treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / mmc / host / sdhci-of-esdhc.c
blob5d8dd870bd4429cd40cb17d56614eceba972c8d8
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Freescale eSDHC controller driver.
5 * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc.
6 * Copyright (c) 2009 MontaVista Software, Inc.
8 * Authors: Xiaobo Xie <X.Xie@freescale.com>
9 * Anton Vorontsov <avorontsov@ru.mvista.com>
12 #include <linux/err.h>
13 #include <linux/io.h>
14 #include <linux/of.h>
15 #include <linux/of_address.h>
16 #include <linux/delay.h>
17 #include <linux/module.h>
18 #include <linux/sys_soc.h>
19 #include <linux/clk.h>
20 #include <linux/ktime.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/mmc.h>
24 #include "sdhci-pltfm.h"
25 #include "sdhci-esdhc.h"
27 #define VENDOR_V_22 0x12
28 #define VENDOR_V_23 0x13
30 #define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1)
32 struct esdhc_clk_fixup {
33 const unsigned int sd_dflt_max_clk;
34 const unsigned int max_clk[MMC_TIMING_NUM];
37 static const struct esdhc_clk_fixup ls1021a_esdhc_clk = {
38 .sd_dflt_max_clk = 25000000,
39 .max_clk[MMC_TIMING_MMC_HS] = 46500000,
40 .max_clk[MMC_TIMING_SD_HS] = 46500000,
43 static const struct esdhc_clk_fixup ls1046a_esdhc_clk = {
44 .sd_dflt_max_clk = 25000000,
45 .max_clk[MMC_TIMING_UHS_SDR104] = 167000000,
46 .max_clk[MMC_TIMING_MMC_HS200] = 167000000,
49 static const struct esdhc_clk_fixup ls1012a_esdhc_clk = {
50 .sd_dflt_max_clk = 25000000,
51 .max_clk[MMC_TIMING_UHS_SDR104] = 125000000,
52 .max_clk[MMC_TIMING_MMC_HS200] = 125000000,
55 static const struct esdhc_clk_fixup p1010_esdhc_clk = {
56 .sd_dflt_max_clk = 20000000,
57 .max_clk[MMC_TIMING_LEGACY] = 20000000,
58 .max_clk[MMC_TIMING_MMC_HS] = 42000000,
59 .max_clk[MMC_TIMING_SD_HS] = 40000000,
62 static const struct of_device_id sdhci_esdhc_of_match[] = {
63 { .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk},
64 { .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk},
65 { .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk},
66 { .compatible = "fsl,p1010-esdhc", .data = &p1010_esdhc_clk},
67 { .compatible = "fsl,mpc8379-esdhc" },
68 { .compatible = "fsl,mpc8536-esdhc" },
69 { .compatible = "fsl,esdhc" },
70 { }
72 MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match);
74 struct sdhci_esdhc {
75 u8 vendor_ver;
76 u8 spec_ver;
77 bool quirk_incorrect_hostver;
78 bool quirk_limited_clk_division;
79 bool quirk_unreliable_pulse_detection;
80 bool quirk_tuning_erratum_type1;
81 bool quirk_tuning_erratum_type2;
82 bool quirk_ignore_data_inhibit;
83 bool quirk_delay_before_data_reset;
84 bool in_sw_tuning;
85 unsigned int peripheral_clock;
86 const struct esdhc_clk_fixup *clk_fixup;
87 u32 div_ratio;
90 /**
91 * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register
92 * to make it compatible with SD spec.
94 * @host: pointer to sdhci_host
95 * @spec_reg: SD spec register address
96 * @value: 32bit eSDHC register value on spec_reg address
98 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
99 * registers are 32 bits. There are differences in register size, register
100 * address, register function, bit position and function between eSDHC spec
101 * and SD spec.
103 * Return a fixed up register value
105 static u32 esdhc_readl_fixup(struct sdhci_host *host,
106 int spec_reg, u32 value)
108 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
109 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
110 u32 ret;
113 * The bit of ADMA flag in eSDHC is not compatible with standard
114 * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is
115 * supported by eSDHC.
116 * And for many FSL eSDHC controller, the reset value of field
117 * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA,
118 * only these vendor version is greater than 2.2/0x12 support ADMA.
120 if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) {
121 if (esdhc->vendor_ver > VENDOR_V_22) {
122 ret = value | SDHCI_CAN_DO_ADMA2;
123 return ret;
127 * The DAT[3:0] line signal levels and the CMD line signal level are
128 * not compatible with standard SDHC register. The line signal levels
129 * DAT[7:0] are at bits 31:24 and the command line signal level is at
130 * bit 23. All other bits are the same as in the standard SDHC
131 * register.
133 if (spec_reg == SDHCI_PRESENT_STATE) {
134 ret = value & 0x000fffff;
135 ret |= (value >> 4) & SDHCI_DATA_LVL_MASK;
136 ret |= (value << 1) & SDHCI_CMD_LVL;
137 return ret;
141 * DTS properties of mmc host are used to enable each speed mode
142 * according to soc and board capability. So clean up
143 * SDR50/SDR104/DDR50 support bits here.
145 if (spec_reg == SDHCI_CAPABILITIES_1) {
146 ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
147 SDHCI_SUPPORT_DDR50);
148 return ret;
152 * Some controllers have unreliable Data Line Active
153 * bit for commands with busy signal. This affects
154 * Command Inhibit (data) bit. Just ignore it since
155 * MMC core driver has already polled card status
156 * with CMD13 after any command with busy siganl.
158 if ((spec_reg == SDHCI_PRESENT_STATE) &&
159 (esdhc->quirk_ignore_data_inhibit == true)) {
160 ret = value & ~SDHCI_DATA_INHIBIT;
161 return ret;
164 ret = value;
165 return ret;
168 static u16 esdhc_readw_fixup(struct sdhci_host *host,
169 int spec_reg, u32 value)
171 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
172 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
173 u16 ret;
174 int shift = (spec_reg & 0x2) * 8;
176 if (spec_reg == SDHCI_TRANSFER_MODE)
177 return pltfm_host->xfer_mode_shadow;
179 if (spec_reg == SDHCI_HOST_VERSION)
180 ret = value & 0xffff;
181 else
182 ret = (value >> shift) & 0xffff;
183 /* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect
184 * vendor version and spec version information.
186 if ((spec_reg == SDHCI_HOST_VERSION) &&
187 (esdhc->quirk_incorrect_hostver))
188 ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200;
189 return ret;
192 static u8 esdhc_readb_fixup(struct sdhci_host *host,
193 int spec_reg, u32 value)
195 u8 ret;
196 u8 dma_bits;
197 int shift = (spec_reg & 0x3) * 8;
199 ret = (value >> shift) & 0xff;
202 * "DMA select" locates at offset 0x28 in SD specification, but on
203 * P5020 or P3041, it locates at 0x29.
205 if (spec_reg == SDHCI_HOST_CONTROL) {
206 /* DMA select is 22,23 bits in Protocol Control Register */
207 dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK;
208 /* fixup the result */
209 ret &= ~SDHCI_CTRL_DMA_MASK;
210 ret |= dma_bits;
212 return ret;
216 * esdhc_write*_fixup - Fixup the SD spec register value so that it could be
217 * written into eSDHC register.
219 * @host: pointer to sdhci_host
220 * @spec_reg: SD spec register address
221 * @value: 8/16/32bit SD spec register value that would be written
222 * @old_value: 32bit eSDHC register value on spec_reg address
224 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
225 * registers are 32 bits. There are differences in register size, register
226 * address, register function, bit position and function between eSDHC spec
227 * and SD spec.
229 * Return a fixed up register value
231 static u32 esdhc_writel_fixup(struct sdhci_host *host,
232 int spec_reg, u32 value, u32 old_value)
234 u32 ret;
237 * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE]
238 * when SYSCTL[RSTD] is set for some special operations.
239 * No any impact on other operation.
241 if (spec_reg == SDHCI_INT_ENABLE)
242 ret = value | SDHCI_INT_BLK_GAP;
243 else
244 ret = value;
246 return ret;
249 static u32 esdhc_writew_fixup(struct sdhci_host *host,
250 int spec_reg, u16 value, u32 old_value)
252 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
253 int shift = (spec_reg & 0x2) * 8;
254 u32 ret;
256 switch (spec_reg) {
257 case SDHCI_TRANSFER_MODE:
259 * Postpone this write, we must do it together with a
260 * command write that is down below. Return old value.
262 pltfm_host->xfer_mode_shadow = value;
263 return old_value;
264 case SDHCI_COMMAND:
265 ret = (value << 16) | pltfm_host->xfer_mode_shadow;
266 return ret;
269 ret = old_value & (~(0xffff << shift));
270 ret |= (value << shift);
272 if (spec_reg == SDHCI_BLOCK_SIZE) {
274 * Two last DMA bits are reserved, and first one is used for
275 * non-standard blksz of 4096 bytes that we don't support
276 * yet. So clear the DMA boundary bits.
278 ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0));
280 return ret;
283 static u32 esdhc_writeb_fixup(struct sdhci_host *host,
284 int spec_reg, u8 value, u32 old_value)
286 u32 ret;
287 u32 dma_bits;
288 u8 tmp;
289 int shift = (spec_reg & 0x3) * 8;
292 * eSDHC doesn't have a standard power control register, so we do
293 * nothing here to avoid incorrect operation.
295 if (spec_reg == SDHCI_POWER_CONTROL)
296 return old_value;
298 * "DMA select" location is offset 0x28 in SD specification, but on
299 * P5020 or P3041, it's located at 0x29.
301 if (spec_reg == SDHCI_HOST_CONTROL) {
303 * If host control register is not standard, exit
304 * this function
306 if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL)
307 return old_value;
309 /* DMA select is 22,23 bits in Protocol Control Register */
310 dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5;
311 ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits;
312 tmp = (value & (~SDHCI_CTRL_DMA_MASK)) |
313 (old_value & SDHCI_CTRL_DMA_MASK);
314 ret = (ret & (~0xff)) | tmp;
316 /* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */
317 ret &= ~ESDHC_HOST_CONTROL_RES;
318 return ret;
321 ret = (old_value & (~(0xff << shift))) | (value << shift);
322 return ret;
325 static u32 esdhc_be_readl(struct sdhci_host *host, int reg)
327 u32 ret;
328 u32 value;
330 if (reg == SDHCI_CAPABILITIES_1)
331 value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1);
332 else
333 value = ioread32be(host->ioaddr + reg);
335 ret = esdhc_readl_fixup(host, reg, value);
337 return ret;
340 static u32 esdhc_le_readl(struct sdhci_host *host, int reg)
342 u32 ret;
343 u32 value;
345 if (reg == SDHCI_CAPABILITIES_1)
346 value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1);
347 else
348 value = ioread32(host->ioaddr + reg);
350 ret = esdhc_readl_fixup(host, reg, value);
352 return ret;
355 static u16 esdhc_be_readw(struct sdhci_host *host, int reg)
357 u16 ret;
358 u32 value;
359 int base = reg & ~0x3;
361 value = ioread32be(host->ioaddr + base);
362 ret = esdhc_readw_fixup(host, reg, value);
363 return ret;
366 static u16 esdhc_le_readw(struct sdhci_host *host, int reg)
368 u16 ret;
369 u32 value;
370 int base = reg & ~0x3;
372 value = ioread32(host->ioaddr + base);
373 ret = esdhc_readw_fixup(host, reg, value);
374 return ret;
377 static u8 esdhc_be_readb(struct sdhci_host *host, int reg)
379 u8 ret;
380 u32 value;
381 int base = reg & ~0x3;
383 value = ioread32be(host->ioaddr + base);
384 ret = esdhc_readb_fixup(host, reg, value);
385 return ret;
388 static u8 esdhc_le_readb(struct sdhci_host *host, int reg)
390 u8 ret;
391 u32 value;
392 int base = reg & ~0x3;
394 value = ioread32(host->ioaddr + base);
395 ret = esdhc_readb_fixup(host, reg, value);
396 return ret;
399 static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg)
401 u32 value;
403 value = esdhc_writel_fixup(host, reg, val, 0);
404 iowrite32be(value, host->ioaddr + reg);
407 static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg)
409 u32 value;
411 value = esdhc_writel_fixup(host, reg, val, 0);
412 iowrite32(value, host->ioaddr + reg);
415 static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg)
417 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
418 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
419 int base = reg & ~0x3;
420 u32 value;
421 u32 ret;
423 value = ioread32be(host->ioaddr + base);
424 ret = esdhc_writew_fixup(host, reg, val, value);
425 if (reg != SDHCI_TRANSFER_MODE)
426 iowrite32be(ret, host->ioaddr + base);
428 /* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
429 * 1us later after ESDHC_EXTN is set.
431 if (base == ESDHC_SYSTEM_CONTROL_2) {
432 if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
433 esdhc->in_sw_tuning) {
434 udelay(1);
435 ret |= ESDHC_SMPCLKSEL;
436 iowrite32be(ret, host->ioaddr + base);
441 static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg)
443 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
444 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
445 int base = reg & ~0x3;
446 u32 value;
447 u32 ret;
449 value = ioread32(host->ioaddr + base);
450 ret = esdhc_writew_fixup(host, reg, val, value);
451 if (reg != SDHCI_TRANSFER_MODE)
452 iowrite32(ret, host->ioaddr + base);
454 /* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
455 * 1us later after ESDHC_EXTN is set.
457 if (base == ESDHC_SYSTEM_CONTROL_2) {
458 if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
459 esdhc->in_sw_tuning) {
460 udelay(1);
461 ret |= ESDHC_SMPCLKSEL;
462 iowrite32(ret, host->ioaddr + base);
467 static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg)
469 int base = reg & ~0x3;
470 u32 value;
471 u32 ret;
473 value = ioread32be(host->ioaddr + base);
474 ret = esdhc_writeb_fixup(host, reg, val, value);
475 iowrite32be(ret, host->ioaddr + base);
478 static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg)
480 int base = reg & ~0x3;
481 u32 value;
482 u32 ret;
484 value = ioread32(host->ioaddr + base);
485 ret = esdhc_writeb_fixup(host, reg, val, value);
486 iowrite32(ret, host->ioaddr + base);
490 * For Abort or Suspend after Stop at Block Gap, ignore the ADMA
491 * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC])
492 * and Block Gap Event(IRQSTAT[BGE]) are also set.
493 * For Continue, apply soft reset for data(SYSCTL[RSTD]);
494 * and re-issue the entire read transaction from beginning.
496 static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask)
498 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
499 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
500 bool applicable;
501 dma_addr_t dmastart;
502 dma_addr_t dmanow;
504 applicable = (intmask & SDHCI_INT_DATA_END) &&
505 (intmask & SDHCI_INT_BLK_GAP) &&
506 (esdhc->vendor_ver == VENDOR_V_23);
507 if (!applicable)
508 return;
510 host->data->error = 0;
511 dmastart = sg_dma_address(host->data->sg);
512 dmanow = dmastart + host->data->bytes_xfered;
514 * Force update to the next DMA block boundary.
516 dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
517 SDHCI_DEFAULT_BOUNDARY_SIZE;
518 host->data->bytes_xfered = dmanow - dmastart;
519 sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
522 static int esdhc_of_enable_dma(struct sdhci_host *host)
524 u32 value;
525 struct device *dev = mmc_dev(host->mmc);
527 if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") ||
528 of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc"))
529 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
531 value = sdhci_readl(host, ESDHC_DMA_SYSCTL);
533 if (of_dma_is_coherent(dev->of_node))
534 value |= ESDHC_DMA_SNOOP;
535 else
536 value &= ~ESDHC_DMA_SNOOP;
538 sdhci_writel(host, value, ESDHC_DMA_SYSCTL);
539 return 0;
542 static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host)
544 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
545 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
547 if (esdhc->peripheral_clock)
548 return esdhc->peripheral_clock;
549 else
550 return pltfm_host->clock;
553 static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host)
555 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
556 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
557 unsigned int clock;
559 if (esdhc->peripheral_clock)
560 clock = esdhc->peripheral_clock;
561 else
562 clock = pltfm_host->clock;
563 return clock / 256 / 16;
566 static void esdhc_clock_enable(struct sdhci_host *host, bool enable)
568 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
569 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
570 ktime_t timeout;
571 u32 val, clk_en;
573 clk_en = ESDHC_CLOCK_SDCLKEN;
576 * IPGEN/HCKEN/PEREN bits exist on eSDHC whose vendor version
577 * is 2.2 or lower.
579 if (esdhc->vendor_ver <= VENDOR_V_22)
580 clk_en |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN |
581 ESDHC_CLOCK_PEREN);
583 val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
585 if (enable)
586 val |= clk_en;
587 else
588 val &= ~clk_en;
590 sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL);
593 * Wait max 20 ms. If vendor version is 2.2 or lower, do not
594 * wait clock stable bit which does not exist.
596 timeout = ktime_add_ms(ktime_get(), 20);
597 while (esdhc->vendor_ver > VENDOR_V_22) {
598 bool timedout = ktime_after(ktime_get(), timeout);
600 if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
601 break;
602 if (timedout) {
603 pr_err("%s: Internal clock never stabilised.\n",
604 mmc_hostname(host->mmc));
605 break;
607 usleep_range(10, 20);
611 static void esdhc_flush_async_fifo(struct sdhci_host *host)
613 ktime_t timeout;
614 u32 val;
616 val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
617 val |= ESDHC_FLUSH_ASYNC_FIFO;
618 sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
620 /* Wait max 20 ms */
621 timeout = ktime_add_ms(ktime_get(), 20);
622 while (1) {
623 bool timedout = ktime_after(ktime_get(), timeout);
625 if (!(sdhci_readl(host, ESDHC_DMA_SYSCTL) &
626 ESDHC_FLUSH_ASYNC_FIFO))
627 break;
628 if (timedout) {
629 pr_err("%s: flushing asynchronous FIFO timeout.\n",
630 mmc_hostname(host->mmc));
631 break;
633 usleep_range(10, 20);
637 static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock)
639 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
640 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
641 unsigned int pre_div = 1, div = 1;
642 unsigned int clock_fixup = 0;
643 ktime_t timeout;
644 u32 temp;
646 if (clock == 0) {
647 host->mmc->actual_clock = 0;
648 esdhc_clock_enable(host, false);
649 return;
652 /* Start pre_div at 2 for vendor version < 2.3. */
653 if (esdhc->vendor_ver < VENDOR_V_23)
654 pre_div = 2;
656 /* Fix clock value. */
657 if (host->mmc->card && mmc_card_sd(host->mmc->card) &&
658 esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY)
659 clock_fixup = esdhc->clk_fixup->sd_dflt_max_clk;
660 else if (esdhc->clk_fixup)
661 clock_fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing];
663 if (clock_fixup == 0 || clock < clock_fixup)
664 clock_fixup = clock;
666 /* Calculate pre_div and div. */
667 while (host->max_clk / pre_div / 16 > clock_fixup && pre_div < 256)
668 pre_div *= 2;
670 while (host->max_clk / pre_div / div > clock_fixup && div < 16)
671 div++;
673 esdhc->div_ratio = pre_div * div;
675 /* Limit clock division for HS400 200MHz clock for quirk. */
676 if (esdhc->quirk_limited_clk_division &&
677 clock == MMC_HS200_MAX_DTR &&
678 (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 ||
679 host->flags & SDHCI_HS400_TUNING)) {
680 if (esdhc->div_ratio <= 4) {
681 pre_div = 4;
682 div = 1;
683 } else if (esdhc->div_ratio <= 8) {
684 pre_div = 4;
685 div = 2;
686 } else if (esdhc->div_ratio <= 12) {
687 pre_div = 4;
688 div = 3;
689 } else {
690 pr_warn("%s: using unsupported clock division.\n",
691 mmc_hostname(host->mmc));
693 esdhc->div_ratio = pre_div * div;
696 host->mmc->actual_clock = host->max_clk / esdhc->div_ratio;
698 dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n",
699 clock, host->mmc->actual_clock);
701 /* Set clock division into register. */
702 pre_div >>= 1;
703 div--;
705 esdhc_clock_enable(host, false);
707 temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
708 temp &= ~ESDHC_CLOCK_MASK;
709 temp |= ((div << ESDHC_DIVIDER_SHIFT) |
710 (pre_div << ESDHC_PREDIV_SHIFT));
711 sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
714 * Wait max 20 ms. If vendor version is 2.2 or lower, do not
715 * wait clock stable bit which does not exist.
717 timeout = ktime_add_ms(ktime_get(), 20);
718 while (esdhc->vendor_ver > VENDOR_V_22) {
719 bool timedout = ktime_after(ktime_get(), timeout);
721 if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
722 break;
723 if (timedout) {
724 pr_err("%s: Internal clock never stabilised.\n",
725 mmc_hostname(host->mmc));
726 break;
728 usleep_range(10, 20);
731 /* Additional setting for HS400. */
732 if (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 &&
733 clock == MMC_HS200_MAX_DTR) {
734 temp = sdhci_readl(host, ESDHC_TBCTL);
735 sdhci_writel(host, temp | ESDHC_HS400_MODE, ESDHC_TBCTL);
736 temp = sdhci_readl(host, ESDHC_SDCLKCTL);
737 sdhci_writel(host, temp | ESDHC_CMD_CLK_CTL, ESDHC_SDCLKCTL);
738 esdhc_clock_enable(host, true);
740 temp = sdhci_readl(host, ESDHC_DLLCFG0);
741 temp |= ESDHC_DLL_ENABLE;
742 if (host->mmc->actual_clock == MMC_HS200_MAX_DTR)
743 temp |= ESDHC_DLL_FREQ_SEL;
744 sdhci_writel(host, temp, ESDHC_DLLCFG0);
745 temp = sdhci_readl(host, ESDHC_TBCTL);
746 sdhci_writel(host, temp | ESDHC_HS400_WNDW_ADJUST, ESDHC_TBCTL);
748 esdhc_clock_enable(host, false);
749 esdhc_flush_async_fifo(host);
751 esdhc_clock_enable(host, true);
754 static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width)
756 u32 ctrl;
758 ctrl = sdhci_readl(host, ESDHC_PROCTL);
759 ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK);
760 switch (width) {
761 case MMC_BUS_WIDTH_8:
762 ctrl |= ESDHC_CTRL_8BITBUS;
763 break;
765 case MMC_BUS_WIDTH_4:
766 ctrl |= ESDHC_CTRL_4BITBUS;
767 break;
769 default:
770 break;
773 sdhci_writel(host, ctrl, ESDHC_PROCTL);
776 static void esdhc_reset(struct sdhci_host *host, u8 mask)
778 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
779 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
780 u32 val, bus_width = 0;
783 * Add delay to make sure all the DMA transfers are finished
784 * for quirk.
786 if (esdhc->quirk_delay_before_data_reset &&
787 (mask & SDHCI_RESET_DATA) &&
788 (host->flags & SDHCI_REQ_USE_DMA))
789 mdelay(5);
792 * Save bus-width for eSDHC whose vendor version is 2.2
793 * or lower for data reset.
795 if ((mask & SDHCI_RESET_DATA) &&
796 (esdhc->vendor_ver <= VENDOR_V_22)) {
797 val = sdhci_readl(host, ESDHC_PROCTL);
798 bus_width = val & ESDHC_CTRL_BUSWIDTH_MASK;
801 sdhci_reset(host, mask);
804 * Restore bus-width setting and interrupt registers for eSDHC
805 * whose vendor version is 2.2 or lower for data reset.
807 if ((mask & SDHCI_RESET_DATA) &&
808 (esdhc->vendor_ver <= VENDOR_V_22)) {
809 val = sdhci_readl(host, ESDHC_PROCTL);
810 val &= ~ESDHC_CTRL_BUSWIDTH_MASK;
811 val |= bus_width;
812 sdhci_writel(host, val, ESDHC_PROCTL);
814 sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
815 sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
819 * Some bits have to be cleaned manually for eSDHC whose spec
820 * version is higher than 3.0 for all reset.
822 if ((mask & SDHCI_RESET_ALL) &&
823 (esdhc->spec_ver >= SDHCI_SPEC_300)) {
824 val = sdhci_readl(host, ESDHC_TBCTL);
825 val &= ~ESDHC_TB_EN;
826 sdhci_writel(host, val, ESDHC_TBCTL);
829 * Initialize eSDHC_DLLCFG1[DLL_PD_PULSE_STRETCH_SEL] to
830 * 0 for quirk.
832 if (esdhc->quirk_unreliable_pulse_detection) {
833 val = sdhci_readl(host, ESDHC_DLLCFG1);
834 val &= ~ESDHC_DLL_PD_PULSE_STRETCH_SEL;
835 sdhci_writel(host, val, ESDHC_DLLCFG1);
840 /* The SCFG, Supplemental Configuration Unit, provides SoC specific
841 * configuration and status registers for the device. There is a
842 * SDHC IO VSEL control register on SCFG for some platforms. It's
843 * used to support SDHC IO voltage switching.
845 static const struct of_device_id scfg_device_ids[] = {
846 { .compatible = "fsl,t1040-scfg", },
847 { .compatible = "fsl,ls1012a-scfg", },
848 { .compatible = "fsl,ls1046a-scfg", },
852 /* SDHC IO VSEL control register definition */
853 #define SCFG_SDHCIOVSELCR 0x408
854 #define SDHCIOVSELCR_TGLEN 0x80000000
855 #define SDHCIOVSELCR_VSELVAL 0x60000000
856 #define SDHCIOVSELCR_SDHC_VS 0x00000001
858 static int esdhc_signal_voltage_switch(struct mmc_host *mmc,
859 struct mmc_ios *ios)
861 struct sdhci_host *host = mmc_priv(mmc);
862 struct device_node *scfg_node;
863 void __iomem *scfg_base = NULL;
864 u32 sdhciovselcr;
865 u32 val;
868 * Signal Voltage Switching is only applicable for Host Controllers
869 * v3.00 and above.
871 if (host->version < SDHCI_SPEC_300)
872 return 0;
874 val = sdhci_readl(host, ESDHC_PROCTL);
876 switch (ios->signal_voltage) {
877 case MMC_SIGNAL_VOLTAGE_330:
878 val &= ~ESDHC_VOLT_SEL;
879 sdhci_writel(host, val, ESDHC_PROCTL);
880 return 0;
881 case MMC_SIGNAL_VOLTAGE_180:
882 scfg_node = of_find_matching_node(NULL, scfg_device_ids);
883 if (scfg_node)
884 scfg_base = of_iomap(scfg_node, 0);
885 if (scfg_base) {
886 sdhciovselcr = SDHCIOVSELCR_TGLEN |
887 SDHCIOVSELCR_VSELVAL;
888 iowrite32be(sdhciovselcr,
889 scfg_base + SCFG_SDHCIOVSELCR);
891 val |= ESDHC_VOLT_SEL;
892 sdhci_writel(host, val, ESDHC_PROCTL);
893 mdelay(5);
895 sdhciovselcr = SDHCIOVSELCR_TGLEN |
896 SDHCIOVSELCR_SDHC_VS;
897 iowrite32be(sdhciovselcr,
898 scfg_base + SCFG_SDHCIOVSELCR);
899 iounmap(scfg_base);
900 } else {
901 val |= ESDHC_VOLT_SEL;
902 sdhci_writel(host, val, ESDHC_PROCTL);
904 return 0;
905 default:
906 return 0;
910 static struct soc_device_attribute soc_tuning_erratum_type1[] = {
911 { .family = "QorIQ T1023", },
912 { .family = "QorIQ T1040", },
913 { .family = "QorIQ T2080", },
914 { .family = "QorIQ LS1021A", },
915 { },
918 static struct soc_device_attribute soc_tuning_erratum_type2[] = {
919 { .family = "QorIQ LS1012A", },
920 { .family = "QorIQ LS1043A", },
921 { .family = "QorIQ LS1046A", },
922 { .family = "QorIQ LS1080A", },
923 { .family = "QorIQ LS2080A", },
924 { .family = "QorIQ LA1575A", },
925 { },
928 static void esdhc_tuning_block_enable(struct sdhci_host *host, bool enable)
930 u32 val;
932 esdhc_clock_enable(host, false);
933 esdhc_flush_async_fifo(host);
935 val = sdhci_readl(host, ESDHC_TBCTL);
936 if (enable)
937 val |= ESDHC_TB_EN;
938 else
939 val &= ~ESDHC_TB_EN;
940 sdhci_writel(host, val, ESDHC_TBCTL);
942 esdhc_clock_enable(host, true);
945 static void esdhc_tuning_window_ptr(struct sdhci_host *host, u8 *window_start,
946 u8 *window_end)
948 u32 val;
950 /* Write TBCTL[11:8]=4'h8 */
951 val = sdhci_readl(host, ESDHC_TBCTL);
952 val &= ~(0xf << 8);
953 val |= 8 << 8;
954 sdhci_writel(host, val, ESDHC_TBCTL);
956 mdelay(1);
958 /* Read TBCTL[31:0] register and rewrite again */
959 val = sdhci_readl(host, ESDHC_TBCTL);
960 sdhci_writel(host, val, ESDHC_TBCTL);
962 mdelay(1);
964 /* Read the TBSTAT[31:0] register twice */
965 val = sdhci_readl(host, ESDHC_TBSTAT);
966 val = sdhci_readl(host, ESDHC_TBSTAT);
968 *window_end = val & 0xff;
969 *window_start = (val >> 8) & 0xff;
972 static void esdhc_prepare_sw_tuning(struct sdhci_host *host, u8 *window_start,
973 u8 *window_end)
975 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
976 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
977 u8 start_ptr, end_ptr;
979 if (esdhc->quirk_tuning_erratum_type1) {
980 *window_start = 5 * esdhc->div_ratio;
981 *window_end = 3 * esdhc->div_ratio;
982 return;
985 esdhc_tuning_window_ptr(host, &start_ptr, &end_ptr);
987 /* Reset data lines by setting ESDHCCTL[RSTD] */
988 sdhci_reset(host, SDHCI_RESET_DATA);
989 /* Write 32'hFFFF_FFFF to IRQSTAT register */
990 sdhci_writel(host, 0xFFFFFFFF, SDHCI_INT_STATUS);
992 /* If TBSTAT[15:8]-TBSTAT[7:0] > (4 * div_ratio) + 2
993 * or TBSTAT[7:0]-TBSTAT[15:8] > (4 * div_ratio) + 2,
994 * then program TBPTR[TB_WNDW_END_PTR] = 4 * div_ratio
995 * and program TBPTR[TB_WNDW_START_PTR] = 8 * div_ratio.
998 if (abs(start_ptr - end_ptr) > (4 * esdhc->div_ratio + 2)) {
999 *window_start = 8 * esdhc->div_ratio;
1000 *window_end = 4 * esdhc->div_ratio;
1001 } else {
1002 *window_start = 5 * esdhc->div_ratio;
1003 *window_end = 3 * esdhc->div_ratio;
1007 static int esdhc_execute_sw_tuning(struct mmc_host *mmc, u32 opcode,
1008 u8 window_start, u8 window_end)
1010 struct sdhci_host *host = mmc_priv(mmc);
1011 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1012 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1013 u32 val;
1014 int ret;
1016 /* Program TBPTR[TB_WNDW_END_PTR] and TBPTR[TB_WNDW_START_PTR] */
1017 val = ((u32)window_start << ESDHC_WNDW_STRT_PTR_SHIFT) &
1018 ESDHC_WNDW_STRT_PTR_MASK;
1019 val |= window_end & ESDHC_WNDW_END_PTR_MASK;
1020 sdhci_writel(host, val, ESDHC_TBPTR);
1022 /* Program the software tuning mode by setting TBCTL[TB_MODE]=2'h3 */
1023 val = sdhci_readl(host, ESDHC_TBCTL);
1024 val &= ~ESDHC_TB_MODE_MASK;
1025 val |= ESDHC_TB_MODE_SW;
1026 sdhci_writel(host, val, ESDHC_TBCTL);
1028 esdhc->in_sw_tuning = true;
1029 ret = sdhci_execute_tuning(mmc, opcode);
1030 esdhc->in_sw_tuning = false;
1031 return ret;
1034 static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
1036 struct sdhci_host *host = mmc_priv(mmc);
1037 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1038 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1039 u8 window_start, window_end;
1040 int ret, retries = 1;
1041 bool hs400_tuning;
1042 unsigned int clk;
1043 u32 val;
1045 /* For tuning mode, the sd clock divisor value
1046 * must be larger than 3 according to reference manual.
1048 clk = esdhc->peripheral_clock / 3;
1049 if (host->clock > clk)
1050 esdhc_of_set_clock(host, clk);
1052 esdhc_tuning_block_enable(host, true);
1054 hs400_tuning = host->flags & SDHCI_HS400_TUNING;
1056 do {
1057 if (esdhc->quirk_limited_clk_division &&
1058 hs400_tuning)
1059 esdhc_of_set_clock(host, host->clock);
1061 /* Do HW tuning */
1062 val = sdhci_readl(host, ESDHC_TBCTL);
1063 val &= ~ESDHC_TB_MODE_MASK;
1064 val |= ESDHC_TB_MODE_3;
1065 sdhci_writel(host, val, ESDHC_TBCTL);
1067 ret = sdhci_execute_tuning(mmc, opcode);
1068 if (ret)
1069 break;
1071 /* For type2 affected platforms of the tuning erratum,
1072 * tuning may succeed although eSDHC might not have
1073 * tuned properly. Need to check tuning window.
1075 if (esdhc->quirk_tuning_erratum_type2 &&
1076 !host->tuning_err) {
1077 esdhc_tuning_window_ptr(host, &window_start,
1078 &window_end);
1079 if (abs(window_start - window_end) >
1080 (4 * esdhc->div_ratio + 2))
1081 host->tuning_err = -EAGAIN;
1084 /* If HW tuning fails and triggers erratum,
1085 * try workaround.
1087 ret = host->tuning_err;
1088 if (ret == -EAGAIN &&
1089 (esdhc->quirk_tuning_erratum_type1 ||
1090 esdhc->quirk_tuning_erratum_type2)) {
1091 /* Recover HS400 tuning flag */
1092 if (hs400_tuning)
1093 host->flags |= SDHCI_HS400_TUNING;
1094 pr_info("%s: Hold on to use fixed sampling clock. Try SW tuning!\n",
1095 mmc_hostname(mmc));
1096 /* Do SW tuning */
1097 esdhc_prepare_sw_tuning(host, &window_start,
1098 &window_end);
1099 ret = esdhc_execute_sw_tuning(mmc, opcode,
1100 window_start,
1101 window_end);
1102 if (ret)
1103 break;
1105 /* Retry both HW/SW tuning with reduced clock. */
1106 ret = host->tuning_err;
1107 if (ret == -EAGAIN && retries) {
1108 /* Recover HS400 tuning flag */
1109 if (hs400_tuning)
1110 host->flags |= SDHCI_HS400_TUNING;
1112 clk = host->max_clk / (esdhc->div_ratio + 1);
1113 esdhc_of_set_clock(host, clk);
1114 pr_info("%s: Hold on to use fixed sampling clock. Try tuning with reduced clock!\n",
1115 mmc_hostname(mmc));
1116 } else {
1117 break;
1119 } else {
1120 break;
1122 } while (retries--);
1124 if (ret) {
1125 esdhc_tuning_block_enable(host, false);
1126 } else if (hs400_tuning) {
1127 val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
1128 val |= ESDHC_FLW_CTL_BG;
1129 sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
1132 return ret;
1135 static void esdhc_set_uhs_signaling(struct sdhci_host *host,
1136 unsigned int timing)
1138 if (timing == MMC_TIMING_MMC_HS400)
1139 esdhc_tuning_block_enable(host, true);
1140 else
1141 sdhci_set_uhs_signaling(host, timing);
1144 static u32 esdhc_irq(struct sdhci_host *host, u32 intmask)
1146 u32 command;
1148 if (of_find_compatible_node(NULL, NULL,
1149 "fsl,p2020-esdhc")) {
1150 command = SDHCI_GET_CMD(sdhci_readw(host,
1151 SDHCI_COMMAND));
1152 if (command == MMC_WRITE_MULTIPLE_BLOCK &&
1153 sdhci_readw(host, SDHCI_BLOCK_COUNT) &&
1154 intmask & SDHCI_INT_DATA_END) {
1155 intmask &= ~SDHCI_INT_DATA_END;
1156 sdhci_writel(host, SDHCI_INT_DATA_END,
1157 SDHCI_INT_STATUS);
1160 return intmask;
1163 #ifdef CONFIG_PM_SLEEP
1164 static u32 esdhc_proctl;
1165 static int esdhc_of_suspend(struct device *dev)
1167 struct sdhci_host *host = dev_get_drvdata(dev);
1169 esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL);
1171 if (host->tuning_mode != SDHCI_TUNING_MODE_3)
1172 mmc_retune_needed(host->mmc);
1174 return sdhci_suspend_host(host);
1177 static int esdhc_of_resume(struct device *dev)
1179 struct sdhci_host *host = dev_get_drvdata(dev);
1180 int ret = sdhci_resume_host(host);
1182 if (ret == 0) {
1183 /* Isn't this already done by sdhci_resume_host() ? --rmk */
1184 esdhc_of_enable_dma(host);
1185 sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL);
1187 return ret;
1189 #endif
1191 static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops,
1192 esdhc_of_suspend,
1193 esdhc_of_resume);
1195 static const struct sdhci_ops sdhci_esdhc_be_ops = {
1196 .read_l = esdhc_be_readl,
1197 .read_w = esdhc_be_readw,
1198 .read_b = esdhc_be_readb,
1199 .write_l = esdhc_be_writel,
1200 .write_w = esdhc_be_writew,
1201 .write_b = esdhc_be_writeb,
1202 .set_clock = esdhc_of_set_clock,
1203 .enable_dma = esdhc_of_enable_dma,
1204 .get_max_clock = esdhc_of_get_max_clock,
1205 .get_min_clock = esdhc_of_get_min_clock,
1206 .adma_workaround = esdhc_of_adma_workaround,
1207 .set_bus_width = esdhc_pltfm_set_bus_width,
1208 .reset = esdhc_reset,
1209 .set_uhs_signaling = esdhc_set_uhs_signaling,
1210 .irq = esdhc_irq,
1213 static const struct sdhci_ops sdhci_esdhc_le_ops = {
1214 .read_l = esdhc_le_readl,
1215 .read_w = esdhc_le_readw,
1216 .read_b = esdhc_le_readb,
1217 .write_l = esdhc_le_writel,
1218 .write_w = esdhc_le_writew,
1219 .write_b = esdhc_le_writeb,
1220 .set_clock = esdhc_of_set_clock,
1221 .enable_dma = esdhc_of_enable_dma,
1222 .get_max_clock = esdhc_of_get_max_clock,
1223 .get_min_clock = esdhc_of_get_min_clock,
1224 .adma_workaround = esdhc_of_adma_workaround,
1225 .set_bus_width = esdhc_pltfm_set_bus_width,
1226 .reset = esdhc_reset,
1227 .set_uhs_signaling = esdhc_set_uhs_signaling,
1228 .irq = esdhc_irq,
1231 static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = {
1232 .quirks = ESDHC_DEFAULT_QUIRKS |
1233 #ifdef CONFIG_PPC
1234 SDHCI_QUIRK_BROKEN_CARD_DETECTION |
1235 #endif
1236 SDHCI_QUIRK_NO_CARD_NO_RESET |
1237 SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1238 .ops = &sdhci_esdhc_be_ops,
1241 static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = {
1242 .quirks = ESDHC_DEFAULT_QUIRKS |
1243 SDHCI_QUIRK_NO_CARD_NO_RESET |
1244 SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1245 .ops = &sdhci_esdhc_le_ops,
1248 static struct soc_device_attribute soc_incorrect_hostver[] = {
1249 { .family = "QorIQ T4240", .revision = "1.0", },
1250 { .family = "QorIQ T4240", .revision = "2.0", },
1251 { },
1254 static struct soc_device_attribute soc_fixup_sdhc_clkdivs[] = {
1255 { .family = "QorIQ LX2160A", .revision = "1.0", },
1256 { .family = "QorIQ LX2160A", .revision = "2.0", },
1257 { .family = "QorIQ LS1028A", .revision = "1.0", },
1258 { },
1261 static struct soc_device_attribute soc_unreliable_pulse_detection[] = {
1262 { .family = "QorIQ LX2160A", .revision = "1.0", },
1263 { },
1266 static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host)
1268 const struct of_device_id *match;
1269 struct sdhci_pltfm_host *pltfm_host;
1270 struct sdhci_esdhc *esdhc;
1271 struct device_node *np;
1272 struct clk *clk;
1273 u32 val;
1274 u16 host_ver;
1276 pltfm_host = sdhci_priv(host);
1277 esdhc = sdhci_pltfm_priv(pltfm_host);
1279 host_ver = sdhci_readw(host, SDHCI_HOST_VERSION);
1280 esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >>
1281 SDHCI_VENDOR_VER_SHIFT;
1282 esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK;
1283 if (soc_device_match(soc_incorrect_hostver))
1284 esdhc->quirk_incorrect_hostver = true;
1285 else
1286 esdhc->quirk_incorrect_hostver = false;
1288 if (soc_device_match(soc_fixup_sdhc_clkdivs))
1289 esdhc->quirk_limited_clk_division = true;
1290 else
1291 esdhc->quirk_limited_clk_division = false;
1293 if (soc_device_match(soc_unreliable_pulse_detection))
1294 esdhc->quirk_unreliable_pulse_detection = true;
1295 else
1296 esdhc->quirk_unreliable_pulse_detection = false;
1298 match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node);
1299 if (match)
1300 esdhc->clk_fixup = match->data;
1301 np = pdev->dev.of_node;
1303 if (of_device_is_compatible(np, "fsl,p2020-esdhc"))
1304 esdhc->quirk_delay_before_data_reset = true;
1306 clk = of_clk_get(np, 0);
1307 if (!IS_ERR(clk)) {
1309 * esdhc->peripheral_clock would be assigned with a value
1310 * which is eSDHC base clock when use periperal clock.
1311 * For some platforms, the clock value got by common clk
1312 * API is peripheral clock while the eSDHC base clock is
1313 * 1/2 peripheral clock.
1315 if (of_device_is_compatible(np, "fsl,ls1046a-esdhc") ||
1316 of_device_is_compatible(np, "fsl,ls1028a-esdhc") ||
1317 of_device_is_compatible(np, "fsl,ls1088a-esdhc"))
1318 esdhc->peripheral_clock = clk_get_rate(clk) / 2;
1319 else
1320 esdhc->peripheral_clock = clk_get_rate(clk);
1322 clk_put(clk);
1325 if (esdhc->peripheral_clock) {
1326 esdhc_clock_enable(host, false);
1327 val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
1328 val |= ESDHC_PERIPHERAL_CLK_SEL;
1329 sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
1330 esdhc_clock_enable(host, true);
1334 static int esdhc_hs400_prepare_ddr(struct mmc_host *mmc)
1336 esdhc_tuning_block_enable(mmc_priv(mmc), false);
1337 return 0;
1340 static int sdhci_esdhc_probe(struct platform_device *pdev)
1342 struct sdhci_host *host;
1343 struct device_node *np;
1344 struct sdhci_pltfm_host *pltfm_host;
1345 struct sdhci_esdhc *esdhc;
1346 int ret;
1348 np = pdev->dev.of_node;
1350 if (of_property_read_bool(np, "little-endian"))
1351 host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata,
1352 sizeof(struct sdhci_esdhc));
1353 else
1354 host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata,
1355 sizeof(struct sdhci_esdhc));
1357 if (IS_ERR(host))
1358 return PTR_ERR(host);
1360 host->mmc_host_ops.start_signal_voltage_switch =
1361 esdhc_signal_voltage_switch;
1362 host->mmc_host_ops.execute_tuning = esdhc_execute_tuning;
1363 host->mmc_host_ops.hs400_prepare_ddr = esdhc_hs400_prepare_ddr;
1364 host->tuning_delay = 1;
1366 esdhc_init(pdev, host);
1368 sdhci_get_of_property(pdev);
1370 pltfm_host = sdhci_priv(host);
1371 esdhc = sdhci_pltfm_priv(pltfm_host);
1372 if (soc_device_match(soc_tuning_erratum_type1))
1373 esdhc->quirk_tuning_erratum_type1 = true;
1374 else
1375 esdhc->quirk_tuning_erratum_type1 = false;
1377 if (soc_device_match(soc_tuning_erratum_type2))
1378 esdhc->quirk_tuning_erratum_type2 = true;
1379 else
1380 esdhc->quirk_tuning_erratum_type2 = false;
1382 if (esdhc->vendor_ver == VENDOR_V_22)
1383 host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23;
1385 if (esdhc->vendor_ver > VENDOR_V_22)
1386 host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ;
1388 if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc")) {
1389 host->quirks |= SDHCI_QUIRK_RESET_AFTER_REQUEST;
1390 host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1393 if (of_device_is_compatible(np, "fsl,p5040-esdhc") ||
1394 of_device_is_compatible(np, "fsl,p5020-esdhc") ||
1395 of_device_is_compatible(np, "fsl,p4080-esdhc") ||
1396 of_device_is_compatible(np, "fsl,p1020-esdhc") ||
1397 of_device_is_compatible(np, "fsl,t1040-esdhc"))
1398 host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
1400 if (of_device_is_compatible(np, "fsl,ls1021a-esdhc"))
1401 host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1403 esdhc->quirk_ignore_data_inhibit = false;
1404 if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
1406 * Freescale messed up with P2020 as it has a non-standard
1407 * host control register
1409 host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL;
1410 esdhc->quirk_ignore_data_inhibit = true;
1413 /* call to generic mmc_of_parse to support additional capabilities */
1414 ret = mmc_of_parse(host->mmc);
1415 if (ret)
1416 goto err;
1418 mmc_of_parse_voltage(np, &host->ocr_mask);
1420 ret = sdhci_add_host(host);
1421 if (ret)
1422 goto err;
1424 return 0;
1425 err:
1426 sdhci_pltfm_free(pdev);
1427 return ret;
1430 static struct platform_driver sdhci_esdhc_driver = {
1431 .driver = {
1432 .name = "sdhci-esdhc",
1433 .of_match_table = sdhci_esdhc_of_match,
1434 .pm = &esdhc_of_dev_pm_ops,
1436 .probe = sdhci_esdhc_probe,
1437 .remove = sdhci_pltfm_unregister,
1440 module_platform_driver(sdhci_esdhc_driver);
1442 MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC");
1443 MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, "
1444 "Anton Vorontsov <avorontsov@ru.mvista.com>");
1445 MODULE_LICENSE("GPL v2");