treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / mmc / host / sdhci-msm.c
blobc3a160c1804772963840deab9b593caa4c1640e0
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
6 */
8 #include <linux/module.h>
9 #include <linux/of_device.h>
10 #include <linux/delay.h>
11 #include <linux/mmc/mmc.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/slab.h>
14 #include <linux/iopoll.h>
15 #include <linux/regulator/consumer.h>
17 #include "sdhci-pltfm.h"
18 #include "cqhci.h"
20 #define CORE_MCI_VERSION 0x50
21 #define CORE_VERSION_MAJOR_SHIFT 28
22 #define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT)
23 #define CORE_VERSION_MINOR_MASK 0xff
25 #define CORE_MCI_GENERICS 0x70
26 #define SWITCHABLE_SIGNALING_VOLTAGE BIT(29)
28 #define HC_MODE_EN 0x1
29 #define CORE_POWER 0x0
30 #define CORE_SW_RST BIT(7)
31 #define FF_CLK_SW_RST_DIS BIT(13)
33 #define CORE_PWRCTL_BUS_OFF BIT(0)
34 #define CORE_PWRCTL_BUS_ON BIT(1)
35 #define CORE_PWRCTL_IO_LOW BIT(2)
36 #define CORE_PWRCTL_IO_HIGH BIT(3)
37 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
38 #define CORE_PWRCTL_IO_SUCCESS BIT(2)
39 #define REQ_BUS_OFF BIT(0)
40 #define REQ_BUS_ON BIT(1)
41 #define REQ_IO_LOW BIT(2)
42 #define REQ_IO_HIGH BIT(3)
43 #define INT_MASK 0xf
44 #define MAX_PHASES 16
45 #define CORE_DLL_LOCK BIT(7)
46 #define CORE_DDR_DLL_LOCK BIT(11)
47 #define CORE_DLL_EN BIT(16)
48 #define CORE_CDR_EN BIT(17)
49 #define CORE_CK_OUT_EN BIT(18)
50 #define CORE_CDR_EXT_EN BIT(19)
51 #define CORE_DLL_PDN BIT(29)
52 #define CORE_DLL_RST BIT(30)
53 #define CORE_CMD_DAT_TRACK_SEL BIT(0)
55 #define CORE_DDR_CAL_EN BIT(0)
56 #define CORE_FLL_CYCLE_CNT BIT(18)
57 #define CORE_DLL_CLOCK_DISABLE BIT(21)
59 #define CORE_VENDOR_SPEC_POR_VAL 0xa1c
60 #define CORE_CLK_PWRSAVE BIT(1)
61 #define CORE_HC_MCLK_SEL_DFLT (2 << 8)
62 #define CORE_HC_MCLK_SEL_HS400 (3 << 8)
63 #define CORE_HC_MCLK_SEL_MASK (3 << 8)
64 #define CORE_IO_PAD_PWR_SWITCH_EN (1 << 15)
65 #define CORE_IO_PAD_PWR_SWITCH (1 << 16)
66 #define CORE_HC_SELECT_IN_EN BIT(18)
67 #define CORE_HC_SELECT_IN_HS400 (6 << 19)
68 #define CORE_HC_SELECT_IN_MASK (7 << 19)
70 #define CORE_3_0V_SUPPORT (1 << 25)
71 #define CORE_1_8V_SUPPORT (1 << 26)
72 #define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
74 #define CORE_CSR_CDC_CTLR_CFG0 0x130
75 #define CORE_SW_TRIG_FULL_CALIB BIT(16)
76 #define CORE_HW_AUTOCAL_ENA BIT(17)
78 #define CORE_CSR_CDC_CTLR_CFG1 0x134
79 #define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138
80 #define CORE_TIMER_ENA BIT(16)
82 #define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C
83 #define CORE_CSR_CDC_REFCOUNT_CFG 0x140
84 #define CORE_CSR_CDC_COARSE_CAL_CFG 0x144
85 #define CORE_CDC_OFFSET_CFG 0x14C
86 #define CORE_CSR_CDC_DELAY_CFG 0x150
87 #define CORE_CDC_SLAVE_DDA_CFG 0x160
88 #define CORE_CSR_CDC_STATUS0 0x164
89 #define CORE_CALIBRATION_DONE BIT(0)
91 #define CORE_CDC_ERROR_CODE_MASK 0x7000000
93 #define CORE_CSR_CDC_GEN_CFG 0x178
94 #define CORE_CDC_SWITCH_BYPASS_OFF BIT(0)
95 #define CORE_CDC_SWITCH_RC_EN BIT(1)
97 #define CORE_CDC_T4_DLY_SEL BIT(0)
98 #define CORE_CMDIN_RCLK_EN BIT(1)
99 #define CORE_START_CDC_TRAFFIC BIT(6)
101 #define CORE_PWRSAVE_DLL BIT(3)
103 #define DDR_CONFIG_POR_VAL 0x80040873
106 #define INVALID_TUNING_PHASE -1
107 #define SDHCI_MSM_MIN_CLOCK 400000
108 #define CORE_FREQ_100MHZ (100 * 1000 * 1000)
110 #define CDR_SELEXT_SHIFT 20
111 #define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT)
112 #define CMUX_SHIFT_PHASE_SHIFT 24
113 #define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT)
115 #define MSM_MMC_AUTOSUSPEND_DELAY_MS 50
117 /* Timeout value to avoid infinite waiting for pwr_irq */
118 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
120 #define msm_host_readl(msm_host, host, offset) \
121 msm_host->var_ops->msm_readl_relaxed(host, offset)
123 #define msm_host_writel(msm_host, val, host, offset) \
124 msm_host->var_ops->msm_writel_relaxed(val, host, offset)
126 /* CQHCI vendor specific registers */
127 #define CQHCI_VENDOR_CFG1 0xA00
128 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN (0x3 << 13)
130 struct sdhci_msm_offset {
131 u32 core_hc_mode;
132 u32 core_mci_data_cnt;
133 u32 core_mci_status;
134 u32 core_mci_fifo_cnt;
135 u32 core_mci_version;
136 u32 core_generics;
137 u32 core_testbus_config;
138 u32 core_testbus_sel2_bit;
139 u32 core_testbus_ena;
140 u32 core_testbus_sel2;
141 u32 core_pwrctl_status;
142 u32 core_pwrctl_mask;
143 u32 core_pwrctl_clear;
144 u32 core_pwrctl_ctl;
145 u32 core_sdcc_debug_reg;
146 u32 core_dll_config;
147 u32 core_dll_status;
148 u32 core_vendor_spec;
149 u32 core_vendor_spec_adma_err_addr0;
150 u32 core_vendor_spec_adma_err_addr1;
151 u32 core_vendor_spec_func2;
152 u32 core_vendor_spec_capabilities0;
153 u32 core_ddr_200_cfg;
154 u32 core_vendor_spec3;
155 u32 core_dll_config_2;
156 u32 core_dll_config_3;
157 u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
158 u32 core_ddr_config;
161 static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
162 .core_mci_data_cnt = 0x35c,
163 .core_mci_status = 0x324,
164 .core_mci_fifo_cnt = 0x308,
165 .core_mci_version = 0x318,
166 .core_generics = 0x320,
167 .core_testbus_config = 0x32c,
168 .core_testbus_sel2_bit = 3,
169 .core_testbus_ena = (1 << 31),
170 .core_testbus_sel2 = (1 << 3),
171 .core_pwrctl_status = 0x240,
172 .core_pwrctl_mask = 0x244,
173 .core_pwrctl_clear = 0x248,
174 .core_pwrctl_ctl = 0x24c,
175 .core_sdcc_debug_reg = 0x358,
176 .core_dll_config = 0x200,
177 .core_dll_status = 0x208,
178 .core_vendor_spec = 0x20c,
179 .core_vendor_spec_adma_err_addr0 = 0x214,
180 .core_vendor_spec_adma_err_addr1 = 0x218,
181 .core_vendor_spec_func2 = 0x210,
182 .core_vendor_spec_capabilities0 = 0x21c,
183 .core_ddr_200_cfg = 0x224,
184 .core_vendor_spec3 = 0x250,
185 .core_dll_config_2 = 0x254,
186 .core_dll_config_3 = 0x258,
187 .core_ddr_config = 0x25c,
190 static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
191 .core_hc_mode = 0x78,
192 .core_mci_data_cnt = 0x30,
193 .core_mci_status = 0x34,
194 .core_mci_fifo_cnt = 0x44,
195 .core_mci_version = 0x050,
196 .core_generics = 0x70,
197 .core_testbus_config = 0x0cc,
198 .core_testbus_sel2_bit = 4,
199 .core_testbus_ena = (1 << 3),
200 .core_testbus_sel2 = (1 << 4),
201 .core_pwrctl_status = 0xdc,
202 .core_pwrctl_mask = 0xe0,
203 .core_pwrctl_clear = 0xe4,
204 .core_pwrctl_ctl = 0xe8,
205 .core_sdcc_debug_reg = 0x124,
206 .core_dll_config = 0x100,
207 .core_dll_status = 0x108,
208 .core_vendor_spec = 0x10c,
209 .core_vendor_spec_adma_err_addr0 = 0x114,
210 .core_vendor_spec_adma_err_addr1 = 0x118,
211 .core_vendor_spec_func2 = 0x110,
212 .core_vendor_spec_capabilities0 = 0x11c,
213 .core_ddr_200_cfg = 0x184,
214 .core_vendor_spec3 = 0x1b0,
215 .core_dll_config_2 = 0x1b4,
216 .core_ddr_config_old = 0x1b8,
217 .core_ddr_config = 0x1bc,
220 struct sdhci_msm_variant_ops {
221 u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
222 void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
223 u32 offset);
227 * From V5, register spaces have changed. Wrap this info in a structure
228 * and choose the data_structure based on version info mentioned in DT.
230 struct sdhci_msm_variant_info {
231 bool mci_removed;
232 bool restore_dll_config;
233 const struct sdhci_msm_variant_ops *var_ops;
234 const struct sdhci_msm_offset *offset;
237 struct sdhci_msm_host {
238 struct platform_device *pdev;
239 void __iomem *core_mem; /* MSM SDCC mapped address */
240 int pwr_irq; /* power irq */
241 struct clk *bus_clk; /* SDHC bus voter clock */
242 struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/
243 struct clk_bulk_data bulk_clks[4]; /* core, iface, cal, sleep clocks */
244 unsigned long clk_rate;
245 struct mmc_host *mmc;
246 bool use_14lpp_dll_reset;
247 bool tuning_done;
248 bool calibration_done;
249 u8 saved_tuning_phase;
250 bool use_cdclp533;
251 u32 curr_pwr_state;
252 u32 curr_io_level;
253 wait_queue_head_t pwr_irq_wait;
254 bool pwr_irq_flag;
255 u32 caps_0;
256 bool mci_removed;
257 bool restore_dll_config;
258 const struct sdhci_msm_variant_ops *var_ops;
259 const struct sdhci_msm_offset *offset;
260 bool use_cdr;
261 u32 transfer_mode;
262 bool updated_ddr_cfg;
265 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
267 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
268 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
270 return msm_host->offset;
274 * APIs to read/write to vendor specific registers which were there in the
275 * core_mem region before MCI was removed.
277 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
278 u32 offset)
280 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
281 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
283 return readl_relaxed(msm_host->core_mem + offset);
286 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
287 u32 offset)
289 return readl_relaxed(host->ioaddr + offset);
292 static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
293 struct sdhci_host *host, u32 offset)
295 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
296 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
298 writel_relaxed(val, msm_host->core_mem + offset);
301 static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
302 struct sdhci_host *host, u32 offset)
304 writel_relaxed(val, host->ioaddr + offset);
307 static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host,
308 unsigned int clock)
310 struct mmc_ios ios = host->mmc->ios;
312 * The SDHC requires internal clock frequency to be double the
313 * actual clock that will be set for DDR mode. The controller
314 * uses the faster clock(100/400MHz) for some of its parts and
315 * send the actual required clock (50/200MHz) to the card.
317 if (ios.timing == MMC_TIMING_UHS_DDR50 ||
318 ios.timing == MMC_TIMING_MMC_DDR52 ||
319 ios.timing == MMC_TIMING_MMC_HS400 ||
320 host->flags & SDHCI_HS400_TUNING)
321 clock *= 2;
322 return clock;
325 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
326 unsigned int clock)
328 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
329 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
330 struct mmc_ios curr_ios = host->mmc->ios;
331 struct clk *core_clk = msm_host->bulk_clks[0].clk;
332 int rc;
334 clock = msm_get_clock_rate_for_bus_mode(host, clock);
335 rc = clk_set_rate(core_clk, clock);
336 if (rc) {
337 pr_err("%s: Failed to set clock at rate %u at timing %d\n",
338 mmc_hostname(host->mmc), clock,
339 curr_ios.timing);
340 return;
342 msm_host->clk_rate = clock;
343 pr_debug("%s: Setting clock at rate %lu at timing %d\n",
344 mmc_hostname(host->mmc), clk_get_rate(core_clk),
345 curr_ios.timing);
348 /* Platform specific tuning */
349 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
351 u32 wait_cnt = 50;
352 u8 ck_out_en;
353 struct mmc_host *mmc = host->mmc;
354 const struct sdhci_msm_offset *msm_offset =
355 sdhci_priv_msm_offset(host);
357 /* Poll for CK_OUT_EN bit. max. poll time = 50us */
358 ck_out_en = !!(readl_relaxed(host->ioaddr +
359 msm_offset->core_dll_config) & CORE_CK_OUT_EN);
361 while (ck_out_en != poll) {
362 if (--wait_cnt == 0) {
363 dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
364 mmc_hostname(mmc), poll);
365 return -ETIMEDOUT;
367 udelay(1);
369 ck_out_en = !!(readl_relaxed(host->ioaddr +
370 msm_offset->core_dll_config) & CORE_CK_OUT_EN);
373 return 0;
376 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
378 int rc;
379 static const u8 grey_coded_phase_table[] = {
380 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
381 0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
383 unsigned long flags;
384 u32 config;
385 struct mmc_host *mmc = host->mmc;
386 const struct sdhci_msm_offset *msm_offset =
387 sdhci_priv_msm_offset(host);
389 if (phase > 0xf)
390 return -EINVAL;
392 spin_lock_irqsave(&host->lock, flags);
394 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
395 config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
396 config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
397 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
399 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
400 rc = msm_dll_poll_ck_out_en(host, 0);
401 if (rc)
402 goto err_out;
405 * Write the selected DLL clock output phase (0 ... 15)
406 * to CDR_SELEXT bit field of DLL_CONFIG register.
408 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
409 config &= ~CDR_SELEXT_MASK;
410 config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
411 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
413 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
414 config |= CORE_CK_OUT_EN;
415 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
417 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
418 rc = msm_dll_poll_ck_out_en(host, 1);
419 if (rc)
420 goto err_out;
422 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
423 config |= CORE_CDR_EN;
424 config &= ~CORE_CDR_EXT_EN;
425 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
426 goto out;
428 err_out:
429 dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
430 mmc_hostname(mmc), phase);
431 out:
432 spin_unlock_irqrestore(&host->lock, flags);
433 return rc;
437 * Find out the greatest range of consecuitive selected
438 * DLL clock output phases that can be used as sampling
439 * setting for SD3.0 UHS-I card read operation (in SDR104
440 * timing mode) or for eMMC4.5 card read operation (in
441 * HS400/HS200 timing mode).
442 * Select the 3/4 of the range and configure the DLL with the
443 * selected DLL clock output phase.
446 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
447 u8 *phase_table, u8 total_phases)
449 int ret;
450 u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
451 u8 phases_per_row[MAX_PHASES] = { 0 };
452 int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
453 int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
454 bool phase_0_found = false, phase_15_found = false;
455 struct mmc_host *mmc = host->mmc;
457 if (!total_phases || (total_phases > MAX_PHASES)) {
458 dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
459 mmc_hostname(mmc), total_phases);
460 return -EINVAL;
463 for (cnt = 0; cnt < total_phases; cnt++) {
464 ranges[row_index][col_index] = phase_table[cnt];
465 phases_per_row[row_index] += 1;
466 col_index++;
468 if ((cnt + 1) == total_phases) {
469 continue;
470 /* check if next phase in phase_table is consecutive or not */
471 } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
472 row_index++;
473 col_index = 0;
477 if (row_index >= MAX_PHASES)
478 return -EINVAL;
480 /* Check if phase-0 is present in first valid window? */
481 if (!ranges[0][0]) {
482 phase_0_found = true;
483 phase_0_raw_index = 0;
484 /* Check if cycle exist between 2 valid windows */
485 for (cnt = 1; cnt <= row_index; cnt++) {
486 if (phases_per_row[cnt]) {
487 for (i = 0; i < phases_per_row[cnt]; i++) {
488 if (ranges[cnt][i] == 15) {
489 phase_15_found = true;
490 phase_15_raw_index = cnt;
491 break;
498 /* If 2 valid windows form cycle then merge them as single window */
499 if (phase_0_found && phase_15_found) {
500 /* number of phases in raw where phase 0 is present */
501 u8 phases_0 = phases_per_row[phase_0_raw_index];
502 /* number of phases in raw where phase 15 is present */
503 u8 phases_15 = phases_per_row[phase_15_raw_index];
505 if (phases_0 + phases_15 >= MAX_PHASES)
507 * If there are more than 1 phase windows then total
508 * number of phases in both the windows should not be
509 * more than or equal to MAX_PHASES.
511 return -EINVAL;
513 /* Merge 2 cyclic windows */
514 i = phases_15;
515 for (cnt = 0; cnt < phases_0; cnt++) {
516 ranges[phase_15_raw_index][i] =
517 ranges[phase_0_raw_index][cnt];
518 if (++i >= MAX_PHASES)
519 break;
522 phases_per_row[phase_0_raw_index] = 0;
523 phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
526 for (cnt = 0; cnt <= row_index; cnt++) {
527 if (phases_per_row[cnt] > curr_max) {
528 curr_max = phases_per_row[cnt];
529 selected_row_index = cnt;
533 i = (curr_max * 3) / 4;
534 if (i)
535 i--;
537 ret = ranges[selected_row_index][i];
539 if (ret >= MAX_PHASES) {
540 ret = -EINVAL;
541 dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
542 mmc_hostname(mmc), ret);
545 return ret;
548 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
550 u32 mclk_freq = 0, config;
551 const struct sdhci_msm_offset *msm_offset =
552 sdhci_priv_msm_offset(host);
554 /* Program the MCLK value to MCLK_FREQ bit field */
555 if (host->clock <= 112000000)
556 mclk_freq = 0;
557 else if (host->clock <= 125000000)
558 mclk_freq = 1;
559 else if (host->clock <= 137000000)
560 mclk_freq = 2;
561 else if (host->clock <= 150000000)
562 mclk_freq = 3;
563 else if (host->clock <= 162000000)
564 mclk_freq = 4;
565 else if (host->clock <= 175000000)
566 mclk_freq = 5;
567 else if (host->clock <= 187000000)
568 mclk_freq = 6;
569 else if (host->clock <= 200000000)
570 mclk_freq = 7;
572 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
573 config &= ~CMUX_SHIFT_PHASE_MASK;
574 config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
575 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
578 /* Initialize the DLL (Programmable Delay Line) */
579 static int msm_init_cm_dll(struct sdhci_host *host)
581 struct mmc_host *mmc = host->mmc;
582 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
583 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
584 int wait_cnt = 50;
585 unsigned long flags, xo_clk = 0;
586 u32 config;
587 const struct sdhci_msm_offset *msm_offset =
588 msm_host->offset;
590 if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
591 xo_clk = clk_get_rate(msm_host->xo_clk);
593 spin_lock_irqsave(&host->lock, flags);
596 * Make sure that clock is always enabled when DLL
597 * tuning is in progress. Keeping PWRSAVE ON may
598 * turn off the clock.
600 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
601 config &= ~CORE_CLK_PWRSAVE;
602 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
604 if (msm_host->use_14lpp_dll_reset) {
605 config = readl_relaxed(host->ioaddr +
606 msm_offset->core_dll_config);
607 config &= ~CORE_CK_OUT_EN;
608 writel_relaxed(config, host->ioaddr +
609 msm_offset->core_dll_config);
611 config = readl_relaxed(host->ioaddr +
612 msm_offset->core_dll_config_2);
613 config |= CORE_DLL_CLOCK_DISABLE;
614 writel_relaxed(config, host->ioaddr +
615 msm_offset->core_dll_config_2);
618 config = readl_relaxed(host->ioaddr +
619 msm_offset->core_dll_config);
620 config |= CORE_DLL_RST;
621 writel_relaxed(config, host->ioaddr +
622 msm_offset->core_dll_config);
624 config = readl_relaxed(host->ioaddr +
625 msm_offset->core_dll_config);
626 config |= CORE_DLL_PDN;
627 writel_relaxed(config, host->ioaddr +
628 msm_offset->core_dll_config);
629 msm_cm_dll_set_freq(host);
631 if (msm_host->use_14lpp_dll_reset &&
632 !IS_ERR_OR_NULL(msm_host->xo_clk)) {
633 u32 mclk_freq = 0;
635 config = readl_relaxed(host->ioaddr +
636 msm_offset->core_dll_config_2);
637 config &= CORE_FLL_CYCLE_CNT;
638 if (config)
639 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
640 xo_clk);
641 else
642 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
643 xo_clk);
645 config = readl_relaxed(host->ioaddr +
646 msm_offset->core_dll_config_2);
647 config &= ~(0xFF << 10);
648 config |= mclk_freq << 10;
650 writel_relaxed(config, host->ioaddr +
651 msm_offset->core_dll_config_2);
652 /* wait for 5us before enabling DLL clock */
653 udelay(5);
656 config = readl_relaxed(host->ioaddr +
657 msm_offset->core_dll_config);
658 config &= ~CORE_DLL_RST;
659 writel_relaxed(config, host->ioaddr +
660 msm_offset->core_dll_config);
662 config = readl_relaxed(host->ioaddr +
663 msm_offset->core_dll_config);
664 config &= ~CORE_DLL_PDN;
665 writel_relaxed(config, host->ioaddr +
666 msm_offset->core_dll_config);
668 if (msm_host->use_14lpp_dll_reset) {
669 msm_cm_dll_set_freq(host);
670 config = readl_relaxed(host->ioaddr +
671 msm_offset->core_dll_config_2);
672 config &= ~CORE_DLL_CLOCK_DISABLE;
673 writel_relaxed(config, host->ioaddr +
674 msm_offset->core_dll_config_2);
677 config = readl_relaxed(host->ioaddr +
678 msm_offset->core_dll_config);
679 config |= CORE_DLL_EN;
680 writel_relaxed(config, host->ioaddr +
681 msm_offset->core_dll_config);
683 config = readl_relaxed(host->ioaddr +
684 msm_offset->core_dll_config);
685 config |= CORE_CK_OUT_EN;
686 writel_relaxed(config, host->ioaddr +
687 msm_offset->core_dll_config);
689 /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
690 while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
691 CORE_DLL_LOCK)) {
692 /* max. wait for 50us sec for LOCK bit to be set */
693 if (--wait_cnt == 0) {
694 dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
695 mmc_hostname(mmc));
696 spin_unlock_irqrestore(&host->lock, flags);
697 return -ETIMEDOUT;
699 udelay(1);
702 spin_unlock_irqrestore(&host->lock, flags);
703 return 0;
706 static void msm_hc_select_default(struct sdhci_host *host)
708 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
709 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
710 u32 config;
711 const struct sdhci_msm_offset *msm_offset =
712 msm_host->offset;
714 if (!msm_host->use_cdclp533) {
715 config = readl_relaxed(host->ioaddr +
716 msm_offset->core_vendor_spec3);
717 config &= ~CORE_PWRSAVE_DLL;
718 writel_relaxed(config, host->ioaddr +
719 msm_offset->core_vendor_spec3);
722 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
723 config &= ~CORE_HC_MCLK_SEL_MASK;
724 config |= CORE_HC_MCLK_SEL_DFLT;
725 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
728 * Disable HC_SELECT_IN to be able to use the UHS mode select
729 * configuration from Host Control2 register for all other
730 * modes.
731 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
732 * in VENDOR_SPEC_FUNC
734 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
735 config &= ~CORE_HC_SELECT_IN_EN;
736 config &= ~CORE_HC_SELECT_IN_MASK;
737 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
740 * Make sure above writes impacting free running MCLK are completed
741 * before changing the clk_rate at GCC.
743 wmb();
746 static void msm_hc_select_hs400(struct sdhci_host *host)
748 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
749 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
750 struct mmc_ios ios = host->mmc->ios;
751 u32 config, dll_lock;
752 int rc;
753 const struct sdhci_msm_offset *msm_offset =
754 msm_host->offset;
756 /* Select the divided clock (free running MCLK/2) */
757 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
758 config &= ~CORE_HC_MCLK_SEL_MASK;
759 config |= CORE_HC_MCLK_SEL_HS400;
761 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
763 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
764 * register
766 if ((msm_host->tuning_done || ios.enhanced_strobe) &&
767 !msm_host->calibration_done) {
768 config = readl_relaxed(host->ioaddr +
769 msm_offset->core_vendor_spec);
770 config |= CORE_HC_SELECT_IN_HS400;
771 config |= CORE_HC_SELECT_IN_EN;
772 writel_relaxed(config, host->ioaddr +
773 msm_offset->core_vendor_spec);
775 if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
777 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
778 * core_dll_status to be set. This should get set
779 * within 15 us at 200 MHz.
781 rc = readl_relaxed_poll_timeout(host->ioaddr +
782 msm_offset->core_dll_status,
783 dll_lock,
784 (dll_lock &
785 (CORE_DLL_LOCK |
786 CORE_DDR_DLL_LOCK)), 10,
787 1000);
788 if (rc == -ETIMEDOUT)
789 pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
790 mmc_hostname(host->mmc), dll_lock);
793 * Make sure above writes impacting free running MCLK are completed
794 * before changing the clk_rate at GCC.
796 wmb();
800 * sdhci_msm_hc_select_mode :- In general all timing modes are
801 * controlled via UHS mode select in Host Control2 register.
802 * eMMC specific HS200/HS400 doesn't have their respective modes
803 * defined here, hence we use these values.
805 * HS200 - SDR104 (Since they both are equivalent in functionality)
806 * HS400 - This involves multiple configurations
807 * Initially SDR104 - when tuning is required as HS200
808 * Then when switching to DDR @ 400MHz (HS400) we use
809 * the vendor specific HC_SELECT_IN to control the mode.
811 * In addition to controlling the modes we also need to select the
812 * correct input clock for DLL depending on the mode.
814 * HS400 - divided clock (free running MCLK/2)
815 * All other modes - default (free running MCLK)
817 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
819 struct mmc_ios ios = host->mmc->ios;
821 if (ios.timing == MMC_TIMING_MMC_HS400 ||
822 host->flags & SDHCI_HS400_TUNING)
823 msm_hc_select_hs400(host);
824 else
825 msm_hc_select_default(host);
828 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
830 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
831 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
832 u32 config, calib_done;
833 int ret;
834 const struct sdhci_msm_offset *msm_offset =
835 msm_host->offset;
837 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
840 * Retuning in HS400 (DDR mode) will fail, just reset the
841 * tuning block and restore the saved tuning phase.
843 ret = msm_init_cm_dll(host);
844 if (ret)
845 goto out;
847 /* Set the selected phase in delay line hw block */
848 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
849 if (ret)
850 goto out;
852 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
853 config |= CORE_CMD_DAT_TRACK_SEL;
854 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
856 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
857 config &= ~CORE_CDC_T4_DLY_SEL;
858 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
860 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
861 config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
862 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
864 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
865 config |= CORE_CDC_SWITCH_RC_EN;
866 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
868 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
869 config &= ~CORE_START_CDC_TRAFFIC;
870 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
872 /* Perform CDC Register Initialization Sequence */
874 writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
875 writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
876 writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
877 writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
878 writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
879 writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
880 writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
881 writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
882 writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
884 /* CDC HW Calibration */
886 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
887 config |= CORE_SW_TRIG_FULL_CALIB;
888 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
890 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
891 config &= ~CORE_SW_TRIG_FULL_CALIB;
892 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
894 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
895 config |= CORE_HW_AUTOCAL_ENA;
896 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
898 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
899 config |= CORE_TIMER_ENA;
900 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
902 ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
903 calib_done,
904 (calib_done & CORE_CALIBRATION_DONE),
905 1, 50);
907 if (ret == -ETIMEDOUT) {
908 pr_err("%s: %s: CDC calibration was not completed\n",
909 mmc_hostname(host->mmc), __func__);
910 goto out;
913 ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
914 & CORE_CDC_ERROR_CODE_MASK;
915 if (ret) {
916 pr_err("%s: %s: CDC error code %d\n",
917 mmc_hostname(host->mmc), __func__, ret);
918 ret = -EINVAL;
919 goto out;
922 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
923 config |= CORE_START_CDC_TRAFFIC;
924 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
925 out:
926 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
927 __func__, ret);
928 return ret;
931 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
933 struct mmc_host *mmc = host->mmc;
934 u32 dll_status, config, ddr_cfg_offset;
935 int ret;
936 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
937 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
938 const struct sdhci_msm_offset *msm_offset =
939 sdhci_priv_msm_offset(host);
941 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
944 * Currently the core_ddr_config register defaults to desired
945 * configuration on reset. Currently reprogramming the power on
946 * reset (POR) value in case it might have been modified by
947 * bootloaders. In the future, if this changes, then the desired
948 * values will need to be programmed appropriately.
950 if (msm_host->updated_ddr_cfg)
951 ddr_cfg_offset = msm_offset->core_ddr_config;
952 else
953 ddr_cfg_offset = msm_offset->core_ddr_config_old;
954 writel_relaxed(DDR_CONFIG_POR_VAL, host->ioaddr + ddr_cfg_offset);
956 if (mmc->ios.enhanced_strobe) {
957 config = readl_relaxed(host->ioaddr +
958 msm_offset->core_ddr_200_cfg);
959 config |= CORE_CMDIN_RCLK_EN;
960 writel_relaxed(config, host->ioaddr +
961 msm_offset->core_ddr_200_cfg);
964 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
965 config |= CORE_DDR_CAL_EN;
966 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
968 ret = readl_relaxed_poll_timeout(host->ioaddr +
969 msm_offset->core_dll_status,
970 dll_status,
971 (dll_status & CORE_DDR_DLL_LOCK),
972 10, 1000);
974 if (ret == -ETIMEDOUT) {
975 pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
976 mmc_hostname(host->mmc), __func__);
977 goto out;
980 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3);
981 config |= CORE_PWRSAVE_DLL;
982 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec3);
985 * Drain writebuffer to ensure above DLL calibration
986 * and PWRSAVE DLL is enabled.
988 wmb();
989 out:
990 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
991 __func__, ret);
992 return ret;
995 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
997 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
998 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
999 struct mmc_host *mmc = host->mmc;
1000 int ret;
1001 u32 config;
1002 const struct sdhci_msm_offset *msm_offset =
1003 msm_host->offset;
1005 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1008 * Retuning in HS400 (DDR mode) will fail, just reset the
1009 * tuning block and restore the saved tuning phase.
1011 ret = msm_init_cm_dll(host);
1012 if (ret)
1013 goto out;
1015 if (!mmc->ios.enhanced_strobe) {
1016 /* Set the selected phase in delay line hw block */
1017 ret = msm_config_cm_dll_phase(host,
1018 msm_host->saved_tuning_phase);
1019 if (ret)
1020 goto out;
1021 config = readl_relaxed(host->ioaddr +
1022 msm_offset->core_dll_config);
1023 config |= CORE_CMD_DAT_TRACK_SEL;
1024 writel_relaxed(config, host->ioaddr +
1025 msm_offset->core_dll_config);
1028 if (msm_host->use_cdclp533)
1029 ret = sdhci_msm_cdclp533_calibration(host);
1030 else
1031 ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1032 out:
1033 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1034 __func__, ret);
1035 return ret;
1038 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1040 struct mmc_ios *ios = &host->mmc->ios;
1043 * Tuning is required for SDR104, HS200 and HS400 cards and
1044 * if clock frequency is greater than 100MHz in these modes.
1046 if (host->clock <= CORE_FREQ_100MHZ ||
1047 !(ios->timing == MMC_TIMING_MMC_HS400 ||
1048 ios->timing == MMC_TIMING_MMC_HS200 ||
1049 ios->timing == MMC_TIMING_UHS_SDR104) ||
1050 ios->enhanced_strobe)
1051 return false;
1053 return true;
1056 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1058 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1059 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1060 int ret;
1063 * SDR DLL comes into picture only for timing modes which needs
1064 * tuning.
1066 if (!sdhci_msm_is_tuning_needed(host))
1067 return 0;
1069 /* Reset the tuning block */
1070 ret = msm_init_cm_dll(host);
1071 if (ret)
1072 return ret;
1074 /* Restore the tuning block */
1075 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1077 return ret;
1080 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1082 const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1083 u32 config, oldconfig = readl_relaxed(host->ioaddr +
1084 msm_offset->core_dll_config);
1086 config = oldconfig;
1087 if (enable) {
1088 config |= CORE_CDR_EN;
1089 config &= ~CORE_CDR_EXT_EN;
1090 } else {
1091 config &= ~CORE_CDR_EN;
1092 config |= CORE_CDR_EXT_EN;
1095 if (config != oldconfig) {
1096 writel_relaxed(config, host->ioaddr +
1097 msm_offset->core_dll_config);
1101 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1103 struct sdhci_host *host = mmc_priv(mmc);
1104 int tuning_seq_cnt = 3;
1105 u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1106 int rc;
1107 struct mmc_ios ios = host->mmc->ios;
1108 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1109 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1111 if (!sdhci_msm_is_tuning_needed(host)) {
1112 msm_host->use_cdr = false;
1113 sdhci_msm_set_cdr(host, false);
1114 return 0;
1117 /* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1118 msm_host->use_cdr = true;
1121 * For HS400 tuning in HS200 timing requires:
1122 * - select MCLK/2 in VENDOR_SPEC
1123 * - program MCLK to 400MHz (or nearest supported) in GCC
1125 if (host->flags & SDHCI_HS400_TUNING) {
1126 sdhci_msm_hc_select_mode(host);
1127 msm_set_clock_rate_for_bus_mode(host, ios.clock);
1128 host->flags &= ~SDHCI_HS400_TUNING;
1131 retry:
1132 /* First of all reset the tuning block */
1133 rc = msm_init_cm_dll(host);
1134 if (rc)
1135 return rc;
1137 phase = 0;
1138 do {
1139 /* Set the phase in delay line hw block */
1140 rc = msm_config_cm_dll_phase(host, phase);
1141 if (rc)
1142 return rc;
1144 rc = mmc_send_tuning(mmc, opcode, NULL);
1145 if (!rc) {
1146 /* Tuning is successful at this tuning point */
1147 tuned_phases[tuned_phase_cnt++] = phase;
1148 dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1149 mmc_hostname(mmc), phase);
1151 } while (++phase < ARRAY_SIZE(tuned_phases));
1153 if (tuned_phase_cnt) {
1154 rc = msm_find_most_appropriate_phase(host, tuned_phases,
1155 tuned_phase_cnt);
1156 if (rc < 0)
1157 return rc;
1158 else
1159 phase = rc;
1162 * Finally set the selected phase in delay
1163 * line hw block.
1165 rc = msm_config_cm_dll_phase(host, phase);
1166 if (rc)
1167 return rc;
1168 msm_host->saved_tuning_phase = phase;
1169 dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1170 mmc_hostname(mmc), phase);
1171 } else {
1172 if (--tuning_seq_cnt)
1173 goto retry;
1174 /* Tuning failed */
1175 dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1176 mmc_hostname(mmc));
1177 rc = -EIO;
1180 if (!rc)
1181 msm_host->tuning_done = true;
1182 return rc;
1186 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1187 * This needs to be done for both tuning and enhanced_strobe mode.
1188 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1189 * fixed feedback clock is used.
1191 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1193 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1194 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1195 int ret;
1197 if (host->clock > CORE_FREQ_100MHZ &&
1198 (msm_host->tuning_done || ios->enhanced_strobe) &&
1199 !msm_host->calibration_done) {
1200 ret = sdhci_msm_hs400_dll_calibration(host);
1201 if (!ret)
1202 msm_host->calibration_done = true;
1203 else
1204 pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1205 mmc_hostname(host->mmc), ret);
1209 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1210 unsigned int uhs)
1212 struct mmc_host *mmc = host->mmc;
1213 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1214 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1215 u16 ctrl_2;
1216 u32 config;
1217 const struct sdhci_msm_offset *msm_offset =
1218 msm_host->offset;
1220 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1221 /* Select Bus Speed Mode for host */
1222 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1223 switch (uhs) {
1224 case MMC_TIMING_UHS_SDR12:
1225 ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1226 break;
1227 case MMC_TIMING_UHS_SDR25:
1228 ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1229 break;
1230 case MMC_TIMING_UHS_SDR50:
1231 ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1232 break;
1233 case MMC_TIMING_MMC_HS400:
1234 case MMC_TIMING_MMC_HS200:
1235 case MMC_TIMING_UHS_SDR104:
1236 ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1237 break;
1238 case MMC_TIMING_UHS_DDR50:
1239 case MMC_TIMING_MMC_DDR52:
1240 ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1241 break;
1245 * When clock frequency is less than 100MHz, the feedback clock must be
1246 * provided and DLL must not be used so that tuning can be skipped. To
1247 * provide feedback clock, the mode selection can be any value less
1248 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1250 if (host->clock <= CORE_FREQ_100MHZ) {
1251 if (uhs == MMC_TIMING_MMC_HS400 ||
1252 uhs == MMC_TIMING_MMC_HS200 ||
1253 uhs == MMC_TIMING_UHS_SDR104)
1254 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1256 * DLL is not required for clock <= 100MHz
1257 * Thus, make sure DLL it is disabled when not required
1259 config = readl_relaxed(host->ioaddr +
1260 msm_offset->core_dll_config);
1261 config |= CORE_DLL_RST;
1262 writel_relaxed(config, host->ioaddr +
1263 msm_offset->core_dll_config);
1265 config = readl_relaxed(host->ioaddr +
1266 msm_offset->core_dll_config);
1267 config |= CORE_DLL_PDN;
1268 writel_relaxed(config, host->ioaddr +
1269 msm_offset->core_dll_config);
1272 * The DLL needs to be restored and CDCLP533 recalibrated
1273 * when the clock frequency is set back to 400MHz.
1275 msm_host->calibration_done = false;
1278 dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1279 mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1280 sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1282 if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1283 sdhci_msm_hs400(host, &mmc->ios);
1286 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1288 init_waitqueue_head(&msm_host->pwr_irq_wait);
1291 static inline void sdhci_msm_complete_pwr_irq_wait(
1292 struct sdhci_msm_host *msm_host)
1294 wake_up(&msm_host->pwr_irq_wait);
1298 * sdhci_msm_check_power_status API should be called when registers writes
1299 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1300 * To what state the register writes will change the IO lines should be passed
1301 * as the argument req_type. This API will check whether the IO line's state
1302 * is already the expected state and will wait for power irq only if
1303 * power irq is expected to be trigerred based on the current IO line state
1304 * and expected IO line state.
1306 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1308 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1309 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1310 bool done = false;
1311 u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1312 const struct sdhci_msm_offset *msm_offset =
1313 msm_host->offset;
1315 pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1316 mmc_hostname(host->mmc), __func__, req_type,
1317 msm_host->curr_pwr_state, msm_host->curr_io_level);
1320 * The power interrupt will not be generated for signal voltage
1321 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1322 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1323 * it as always set.
1325 if (!msm_host->mci_removed)
1326 val = msm_host_readl(msm_host, host,
1327 msm_offset->core_generics);
1328 if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1329 !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1330 return;
1334 * The IRQ for request type IO High/LOW will be generated when -
1335 * there is a state change in 1.8V enable bit (bit 3) of
1336 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1337 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1338 * to set it to 3.3V before card detection happens, the
1339 * IRQ doesn't get triggered as there is no state change in this bit.
1340 * The driver already handles this case by changing the IO voltage
1341 * level to high as part of controller power up sequence. Hence, check
1342 * for host->pwr to handle a case where IO voltage high request is
1343 * issued even before controller power up.
1345 if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1346 pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1347 mmc_hostname(host->mmc), req_type);
1348 return;
1350 if ((req_type & msm_host->curr_pwr_state) ||
1351 (req_type & msm_host->curr_io_level))
1352 done = true;
1354 * This is needed here to handle cases where register writes will
1355 * not change the current bus state or io level of the controller.
1356 * In this case, no power irq will be triggerred and we should
1357 * not wait.
1359 if (!done) {
1360 if (!wait_event_timeout(msm_host->pwr_irq_wait,
1361 msm_host->pwr_irq_flag,
1362 msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1363 dev_warn(&msm_host->pdev->dev,
1364 "%s: pwr_irq for req: (%d) timed out\n",
1365 mmc_hostname(host->mmc), req_type);
1367 pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1368 __func__, req_type);
1371 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1373 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1374 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1375 const struct sdhci_msm_offset *msm_offset =
1376 msm_host->offset;
1378 pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1379 mmc_hostname(host->mmc),
1380 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1381 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1382 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1385 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1387 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1388 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1389 u32 irq_status, irq_ack = 0;
1390 int retry = 10;
1391 u32 pwr_state = 0, io_level = 0;
1392 u32 config;
1393 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1395 irq_status = msm_host_readl(msm_host, host,
1396 msm_offset->core_pwrctl_status);
1397 irq_status &= INT_MASK;
1399 msm_host_writel(msm_host, irq_status, host,
1400 msm_offset->core_pwrctl_clear);
1403 * There is a rare HW scenario where the first clear pulse could be
1404 * lost when actual reset and clear/read of status register is
1405 * happening at a time. Hence, retry for at least 10 times to make
1406 * sure status register is cleared. Otherwise, this will result in
1407 * a spurious power IRQ resulting in system instability.
1409 while (irq_status & msm_host_readl(msm_host, host,
1410 msm_offset->core_pwrctl_status)) {
1411 if (retry == 0) {
1412 pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1413 mmc_hostname(host->mmc), irq_status);
1414 sdhci_msm_dump_pwr_ctrl_regs(host);
1415 WARN_ON(1);
1416 break;
1418 msm_host_writel(msm_host, irq_status, host,
1419 msm_offset->core_pwrctl_clear);
1420 retry--;
1421 udelay(10);
1424 /* Handle BUS ON/OFF*/
1425 if (irq_status & CORE_PWRCTL_BUS_ON) {
1426 pwr_state = REQ_BUS_ON;
1427 io_level = REQ_IO_HIGH;
1428 irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1430 if (irq_status & CORE_PWRCTL_BUS_OFF) {
1431 pwr_state = REQ_BUS_OFF;
1432 io_level = REQ_IO_LOW;
1433 irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1435 /* Handle IO LOW/HIGH */
1436 if (irq_status & CORE_PWRCTL_IO_LOW) {
1437 io_level = REQ_IO_LOW;
1438 irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1440 if (irq_status & CORE_PWRCTL_IO_HIGH) {
1441 io_level = REQ_IO_HIGH;
1442 irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1446 * The driver has to acknowledge the interrupt, switch voltages and
1447 * report back if it succeded or not to this register. The voltage
1448 * switches are handled by the sdhci core, so just report success.
1450 msm_host_writel(msm_host, irq_ack, host,
1451 msm_offset->core_pwrctl_ctl);
1454 * If we don't have info regarding the voltage levels supported by
1455 * regulators, don't change the IO PAD PWR SWITCH.
1457 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1458 u32 new_config;
1460 * We should unset IO PAD PWR switch only if the register write
1461 * can set IO lines high and the regulator also switches to 3 V.
1462 * Else, we should keep the IO PAD PWR switch set.
1463 * This is applicable to certain targets where eMMC vccq supply
1464 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1465 * IO PAD PWR switch must be kept set to reflect actual
1466 * regulator voltage. This way, during initialization of
1467 * controllers with only 1.8V, we will set the IO PAD bit
1468 * without waiting for a REQ_IO_LOW.
1470 config = readl_relaxed(host->ioaddr +
1471 msm_offset->core_vendor_spec);
1472 new_config = config;
1474 if ((io_level & REQ_IO_HIGH) &&
1475 (msm_host->caps_0 & CORE_3_0V_SUPPORT))
1476 new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1477 else if ((io_level & REQ_IO_LOW) ||
1478 (msm_host->caps_0 & CORE_1_8V_SUPPORT))
1479 new_config |= CORE_IO_PAD_PWR_SWITCH;
1481 if (config ^ new_config)
1482 writel_relaxed(new_config, host->ioaddr +
1483 msm_offset->core_vendor_spec);
1486 if (pwr_state)
1487 msm_host->curr_pwr_state = pwr_state;
1488 if (io_level)
1489 msm_host->curr_io_level = io_level;
1491 pr_debug("%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1492 mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1493 irq_ack);
1496 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1498 struct sdhci_host *host = (struct sdhci_host *)data;
1499 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1500 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1502 sdhci_msm_handle_pwr_irq(host, irq);
1503 msm_host->pwr_irq_flag = 1;
1504 sdhci_msm_complete_pwr_irq_wait(msm_host);
1507 return IRQ_HANDLED;
1510 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1512 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1513 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1514 struct clk *core_clk = msm_host->bulk_clks[0].clk;
1516 return clk_round_rate(core_clk, ULONG_MAX);
1519 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1521 return SDHCI_MSM_MIN_CLOCK;
1525 * __sdhci_msm_set_clock - sdhci_msm clock control.
1527 * Description:
1528 * MSM controller does not use internal divider and
1529 * instead directly control the GCC clock as per
1530 * HW recommendation.
1532 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1534 u16 clk;
1536 * Keep actual_clock as zero -
1537 * - since there is no divider used so no need of having actual_clock.
1538 * - MSM controller uses SDCLK for data timeout calculation. If
1539 * actual_clock is zero, host->clock is taken for calculation.
1541 host->mmc->actual_clock = 0;
1543 sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1545 if (clock == 0)
1546 return;
1549 * MSM controller do not use clock divider.
1550 * Thus read SDHCI_CLOCK_CONTROL and only enable
1551 * clock with no divider value programmed.
1553 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1554 sdhci_enable_clk(host, clk);
1557 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1558 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1560 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1561 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1563 if (!clock) {
1564 msm_host->clk_rate = clock;
1565 goto out;
1568 sdhci_msm_hc_select_mode(host);
1570 msm_set_clock_rate_for_bus_mode(host, clock);
1571 out:
1572 __sdhci_msm_set_clock(host, clock);
1575 /*****************************************************************************\
1577 * MSM Command Queue Engine (CQE) *
1579 \*****************************************************************************/
1581 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
1583 int cmd_error = 0;
1584 int data_error = 0;
1586 if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
1587 return intmask;
1589 cqhci_irq(host->mmc, intmask, cmd_error, data_error);
1590 return 0;
1593 void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
1595 struct sdhci_host *host = mmc_priv(mmc);
1596 unsigned long flags;
1597 u32 ctrl;
1600 * When CQE is halted, the legacy SDHCI path operates only
1601 * on 16-byte descriptors in 64bit mode.
1603 if (host->flags & SDHCI_USE_64_BIT_DMA)
1604 host->desc_sz = 16;
1606 spin_lock_irqsave(&host->lock, flags);
1609 * During CQE command transfers, command complete bit gets latched.
1610 * So s/w should clear command complete interrupt status when CQE is
1611 * either halted or disabled. Otherwise unexpected SDCHI legacy
1612 * interrupt gets triggered when CQE is halted/disabled.
1614 ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
1615 ctrl |= SDHCI_INT_RESPONSE;
1616 sdhci_writel(host, ctrl, SDHCI_INT_ENABLE);
1617 sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
1619 spin_unlock_irqrestore(&host->lock, flags);
1621 sdhci_cqe_disable(mmc, recovery);
1624 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
1625 .enable = sdhci_cqe_enable,
1626 .disable = sdhci_msm_cqe_disable,
1629 static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
1630 struct platform_device *pdev)
1632 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1633 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1634 struct cqhci_host *cq_host;
1635 bool dma64;
1636 u32 cqcfg;
1637 int ret;
1640 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
1641 * So ensure ADMA table is allocated for 16byte descriptors.
1643 if (host->caps & SDHCI_CAN_64BIT)
1644 host->alloc_desc_sz = 16;
1646 ret = sdhci_setup_host(host);
1647 if (ret)
1648 return ret;
1650 cq_host = cqhci_pltfm_init(pdev);
1651 if (IS_ERR(cq_host)) {
1652 ret = PTR_ERR(cq_host);
1653 dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
1654 goto cleanup;
1657 msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
1658 cq_host->ops = &sdhci_msm_cqhci_ops;
1660 dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
1662 ret = cqhci_init(cq_host, host->mmc, dma64);
1663 if (ret) {
1664 dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
1665 mmc_hostname(host->mmc), ret);
1666 goto cleanup;
1669 /* Disable cqe reset due to cqe enable signal */
1670 cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
1671 cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
1672 cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
1675 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
1676 * So limit desc_sz to 12 so that the data commands that are sent
1677 * during card initialization (before CQE gets enabled) would
1678 * get executed without any issues.
1680 if (host->flags & SDHCI_USE_64_BIT_DMA)
1681 host->desc_sz = 12;
1683 ret = __sdhci_add_host(host);
1684 if (ret)
1685 goto cleanup;
1687 dev_info(&pdev->dev, "%s: CQE init: success\n",
1688 mmc_hostname(host->mmc));
1689 return ret;
1691 cleanup:
1692 sdhci_cleanup_host(host);
1693 return ret;
1697 * Platform specific register write functions. This is so that, if any
1698 * register write needs to be followed up by platform specific actions,
1699 * they can be added here. These functions can go to sleep when writes
1700 * to certain registers are done.
1701 * These functions are relying on sdhci_set_ios not using spinlock.
1703 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
1705 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1706 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1707 u32 req_type = 0;
1709 switch (reg) {
1710 case SDHCI_HOST_CONTROL2:
1711 req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
1712 REQ_IO_HIGH;
1713 break;
1714 case SDHCI_SOFTWARE_RESET:
1715 if (host->pwr && (val & SDHCI_RESET_ALL))
1716 req_type = REQ_BUS_OFF;
1717 break;
1718 case SDHCI_POWER_CONTROL:
1719 req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
1720 break;
1721 case SDHCI_TRANSFER_MODE:
1722 msm_host->transfer_mode = val;
1723 break;
1724 case SDHCI_COMMAND:
1725 if (!msm_host->use_cdr)
1726 break;
1727 if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
1728 SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 &&
1729 SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK)
1730 sdhci_msm_set_cdr(host, true);
1731 else
1732 sdhci_msm_set_cdr(host, false);
1733 break;
1736 if (req_type) {
1737 msm_host->pwr_irq_flag = 0;
1739 * Since this register write may trigger a power irq, ensure
1740 * all previous register writes are complete by this point.
1742 mb();
1744 return req_type;
1747 /* This function may sleep*/
1748 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
1750 u32 req_type = 0;
1752 req_type = __sdhci_msm_check_write(host, val, reg);
1753 writew_relaxed(val, host->ioaddr + reg);
1755 if (req_type)
1756 sdhci_msm_check_power_status(host, req_type);
1759 /* This function may sleep*/
1760 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
1762 u32 req_type = 0;
1764 req_type = __sdhci_msm_check_write(host, val, reg);
1766 writeb_relaxed(val, host->ioaddr + reg);
1768 if (req_type)
1769 sdhci_msm_check_power_status(host, req_type);
1772 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
1774 struct mmc_host *mmc = msm_host->mmc;
1775 struct regulator *supply = mmc->supply.vqmmc;
1776 u32 caps = 0, config;
1777 struct sdhci_host *host = mmc_priv(mmc);
1778 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1780 if (!IS_ERR(mmc->supply.vqmmc)) {
1781 if (regulator_is_supported_voltage(supply, 1700000, 1950000))
1782 caps |= CORE_1_8V_SUPPORT;
1783 if (regulator_is_supported_voltage(supply, 2700000, 3600000))
1784 caps |= CORE_3_0V_SUPPORT;
1786 if (!caps)
1787 pr_warn("%s: 1.8/3V not supported for vqmmc\n",
1788 mmc_hostname(mmc));
1791 if (caps) {
1793 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
1794 * bit can be used as required later on.
1796 u32 io_level = msm_host->curr_io_level;
1798 config = readl_relaxed(host->ioaddr +
1799 msm_offset->core_vendor_spec);
1800 config |= CORE_IO_PAD_PWR_SWITCH_EN;
1802 if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT))
1803 config &= ~CORE_IO_PAD_PWR_SWITCH;
1804 else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
1805 config |= CORE_IO_PAD_PWR_SWITCH;
1807 writel_relaxed(config,
1808 host->ioaddr + msm_offset->core_vendor_spec);
1810 msm_host->caps_0 |= caps;
1811 pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
1814 static const struct sdhci_msm_variant_ops mci_var_ops = {
1815 .msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
1816 .msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
1819 static const struct sdhci_msm_variant_ops v5_var_ops = {
1820 .msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
1821 .msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
1824 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
1825 .var_ops = &mci_var_ops,
1826 .offset = &sdhci_msm_mci_offset,
1829 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
1830 .mci_removed = true,
1831 .var_ops = &v5_var_ops,
1832 .offset = &sdhci_msm_v5_offset,
1835 static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
1836 .mci_removed = true,
1837 .restore_dll_config = true,
1838 .var_ops = &v5_var_ops,
1839 .offset = &sdhci_msm_v5_offset,
1842 static const struct of_device_id sdhci_msm_dt_match[] = {
1843 {.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
1844 {.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
1845 {.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
1849 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
1851 static const struct sdhci_ops sdhci_msm_ops = {
1852 .reset = sdhci_reset,
1853 .set_clock = sdhci_msm_set_clock,
1854 .get_min_clock = sdhci_msm_get_min_clock,
1855 .get_max_clock = sdhci_msm_get_max_clock,
1856 .set_bus_width = sdhci_set_bus_width,
1857 .set_uhs_signaling = sdhci_msm_set_uhs_signaling,
1858 .write_w = sdhci_msm_writew,
1859 .write_b = sdhci_msm_writeb,
1860 .irq = sdhci_msm_cqe_irq,
1863 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
1864 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
1865 SDHCI_QUIRK_SINGLE_POWER_WRITE |
1866 SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
1867 .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
1868 .ops = &sdhci_msm_ops,
1871 static int sdhci_msm_probe(struct platform_device *pdev)
1873 struct sdhci_host *host;
1874 struct sdhci_pltfm_host *pltfm_host;
1875 struct sdhci_msm_host *msm_host;
1876 struct clk *clk;
1877 int ret;
1878 u16 host_version, core_minor;
1879 u32 core_version, config;
1880 u8 core_major;
1881 const struct sdhci_msm_offset *msm_offset;
1882 const struct sdhci_msm_variant_info *var_info;
1883 struct device_node *node = pdev->dev.of_node;
1885 host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
1886 if (IS_ERR(host))
1887 return PTR_ERR(host);
1889 host->sdma_boundary = 0;
1890 pltfm_host = sdhci_priv(host);
1891 msm_host = sdhci_pltfm_priv(pltfm_host);
1892 msm_host->mmc = host->mmc;
1893 msm_host->pdev = pdev;
1895 ret = mmc_of_parse(host->mmc);
1896 if (ret)
1897 goto pltfm_free;
1900 * Based on the compatible string, load the required msm host info from
1901 * the data associated with the version info.
1903 var_info = of_device_get_match_data(&pdev->dev);
1905 msm_host->mci_removed = var_info->mci_removed;
1906 msm_host->restore_dll_config = var_info->restore_dll_config;
1907 msm_host->var_ops = var_info->var_ops;
1908 msm_host->offset = var_info->offset;
1910 msm_offset = msm_host->offset;
1912 sdhci_get_of_property(pdev);
1914 msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
1916 /* Setup SDCC bus voter clock. */
1917 msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
1918 if (!IS_ERR(msm_host->bus_clk)) {
1919 /* Vote for max. clk rate for max. performance */
1920 ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
1921 if (ret)
1922 goto pltfm_free;
1923 ret = clk_prepare_enable(msm_host->bus_clk);
1924 if (ret)
1925 goto pltfm_free;
1928 /* Setup main peripheral bus clock */
1929 clk = devm_clk_get(&pdev->dev, "iface");
1930 if (IS_ERR(clk)) {
1931 ret = PTR_ERR(clk);
1932 dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
1933 goto bus_clk_disable;
1935 msm_host->bulk_clks[1].clk = clk;
1937 /* Setup SDC MMC clock */
1938 clk = devm_clk_get(&pdev->dev, "core");
1939 if (IS_ERR(clk)) {
1940 ret = PTR_ERR(clk);
1941 dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
1942 goto bus_clk_disable;
1944 msm_host->bulk_clks[0].clk = clk;
1946 /* Vote for maximum clock rate for maximum performance */
1947 ret = clk_set_rate(clk, INT_MAX);
1948 if (ret)
1949 dev_warn(&pdev->dev, "core clock boost failed\n");
1951 clk = devm_clk_get(&pdev->dev, "cal");
1952 if (IS_ERR(clk))
1953 clk = NULL;
1954 msm_host->bulk_clks[2].clk = clk;
1956 clk = devm_clk_get(&pdev->dev, "sleep");
1957 if (IS_ERR(clk))
1958 clk = NULL;
1959 msm_host->bulk_clks[3].clk = clk;
1961 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
1962 msm_host->bulk_clks);
1963 if (ret)
1964 goto bus_clk_disable;
1967 * xo clock is needed for FLL feature of cm_dll.
1968 * In case if xo clock is not mentioned in DT, warn and proceed.
1970 msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
1971 if (IS_ERR(msm_host->xo_clk)) {
1972 ret = PTR_ERR(msm_host->xo_clk);
1973 dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
1976 if (!msm_host->mci_removed) {
1977 msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
1978 if (IS_ERR(msm_host->core_mem)) {
1979 ret = PTR_ERR(msm_host->core_mem);
1980 goto clk_disable;
1984 /* Reset the vendor spec register to power on reset state */
1985 writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
1986 host->ioaddr + msm_offset->core_vendor_spec);
1988 if (!msm_host->mci_removed) {
1989 /* Set HC_MODE_EN bit in HC_MODE register */
1990 msm_host_writel(msm_host, HC_MODE_EN, host,
1991 msm_offset->core_hc_mode);
1992 config = msm_host_readl(msm_host, host,
1993 msm_offset->core_hc_mode);
1994 config |= FF_CLK_SW_RST_DIS;
1995 msm_host_writel(msm_host, config, host,
1996 msm_offset->core_hc_mode);
1999 host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2000 dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2001 host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2002 SDHCI_VENDOR_VER_SHIFT));
2004 core_version = msm_host_readl(msm_host, host,
2005 msm_offset->core_mci_version);
2006 core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2007 CORE_VERSION_MAJOR_SHIFT;
2008 core_minor = core_version & CORE_VERSION_MINOR_MASK;
2009 dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2010 core_version, core_major, core_minor);
2012 if (core_major == 1 && core_minor >= 0x42)
2013 msm_host->use_14lpp_dll_reset = true;
2016 * SDCC 5 controller with major version 1, minor version 0x34 and later
2017 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2019 if (core_major == 1 && core_minor < 0x34)
2020 msm_host->use_cdclp533 = true;
2023 * Support for some capabilities is not advertised by newer
2024 * controller versions and must be explicitly enabled.
2026 if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2027 config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2028 config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2029 writel_relaxed(config, host->ioaddr +
2030 msm_offset->core_vendor_spec_capabilities0);
2033 if (core_major == 1 && core_minor >= 0x49)
2034 msm_host->updated_ddr_cfg = true;
2037 * Power on reset state may trigger power irq if previous status of
2038 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2039 * interrupt in GIC, any pending power irq interrupt should be
2040 * acknowledged. Otherwise power irq interrupt handler would be
2041 * fired prematurely.
2043 sdhci_msm_handle_pwr_irq(host, 0);
2046 * Ensure that above writes are propogated before interrupt enablement
2047 * in GIC.
2049 mb();
2051 /* Setup IRQ for handling power/voltage tasks with PMIC */
2052 msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2053 if (msm_host->pwr_irq < 0) {
2054 ret = msm_host->pwr_irq;
2055 goto clk_disable;
2058 sdhci_msm_init_pwr_irq_wait(msm_host);
2059 /* Enable pwr irq interrupts */
2060 msm_host_writel(msm_host, INT_MASK, host,
2061 msm_offset->core_pwrctl_mask);
2063 ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2064 sdhci_msm_pwr_irq, IRQF_ONESHOT,
2065 dev_name(&pdev->dev), host);
2066 if (ret) {
2067 dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2068 goto clk_disable;
2071 pm_runtime_get_noresume(&pdev->dev);
2072 pm_runtime_set_active(&pdev->dev);
2073 pm_runtime_enable(&pdev->dev);
2074 pm_runtime_set_autosuspend_delay(&pdev->dev,
2075 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2076 pm_runtime_use_autosuspend(&pdev->dev);
2078 host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2079 if (of_property_read_bool(node, "supports-cqe"))
2080 ret = sdhci_msm_cqe_add_host(host, pdev);
2081 else
2082 ret = sdhci_add_host(host);
2083 if (ret)
2084 goto pm_runtime_disable;
2085 sdhci_msm_set_regulator_caps(msm_host);
2087 pm_runtime_mark_last_busy(&pdev->dev);
2088 pm_runtime_put_autosuspend(&pdev->dev);
2090 return 0;
2092 pm_runtime_disable:
2093 pm_runtime_disable(&pdev->dev);
2094 pm_runtime_set_suspended(&pdev->dev);
2095 pm_runtime_put_noidle(&pdev->dev);
2096 clk_disable:
2097 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2098 msm_host->bulk_clks);
2099 bus_clk_disable:
2100 if (!IS_ERR(msm_host->bus_clk))
2101 clk_disable_unprepare(msm_host->bus_clk);
2102 pltfm_free:
2103 sdhci_pltfm_free(pdev);
2104 return ret;
2107 static int sdhci_msm_remove(struct platform_device *pdev)
2109 struct sdhci_host *host = platform_get_drvdata(pdev);
2110 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2111 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2112 int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2113 0xffffffff);
2115 sdhci_remove_host(host, dead);
2117 pm_runtime_get_sync(&pdev->dev);
2118 pm_runtime_disable(&pdev->dev);
2119 pm_runtime_put_noidle(&pdev->dev);
2121 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2122 msm_host->bulk_clks);
2123 if (!IS_ERR(msm_host->bus_clk))
2124 clk_disable_unprepare(msm_host->bus_clk);
2125 sdhci_pltfm_free(pdev);
2126 return 0;
2129 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2131 struct sdhci_host *host = dev_get_drvdata(dev);
2132 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2133 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2135 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2136 msm_host->bulk_clks);
2138 return 0;
2141 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2143 struct sdhci_host *host = dev_get_drvdata(dev);
2144 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2145 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2146 int ret;
2148 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2149 msm_host->bulk_clks);
2150 if (ret)
2151 return ret;
2153 * Whenever core-clock is gated dynamically, it's needed to
2154 * restore the SDR DLL settings when the clock is ungated.
2156 if (msm_host->restore_dll_config && msm_host->clk_rate)
2157 return sdhci_msm_restore_sdr_dll_config(host);
2159 return 0;
2162 static const struct dev_pm_ops sdhci_msm_pm_ops = {
2163 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2164 pm_runtime_force_resume)
2165 SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2166 sdhci_msm_runtime_resume,
2167 NULL)
2170 static struct platform_driver sdhci_msm_driver = {
2171 .probe = sdhci_msm_probe,
2172 .remove = sdhci_msm_remove,
2173 .driver = {
2174 .name = "sdhci_msm",
2175 .of_match_table = sdhci_msm_dt_match,
2176 .pm = &sdhci_msm_pm_ops,
2180 module_platform_driver(sdhci_msm_driver);
2182 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2183 MODULE_LICENSE("GPL v2");