully
673 * sent and the busy bit isn't set, it means we have received
674 * the busy end IRQ. Clear and mask the IRQ, then continue to
675 * process the command.
677 if (host->busy_status) {
678 writel(host->variant->busy_detect_mask, base + MMCICLEAR);
680 writel(readl(base + MMCIMASK0) &
681 ~host->variant->busy_detect_mask, base + MMCIMASK0);
682 host->busy_status = 0;
685 return true;
689 * All the DMA operation mode stuff goes inside this ifdef.
690 * This assumes that you have a generic DMA device interface,
691 * no custom DMA interfaces are supported.
693 #ifdef CONFIG_DMA_ENGINE
694 struct mmci_dmae_next {
695 struct dma_async_tx_descriptor *desc;
696 struct dma_chan *chan;
699 struct mmci_dmae_priv {
700 struct dma_chan *cur;
701 struct dma_chan *rx_channel;
702 struct dma_chan *tx_channel;
703 struct dma_async_tx_descriptor *desc_current;
704 struct mmci_dmae_next next_data;
707 int mmci_dmae_setup(struct mmci_host *host)
709 const char *rxname, *txname;
710 struct mmci_dmae_priv *dmae;
712 dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
713 if (!dmae)
714 return -ENOMEM;
716 host->dma_priv = dmae;
718 dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
719 if (IS_ERR(dmae->rx_channel)) {
720 int ret = PTR_ERR(dmae->rx_channel);
721 dmae->rx_channel = NULL;
722 return ret;
725 dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
726 if (IS_ERR(dmae->tx_channel)) {
727 if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
728 dev_warn(mmc_dev(host->mmc),
729 "Deferred probe for TX channel ignored\n");
730 dmae->tx_channel = NULL;
734 * If only an RX channel is specified, the driver will
735 * attempt to use it bidirectionally, however if it is
736 * is specified but cannot be located, DMA will be disabled.
738 if (dmae->rx_channel && !dmae->tx_channel)
739 dmae->tx_channel = dmae->rx_channel;
741 if (dmae->rx_channel)
742 rxname = dma_chan_name(dmae->rx_channel);
743 else
744 rxname = "none";
746 if (dmae->tx_channel)
747 txname = dma_chan_name(dmae->tx_channel);
748 else
749 txname = "none";
751 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
752 rxname, txname);
755 * Limit the maximum segment size in any SG entry according to
756 * the parameters of the DMA engine device.
758 if (dmae->tx_channel) {
759 struct device *dev = dmae->tx_channel->device->dev;
760 unsigned int max_seg_size = dma_get_max_seg_size(dev);
762 if (max_seg_size < host->mmc->max_seg_size)
763 host->mmc->max_seg_size = max_seg_size;
765 if (dmae->rx_channel) {
766 struct device *dev = dmae->rx_channel->device->dev;
767 unsigned int max_seg_size = dma_get_max_seg_size(dev);
769 if (max_seg_size < host->mmc->max_seg_size)
770 host->mmc->max_seg_size = max_seg_size;
773 if (!dmae->tx_channel || !dmae->rx_channel) {
774 mmci_dmae_release(host);
775 return -EINVAL;
778 return 0;
782 * This is used in or so inline it
783 * so it can be discarded.
785 void mmci_dmae_release(struct mmci_host *host)
787 struct mmci_dmae_priv *dmae = host->dma_priv;
789 if (dmae->rx_channel)
790 dma_release_channel(dmae->rx_channel);
791 if (dmae->tx_channel)
792 dma_release_channel(dmae->tx_channel);
793 dmae->rx_channel = dmae->tx_channel = NULL;
796 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
798 struct mmci_dmae_priv *dmae = host->dma_priv;
799 struct dma_chan *chan;
801 if (data->flags & MMC_DATA_READ)
802 chan = dmae->rx_channel;
803 else
804 chan = dmae->tx_channel;
806 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
807 mmc_get_dma_dir(data));
810 void mmci_dmae_error(struct mmci_host *host)
812 struct mmci_dmae_priv *dmae = host->dma_priv;
814 if (!dma_inprogress(host))
815 return;
817 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
818 dmaengine_terminate_all(dmae->cur);
819 host->dma_in_progress = false;
820 dmae->cur = NULL;
821 dmae->desc_current = NULL;
822 host->data->host_cookie = 0;
824 mmci_dma_unmap(host, host->data);
827 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
829 struct mmci_dmae_priv *dmae = host->dma_priv;
830 u32 status;
831 int i;
833 if (!dma_inprogress(host))
834 return;
836 /* Wait up to 1ms for the DMA to complete */
837 for (i = 0; ; i++) {
838 status = readl(host->base + MMCISTATUS);
839 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
840 break;
841 udelay(10);
845 * Check to see whether we still have some data left in the FIFO -
846 * this catches DMA controllers which are unable to monitor the
847 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
848 * contiguous buffers. On TX, we'll get a FIFO underrun error.
850 if (status & MCI_RXDATAAVLBLMASK) {
851 mmci_dma_error(host);
852 if (!data->error)
853 data->error = -EIO;
854 } else if (!data->host_cookie) {
855 mmci_dma_unmap(host, data);
859 * Use of DMA with scatter-gather is impossible.
860 * Give up with DMA and switch back to PIO mode.
862 if (status & MCI_RXDATAAVLBLMASK) {
863 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
864 mmci_dma_release(host);
867 host->dma_in_progress = false;
868 dmae->cur = NULL;
869 dmae->desc_current = NULL;
872 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
873 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
874 struct dma_chan **dma_chan,
875 struct dma_async_tx_descriptor **dma_desc)
877 struct mmci_dmae_priv *dmae = host->dma_priv;
878 struct variant_data *variant = host->variant;
879 struct dma_slave_config conf = {
880 .src_addr = host->phybase + MMCIFIFO,
881 .dst_addr = host->phybase + MMCIFIFO,
882 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
883 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
884 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
885 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
886 .device_fc = false,
888 struct dma_chan *chan;
889 struct dma_device *device;
890 struct dma_async_tx_descriptor *desc;
891 int nr_sg;
892 unsigned long flags = DMA_CTRL_ACK;
894 if (data->flags & MMC_DATA_READ) {
895 conf.direction = DMA_DEV_TO_MEM;
896 chan = dmae->rx_channel;
897 } else {
898 conf.direction = DMA_MEM_TO_DEV;
899 chan = dmae->tx_channel;
902 /* If there's no DMA channel, fall back to PIO */
903 if (!chan)
904 return -EINVAL;
906 /* If less than or equal to the fifo size, don't bother with DMA */
907 if (data->blksz * data->blocks <= variant->fifosize)
908 return -EINVAL;
911 * This is necessary to get SDIO working on the Ux500. We do not yet
912 * know if this is a bug in:
913 * - The Ux500 DMA controller (DMA40)
914 * - The MMCI DMA interface on the Ux500
915 * some power of two blocks (such as 64 bytes) are sent regularly
916 * during SDIO traffic and those work fine so for these we enable DMA
917 * transfers.
919 if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
920 return -EINVAL;
922 device = chan->device;
923 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
924 mmc_get_dma_dir(data));
925 if (nr_sg == 0)
926 return -EINVAL;
928 if (host->variant->qcom_dml)
929 flags |= DMA_PREP_INTERRUPT;
931 dmaengine_slave_config(chan, &conf);
932 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
933 conf.direction, flags);
934 if (!desc)
935 goto unmap_exit;
937 *dma_chan = chan;
938 *dma_desc = desc;
940 return 0;
942 unmap_exit:
943 dma_unmap_sg(device->dev, data->sg, data->sg_len,
944 mmc_get_dma_dir(data));
945 return -ENOMEM;
948 int mmci_dmae_prep_data(struct mmci_host *host,
949 struct mmc_data *data,
950 bool next)
952 struct mmci_dmae_priv *dmae = host->dma_priv;
953 struct mmci_dmae_next *nd = &dmae->next_data;
955 if (!host->use_dma)
956 return -EINVAL;
958 if (next)
959 return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
960 /* Check if next job is already prepared. */
961 if (dmae->cur && dmae->desc_current)
962 return 0;
964 /* No job were prepared thus do it now. */
965 return _mmci_dmae_prep_data(host, data, &dmae->cur,
966 &dmae->desc_current);
969 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
971 struct mmci_dmae_priv *dmae = host->dma_priv;
972 int ret;
974 host->dma_in_progress = true;
975 ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
976 if (ret < 0) {
977 host->dma_in_progress = false;
978 return ret;
980 dma_async_issue_pending(dmae->cur);
982 *datactrl |= MCI_DPSM_DMAENABLE;
984 return 0;
987 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
989 struct mmci_dmae_priv *dmae = host->dma_priv;
990 struct mmci_dmae_next *next = &dmae->next_data;
992 if (!host->use_dma)
993 return;
995 WARN_ON(!data->host_cookie && (next->desc || next->chan));
997 dmae->desc_current = next->desc;
998 dmae->cur = next->chan;
999 next->desc = NULL;
1000 next->chan = NULL;
1003 void mmci_dmae_unprep_data(struct mmci_host *host,
1004 struct mmc_data *data, int err)
1007 struct mmci_dmae_priv *dmae = host->dma_priv;
1009 if (!host->use_dma)
1010 return;
1012 mmci_dma_unmap(host, data);
1014 if (err) {
1015 struct mmci_dmae_next *next = &dmae->next_data;
1016 struct dma_chan *chan;
1017 if (data->flags & MMC_DATA_READ)
1018 chan = dmae->rx_channel;
1019 else
1020 chan = dmae->tx_channel;
1021 dmaengine_terminate_all(chan);
1023 if (dmae->desc_current == next->desc)
1024 dmae->desc_current = NULL;
1026 if (dmae->cur == next->chan) {
1027 host->dma_in_progress = false;
1028 dmae->cur = NULL;
1031 next->desc = NULL;
1032 next->chan = NULL;
1036 static struct mmci_host_ops mmci_variant_ops = {
1037 .prep_data = mmci_dmae_prep_data,
1038 .unprep_data = mmci_dmae_unprep_data,
1039 .get_datactrl_cfg = mmci_get_dctrl_cfg,
1040 .get_next_data = mmci_dmae_get_next_data,
1041 .dma_setup = mmci_dmae_setup,
1042 .dma_release = mmci_dmae_release,
1043 .dma_start = mmci_dmae_start,
1044 .dma_finalize = mmci_dmae_finalize,
1045 .dma_error = mmci_dmae_error,
1047 #else
1048 static struct mmci_host_ops mmci_variant_ops = {
1049 .get_datactrl_cfg = mmci_get_dctrl_cfg,
1051 #endif
1053 static void mmci_variant_init(struct mmci_host *host)
1055 host->ops = &mmci_variant_ops;
1058 static void ux500_variant_init(struct mmci_host *host)
1060 host->ops = &mmci_variant_ops;
1061 host->ops->busy_complete = ux500_busy_complete;
1064 static void ux500v2_variant_init(struct mmci_host *host)
1066 host->ops = &mmci_variant_ops;
1067 host->ops->busy_complete = ux500_busy_complete;
1068 host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1071 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1073 struct mmci_host *host = mmc_priv(mmc);
1074 struct mmc_data *data = mrq->data;
1076 if (!data)
1077 return;
1079 WARN_ON(data->host_cookie);
1081 if (mmci_validate_data(host, data))
1082 return;
1084 mmci_prep_data(host, data, true);
1087 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1088 int err)
1090 struct mmci_host *host = mmc_priv(mmc);
1091 struct mmc_data *data = mrq->data;
1093 if (!data || !data->host_cookie)
1094 return;
1096 mmci_unprep_data(host, data, err);
1099 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1101 struct variant_data *variant = host->variant;
1102 unsigned int datactrl, timeout, irqmask;
1103 unsigned long long clks;
1104 void __iomem *base;
1106 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1107 data->blksz, data->blocks, data->flags);
1109 host->data = data;
1110 host->size = data->blksz * data->blocks;
1111 data->bytes_xfered = 0;
1113 clks = (unsigned long long)data->timeout_ns * host->cclk;
1114 do_div(clks, NSEC_PER_SEC);
1116 timeout = data->timeout_clks + (unsigned int)clks;
1118 base = host->base;
1119 writel(timeout, base + MMCIDATATIMER);
1120 writel(host->size, base + MMCIDATALENGTH);
1122 datactrl = host->ops->get_datactrl_cfg(host);
1123 datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1125 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1126 u32 clk;
1128 datactrl |= variant->datactrl_mask_sdio;
1131 * The ST Micro variant for SDIO small write transfers
1132 * needs to have clock H/W flow control disabled,
1133 * otherwise the transfer will not start. The threshold
1134 * depends on the rate of MCLK.
1136 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1137 (host->size < 8 ||
1138 (host->size <= 8 && host->mclk > 50000000)))
1139 clk = host->clk_reg & ~variant->clkreg_enable;
1140 else
1141 clk = host->clk_reg | variant->clkreg_enable;
1143 mmci_write_clkreg(host, clk);
1146 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1147 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1148 datactrl |= variant->datactrl_mask_ddrmode;
1151 * Attempt to use DMA operation mode, if this
1152 * should fail, fall back to PIO mode
1154 if (!mmci_dma_start(host, datactrl))
1155 return;
1157 /* IRQ mode, map the SG list for CPU reading/writing */
1158 mmci_init_sg(host, data);
1160 if (data->flags & MMC_DATA_READ) {
1161 irqmask = MCI_RXFIFOHALFFULLMASK;
1164 * If we have less than the fifo 'half-full' threshold to
1165 * transfer, trigger a PIO interrupt as soon as any data
1166 * is available.
1168 if (host->size < variant->fifohalfsize)
1169 irqmask |= MCI_RXDATAAVLBLMASK;
1170 } else {
1172 * We don't actually need to include "FIFO empty" here
1173 * since its implicit in "FIFO half empty".
1175 irqmask = MCI_TXFIFOHALFEMPTYMASK;
1178 mmci_write_datactrlreg(host, datactrl);
1179 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1180 mmci_set_mask1(host, irqmask);
1183 static void
1184 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1186 void __iomem *base = host->base;
1187 unsigned long long clks;
1189 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1190 cmd->opcode, cmd->arg, cmd->flags);
1192 if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1193 writel(0, base + MMCICOMMAND);
1194 mmci_reg_delay(host);
1197 if (host->variant->cmdreg_stop &&
1198 cmd->opcode == MMC_STOP_TRANSMISSION)
1199 c |= host->variant->cmdreg_stop;
1201 c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1202 if (cmd->flags & MMC_RSP_PRESENT) {
1203 if (cmd->flags & MMC_RSP_136)
1204 c |= host->variant->cmdreg_lrsp_crc;
1205 else if (cmd->flags & MMC_RSP_CRC)
1206 c |= host->variant->cmdreg_srsp_crc;
1207 else
1208 c |= host->variant->cmdreg_srsp;
1211 if (host->variant->busy_timeout && cmd->flags & MMC_RSP_BUSY) {
1212 if (!cmd->busy_timeout)
1213 cmd->busy_timeout = 10 * MSEC_PER_SEC;
1215 clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1216 do_div(clks, MSEC_PER_SEC);
1217 writel_relaxed(clks, host->base + MMCIDATATIMER);
1220 if (/*interrupt*/0)
1221 c |= MCI_CPSM_INTERRUPT;
1223 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1224 c |= host->variant->data_cmd_enable;
1226 host->cmd = cmd;
1228 writel(cmd->arg, base + MMCIARGUMENT);
1229 writel(c, base + MMCICOMMAND);
1232 static void mmci_stop_command(struct mmci_host *host)
1234 host->stop_abort.error = 0;
1235 mmci_start_command(host, &host->stop_abort, 0);
1238 static void
1239 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1240 unsigned int status)
1242 unsigned int status_err;
1244 /* Make sure we have data to handle */
1245 if (!data)
1246 return;
1248 /* First check for errors */
1249 status_err = status & (host->variant->start_err |
1250 MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1251 MCI_TXUNDERRUN | MCI_RXOVERRUN);
1253 if (status_err) {
1254 u32 remain, success;
1256 /* Terminate the DMA transfer */
1257 mmci_dma_error(host);
1260 * Calculate how far we are into the transfer. Note that
1261 * the data counter gives the number of bytes transferred
1262 * on the MMC bus, not on the host side. On reads, this
1263 * can be as much as a FIFO-worth of data ahead. This
1264 * matters for FIFO overruns only.
1266 if (!host->variant->datacnt_useless) {
1267 remain = readl(host->base + MMCIDATACNT);
1268 success = data->blksz * data->blocks - remain;
1269 } else {
1270 success = 0;
1273 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1274 status_err, success);
1275 if (status_err & MCI_DATACRCFAIL) {
1276 /* Last block was not successful */
1277 success -= 1;
1278 data->error = -EILSEQ;
1279 } else if (status_err & MCI_DATATIMEOUT) {
1280 data->error = -ETIMEDOUT;
1281 } else if (status_err & MCI_STARTBITERR) {
1282 data->error = -ECOMM;
1283 } else if (status_err & MCI_TXUNDERRUN) {
1284 data->error = -EIO;
1285 } else if (status_err & MCI_RXOVERRUN) {
1286 if (success > host->variant->fifosize)
1287 success -= host->variant->fifosize;
1288 else
1289 success = 0;
1290 data->error = -EIO;
1292 data->bytes_xfered = round_down(success, data->blksz);
1295 if (status & MCI_DATABLOCKEND)
1296 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1298 if (status & MCI_DATAEND || data->error) {
1299 mmci_dma_finalize(host, data);
1301 mmci_stop_data(host);
1303 if (!data->error)
1304 /* The error clause is handled above, success! */
1305 data->bytes_xfered = data->blksz * data->blocks;
1307 if (!data->stop) {
1308 if (host->variant->cmdreg_stop && data->error)
1309 mmci_stop_command(host);
1310 else
1311 mmci_request_end(host, data->mrq);
1312 } else if (host->mrq->sbc && !data->error) {
1313 mmci_request_end(host, data->mrq);
1314 } else {
1315 mmci_start_command(host, data->stop, 0);
1320 static void
1321 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1322 unsigned int status)
1324 u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1325 void __iomem *base = host->base;
1326 bool sbc, busy_resp;
1328 if (!cmd)
1329 return;
1331 sbc = (cmd == host->mrq->sbc);
1332 busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1335 * We need to be one of these interrupts to be considered worth
1336 * handling. Note that we tag on any latent IRQs postponed
1337 * due to waiting for busy status.
1339 if (host->variant->busy_timeout && busy_resp)
1340 err_msk |= MCI_DATATIMEOUT;
1342 if (!((status | host->busy_status) &
1343 (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1344 return;
1346 /* Handle busy detection on DAT0 if the variant supports it. */
1347 if (busy_resp && host->variant->busy_detect)
1348 if (!host->ops->busy_complete(host, status, err_msk))
1349 return;
1351 host->cmd = NULL;
1353 if (status & MCI_CMDTIMEOUT) {
1354 cmd->error = -ETIMEDOUT;
1355 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1356 cmd->error = -EILSEQ;
1357 } else if (host->variant->busy_timeout && busy_resp &&
1358 status & MCI_DATATIMEOUT) {
1359 cmd->error = -ETIMEDOUT;
1360 host->irq_action = IRQ_WAKE_THREAD;
1361 } else {
1362 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1363 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1364 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1365 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1368 if ((!sbc && !cmd->data) || cmd->error) {
1369 if (host->data) {
1370 /* Terminate the DMA transfer */
1371 mmci_dma_error(host);
1373 mmci_stop_data(host);
1374 if (host->variant->cmdreg_stop && cmd->error) {
1375 mmci_stop_command(host);
1376 return;
1380 if (host->irq_action != IRQ_WAKE_THREAD)
1381 mmci_request_end(host, host->mrq);
1383 } else if (sbc) {
1384 mmci_start_command(host, host->mrq->cmd, 0);
1385 } else if (!host->variant->datactrl_first &&
1386 !(cmd->data->flags & MMC_DATA_READ)) {
1387 mmci_start_data(host, cmd->data);
1391 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1393 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1396 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1399 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1400 * from the fifo range should be used
1402 if (status & MCI_RXFIFOHALFFULL)
1403 return host->variant->fifohalfsize;
1404 else if (status & MCI_RXDATAAVLBL)
1405 return 4;
1407 return 0;
1410 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1412 void __iomem *base = host->base;
1413 char *ptr = buffer;
1414 u32 status = readl(host->base + MMCISTATUS);
1415 int host_remain = host->size;
1417 do {
1418 int count = host->get_rx_fifocnt(host, status, host_remain);
1420 if (count > remain)
1421 count = remain;
1423 if (count <= 0)
1424 break;
1427 * SDIO especially may want to send something that is
1428 * not divisible by 4 (as opposed to card sectors
1429 * etc). Therefore make sure to always read the last bytes
1430 * while only doing full 32-bit reads towards the FIFO.
1432 if (unlikely(count & 0x3)) {
1433 if (count < 4) {
1434 unsigned char buf[4];
1435 ioread32_rep(base + MMCIFIFO, buf, 1);
1436 memcpy(ptr, buf, count);
1437 } else {
1438 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1439 count &= ~0x3;
1441 } else {
1442 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1445 ptr += count;
1446 remain -= count;
1447 host_remain -= count;
1449 if (remain == 0)
1450 break;
1452 status = readl(base + MMCISTATUS);
1453 } while (status & MCI_RXDATAAVLBL);
1455 return ptr - buffer;
1458 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1460 struct variant_data *variant = host->variant;
1461 void __iomem *base = host->base;
1462 char *ptr = buffer;
1464 do {
1465 unsigned int count, maxcnt;
1467 maxcnt = status & MCI_TXFIFOEMPTY ?
1468 variant->fifosize : variant->fifohalfsize;
1469 count = min(remain, maxcnt);
1472 * SDIO especially may want to send something that is
1473 * not divisible by 4 (as opposed to card sectors
1474 * etc), and the FIFO only accept full 32-bit writes.
1475 * So compensate by adding +3 on the count, a single
1476 * byte become a 32bit write, 7 bytes will be two
1477 * 32bit writes etc.
1479 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1481 ptr += count;
1482 remain -= count;
1484 if (remain == 0)
1485 break;
1487 status = readl(base + MMCISTATUS);
1488 } while (status & MCI_TXFIFOHALFEMPTY);
1490 return ptr - buffer;
1494 * PIO data transfer IRQ handler.
1496 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1498 struct mmci_host *host = dev_id;
1499 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1500 struct variant_data *variant = host->variant;
1501 void __iomem *base = host->base;
1502 u32 status;
1504 status = readl(base + MMCISTATUS);
1506 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1508 do {
1509 unsigned int remain, len;
1510 char *buffer;
1513 * For write, we only need to test the half-empty flag
1514 * here - if the FIFO is completely empty, then by
1515 * definition it is more than half empty.
1517 * For read, check for data available.
1519 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1520 break;
1522 if (!sg_miter_next(sg_miter))
1523 break;
1525 buffer = sg_miter->addr;
1526 remain = sg_miter->length;
1528 len = 0;
1529 if (status & MCI_RXACTIVE)
1530 len = mmci_pio_read(host, buffer, remain);
1531 if (status & MCI_TXACTIVE)
1532 len = mmci_pio_write(host, buffer, remain, status);
1534 sg_miter->consumed = len;
1536 host->size -= len;
1537 remain -= len;
1539 if (remain)
1540 break;
1542 status = readl(base + MMCISTATUS);
1543 } while (1);
1545 sg_miter_stop(sg_miter);
1548 * If we have less than the fifo 'half-full' threshold to transfer,
1549 * trigger a PIO interrupt as soon as any data is available.
1551 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1552 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1555 * If we run out of data, disable the data IRQs; this
1556 * prevents a race where the FIFO becomes empty before
1557 * the chip itself has disabled the data path, and
1558 * stops us racing with our data end IRQ.
1560 if (host->size == 0) {
1561 mmci_set_mask1(host, 0);
1562 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1565 return IRQ_HANDLED;
1569 * Handle completion of command and data transfers.
1571 static irqreturn_t mmci_irq(int irq, void *dev_id)
1573 struct mmci_host *host = dev_id;
1574 u32 status;
1576 spin_lock(&host->lock);
1577 host->irq_action = IRQ_HANDLED;
1579 do {
1580 status = readl(host->base + MMCISTATUS);
1582 if (host->singleirq) {
1583 if (status & host->mask1_reg)
1584 mmci_pio_irq(irq, dev_id);
1586 status &= ~host->variant->irq_pio_mask;
1590 * Busy detection is managed by mmci_cmd_irq(), including to
1591 * clear the corresponding IRQ.
1593 status &= readl(host->base + MMCIMASK0);
1594 if (host->variant->busy_detect)
1595 writel(status & ~host->variant->busy_detect_mask,
1596 host->base + MMCICLEAR);
1597 else
1598 writel(status, host->base + MMCICLEAR);
1600 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1602 if (host->variant->reversed_irq_handling) {
1603 mmci_data_irq(host, host->data, status);
1604 mmci_cmd_irq(host, host->cmd, status);
1605 } else {
1606 mmci_cmd_irq(host, host->cmd, status);
1607 mmci_data_irq(host, host->data, status);
1611 * Busy detection has been handled by mmci_cmd_irq() above.
1612 * Clear the status bit to prevent polling in IRQ context.
1614 if (host->variant->busy_detect_flag)
1615 status &= ~host->variant->busy_detect_flag;
1617 } while (status);
1619 spin_unlock(&host->lock);
1621 return host->irq_action;
1625 * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1627 * A reset is needed for some variants, where a datatimeout for a R1B request
1628 * causes the DPSM to stay busy (non-functional).
1630 static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1632 struct mmci_host *host = dev_id;
1633 unsigned long flags;
1635 if (host->rst) {
1636 reset_control_assert(host->rst);
1637 udelay(2);
1638 reset_control_deassert(host->rst);
1641 spin_lock_irqsave(&host->lock, flags);
1642 writel(host->clk_reg, host->base + MMCICLOCK);
1643 writel(host->pwr_reg, host->base + MMCIPOWER);
1644 writel(MCI_IRQENABLE | host->variant->start_err,
1645 host->base + MMCIMASK0);
1647 host->irq_action = IRQ_HANDLED;
1648 mmci_request_end(host, host->mrq);
1649 spin_unlock_irqrestore(&host->lock, flags);
1651 return host->irq_action;
1654 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1656 struct mmci_host *host = mmc_priv(mmc);
1657 unsigned long flags;
1659 WARN_ON(host->mrq != NULL);
1661 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1662 if (mrq->cmd->error) {
1663 mmc_request_done(mmc, mrq);
1664 return;
1667 spin_lock_irqsave(&host->lock, flags);
1669 host->mrq = mrq;
1671 if (mrq->data)
1672 mmci_get_next_data(host, mrq->data);
1674 if (mrq->data &&
1675 (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1676 mmci_start_data(host, mrq->data);
1678 if (mrq->sbc)
1679 mmci_start_command(host, mrq->sbc, 0);
1680 else
1681 mmci_start_command(host, mrq->cmd, 0);
1683 spin_unlock_irqrestore(&host->lock, flags);
1686 static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1688 struct mmci_host *host = mmc_priv(mmc);
1689 u32 max_busy_timeout = 0;
1691 if (!host->variant->busy_detect)
1692 return;
1694 if (host->variant->busy_timeout && mmc->actual_clock)
1695 max_busy_timeout = ~0UL / (mmc->actual_clock / MSEC_PER_SEC);
1697 mmc->max_busy_timeout = max_busy_timeout;
1700 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1702 struct mmci_host *host = mmc_priv(mmc);
1703 struct variant_data *variant = host->variant;
1704 u32 pwr = 0;
1705 unsigned long flags;
1706 int ret;
1708 if (host->plat->ios_handler &&
1709 host->plat->ios_handler(mmc_dev(mmc), ios))
1710 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1712 switch (ios->power_mode) {
1713 case MMC_POWER_OFF:
1714 if (!IS_ERR(mmc->supply.vmmc))
1715 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1717 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1718 regulator_disable(mmc->supply.vqmmc);
1719 host->vqmmc_enabled = false;
1722 break;
1723 case MMC_POWER_UP:
1724 if (!IS_ERR(mmc->supply.vmmc))
1725 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1728 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1729 * and instead uses MCI_PWR_ON so apply whatever value is
1730 * configured in the variant data.
1732 pwr |= variant->pwrreg_powerup;
1734 break;
1735 case MMC_POWER_ON:
1736 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1737 ret = regulator_enable(mmc->supply.vqmmc);
1738 if (ret < 0)
1739 dev_err(mmc_dev(mmc),
1740 "failed to enable vqmmc regulator\n");
1741 else
1742 host->vqmmc_enabled = true;
1745 pwr |= MCI_PWR_ON;
1746 break;
1749 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1751 * The ST Micro variant has some additional bits
1752 * indicating signal direction for the signals in
1753 * the SD/MMC bus and feedback-clock usage.
1755 pwr |= host->pwr_reg_add;
1757 if (ios->bus_width == MMC_BUS_WIDTH_4)
1758 pwr &= ~MCI_ST_DATA74DIREN;
1759 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1760 pwr &= (~MCI_ST_DATA74DIREN &
1761 ~MCI_ST_DATA31DIREN &
1762 ~MCI_ST_DATA2DIREN);
1765 if (variant->opendrain) {
1766 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1767 pwr |= variant->opendrain;
1768 } else {
1770 * If the variant cannot configure the pads by its own, then we
1771 * expect the pinctrl to be able to do that for us
1773 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1774 pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1775 else
1776 pinctrl_select_default_state(mmc_dev(mmc));
1780 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1781 * gating the clock, the MCI_PWR_ON bit is cleared.
1783 if (!ios->clock && variant->pwrreg_clkgate)
1784 pwr &= ~MCI_PWR_ON;
1786 if (host->variant->explicit_mclk_control &&
1787 ios->clock != host->clock_cache) {
1788 ret = clk_set_rate(host->clk, ios->clock);
1789 if (ret < 0)
1790 dev_err(mmc_dev(host->mmc),
1791 "Error setting clock rate (%d)\n", ret);
1792 else
1793 host->mclk = clk_get_rate(host->clk);
1795 host->clock_cache = ios->clock;
1797 spin_lock_irqsave(&host->lock, flags);
1799 if (host->ops && host->ops->set_clkreg)
1800 host->ops->set_clkreg(host, ios->clock);
1801 else
1802 mmci_set_clkreg(host, ios->clock);
1804 mmci_set_max_busy_timeout(mmc);
1806 if (host->ops && host->ops->set_pwrreg)
1807 host->ops->set_pwrreg(host, pwr);
1808 else
1809 mmci_write_pwrreg(host, pwr);
1811 mmci_reg_delay(host);
1813 spin_unlock_irqrestore(&host->lock, flags);
1816 static int mmci_get_cd(struct mmc_host *mmc)
1818 struct mmci_host *host = mmc_priv(mmc);
1819 struct mmci_platform_data *plat = host->plat;
1820 unsigned int status = mmc_gpio_get_cd(mmc);
1822 if (status == -ENOSYS) {
1823 if (!plat->status)
1824 return 1; /* Assume always present */
1826 status = plat->status(mmc_dev(host->mmc));
1828 return status;
1831 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1833 int ret = 0;
1835 if (!IS_ERR(mmc->supply.vqmmc)) {
1837 switch (ios->signal_voltage) {
1838 case MMC_SIGNAL_VOLTAGE_330:
1839 ret = regulator_set_voltage(mmc->supply.vqmmc,
1840 2700000, 3600000);
1841 break;
1842 case MMC_SIGNAL_VOLTAGE_180:
1843 ret = regulator_set_voltage(mmc->supply.vqmmc,
1844 1700000, 1950000);
1845 break;
1846 case MMC_SIGNAL_VOLTAGE_120:
1847 ret = regulator_set_voltage(mmc->supply.vqmmc,
1848 1100000, 1300000);
1849 break;
1852 if (ret)
1853 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1856 return ret;
1859 static struct mmc_host_ops mmci_ops = {
1860 .request = mmci_request,
1861 .pre_req = mmci_pre_request,
1862 .post_req = mmci_post_request,
1863 .set_ios = mmci_set_ios,
1864 .get_ro = mmc_gpio_get_ro,
1865 .get_cd = mmci_get_cd,
1866 .start_signal_voltage_switch = mmci_sig_volt_switch,
1869 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1871 struct mmci_host *host = mmc_priv(mmc);
1872 int ret = mmc_of_parse(mmc);
1874 if (ret)
1875 return ret;
1877 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1878 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1879 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1880 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1881 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1882 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1883 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1884 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1885 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1886 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1887 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1888 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1889 if (of_get_property(np, "st,sig-dir", NULL))
1890 host->pwr_reg_add |= MCI_STM32_DIRPOL;
1891 if (of_get_property(np, "st,neg-edge", NULL))
1892 host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1893 if (of_get_property(np, "st,use-ckin", NULL))
1894 host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1896 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1897 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1898 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1899 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1901 return 0;
1904 static int mmci_probe(struct amba_device *dev,
1905 const struct amba_id *id)
1907 struct mmci_platform_data *plat = dev->dev.platform_data;
1908 struct device_node *np = dev->dev.of_node;
1909 struct variant_data *variant = id->data;
1910 struct mmci_host *host;
1911 struct mmc_host *mmc;
1912 int ret;
1914 /* Must have platform data or Device Tree. */
1915 if (!plat && !np) {
1916 dev_err(&dev->dev, "No plat data or DT found\n");
1917 return -EINVAL;
1920 if (!plat) {
1921 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1922 if (!plat)
1923 return -ENOMEM;
1926 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1927 if (!mmc)
1928 return -ENOMEM;
1930 ret = mmci_of_parse(np, mmc);
1931 if (ret)
1932 goto host_free;
1934 host = mmc_priv(mmc);
1935 host->mmc = mmc;
1938 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1939 * pins can be set accordingly using pinctrl
1941 if (!variant->opendrain) {
1942 host->pinctrl = devm_pinctrl_get(&dev->dev);
1943 if (IS_ERR(host->pinctrl)) {
1944 dev_err(&dev->dev, "failed to get pinctrl");
1945 ret = PTR_ERR(host->pinctrl);
1946 goto host_free;
1949 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1950 MMCI_PINCTRL_STATE_OPENDRAIN);
1951 if (IS_ERR(host->pins_opendrain)) {
1952 dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1953 ret = PTR_ERR(host->pins_opendrain);
1954 goto host_free;
1958 host->hw_designer = amba_manf(dev);
1959 host->hw_revision = amba_rev(dev);
1960 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1961 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1963 host->clk = devm_clk_get(&dev->dev, NULL);
1964 if (IS_ERR(host->clk)) {
1965 ret = PTR_ERR(host->clk);
1966 goto host_free;
1969 ret = clk_prepare_enable(host->clk);
1970 if (ret)
1971 goto host_free;
1973 if (variant->qcom_fifo)
1974 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1975 else
1976 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1978 host->plat = plat;
1979 host->variant = variant;
1980 host->mclk = clk_get_rate(host->clk);
1982 * According to the spec, mclk is max 100 MHz,
1983 * so we try to adjust the clock down to this,
1984 * (if possible).
1986 if (host->mclk > variant->f_max) {
1987 ret = clk_set_rate(host->clk, variant->f_max);
1988 if (ret < 0)
1989 goto clk_disable;
1990 host->mclk = clk_get_rate(host->clk);
1991 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1992 host->mclk);
1995 host->phybase = dev->res.start;
1996 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1997 if (IS_ERR(host->base)) {
1998 ret = PTR_ERR(host->base);
1999 goto clk_disable;
2002 if (variant->init)
2003 variant->init(host);
2006 * The ARM and ST versions of the block have slightly different
2007 * clock divider equations which means that the minimum divider
2008 * differs too.
2009 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2011 if (variant->st_clkdiv)
2012 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2013 else if (variant->stm32_clkdiv)
2014 mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2015 else if (variant->explicit_mclk_control)
2016 mmc->f_min = clk_round_rate(host->clk, 100000);
2017 else
2018 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2020 * If no maximum operating frequency is supplied, fall back to use
2021 * the module parameter, which has a (low) default value in case it
2022 * is not specified. Either value must not exceed the clock rate into
2023 * the block, of course.
2025 if (mmc->f_max)
2026 mmc->f_max = variant->explicit_mclk_control ?
2027 min(variant->f_max, mmc->f_max) :
2028 min(host->mclk, mmc->f_max);
2029 else
2030 mmc->f_max = variant->explicit_mclk_control ?
2031 fmax : min(host->mclk, fmax);
2034 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2036 host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2037 if (IS_ERR(host->rst)) {
2038 ret = PTR_ERR(host->rst);
2039 goto clk_disable;
2042 /* Get regulators and the supported OCR mask */
2043 ret = mmc_regulator_get_supply(mmc);
2044 if (ret)
2045 goto clk_disable;
2047 if (!mmc->ocr_avail)
2048 mmc->ocr_avail = plat->ocr_mask;
2049 else if (plat->ocr_mask)
2050 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2052 /* We support these capabilities. */
2053 mmc->caps |= MMC_CAP_CMD23;
2056 * Enable busy detection.
2058 if (variant->busy_detect) {
2059 mmci_ops.card_busy = mmci_card_busy;
2061 * Not all variants have a flag to enable busy detection
2062 * in the DPSM, but if they do, set it here.
2064 if (variant->busy_dpsm_flag)
2065 mmci_write_datactrlreg(host,
2066 host->variant->busy_dpsm_flag);
2067 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2070 /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2071 host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2072 host->stop_abort.arg = 0;
2073 host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2075 mmc->ops = &mmci_ops;
2077 /* We support these PM capabilities. */
2078 mmc->pm_caps |= MMC_PM_KEEP_POWER;
2081 * We can do SGIO
2083 mmc->max_segs = NR_SG;
2086 * Since only a certain number of bits are valid in the data length
2087 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2088 * single request.
2090 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2093 * Set the maximum segment size. Since we aren't doing DMA
2094 * (yet) we are only limited by the data length register.
2096 mmc->max_seg_size = mmc->max_req_size;
2099 * Block size can be up to 2048 bytes, but must be a power of two.
2101 mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2104 * Limit the number of blocks transferred so that we don't overflow
2105 * the maximum request size.
2107 mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2109 spin_lock_init(&host->lock);
2111 writel(0, host->base + MMCIMASK0);
2113 if (variant->mmcimask1)
2114 writel(0, host->base + MMCIMASK1);
2116 writel(0xfff, host->base + MMCICLEAR);
2119 * If:
2120 * - not using DT but using a descriptor table, or
2121 * - using a table of descriptors ALONGSIDE DT, or
2122 * look up these descriptors named "cd" and "wp" right here, fail
2123 * silently of these do not exist
2125 if (!np) {
2126 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2127 if (ret == -EPROBE_DEFER)
2128 goto clk_disable;
2130 ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2131 if (ret == -EPROBE_DEFER)
2132 goto clk_disable;
2135 ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2136 mmci_irq_thread, IRQF_SHARED,
2137 DRIVER_NAME " (cmd)", host);
2138 if (ret)
2139 goto clk_disable;
2141 if (!dev->irq[1])
2142 host->singleirq = true;
2143 else {
2144 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2145 IRQF_SHARED, DRIVER_NAME " (pio)", host);
2146 if (ret)
2147 goto clk_disable;
2150 writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2152 amba_set_drvdata(dev, mmc);
2154 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2155 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2156 amba_rev(dev), (unsigned long long)dev->res.start,
2157 dev->irq[0], dev->irq[1]);
2159 mmci_dma_setup(host);
2161 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2162 pm_runtime_use_autosuspend(&dev->dev);
2164 mmc_add_host(mmc);
2166 pm_runtime_put(&dev->dev);
2167 return 0;
2169 clk_disable:
2170 clk_disable_unprepare(host->clk);
2171 host_free:
2172 mmc_free_host(mmc);
2173 return ret;
2176 static int mmci_remove(struct amba_device *dev)
2178 struct mmc_host *mmc = amba_get_drvdata(dev);
2180 if (mmc) {
2181 struct mmci_host *host = mmc_priv(mmc);
2182 struct variant_data *variant = host->variant;
2185 * Undo pm_runtime_put() in probe. We use the _sync
2186 * version here so that we can access the primecell.
2188 pm_runtime_get_sync(&dev->dev);
2190 mmc_remove_host(mmc);
2192 writel(0, host->base + MMCIMASK0);
2194 if (variant->mmcimask1)
2195 writel(0, host->base + MMCIMASK1);
2197 writel(0, host->base + MMCICOMMAND);
2198 writel(0, host->base + MMCIDATACTRL);
2200 mmci_dma_release(host);
2201 clk_disable_unprepare(host->clk);
2202 mmc_free_host(mmc);
2205 return 0;
2208 #ifdef CONFIG_PM
2209 static void mmci_save(struct mmci_host *host)
2211 unsigned long flags;
2213 spin_lock_irqsave(&host->lock, flags);
2215 writel(0, host->base + MMCIMASK0);
2216 if (host->variant->pwrreg_nopower) {
2217 writel(0, host->base + MMCIDATACTRL);
2218 writel(0, host->base + MMCIPOWER);
2219 writel(0, host->base + MMCICLOCK);
2221 mmci_reg_delay(host);
2223 spin_unlock_irqrestore(&host->lock, flags);
2226 static void mmci_restore(struct mmci_host *host)
2228 unsigned long flags;
2230 spin_lock_irqsave(&host->lock, flags);
2232 if (host->variant->pwrreg_nopower) {
2233 writel(host->clk_reg, host->base + MMCICLOCK);
2234 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2235 writel(host->pwr_reg, host->base + MMCIPOWER);
2237 writel(MCI_IRQENABLE | host->variant->start_err,
2238 host->base + MMCIMASK0);
2239 mmci_reg_delay(host);
2241 spin_unlock_irqrestore(&host->lock, flags);
2244 static int mmci_runtime_suspend(struct device *dev)
2246 struct amba_device *adev = to_amba_device(dev);
2247 struct mmc_host *mmc = amba_get_drvdata(adev);
2249 if (mmc) {
2250 struct mmci_host *host = mmc_priv(mmc);
2251 pinctrl_pm_select_sleep_state(dev);
2252 mmci_save(host);
2253 clk_disable_unprepare(host->clk);
2256 return 0;
2259 static int mmci_runtime_resume(struct device *dev)
2261 struct amba_device *adev = to_amba_device(dev);
2262 struct mmc_host *mmc = amba_get_drvdata(adev);
2264 if (mmc) {
2265 struct mmci_host *host = mmc_priv(mmc);
2266 clk_prepare_enable(host->clk);
2267 mmci_restore(host);
2268 pinctrl_select_default_state(dev);
2271 return 0;
2273 #endif
2275 static const struct dev_pm_ops mmci_dev_pm_ops = {
2276 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2277 pm_runtime_force_resume)
2278 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2281 static const struct amba_id mmci_ids[] = {
2283 .id = 0x00041180,
2284 .mask = 0xff0fffff,
2285 .data = &variant_arm,
2288 .id = 0x01041180,
2289 .mask = 0xff0fffff,
2290 .data = &variant_arm_extended_fifo,
2293 .id = 0x02041180,
2294 .mask = 0xff0fffff,
2295 .data = &variant_arm_extended_fifo_hwfc,
2298 .id = 0x00041181,
2299 .mask = 0x000fffff,
2300 .data = &variant_arm,
2302 /* ST Micro variants */
2304 .id = 0x00180180,
2305 .mask = 0x00ffffff,
2306 .data = &variant_u300,
2309 .id = 0x10180180,
2310 .mask = 0xf0ffffff,
2311 .data = &variant_nomadik,
2314 .id = 0x00280180,
2315 .mask = 0x00ffffff,
2316 .data = &variant_nomadik,
2319 .id = 0x00480180,
2320 .mask = 0xf0ffffff,
2321 .data = &variant_ux500,
2324 .id = 0x10480180,
2325 .mask = 0xf0ffffff,
2326 .data = &variant_ux500v2,
2329 .id = 0x00880180,
2330 .mask = 0x00ffffff,
2331 .data = &variant_stm32,
2334 .id = 0x10153180,
2335 .mask = 0xf0ffffff,
2336 .data = &variant_stm32_sdmmc,
2338 /* Qualcomm variants */
2340 .id = 0x00051180,
2341 .mask = 0x000fffff,
2342 .data = &variant_qcom,
2344 { 0, 0 },
2347 MODULE_DEVICE_TABLE(amba, mmci_ids);
2349 static struct amba_driver mmci_driver = {
2350 .drv = {
2351 .name = DRIVER_NAME,
2352 .pm = &mmci_dev_pm_ops,
2354 .probe = mmci_probe,
2355 .remove = mmci_remove,
2356 .id_table = mmci_ids,
2359 module_amba_driver(mmci_driver);
2361 module_param(fmax, uint, 0444);
2363 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2364 MODULE_LICENSE("GPL");