1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
5 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6 * Copyright (C) 2010 ST-Ericsson SA
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/slot-gpio.h>
26 #include <linux/amba/bus.h>
27 #include <linux/clk.h>
28 #include <linux/scatterlist.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/dmaengine.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/amba/mmci.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/types.h>
36 #include <linux/pinctrl/consumer.h>
37 #include <linux/reset.h>
39 #include <asm/div64.h>
44 #define DRIVER_NAME "mmci-pl18x"
46 static void mmci_variant_init(struct mmci_host
*host
);
47 static void ux500_variant_init(struct mmci_host
*host
);
48 static void ux500v2_variant_init(struct mmci_host
*host
);
50 static unsigned int fmax
= 515633;
52 static struct variant_data variant_arm
= {
54 .fifohalfsize
= 8 * 4,
55 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
56 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
57 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
58 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
59 .datalength_bits
= 16,
60 .datactrl_blocksz
= 11,
61 .pwrreg_powerup
= MCI_PWR_UP
,
63 .reversed_irq_handling
= true,
65 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
66 .start_err
= MCI_STARTBITERR
,
68 .init
= mmci_variant_init
,
71 static struct variant_data variant_arm_extended_fifo
= {
73 .fifohalfsize
= 64 * 4,
74 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
75 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
76 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
77 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
78 .datalength_bits
= 16,
79 .datactrl_blocksz
= 11,
80 .pwrreg_powerup
= MCI_PWR_UP
,
83 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
84 .start_err
= MCI_STARTBITERR
,
86 .init
= mmci_variant_init
,
89 static struct variant_data variant_arm_extended_fifo_hwfc
= {
91 .fifohalfsize
= 64 * 4,
92 .clkreg_enable
= MCI_ARM_HWFCEN
,
93 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
94 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
95 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
96 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
97 .datalength_bits
= 16,
98 .datactrl_blocksz
= 11,
99 .pwrreg_powerup
= MCI_PWR_UP
,
102 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
103 .start_err
= MCI_STARTBITERR
,
104 .opendrain
= MCI_ROD
,
105 .init
= mmci_variant_init
,
108 static struct variant_data variant_u300
= {
110 .fifohalfsize
= 8 * 4,
111 .clkreg_enable
= MCI_ST_U300_HWFCEN
,
112 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
113 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
114 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
115 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
116 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
117 .datalength_bits
= 16,
118 .datactrl_blocksz
= 11,
119 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
121 .pwrreg_powerup
= MCI_PWR_ON
,
123 .signal_direction
= true,
124 .pwrreg_clkgate
= true,
125 .pwrreg_nopower
= true,
127 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
128 .start_err
= MCI_STARTBITERR
,
130 .init
= mmci_variant_init
,
133 static struct variant_data variant_nomadik
= {
135 .fifohalfsize
= 8 * 4,
136 .clkreg
= MCI_CLK_ENABLE
,
137 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
138 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
139 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
140 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
141 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
142 .datalength_bits
= 24,
143 .datactrl_blocksz
= 11,
144 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
147 .pwrreg_powerup
= MCI_PWR_ON
,
149 .signal_direction
= true,
150 .pwrreg_clkgate
= true,
151 .pwrreg_nopower
= true,
153 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
154 .start_err
= MCI_STARTBITERR
,
156 .init
= mmci_variant_init
,
159 static struct variant_data variant_ux500
= {
161 .fifohalfsize
= 8 * 4,
162 .clkreg
= MCI_CLK_ENABLE
,
163 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
164 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
165 .clkreg_neg_edge_enable
= MCI_ST_UX500_NEG_EDGE
,
166 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
167 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
168 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
169 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
170 .datalength_bits
= 24,
171 .datactrl_blocksz
= 11,
172 .datactrl_any_blocksz
= true,
173 .dma_power_of_2
= true,
174 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
177 .pwrreg_powerup
= MCI_PWR_ON
,
179 .signal_direction
= true,
180 .pwrreg_clkgate
= true,
182 .busy_dpsm_flag
= MCI_DPSM_ST_BUSYMODE
,
183 .busy_detect_flag
= MCI_ST_CARDBUSY
,
184 .busy_detect_mask
= MCI_ST_BUSYENDMASK
,
185 .pwrreg_nopower
= true,
187 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
188 .start_err
= MCI_STARTBITERR
,
190 .init
= ux500_variant_init
,
193 static struct variant_data variant_ux500v2
= {
195 .fifohalfsize
= 8 * 4,
196 .clkreg
= MCI_CLK_ENABLE
,
197 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
198 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
199 .clkreg_neg_edge_enable
= MCI_ST_UX500_NEG_EDGE
,
200 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
201 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
202 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
203 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
204 .datactrl_mask_ddrmode
= MCI_DPSM_ST_DDRMODE
,
205 .datalength_bits
= 24,
206 .datactrl_blocksz
= 11,
207 .datactrl_any_blocksz
= true,
208 .dma_power_of_2
= true,
209 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
212 .pwrreg_powerup
= MCI_PWR_ON
,
214 .signal_direction
= true,
215 .pwrreg_clkgate
= true,
217 .busy_dpsm_flag
= MCI_DPSM_ST_BUSYMODE
,
218 .busy_detect_flag
= MCI_ST_CARDBUSY
,
219 .busy_detect_mask
= MCI_ST_BUSYENDMASK
,
220 .pwrreg_nopower
= true,
222 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
223 .start_err
= MCI_STARTBITERR
,
225 .init
= ux500v2_variant_init
,
228 static struct variant_data variant_stm32
= {
230 .fifohalfsize
= 8 * 4,
231 .clkreg
= MCI_CLK_ENABLE
,
232 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
233 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
234 .clkreg_neg_edge_enable
= MCI_ST_UX500_NEG_EDGE
,
235 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
236 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
237 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
238 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
239 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
240 .datalength_bits
= 24,
241 .datactrl_blocksz
= 11,
242 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
245 .pwrreg_powerup
= MCI_PWR_ON
,
247 .pwrreg_clkgate
= true,
248 .pwrreg_nopower
= true,
249 .init
= mmci_variant_init
,
252 static struct variant_data variant_stm32_sdmmc
= {
254 .fifohalfsize
= 8 * 4,
256 .stm32_clkdiv
= true,
257 .cmdreg_cpsm_enable
= MCI_CPSM_STM32_ENABLE
,
258 .cmdreg_lrsp_crc
= MCI_CPSM_STM32_LRSP_CRC
,
259 .cmdreg_srsp_crc
= MCI_CPSM_STM32_SRSP_CRC
,
260 .cmdreg_srsp
= MCI_CPSM_STM32_SRSP
,
261 .cmdreg_stop
= MCI_CPSM_STM32_CMDSTOP
,
262 .data_cmd_enable
= MCI_CPSM_STM32_CMDTRANS
,
263 .irq_pio_mask
= MCI_IRQ_PIO_STM32_MASK
,
264 .datactrl_first
= true,
265 .datacnt_useless
= true,
266 .datalength_bits
= 25,
267 .datactrl_blocksz
= 14,
268 .datactrl_any_blocksz
= true,
269 .stm32_idmabsize_mask
= GENMASK(12, 5),
270 .busy_timeout
= true,
272 .busy_detect_flag
= MCI_STM32_BUSYD0
,
273 .busy_detect_mask
= MCI_STM32_BUSYD0ENDMASK
,
274 .init
= sdmmc_variant_init
,
277 static struct variant_data variant_qcom
= {
279 .fifohalfsize
= 8 * 4,
280 .clkreg
= MCI_CLK_ENABLE
,
281 .clkreg_enable
= MCI_QCOM_CLK_FLOWENA
|
282 MCI_QCOM_CLK_SELECT_IN_FBCLK
,
283 .clkreg_8bit_bus_enable
= MCI_QCOM_CLK_WIDEBUS_8
,
284 .datactrl_mask_ddrmode
= MCI_QCOM_CLK_SELECT_IN_DDR_MODE
,
285 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
286 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
287 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
288 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
289 .data_cmd_enable
= MCI_CPSM_QCOM_DATCMD
,
290 .datalength_bits
= 24,
291 .datactrl_blocksz
= 11,
292 .datactrl_any_blocksz
= true,
293 .pwrreg_powerup
= MCI_PWR_UP
,
295 .explicit_mclk_control
= true,
299 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
300 .start_err
= MCI_STARTBITERR
,
301 .opendrain
= MCI_ROD
,
302 .init
= qcom_variant_init
,
305 /* Busy detection for the ST Micro variant */
306 static int mmci_card_busy(struct mmc_host
*mmc
)
308 struct mmci_host
*host
= mmc_priv(mmc
);
312 spin_lock_irqsave(&host
->lock
, flags
);
313 if (readl(host
->base
+ MMCISTATUS
) & host
->variant
->busy_detect_flag
)
315 spin_unlock_irqrestore(&host
->lock
, flags
);
320 static void mmci_reg_delay(struct mmci_host
*host
)
323 * According to the spec, at least three feedback clock cycles
324 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
325 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
326 * Worst delay time during card init is at 100 kHz => 30 us.
327 * Worst delay time when up and running is at 25 MHz => 120 ns.
329 if (host
->cclk
< 25000000)
336 * This must be called with host->lock held
338 void mmci_write_clkreg(struct mmci_host
*host
, u32 clk
)
340 if (host
->clk_reg
!= clk
) {
342 writel(clk
, host
->base
+ MMCICLOCK
);
347 * This must be called with host->lock held
349 void mmci_write_pwrreg(struct mmci_host
*host
, u32 pwr
)
351 if (host
->pwr_reg
!= pwr
) {
353 writel(pwr
, host
->base
+ MMCIPOWER
);
358 * This must be called with host->lock held
360 static void mmci_write_datactrlreg(struct mmci_host
*host
, u32 datactrl
)
362 /* Keep busy mode in DPSM if enabled */
363 datactrl
|= host
->datactrl_reg
& host
->variant
->busy_dpsm_flag
;
365 if (host
->datactrl_reg
!= datactrl
) {
366 host
->datactrl_reg
= datactrl
;
367 writel(datactrl
, host
->base
+ MMCIDATACTRL
);
372 * This must be called with host->lock held
374 static void mmci_set_clkreg(struct mmci_host
*host
, unsigned int desired
)
376 struct variant_data
*variant
= host
->variant
;
377 u32 clk
= variant
->clkreg
;
379 /* Make sure cclk reflects the current calculated clock */
383 if (variant
->explicit_mclk_control
) {
384 host
->cclk
= host
->mclk
;
385 } else if (desired
>= host
->mclk
) {
386 clk
= MCI_CLK_BYPASS
;
387 if (variant
->st_clkdiv
)
388 clk
|= MCI_ST_UX500_NEG_EDGE
;
389 host
->cclk
= host
->mclk
;
390 } else if (variant
->st_clkdiv
) {
392 * DB8500 TRM says f = mclk / (clkdiv + 2)
393 * => clkdiv = (mclk / f) - 2
394 * Round the divider up so we don't exceed the max
397 clk
= DIV_ROUND_UP(host
->mclk
, desired
) - 2;
400 host
->cclk
= host
->mclk
/ (clk
+ 2);
403 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
404 * => clkdiv = mclk / (2 * f) - 1
406 clk
= host
->mclk
/ (2 * desired
) - 1;
409 host
->cclk
= host
->mclk
/ (2 * (clk
+ 1));
412 clk
|= variant
->clkreg_enable
;
413 clk
|= MCI_CLK_ENABLE
;
414 /* This hasn't proven to be worthwhile */
415 /* clk |= MCI_CLK_PWRSAVE; */
418 /* Set actual clock for debug */
419 host
->mmc
->actual_clock
= host
->cclk
;
421 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_4
)
423 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_8
)
424 clk
|= variant
->clkreg_8bit_bus_enable
;
426 if (host
->mmc
->ios
.timing
== MMC_TIMING_UHS_DDR50
||
427 host
->mmc
->ios
.timing
== MMC_TIMING_MMC_DDR52
)
428 clk
|= variant
->clkreg_neg_edge_enable
;
430 mmci_write_clkreg(host
, clk
);
433 static void mmci_dma_release(struct mmci_host
*host
)
435 if (host
->ops
&& host
->ops
->dma_release
)
436 host
->ops
->dma_release(host
);
438 host
->use_dma
= false;
441 static void mmci_dma_setup(struct mmci_host
*host
)
443 if (!host
->ops
|| !host
->ops
->dma_setup
)
446 if (host
->ops
->dma_setup(host
))
449 /* initialize pre request cookie */
450 host
->next_cookie
= 1;
452 host
->use_dma
= true;
456 * Validate mmc prerequisites
458 static int mmci_validate_data(struct mmci_host
*host
,
459 struct mmc_data
*data
)
461 struct variant_data
*variant
= host
->variant
;
465 if (!is_power_of_2(data
->blksz
) && !variant
->datactrl_any_blocksz
) {
466 dev_err(mmc_dev(host
->mmc
),
467 "unsupported block size (%d bytes)\n", data
->blksz
);
471 if (host
->ops
&& host
->ops
->validate_data
)
472 return host
->ops
->validate_data(host
, data
);
477 static int mmci_prep_data(struct mmci_host
*host
, struct mmc_data
*data
, bool next
)
481 if (!host
->ops
|| !host
->ops
->prep_data
)
484 err
= host
->ops
->prep_data(host
, data
, next
);
487 data
->host_cookie
= ++host
->next_cookie
< 0 ?
488 1 : host
->next_cookie
;
493 static void mmci_unprep_data(struct mmci_host
*host
, struct mmc_data
*data
,
496 if (host
->ops
&& host
->ops
->unprep_data
)
497 host
->ops
->unprep_data(host
, data
, err
);
499 data
->host_cookie
= 0;
502 static void mmci_get_next_data(struct mmci_host
*host
, struct mmc_data
*data
)
504 WARN_ON(data
->host_cookie
&& data
->host_cookie
!= host
->next_cookie
);
506 if (host
->ops
&& host
->ops
->get_next_data
)
507 host
->ops
->get_next_data(host
, data
);
510 static int mmci_dma_start(struct mmci_host
*host
, unsigned int datactrl
)
512 struct mmc_data
*data
= host
->data
;
518 ret
= mmci_prep_data(host
, data
, false);
522 if (!host
->ops
|| !host
->ops
->dma_start
)
525 /* Okay, go for it. */
526 dev_vdbg(mmc_dev(host
->mmc
),
527 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
528 data
->sg_len
, data
->blksz
, data
->blocks
, data
->flags
);
530 ret
= host
->ops
->dma_start(host
, &datactrl
);
534 /* Trigger the DMA transfer */
535 mmci_write_datactrlreg(host
, datactrl
);
538 * Let the MMCI say when the data is ended and it's time
539 * to fire next DMA request. When that happens, MMCI will
540 * call mmci_data_end()
542 writel(readl(host
->base
+ MMCIMASK0
) | MCI_DATAENDMASK
,
543 host
->base
+ MMCIMASK0
);
547 static void mmci_dma_finalize(struct mmci_host
*host
, struct mmc_data
*data
)
552 if (host
->ops
&& host
->ops
->dma_finalize
)
553 host
->ops
->dma_finalize(host
, data
);
556 static void mmci_dma_error(struct mmci_host
*host
)
561 if (host
->ops
&& host
->ops
->dma_error
)
562 host
->ops
->dma_error(host
);
566 mmci_request_end(struct mmci_host
*host
, struct mmc_request
*mrq
)
568 writel(0, host
->base
+ MMCICOMMAND
);
575 mmc_request_done(host
->mmc
, mrq
);
578 static void mmci_set_mask1(struct mmci_host
*host
, unsigned int mask
)
580 void __iomem
*base
= host
->base
;
581 struct variant_data
*variant
= host
->variant
;
583 if (host
->singleirq
) {
584 unsigned int mask0
= readl(base
+ MMCIMASK0
);
586 mask0
&= ~variant
->irq_pio_mask
;
589 writel(mask0
, base
+ MMCIMASK0
);
592 if (variant
->mmcimask1
)
593 writel(mask
, base
+ MMCIMASK1
);
595 host
->mask1_reg
= mask
;
598 static void mmci_stop_data(struct mmci_host
*host
)
600 mmci_write_datactrlreg(host
, 0);
601 mmci_set_mask1(host
, 0);
605 static void mmci_init_sg(struct mmci_host
*host
, struct mmc_data
*data
)
607 unsigned int flags
= SG_MITER_ATOMIC
;
609 if (data
->flags
& MMC_DATA_READ
)
610 flags
|= SG_MITER_TO_SG
;
612 flags
|= SG_MITER_FROM_SG
;
614 sg_miter_start(&host
->sg_miter
, data
->sg
, data
->sg_len
, flags
);
617 static u32
mmci_get_dctrl_cfg(struct mmci_host
*host
)
619 return MCI_DPSM_ENABLE
| mmci_dctrl_blksz(host
);
622 static u32
ux500v2_get_dctrl_cfg(struct mmci_host
*host
)
624 return MCI_DPSM_ENABLE
| (host
->data
->blksz
<< 16);
627 static bool ux500_busy_complete(struct mmci_host
*host
, u32 status
, u32 err_msk
)
629 void __iomem
*base
= host
->base
;
632 * Before unmasking for the busy end IRQ, confirm that the
633 * command was sent successfully. To keep track of having a
634 * command in-progress, waiting for busy signaling to end,
635 * store the status in host->busy_status.
637 * Note that, the card may need a couple of clock cycles before
638 * it starts signaling busy on DAT0, hence re-read the
639 * MMCISTATUS register here, to allow the busy bit to be set.
640 * Potentially we may even need to poll the register for a
641 * while, to allow it to be set, but tests indicates that it
644 if (!host
->busy_status
&& !(status
& err_msk
) &&
645 (readl(base
+ MMCISTATUS
) & host
->variant
->busy_detect_flag
)) {
646 writel(readl(base
+ MMCIMASK0
) |
647 host
->variant
->busy_detect_mask
,
650 host
->busy_status
= status
& (MCI_CMDSENT
| MCI_CMDRESPEND
);
655 * If there is a command in-progress that has been successfully
656 * sent, then bail out if busy status is set and wait for the
659 * Note that, the HW triggers an IRQ on both edges while
660 * monitoring DAT0 for busy completion, but there is only one
661 * status bit in MMCISTATUS for the busy state. Therefore
662 * both the start and the end interrupts needs to be cleared,
663 * one after the other. So, clear the busy start IRQ here.
665 if (host
->busy_status
&&
666 (status
& host
->variant
->busy_detect_flag
)) {
667 writel(host
->variant
->busy_detect_mask
, base
+ MMCICLEAR
);
672 * If there is a command in-progress that has been successfully
673 * sent and the busy bit isn't set, it means we have received
674 * the busy end IRQ. Clear and mask the IRQ, then continue to
675 * process the command.
677 if (host
->busy_status
) {
678 writel(host
->variant
->busy_detect_mask
, base
+ MMCICLEAR
);
680 writel(readl(base
+ MMCIMASK0
) &
681 ~host
->variant
->busy_detect_mask
, base
+ MMCIMASK0
);
682 host
->busy_status
= 0;
689 * All the DMA operation mode stuff goes inside this ifdef.
690 * This assumes that you have a generic DMA device interface,
691 * no custom DMA interfaces are supported.
693 #ifdef CONFIG_DMA_ENGINE
694 struct mmci_dmae_next
{
695 struct dma_async_tx_descriptor
*desc
;
696 struct dma_chan
*chan
;
699 struct mmci_dmae_priv
{
700 struct dma_chan
*cur
;
701 struct dma_chan
*rx_channel
;
702 struct dma_chan
*tx_channel
;
703 struct dma_async_tx_descriptor
*desc_current
;
704 struct mmci_dmae_next next_data
;
707 int mmci_dmae_setup(struct mmci_host
*host
)
709 const char *rxname
, *txname
;
710 struct mmci_dmae_priv
*dmae
;
712 dmae
= devm_kzalloc(mmc_dev(host
->mmc
), sizeof(*dmae
), GFP_KERNEL
);
716 host
->dma_priv
= dmae
;
718 dmae
->rx_channel
= dma_request_chan(mmc_dev(host
->mmc
), "rx");
719 if (IS_ERR(dmae
->rx_channel
)) {
720 int ret
= PTR_ERR(dmae
->rx_channel
);
721 dmae
->rx_channel
= NULL
;
725 dmae
->tx_channel
= dma_request_chan(mmc_dev(host
->mmc
), "tx");
726 if (IS_ERR(dmae
->tx_channel
)) {
727 if (PTR_ERR(dmae
->tx_channel
) == -EPROBE_DEFER
)
728 dev_warn(mmc_dev(host
->mmc
),
729 "Deferred probe for TX channel ignored\n");
730 dmae
->tx_channel
= NULL
;
734 * If only an RX channel is specified, the driver will
735 * attempt to use it bidirectionally, however if it is
736 * is specified but cannot be located, DMA will be disabled.
738 if (dmae
->rx_channel
&& !dmae
->tx_channel
)
739 dmae
->tx_channel
= dmae
->rx_channel
;
741 if (dmae
->rx_channel
)
742 rxname
= dma_chan_name(dmae
->rx_channel
);
746 if (dmae
->tx_channel
)
747 txname
= dma_chan_name(dmae
->tx_channel
);
751 dev_info(mmc_dev(host
->mmc
), "DMA channels RX %s, TX %s\n",
755 * Limit the maximum segment size in any SG entry according to
756 * the parameters of the DMA engine device.
758 if (dmae
->tx_channel
) {
759 struct device
*dev
= dmae
->tx_channel
->device
->dev
;
760 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
762 if (max_seg_size
< host
->mmc
->max_seg_size
)
763 host
->mmc
->max_seg_size
= max_seg_size
;
765 if (dmae
->rx_channel
) {
766 struct device
*dev
= dmae
->rx_channel
->device
->dev
;
767 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
769 if (max_seg_size
< host
->mmc
->max_seg_size
)
770 host
->mmc
->max_seg_size
= max_seg_size
;
773 if (!dmae
->tx_channel
|| !dmae
->rx_channel
) {
774 mmci_dmae_release(host
);
782 * This is used in or so inline it
783 * so it can be discarded.
785 void mmci_dmae_release(struct mmci_host
*host
)
787 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
789 if (dmae
->rx_channel
)
790 dma_release_channel(dmae
->rx_channel
);
791 if (dmae
->tx_channel
)
792 dma_release_channel(dmae
->tx_channel
);
793 dmae
->rx_channel
= dmae
->tx_channel
= NULL
;
796 static void mmci_dma_unmap(struct mmci_host
*host
, struct mmc_data
*data
)
798 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
799 struct dma_chan
*chan
;
801 if (data
->flags
& MMC_DATA_READ
)
802 chan
= dmae
->rx_channel
;
804 chan
= dmae
->tx_channel
;
806 dma_unmap_sg(chan
->device
->dev
, data
->sg
, data
->sg_len
,
807 mmc_get_dma_dir(data
));
810 void mmci_dmae_error(struct mmci_host
*host
)
812 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
814 if (!dma_inprogress(host
))
817 dev_err(mmc_dev(host
->mmc
), "error during DMA transfer!\n");
818 dmaengine_terminate_all(dmae
->cur
);
819 host
->dma_in_progress
= false;
821 dmae
->desc_current
= NULL
;
822 host
->data
->host_cookie
= 0;
824 mmci_dma_unmap(host
, host
->data
);
827 void mmci_dmae_finalize(struct mmci_host
*host
, struct mmc_data
*data
)
829 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
833 if (!dma_inprogress(host
))
836 /* Wait up to 1ms for the DMA to complete */
838 status
= readl(host
->base
+ MMCISTATUS
);
839 if (!(status
& MCI_RXDATAAVLBLMASK
) || i
>= 100)
845 * Check to see whether we still have some data left in the FIFO -
846 * this catches DMA controllers which are unable to monitor the
847 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
848 * contiguous buffers. On TX, we'll get a FIFO underrun error.
850 if (status
& MCI_RXDATAAVLBLMASK
) {
851 mmci_dma_error(host
);
854 } else if (!data
->host_cookie
) {
855 mmci_dma_unmap(host
, data
);
859 * Use of DMA with scatter-gather is impossible.
860 * Give up with DMA and switch back to PIO mode.
862 if (status
& MCI_RXDATAAVLBLMASK
) {
863 dev_err(mmc_dev(host
->mmc
), "buggy DMA detected. Taking evasive action.\n");
864 mmci_dma_release(host
);
867 host
->dma_in_progress
= false;
869 dmae
->desc_current
= NULL
;
872 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
873 static int _mmci_dmae_prep_data(struct mmci_host
*host
, struct mmc_data
*data
,
874 struct dma_chan
**dma_chan
,
875 struct dma_async_tx_descriptor
**dma_desc
)
877 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
878 struct variant_data
*variant
= host
->variant
;
879 struct dma_slave_config conf
= {
880 .src_addr
= host
->phybase
+ MMCIFIFO
,
881 .dst_addr
= host
->phybase
+ MMCIFIFO
,
882 .src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
883 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
884 .src_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
885 .dst_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
888 struct dma_chan
*chan
;
889 struct dma_device
*device
;
890 struct dma_async_tx_descriptor
*desc
;
892 unsigned long flags
= DMA_CTRL_ACK
;
894 if (data
->flags
& MMC_DATA_READ
) {
895 conf
.direction
= DMA_DEV_TO_MEM
;
896 chan
= dmae
->rx_channel
;
898 conf
.direction
= DMA_MEM_TO_DEV
;
899 chan
= dmae
->tx_channel
;
902 /* If there's no DMA channel, fall back to PIO */
906 /* If less than or equal to the fifo size, don't bother with DMA */
907 if (data
->blksz
* data
->blocks
<= variant
->fifosize
)
911 * This is necessary to get SDIO working on the Ux500. We do not yet
912 * know if this is a bug in:
913 * - The Ux500 DMA controller (DMA40)
914 * - The MMCI DMA interface on the Ux500
915 * some power of two blocks (such as 64 bytes) are sent regularly
916 * during SDIO traffic and those work fine so for these we enable DMA
919 if (host
->variant
->dma_power_of_2
&& !is_power_of_2(data
->blksz
))
922 device
= chan
->device
;
923 nr_sg
= dma_map_sg(device
->dev
, data
->sg
, data
->sg_len
,
924 mmc_get_dma_dir(data
));
928 if (host
->variant
->qcom_dml
)
929 flags
|= DMA_PREP_INTERRUPT
;
931 dmaengine_slave_config(chan
, &conf
);
932 desc
= dmaengine_prep_slave_sg(chan
, data
->sg
, nr_sg
,
933 conf
.direction
, flags
);
943 dma_unmap_sg(device
->dev
, data
->sg
, data
->sg_len
,
944 mmc_get_dma_dir(data
));
948 int mmci_dmae_prep_data(struct mmci_host
*host
,
949 struct mmc_data
*data
,
952 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
953 struct mmci_dmae_next
*nd
= &dmae
->next_data
;
959 return _mmci_dmae_prep_data(host
, data
, &nd
->chan
, &nd
->desc
);
960 /* Check if next job is already prepared. */
961 if (dmae
->cur
&& dmae
->desc_current
)
964 /* No job were prepared thus do it now. */
965 return _mmci_dmae_prep_data(host
, data
, &dmae
->cur
,
966 &dmae
->desc_current
);
969 int mmci_dmae_start(struct mmci_host
*host
, unsigned int *datactrl
)
971 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
974 host
->dma_in_progress
= true;
975 ret
= dma_submit_error(dmaengine_submit(dmae
->desc_current
));
977 host
->dma_in_progress
= false;
980 dma_async_issue_pending(dmae
->cur
);
982 *datactrl
|= MCI_DPSM_DMAENABLE
;
987 void mmci_dmae_get_next_data(struct mmci_host
*host
, struct mmc_data
*data
)
989 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
990 struct mmci_dmae_next
*next
= &dmae
->next_data
;
995 WARN_ON(!data
->host_cookie
&& (next
->desc
|| next
->chan
));
997 dmae
->desc_current
= next
->desc
;
998 dmae
->cur
= next
->chan
;
1003 void mmci_dmae_unprep_data(struct mmci_host
*host
,
1004 struct mmc_data
*data
, int err
)
1007 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
1012 mmci_dma_unmap(host
, data
);
1015 struct mmci_dmae_next
*next
= &dmae
->next_data
;
1016 struct dma_chan
*chan
;
1017 if (data
->flags
& MMC_DATA_READ
)
1018 chan
= dmae
->rx_channel
;
1020 chan
= dmae
->tx_channel
;
1021 dmaengine_terminate_all(chan
);
1023 if (dmae
->desc_current
== next
->desc
)
1024 dmae
->desc_current
= NULL
;
1026 if (dmae
->cur
== next
->chan
) {
1027 host
->dma_in_progress
= false;
1036 static struct mmci_host_ops mmci_variant_ops
= {
1037 .prep_data
= mmci_dmae_prep_data
,
1038 .unprep_data
= mmci_dmae_unprep_data
,
1039 .get_datactrl_cfg
= mmci_get_dctrl_cfg
,
1040 .get_next_data
= mmci_dmae_get_next_data
,
1041 .dma_setup
= mmci_dmae_setup
,
1042 .dma_release
= mmci_dmae_release
,
1043 .dma_start
= mmci_dmae_start
,
1044 .dma_finalize
= mmci_dmae_finalize
,
1045 .dma_error
= mmci_dmae_error
,
1048 static struct mmci_host_ops mmci_variant_ops
= {
1049 .get_datactrl_cfg
= mmci_get_dctrl_cfg
,
1053 static void mmci_variant_init(struct mmci_host
*host
)
1055 host
->ops
= &mmci_variant_ops
;
1058 static void ux500_variant_init(struct mmci_host
*host
)
1060 host
->ops
= &mmci_variant_ops
;
1061 host
->ops
->busy_complete
= ux500_busy_complete
;
1064 static void ux500v2_variant_init(struct mmci_host
*host
)
1066 host
->ops
= &mmci_variant_ops
;
1067 host
->ops
->busy_complete
= ux500_busy_complete
;
1068 host
->ops
->get_datactrl_cfg
= ux500v2_get_dctrl_cfg
;
1071 static void mmci_pre_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1073 struct mmci_host
*host
= mmc_priv(mmc
);
1074 struct mmc_data
*data
= mrq
->data
;
1079 WARN_ON(data
->host_cookie
);
1081 if (mmci_validate_data(host
, data
))
1084 mmci_prep_data(host
, data
, true);
1087 static void mmci_post_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
,
1090 struct mmci_host
*host
= mmc_priv(mmc
);
1091 struct mmc_data
*data
= mrq
->data
;
1093 if (!data
|| !data
->host_cookie
)
1096 mmci_unprep_data(host
, data
, err
);
1099 static void mmci_start_data(struct mmci_host
*host
, struct mmc_data
*data
)
1101 struct variant_data
*variant
= host
->variant
;
1102 unsigned int datactrl
, timeout
, irqmask
;
1103 unsigned long long clks
;
1106 dev_dbg(mmc_dev(host
->mmc
), "blksz %04x blks %04x flags %08x\n",
1107 data
->blksz
, data
->blocks
, data
->flags
);
1110 host
->size
= data
->blksz
* data
->blocks
;
1111 data
->bytes_xfered
= 0;
1113 clks
= (unsigned long long)data
->timeout_ns
* host
->cclk
;
1114 do_div(clks
, NSEC_PER_SEC
);
1116 timeout
= data
->timeout_clks
+ (unsigned int)clks
;
1119 writel(timeout
, base
+ MMCIDATATIMER
);
1120 writel(host
->size
, base
+ MMCIDATALENGTH
);
1122 datactrl
= host
->ops
->get_datactrl_cfg(host
);
1123 datactrl
|= host
->data
->flags
& MMC_DATA_READ
? MCI_DPSM_DIRECTION
: 0;
1125 if (host
->mmc
->card
&& mmc_card_sdio(host
->mmc
->card
)) {
1128 datactrl
|= variant
->datactrl_mask_sdio
;
1131 * The ST Micro variant for SDIO small write transfers
1132 * needs to have clock H/W flow control disabled,
1133 * otherwise the transfer will not start. The threshold
1134 * depends on the rate of MCLK.
1136 if (variant
->st_sdio
&& data
->flags
& MMC_DATA_WRITE
&&
1138 (host
->size
<= 8 && host
->mclk
> 50000000)))
1139 clk
= host
->clk_reg
& ~variant
->clkreg_enable
;
1141 clk
= host
->clk_reg
| variant
->clkreg_enable
;
1143 mmci_write_clkreg(host
, clk
);
1146 if (host
->mmc
->ios
.timing
== MMC_TIMING_UHS_DDR50
||
1147 host
->mmc
->ios
.timing
== MMC_TIMING_MMC_DDR52
)
1148 datactrl
|= variant
->datactrl_mask_ddrmode
;
1151 * Attempt to use DMA operation mode, if this
1152 * should fail, fall back to PIO mode
1154 if (!mmci_dma_start(host
, datactrl
))
1157 /* IRQ mode, map the SG list for CPU reading/writing */
1158 mmci_init_sg(host
, data
);
1160 if (data
->flags
& MMC_DATA_READ
) {
1161 irqmask
= MCI_RXFIFOHALFFULLMASK
;
1164 * If we have less than the fifo 'half-full' threshold to
1165 * transfer, trigger a PIO interrupt as soon as any data
1168 if (host
->size
< variant
->fifohalfsize
)
1169 irqmask
|= MCI_RXDATAAVLBLMASK
;
1172 * We don't actually need to include "FIFO empty" here
1173 * since its implicit in "FIFO half empty".
1175 irqmask
= MCI_TXFIFOHALFEMPTYMASK
;
1178 mmci_write_datactrlreg(host
, datactrl
);
1179 writel(readl(base
+ MMCIMASK0
) & ~MCI_DATAENDMASK
, base
+ MMCIMASK0
);
1180 mmci_set_mask1(host
, irqmask
);
1184 mmci_start_command(struct mmci_host
*host
, struct mmc_command
*cmd
, u32 c
)
1186 void __iomem
*base
= host
->base
;
1187 unsigned long long clks
;
1189 dev_dbg(mmc_dev(host
->mmc
), "op %02x arg %08x flags %08x\n",
1190 cmd
->opcode
, cmd
->arg
, cmd
->flags
);
1192 if (readl(base
+ MMCICOMMAND
) & host
->variant
->cmdreg_cpsm_enable
) {
1193 writel(0, base
+ MMCICOMMAND
);
1194 mmci_reg_delay(host
);
1197 if (host
->variant
->cmdreg_stop
&&
1198 cmd
->opcode
== MMC_STOP_TRANSMISSION
)
1199 c
|= host
->variant
->cmdreg_stop
;
1201 c
|= cmd
->opcode
| host
->variant
->cmdreg_cpsm_enable
;
1202 if (cmd
->flags
& MMC_RSP_PRESENT
) {
1203 if (cmd
->flags
& MMC_RSP_136
)
1204 c
|= host
->variant
->cmdreg_lrsp_crc
;
1205 else if (cmd
->flags
& MMC_RSP_CRC
)
1206 c
|= host
->variant
->cmdreg_srsp_crc
;
1208 c
|= host
->variant
->cmdreg_srsp
;
1211 if (host
->variant
->busy_timeout
&& cmd
->flags
& MMC_RSP_BUSY
) {
1212 if (!cmd
->busy_timeout
)
1213 cmd
->busy_timeout
= 10 * MSEC_PER_SEC
;
1215 clks
= (unsigned long long)cmd
->busy_timeout
* host
->cclk
;
1216 do_div(clks
, MSEC_PER_SEC
);
1217 writel_relaxed(clks
, host
->base
+ MMCIDATATIMER
);
1221 c
|= MCI_CPSM_INTERRUPT
;
1223 if (mmc_cmd_type(cmd
) == MMC_CMD_ADTC
)
1224 c
|= host
->variant
->data_cmd_enable
;
1228 writel(cmd
->arg
, base
+ MMCIARGUMENT
);
1229 writel(c
, base
+ MMCICOMMAND
);
1232 static void mmci_stop_command(struct mmci_host
*host
)
1234 host
->stop_abort
.error
= 0;
1235 mmci_start_command(host
, &host
->stop_abort
, 0);
1239 mmci_data_irq(struct mmci_host
*host
, struct mmc_data
*data
,
1240 unsigned int status
)
1242 unsigned int status_err
;
1244 /* Make sure we have data to handle */
1248 /* First check for errors */
1249 status_err
= status
& (host
->variant
->start_err
|
1250 MCI_DATACRCFAIL
| MCI_DATATIMEOUT
|
1251 MCI_TXUNDERRUN
| MCI_RXOVERRUN
);
1254 u32 remain
, success
;
1256 /* Terminate the DMA transfer */
1257 mmci_dma_error(host
);
1260 * Calculate how far we are into the transfer. Note that
1261 * the data counter gives the number of bytes transferred
1262 * on the MMC bus, not on the host side. On reads, this
1263 * can be as much as a FIFO-worth of data ahead. This
1264 * matters for FIFO overruns only.
1266 if (!host
->variant
->datacnt_useless
) {
1267 remain
= readl(host
->base
+ MMCIDATACNT
);
1268 success
= data
->blksz
* data
->blocks
- remain
;
1273 dev_dbg(mmc_dev(host
->mmc
), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1274 status_err
, success
);
1275 if (status_err
& MCI_DATACRCFAIL
) {
1276 /* Last block was not successful */
1278 data
->error
= -EILSEQ
;
1279 } else if (status_err
& MCI_DATATIMEOUT
) {
1280 data
->error
= -ETIMEDOUT
;
1281 } else if (status_err
& MCI_STARTBITERR
) {
1282 data
->error
= -ECOMM
;
1283 } else if (status_err
& MCI_TXUNDERRUN
) {
1285 } else if (status_err
& MCI_RXOVERRUN
) {
1286 if (success
> host
->variant
->fifosize
)
1287 success
-= host
->variant
->fifosize
;
1292 data
->bytes_xfered
= round_down(success
, data
->blksz
);
1295 if (status
& MCI_DATABLOCKEND
)
1296 dev_err(mmc_dev(host
->mmc
), "stray MCI_DATABLOCKEND interrupt\n");
1298 if (status
& MCI_DATAEND
|| data
->error
) {
1299 mmci_dma_finalize(host
, data
);
1301 mmci_stop_data(host
);
1304 /* The error clause is handled above, success! */
1305 data
->bytes_xfered
= data
->blksz
* data
->blocks
;
1308 if (host
->variant
->cmdreg_stop
&& data
->error
)
1309 mmci_stop_command(host
);
1311 mmci_request_end(host
, data
->mrq
);
1312 } else if (host
->mrq
->sbc
&& !data
->error
) {
1313 mmci_request_end(host
, data
->mrq
);
1315 mmci_start_command(host
, data
->stop
, 0);
1321 mmci_cmd_irq(struct mmci_host
*host
, struct mmc_command
*cmd
,
1322 unsigned int status
)
1324 u32 err_msk
= MCI_CMDCRCFAIL
| MCI_CMDTIMEOUT
;
1325 void __iomem
*base
= host
->base
;
1326 bool sbc
, busy_resp
;
1331 sbc
= (cmd
== host
->mrq
->sbc
);
1332 busy_resp
= !!(cmd
->flags
& MMC_RSP_BUSY
);
1335 * We need to be one of these interrupts to be considered worth
1336 * handling. Note that we tag on any latent IRQs postponed
1337 * due to waiting for busy status.
1339 if (host
->variant
->busy_timeout
&& busy_resp
)
1340 err_msk
|= MCI_DATATIMEOUT
;
1342 if (!((status
| host
->busy_status
) &
1343 (err_msk
| MCI_CMDSENT
| MCI_CMDRESPEND
)))
1346 /* Handle busy detection on DAT0 if the variant supports it. */
1347 if (busy_resp
&& host
->variant
->busy_detect
)
1348 if (!host
->ops
->busy_complete(host
, status
, err_msk
))
1353 if (status
& MCI_CMDTIMEOUT
) {
1354 cmd
->error
= -ETIMEDOUT
;
1355 } else if (status
& MCI_CMDCRCFAIL
&& cmd
->flags
& MMC_RSP_CRC
) {
1356 cmd
->error
= -EILSEQ
;
1357 } else if (host
->variant
->busy_timeout
&& busy_resp
&&
1358 status
& MCI_DATATIMEOUT
) {
1359 cmd
->error
= -ETIMEDOUT
;
1360 host
->irq_action
= IRQ_WAKE_THREAD
;
1362 cmd
->resp
[0] = readl(base
+ MMCIRESPONSE0
);
1363 cmd
->resp
[1] = readl(base
+ MMCIRESPONSE1
);
1364 cmd
->resp
[2] = readl(base
+ MMCIRESPONSE2
);
1365 cmd
->resp
[3] = readl(base
+ MMCIRESPONSE3
);
1368 if ((!sbc
&& !cmd
->data
) || cmd
->error
) {
1370 /* Terminate the DMA transfer */
1371 mmci_dma_error(host
);
1373 mmci_stop_data(host
);
1374 if (host
->variant
->cmdreg_stop
&& cmd
->error
) {
1375 mmci_stop_command(host
);
1380 if (host
->irq_action
!= IRQ_WAKE_THREAD
)
1381 mmci_request_end(host
, host
->mrq
);
1384 mmci_start_command(host
, host
->mrq
->cmd
, 0);
1385 } else if (!host
->variant
->datactrl_first
&&
1386 !(cmd
->data
->flags
& MMC_DATA_READ
)) {
1387 mmci_start_data(host
, cmd
->data
);
1391 static int mmci_get_rx_fifocnt(struct mmci_host
*host
, u32 status
, int remain
)
1393 return remain
- (readl(host
->base
+ MMCIFIFOCNT
) << 2);
1396 static int mmci_qcom_get_rx_fifocnt(struct mmci_host
*host
, u32 status
, int r
)
1399 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1400 * from the fifo range should be used
1402 if (status
& MCI_RXFIFOHALFFULL
)
1403 return host
->variant
->fifohalfsize
;
1404 else if (status
& MCI_RXDATAAVLBL
)
1410 static int mmci_pio_read(struct mmci_host
*host
, char *buffer
, unsigned int remain
)
1412 void __iomem
*base
= host
->base
;
1414 u32 status
= readl(host
->base
+ MMCISTATUS
);
1415 int host_remain
= host
->size
;
1418 int count
= host
->get_rx_fifocnt(host
, status
, host_remain
);
1427 * SDIO especially may want to send something that is
1428 * not divisible by 4 (as opposed to card sectors
1429 * etc). Therefore make sure to always read the last bytes
1430 * while only doing full 32-bit reads towards the FIFO.
1432 if (unlikely(count
& 0x3)) {
1434 unsigned char buf
[4];
1435 ioread32_rep(base
+ MMCIFIFO
, buf
, 1);
1436 memcpy(ptr
, buf
, count
);
1438 ioread32_rep(base
+ MMCIFIFO
, ptr
, count
>> 2);
1442 ioread32_rep(base
+ MMCIFIFO
, ptr
, count
>> 2);
1447 host_remain
-= count
;
1452 status
= readl(base
+ MMCISTATUS
);
1453 } while (status
& MCI_RXDATAAVLBL
);
1455 return ptr
- buffer
;
1458 static int mmci_pio_write(struct mmci_host
*host
, char *buffer
, unsigned int remain
, u32 status
)
1460 struct variant_data
*variant
= host
->variant
;
1461 void __iomem
*base
= host
->base
;
1465 unsigned int count
, maxcnt
;
1467 maxcnt
= status
& MCI_TXFIFOEMPTY
?
1468 variant
->fifosize
: variant
->fifohalfsize
;
1469 count
= min(remain
, maxcnt
);
1472 * SDIO especially may want to send something that is
1473 * not divisible by 4 (as opposed to card sectors
1474 * etc), and the FIFO only accept full 32-bit writes.
1475 * So compensate by adding +3 on the count, a single
1476 * byte become a 32bit write, 7 bytes will be two
1479 iowrite32_rep(base
+ MMCIFIFO
, ptr
, (count
+ 3) >> 2);
1487 status
= readl(base
+ MMCISTATUS
);
1488 } while (status
& MCI_TXFIFOHALFEMPTY
);
1490 return ptr
- buffer
;
1494 * PIO data transfer IRQ handler.
1496 static irqreturn_t
mmci_pio_irq(int irq
, void *dev_id
)
1498 struct mmci_host
*host
= dev_id
;
1499 struct sg_mapping_iter
*sg_miter
= &host
->sg_miter
;
1500 struct variant_data
*variant
= host
->variant
;
1501 void __iomem
*base
= host
->base
;
1504 status
= readl(base
+ MMCISTATUS
);
1506 dev_dbg(mmc_dev(host
->mmc
), "irq1 (pio) %08x\n", status
);
1509 unsigned int remain
, len
;
1513 * For write, we only need to test the half-empty flag
1514 * here - if the FIFO is completely empty, then by
1515 * definition it is more than half empty.
1517 * For read, check for data available.
1519 if (!(status
& (MCI_TXFIFOHALFEMPTY
|MCI_RXDATAAVLBL
)))
1522 if (!sg_miter_next(sg_miter
))
1525 buffer
= sg_miter
->addr
;
1526 remain
= sg_miter
->length
;
1529 if (status
& MCI_RXACTIVE
)
1530 len
= mmci_pio_read(host
, buffer
, remain
);
1531 if (status
& MCI_TXACTIVE
)
1532 len
= mmci_pio_write(host
, buffer
, remain
, status
);
1534 sg_miter
->consumed
= len
;
1542 status
= readl(base
+ MMCISTATUS
);
1545 sg_miter_stop(sg_miter
);
1548 * If we have less than the fifo 'half-full' threshold to transfer,
1549 * trigger a PIO interrupt as soon as any data is available.
1551 if (status
& MCI_RXACTIVE
&& host
->size
< variant
->fifohalfsize
)
1552 mmci_set_mask1(host
, MCI_RXDATAAVLBLMASK
);
1555 * If we run out of data, disable the data IRQs; this
1556 * prevents a race where the FIFO becomes empty before
1557 * the chip itself has disabled the data path, and
1558 * stops us racing with our data end IRQ.
1560 if (host
->size
== 0) {
1561 mmci_set_mask1(host
, 0);
1562 writel(readl(base
+ MMCIMASK0
) | MCI_DATAENDMASK
, base
+ MMCIMASK0
);
1569 * Handle completion of command and data transfers.
1571 static irqreturn_t
mmci_irq(int irq
, void *dev_id
)
1573 struct mmci_host
*host
= dev_id
;
1576 spin_lock(&host
->lock
);
1577 host
->irq_action
= IRQ_HANDLED
;
1580 status
= readl(host
->base
+ MMCISTATUS
);
1582 if (host
->singleirq
) {
1583 if (status
& host
->mask1_reg
)
1584 mmci_pio_irq(irq
, dev_id
);
1586 status
&= ~host
->variant
->irq_pio_mask
;
1590 * Busy detection is managed by mmci_cmd_irq(), including to
1591 * clear the corresponding IRQ.
1593 status
&= readl(host
->base
+ MMCIMASK0
);
1594 if (host
->variant
->busy_detect
)
1595 writel(status
& ~host
->variant
->busy_detect_mask
,
1596 host
->base
+ MMCICLEAR
);
1598 writel(status
, host
->base
+ MMCICLEAR
);
1600 dev_dbg(mmc_dev(host
->mmc
), "irq0 (data+cmd) %08x\n", status
);
1602 if (host
->variant
->reversed_irq_handling
) {
1603 mmci_data_irq(host
, host
->data
, status
);
1604 mmci_cmd_irq(host
, host
->cmd
, status
);
1606 mmci_cmd_irq(host
, host
->cmd
, status
);
1607 mmci_data_irq(host
, host
->data
, status
);
1611 * Busy detection has been handled by mmci_cmd_irq() above.
1612 * Clear the status bit to prevent polling in IRQ context.
1614 if (host
->variant
->busy_detect_flag
)
1615 status
&= ~host
->variant
->busy_detect_flag
;
1619 spin_unlock(&host
->lock
);
1621 return host
->irq_action
;
1625 * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1627 * A reset is needed for some variants, where a datatimeout for a R1B request
1628 * causes the DPSM to stay busy (non-functional).
1630 static irqreturn_t
mmci_irq_thread(int irq
, void *dev_id
)
1632 struct mmci_host
*host
= dev_id
;
1633 unsigned long flags
;
1636 reset_control_assert(host
->rst
);
1638 reset_control_deassert(host
->rst
);
1641 spin_lock_irqsave(&host
->lock
, flags
);
1642 writel(host
->clk_reg
, host
->base
+ MMCICLOCK
);
1643 writel(host
->pwr_reg
, host
->base
+ MMCIPOWER
);
1644 writel(MCI_IRQENABLE
| host
->variant
->start_err
,
1645 host
->base
+ MMCIMASK0
);
1647 host
->irq_action
= IRQ_HANDLED
;
1648 mmci_request_end(host
, host
->mrq
);
1649 spin_unlock_irqrestore(&host
->lock
, flags
);
1651 return host
->irq_action
;
1654 static void mmci_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1656 struct mmci_host
*host
= mmc_priv(mmc
);
1657 unsigned long flags
;
1659 WARN_ON(host
->mrq
!= NULL
);
1661 mrq
->cmd
->error
= mmci_validate_data(host
, mrq
->data
);
1662 if (mrq
->cmd
->error
) {
1663 mmc_request_done(mmc
, mrq
);
1667 spin_lock_irqsave(&host
->lock
, flags
);
1672 mmci_get_next_data(host
, mrq
->data
);
1675 (host
->variant
->datactrl_first
|| mrq
->data
->flags
& MMC_DATA_READ
))
1676 mmci_start_data(host
, mrq
->data
);
1679 mmci_start_command(host
, mrq
->sbc
, 0);
1681 mmci_start_command(host
, mrq
->cmd
, 0);
1683 spin_unlock_irqrestore(&host
->lock
, flags
);
1686 static void mmci_set_max_busy_timeout(struct mmc_host
*mmc
)
1688 struct mmci_host
*host
= mmc_priv(mmc
);
1689 u32 max_busy_timeout
= 0;
1691 if (!host
->variant
->busy_detect
)
1694 if (host
->variant
->busy_timeout
&& mmc
->actual_clock
)
1695 max_busy_timeout
= ~0UL / (mmc
->actual_clock
/ MSEC_PER_SEC
);
1697 mmc
->max_busy_timeout
= max_busy_timeout
;
1700 static void mmci_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1702 struct mmci_host
*host
= mmc_priv(mmc
);
1703 struct variant_data
*variant
= host
->variant
;
1705 unsigned long flags
;
1708 if (host
->plat
->ios_handler
&&
1709 host
->plat
->ios_handler(mmc_dev(mmc
), ios
))
1710 dev_err(mmc_dev(mmc
), "platform ios_handler failed\n");
1712 switch (ios
->power_mode
) {
1714 if (!IS_ERR(mmc
->supply
.vmmc
))
1715 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, 0);
1717 if (!IS_ERR(mmc
->supply
.vqmmc
) && host
->vqmmc_enabled
) {
1718 regulator_disable(mmc
->supply
.vqmmc
);
1719 host
->vqmmc_enabled
= false;
1724 if (!IS_ERR(mmc
->supply
.vmmc
))
1725 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, ios
->vdd
);
1728 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1729 * and instead uses MCI_PWR_ON so apply whatever value is
1730 * configured in the variant data.
1732 pwr
|= variant
->pwrreg_powerup
;
1736 if (!IS_ERR(mmc
->supply
.vqmmc
) && !host
->vqmmc_enabled
) {
1737 ret
= regulator_enable(mmc
->supply
.vqmmc
);
1739 dev_err(mmc_dev(mmc
),
1740 "failed to enable vqmmc regulator\n");
1742 host
->vqmmc_enabled
= true;
1749 if (variant
->signal_direction
&& ios
->power_mode
!= MMC_POWER_OFF
) {
1751 * The ST Micro variant has some additional bits
1752 * indicating signal direction for the signals in
1753 * the SD/MMC bus and feedback-clock usage.
1755 pwr
|= host
->pwr_reg_add
;
1757 if (ios
->bus_width
== MMC_BUS_WIDTH_4
)
1758 pwr
&= ~MCI_ST_DATA74DIREN
;
1759 else if (ios
->bus_width
== MMC_BUS_WIDTH_1
)
1760 pwr
&= (~MCI_ST_DATA74DIREN
&
1761 ~MCI_ST_DATA31DIREN
&
1762 ~MCI_ST_DATA2DIREN
);
1765 if (variant
->opendrain
) {
1766 if (ios
->bus_mode
== MMC_BUSMODE_OPENDRAIN
)
1767 pwr
|= variant
->opendrain
;
1770 * If the variant cannot configure the pads by its own, then we
1771 * expect the pinctrl to be able to do that for us
1773 if (ios
->bus_mode
== MMC_BUSMODE_OPENDRAIN
)
1774 pinctrl_select_state(host
->pinctrl
, host
->pins_opendrain
);
1776 pinctrl_select_default_state(mmc_dev(mmc
));
1780 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1781 * gating the clock, the MCI_PWR_ON bit is cleared.
1783 if (!ios
->clock
&& variant
->pwrreg_clkgate
)
1786 if (host
->variant
->explicit_mclk_control
&&
1787 ios
->clock
!= host
->clock_cache
) {
1788 ret
= clk_set_rate(host
->clk
, ios
->clock
);
1790 dev_err(mmc_dev(host
->mmc
),
1791 "Error setting clock rate (%d)\n", ret
);
1793 host
->mclk
= clk_get_rate(host
->clk
);
1795 host
->clock_cache
= ios
->clock
;
1797 spin_lock_irqsave(&host
->lock
, flags
);
1799 if (host
->ops
&& host
->ops
->set_clkreg
)
1800 host
->ops
->set_clkreg(host
, ios
->clock
);
1802 mmci_set_clkreg(host
, ios
->clock
);
1804 mmci_set_max_busy_timeout(mmc
);
1806 if (host
->ops
&& host
->ops
->set_pwrreg
)
1807 host
->ops
->set_pwrreg(host
, pwr
);
1809 mmci_write_pwrreg(host
, pwr
);
1811 mmci_reg_delay(host
);
1813 spin_unlock_irqrestore(&host
->lock
, flags
);
1816 static int mmci_get_cd(struct mmc_host
*mmc
)
1818 struct mmci_host
*host
= mmc_priv(mmc
);
1819 struct mmci_platform_data
*plat
= host
->plat
;
1820 unsigned int status
= mmc_gpio_get_cd(mmc
);
1822 if (status
== -ENOSYS
) {
1824 return 1; /* Assume always present */
1826 status
= plat
->status(mmc_dev(host
->mmc
));
1831 static int mmci_sig_volt_switch(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1835 if (!IS_ERR(mmc
->supply
.vqmmc
)) {
1837 switch (ios
->signal_voltage
) {
1838 case MMC_SIGNAL_VOLTAGE_330
:
1839 ret
= regulator_set_voltage(mmc
->supply
.vqmmc
,
1842 case MMC_SIGNAL_VOLTAGE_180
:
1843 ret
= regulator_set_voltage(mmc
->supply
.vqmmc
,
1846 case MMC_SIGNAL_VOLTAGE_120
:
1847 ret
= regulator_set_voltage(mmc
->supply
.vqmmc
,
1853 dev_warn(mmc_dev(mmc
), "Voltage switch failed\n");
1859 static struct mmc_host_ops mmci_ops
= {
1860 .request
= mmci_request
,
1861 .pre_req
= mmci_pre_request
,
1862 .post_req
= mmci_post_request
,
1863 .set_ios
= mmci_set_ios
,
1864 .get_ro
= mmc_gpio_get_ro
,
1865 .get_cd
= mmci_get_cd
,
1866 .start_signal_voltage_switch
= mmci_sig_volt_switch
,
1869 static int mmci_of_parse(struct device_node
*np
, struct mmc_host
*mmc
)
1871 struct mmci_host
*host
= mmc_priv(mmc
);
1872 int ret
= mmc_of_parse(mmc
);
1877 if (of_get_property(np
, "st,sig-dir-dat0", NULL
))
1878 host
->pwr_reg_add
|= MCI_ST_DATA0DIREN
;
1879 if (of_get_property(np
, "st,sig-dir-dat2", NULL
))
1880 host
->pwr_reg_add
|= MCI_ST_DATA2DIREN
;
1881 if (of_get_property(np
, "st,sig-dir-dat31", NULL
))
1882 host
->pwr_reg_add
|= MCI_ST_DATA31DIREN
;
1883 if (of_get_property(np
, "st,sig-dir-dat74", NULL
))
1884 host
->pwr_reg_add
|= MCI_ST_DATA74DIREN
;
1885 if (of_get_property(np
, "st,sig-dir-cmd", NULL
))
1886 host
->pwr_reg_add
|= MCI_ST_CMDDIREN
;
1887 if (of_get_property(np
, "st,sig-pin-fbclk", NULL
))
1888 host
->pwr_reg_add
|= MCI_ST_FBCLKEN
;
1889 if (of_get_property(np
, "st,sig-dir", NULL
))
1890 host
->pwr_reg_add
|= MCI_STM32_DIRPOL
;
1891 if (of_get_property(np
, "st,neg-edge", NULL
))
1892 host
->clk_reg_add
|= MCI_STM32_CLK_NEGEDGE
;
1893 if (of_get_property(np
, "st,use-ckin", NULL
))
1894 host
->clk_reg_add
|= MCI_STM32_CLK_SELCKIN
;
1896 if (of_get_property(np
, "mmc-cap-mmc-highspeed", NULL
))
1897 mmc
->caps
|= MMC_CAP_MMC_HIGHSPEED
;
1898 if (of_get_property(np
, "mmc-cap-sd-highspeed", NULL
))
1899 mmc
->caps
|= MMC_CAP_SD_HIGHSPEED
;
1904 static int mmci_probe(struct amba_device
*dev
,
1905 const struct amba_id
*id
)
1907 struct mmci_platform_data
*plat
= dev
->dev
.platform_data
;
1908 struct device_node
*np
= dev
->dev
.of_node
;
1909 struct variant_data
*variant
= id
->data
;
1910 struct mmci_host
*host
;
1911 struct mmc_host
*mmc
;
1914 /* Must have platform data or Device Tree. */
1916 dev_err(&dev
->dev
, "No plat data or DT found\n");
1921 plat
= devm_kzalloc(&dev
->dev
, sizeof(*plat
), GFP_KERNEL
);
1926 mmc
= mmc_alloc_host(sizeof(struct mmci_host
), &dev
->dev
);
1930 ret
= mmci_of_parse(np
, mmc
);
1934 host
= mmc_priv(mmc
);
1938 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1939 * pins can be set accordingly using pinctrl
1941 if (!variant
->opendrain
) {
1942 host
->pinctrl
= devm_pinctrl_get(&dev
->dev
);
1943 if (IS_ERR(host
->pinctrl
)) {
1944 dev_err(&dev
->dev
, "failed to get pinctrl");
1945 ret
= PTR_ERR(host
->pinctrl
);
1949 host
->pins_opendrain
= pinctrl_lookup_state(host
->pinctrl
,
1950 MMCI_PINCTRL_STATE_OPENDRAIN
);
1951 if (IS_ERR(host
->pins_opendrain
)) {
1952 dev_err(mmc_dev(mmc
), "Can't select opendrain pins\n");
1953 ret
= PTR_ERR(host
->pins_opendrain
);
1958 host
->hw_designer
= amba_manf(dev
);
1959 host
->hw_revision
= amba_rev(dev
);
1960 dev_dbg(mmc_dev(mmc
), "designer ID = 0x%02x\n", host
->hw_designer
);
1961 dev_dbg(mmc_dev(mmc
), "revision = 0x%01x\n", host
->hw_revision
);
1963 host
->clk
= devm_clk_get(&dev
->dev
, NULL
);
1964 if (IS_ERR(host
->clk
)) {
1965 ret
= PTR_ERR(host
->clk
);
1969 ret
= clk_prepare_enable(host
->clk
);
1973 if (variant
->qcom_fifo
)
1974 host
->get_rx_fifocnt
= mmci_qcom_get_rx_fifocnt
;
1976 host
->get_rx_fifocnt
= mmci_get_rx_fifocnt
;
1979 host
->variant
= variant
;
1980 host
->mclk
= clk_get_rate(host
->clk
);
1982 * According to the spec, mclk is max 100 MHz,
1983 * so we try to adjust the clock down to this,
1986 if (host
->mclk
> variant
->f_max
) {
1987 ret
= clk_set_rate(host
->clk
, variant
->f_max
);
1990 host
->mclk
= clk_get_rate(host
->clk
);
1991 dev_dbg(mmc_dev(mmc
), "eventual mclk rate: %u Hz\n",
1995 host
->phybase
= dev
->res
.start
;
1996 host
->base
= devm_ioremap_resource(&dev
->dev
, &dev
->res
);
1997 if (IS_ERR(host
->base
)) {
1998 ret
= PTR_ERR(host
->base
);
2003 variant
->init(host
);
2006 * The ARM and ST versions of the block have slightly different
2007 * clock divider equations which means that the minimum divider
2009 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2011 if (variant
->st_clkdiv
)
2012 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 257);
2013 else if (variant
->stm32_clkdiv
)
2014 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 2046);
2015 else if (variant
->explicit_mclk_control
)
2016 mmc
->f_min
= clk_round_rate(host
->clk
, 100000);
2018 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 512);
2020 * If no maximum operating frequency is supplied, fall back to use
2021 * the module parameter, which has a (low) default value in case it
2022 * is not specified. Either value must not exceed the clock rate into
2023 * the block, of course.
2026 mmc
->f_max
= variant
->explicit_mclk_control
?
2027 min(variant
->f_max
, mmc
->f_max
) :
2028 min(host
->mclk
, mmc
->f_max
);
2030 mmc
->f_max
= variant
->explicit_mclk_control
?
2031 fmax
: min(host
->mclk
, fmax
);
2034 dev_dbg(mmc_dev(mmc
), "clocking block at %u Hz\n", mmc
->f_max
);
2036 host
->rst
= devm_reset_control_get_optional_exclusive(&dev
->dev
, NULL
);
2037 if (IS_ERR(host
->rst
)) {
2038 ret
= PTR_ERR(host
->rst
);
2042 /* Get regulators and the supported OCR mask */
2043 ret
= mmc_regulator_get_supply(mmc
);
2047 if (!mmc
->ocr_avail
)
2048 mmc
->ocr_avail
= plat
->ocr_mask
;
2049 else if (plat
->ocr_mask
)
2050 dev_warn(mmc_dev(mmc
), "Platform OCR mask is ignored\n");
2052 /* We support these capabilities. */
2053 mmc
->caps
|= MMC_CAP_CMD23
;
2056 * Enable busy detection.
2058 if (variant
->busy_detect
) {
2059 mmci_ops
.card_busy
= mmci_card_busy
;
2061 * Not all variants have a flag to enable busy detection
2062 * in the DPSM, but if they do, set it here.
2064 if (variant
->busy_dpsm_flag
)
2065 mmci_write_datactrlreg(host
,
2066 host
->variant
->busy_dpsm_flag
);
2067 mmc
->caps
|= MMC_CAP_WAIT_WHILE_BUSY
;
2070 /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2071 host
->stop_abort
.opcode
= MMC_STOP_TRANSMISSION
;
2072 host
->stop_abort
.arg
= 0;
2073 host
->stop_abort
.flags
= MMC_RSP_R1B
| MMC_CMD_AC
;
2075 mmc
->ops
= &mmci_ops
;
2077 /* We support these PM capabilities. */
2078 mmc
->pm_caps
|= MMC_PM_KEEP_POWER
;
2083 mmc
->max_segs
= NR_SG
;
2086 * Since only a certain number of bits are valid in the data length
2087 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2090 mmc
->max_req_size
= (1 << variant
->datalength_bits
) - 1;
2093 * Set the maximum segment size. Since we aren't doing DMA
2094 * (yet) we are only limited by the data length register.
2096 mmc
->max_seg_size
= mmc
->max_req_size
;
2099 * Block size can be up to 2048 bytes, but must be a power of two.
2101 mmc
->max_blk_size
= 1 << variant
->datactrl_blocksz
;
2104 * Limit the number of blocks transferred so that we don't overflow
2105 * the maximum request size.
2107 mmc
->max_blk_count
= mmc
->max_req_size
>> variant
->datactrl_blocksz
;
2109 spin_lock_init(&host
->lock
);
2111 writel(0, host
->base
+ MMCIMASK0
);
2113 if (variant
->mmcimask1
)
2114 writel(0, host
->base
+ MMCIMASK1
);
2116 writel(0xfff, host
->base
+ MMCICLEAR
);
2120 * - not using DT but using a descriptor table, or
2121 * - using a table of descriptors ALONGSIDE DT, or
2122 * look up these descriptors named "cd" and "wp" right here, fail
2123 * silently of these do not exist
2126 ret
= mmc_gpiod_request_cd(mmc
, "cd", 0, false, 0);
2127 if (ret
== -EPROBE_DEFER
)
2130 ret
= mmc_gpiod_request_ro(mmc
, "wp", 0, 0);
2131 if (ret
== -EPROBE_DEFER
)
2135 ret
= devm_request_threaded_irq(&dev
->dev
, dev
->irq
[0], mmci_irq
,
2136 mmci_irq_thread
, IRQF_SHARED
,
2137 DRIVER_NAME
" (cmd)", host
);
2142 host
->singleirq
= true;
2144 ret
= devm_request_irq(&dev
->dev
, dev
->irq
[1], mmci_pio_irq
,
2145 IRQF_SHARED
, DRIVER_NAME
" (pio)", host
);
2150 writel(MCI_IRQENABLE
| variant
->start_err
, host
->base
+ MMCIMASK0
);
2152 amba_set_drvdata(dev
, mmc
);
2154 dev_info(&dev
->dev
, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2155 mmc_hostname(mmc
), amba_part(dev
), amba_manf(dev
),
2156 amba_rev(dev
), (unsigned long long)dev
->res
.start
,
2157 dev
->irq
[0], dev
->irq
[1]);
2159 mmci_dma_setup(host
);
2161 pm_runtime_set_autosuspend_delay(&dev
->dev
, 50);
2162 pm_runtime_use_autosuspend(&dev
->dev
);
2166 pm_runtime_put(&dev
->dev
);
2170 clk_disable_unprepare(host
->clk
);
2176 static int mmci_remove(struct amba_device
*dev
)
2178 struct mmc_host
*mmc
= amba_get_drvdata(dev
);
2181 struct mmci_host
*host
= mmc_priv(mmc
);
2182 struct variant_data
*variant
= host
->variant
;
2185 * Undo pm_runtime_put() in probe. We use the _sync
2186 * version here so that we can access the primecell.
2188 pm_runtime_get_sync(&dev
->dev
);
2190 mmc_remove_host(mmc
);
2192 writel(0, host
->base
+ MMCIMASK0
);
2194 if (variant
->mmcimask1
)
2195 writel(0, host
->base
+ MMCIMASK1
);
2197 writel(0, host
->base
+ MMCICOMMAND
);
2198 writel(0, host
->base
+ MMCIDATACTRL
);
2200 mmci_dma_release(host
);
2201 clk_disable_unprepare(host
->clk
);
2209 static void mmci_save(struct mmci_host
*host
)
2211 unsigned long flags
;
2213 spin_lock_irqsave(&host
->lock
, flags
);
2215 writel(0, host
->base
+ MMCIMASK0
);
2216 if (host
->variant
->pwrreg_nopower
) {
2217 writel(0, host
->base
+ MMCIDATACTRL
);
2218 writel(0, host
->base
+ MMCIPOWER
);
2219 writel(0, host
->base
+ MMCICLOCK
);
2221 mmci_reg_delay(host
);
2223 spin_unlock_irqrestore(&host
->lock
, flags
);
2226 static void mmci_restore(struct mmci_host
*host
)
2228 unsigned long flags
;
2230 spin_lock_irqsave(&host
->lock
, flags
);
2232 if (host
->variant
->pwrreg_nopower
) {
2233 writel(host
->clk_reg
, host
->base
+ MMCICLOCK
);
2234 writel(host
->datactrl_reg
, host
->base
+ MMCIDATACTRL
);
2235 writel(host
->pwr_reg
, host
->base
+ MMCIPOWER
);
2237 writel(MCI_IRQENABLE
| host
->variant
->start_err
,
2238 host
->base
+ MMCIMASK0
);
2239 mmci_reg_delay(host
);
2241 spin_unlock_irqrestore(&host
->lock
, flags
);
2244 static int mmci_runtime_suspend(struct device
*dev
)
2246 struct amba_device
*adev
= to_amba_device(dev
);
2247 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
2250 struct mmci_host
*host
= mmc_priv(mmc
);
2251 pinctrl_pm_select_sleep_state(dev
);
2253 clk_disable_unprepare(host
->clk
);
2259 static int mmci_runtime_resume(struct device
*dev
)
2261 struct amba_device
*adev
= to_amba_device(dev
);
2262 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
2265 struct mmci_host
*host
= mmc_priv(mmc
);
2266 clk_prepare_enable(host
->clk
);
2268 pinctrl_select_default_state(dev
);
2275 static const struct dev_pm_ops mmci_dev_pm_ops
= {
2276 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend
,
2277 pm_runtime_force_resume
)
2278 SET_RUNTIME_PM_OPS(mmci_runtime_suspend
, mmci_runtime_resume
, NULL
)
2281 static const struct amba_id mmci_ids
[] = {
2285 .data
= &variant_arm
,
2290 .data
= &variant_arm_extended_fifo
,
2295 .data
= &variant_arm_extended_fifo_hwfc
,
2300 .data
= &variant_arm
,
2302 /* ST Micro variants */
2306 .data
= &variant_u300
,
2311 .data
= &variant_nomadik
,
2316 .data
= &variant_nomadik
,
2321 .data
= &variant_ux500
,
2326 .data
= &variant_ux500v2
,
2331 .data
= &variant_stm32
,
2336 .data
= &variant_stm32_sdmmc
,
2338 /* Qualcomm variants */
2342 .data
= &variant_qcom
,
2347 MODULE_DEVICE_TABLE(amba
, mmci_ids
);
2349 static struct amba_driver mmci_driver
= {
2351 .name
= DRIVER_NAME
,
2352 .pm
= &mmci_dev_pm_ops
,
2354 .probe
= mmci_probe
,
2355 .remove
= mmci_remove
,
2356 .id_table
= mmci_ids
,
2359 module_amba_driver(mmci_driver
);
2361 module_param(fmax
, uint
, 0444);
2363 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2364 MODULE_LICENSE("GPL");