treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / mmc / host / sunxi-mmc.c
blobf87d7967457f6dbb736f5f797aec563a43222c70
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for sunxi SD/MMC host controllers
4 * (C) Copyright 2007-2011 Reuuimlla Technology Co., Ltd.
5 * (C) Copyright 2007-2011 Aaron Maoye <leafy.myeh@reuuimllatech.com>
6 * (C) Copyright 2013-2014 O2S GmbH <www.o2s.ch>
7 * (C) Copyright 2013-2014 David Lanzendörfer <david.lanzendoerfer@o2s.ch>
8 * (C) Copyright 2013-2014 Hans de Goede <hdegoede@redhat.com>
9 * (C) Copyright 2017 Sootech SA
12 #include <linux/clk.h>
13 #include <linux/clk/sunxi-ng.h>
14 #include <linux/delay.h>
15 #include <linux/device.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/mmc/card.h>
22 #include <linux/mmc/core.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/mmc.h>
25 #include <linux/mmc/sd.h>
26 #include <linux/mmc/sdio.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/module.h>
29 #include <linux/of_address.h>
30 #include <linux/of_platform.h>
31 #include <linux/platform_device.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/reset.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <linux/spinlock.h>
39 /* register offset definitions */
40 #define SDXC_REG_GCTRL (0x00) /* SMC Global Control Register */
41 #define SDXC_REG_CLKCR (0x04) /* SMC Clock Control Register */
42 #define SDXC_REG_TMOUT (0x08) /* SMC Time Out Register */
43 #define SDXC_REG_WIDTH (0x0C) /* SMC Bus Width Register */
44 #define SDXC_REG_BLKSZ (0x10) /* SMC Block Size Register */
45 #define SDXC_REG_BCNTR (0x14) /* SMC Byte Count Register */
46 #define SDXC_REG_CMDR (0x18) /* SMC Command Register */
47 #define SDXC_REG_CARG (0x1C) /* SMC Argument Register */
48 #define SDXC_REG_RESP0 (0x20) /* SMC Response Register 0 */
49 #define SDXC_REG_RESP1 (0x24) /* SMC Response Register 1 */
50 #define SDXC_REG_RESP2 (0x28) /* SMC Response Register 2 */
51 #define SDXC_REG_RESP3 (0x2C) /* SMC Response Register 3 */
52 #define SDXC_REG_IMASK (0x30) /* SMC Interrupt Mask Register */
53 #define SDXC_REG_MISTA (0x34) /* SMC Masked Interrupt Status Register */
54 #define SDXC_REG_RINTR (0x38) /* SMC Raw Interrupt Status Register */
55 #define SDXC_REG_STAS (0x3C) /* SMC Status Register */
56 #define SDXC_REG_FTRGL (0x40) /* SMC FIFO Threshold Watermark Registe */
57 #define SDXC_REG_FUNS (0x44) /* SMC Function Select Register */
58 #define SDXC_REG_CBCR (0x48) /* SMC CIU Byte Count Register */
59 #define SDXC_REG_BBCR (0x4C) /* SMC BIU Byte Count Register */
60 #define SDXC_REG_DBGC (0x50) /* SMC Debug Enable Register */
61 #define SDXC_REG_HWRST (0x78) /* SMC Card Hardware Reset for Register */
62 #define SDXC_REG_DMAC (0x80) /* SMC IDMAC Control Register */
63 #define SDXC_REG_DLBA (0x84) /* SMC IDMAC Descriptor List Base Addre */
64 #define SDXC_REG_IDST (0x88) /* SMC IDMAC Status Register */
65 #define SDXC_REG_IDIE (0x8C) /* SMC IDMAC Interrupt Enable Register */
66 #define SDXC_REG_CHDA (0x90)
67 #define SDXC_REG_CBDA (0x94)
69 /* New registers introduced in A64 */
70 #define SDXC_REG_A12A 0x058 /* SMC Auto Command 12 Register */
71 #define SDXC_REG_SD_NTSR 0x05C /* SMC New Timing Set Register */
72 #define SDXC_REG_DRV_DL 0x140 /* Drive Delay Control Register */
73 #define SDXC_REG_SAMP_DL_REG 0x144 /* SMC sample delay control */
74 #define SDXC_REG_DS_DL_REG 0x148 /* SMC data strobe delay control */
76 #define mmc_readl(host, reg) \
77 readl((host)->reg_base + SDXC_##reg)
78 #define mmc_writel(host, reg, value) \
79 writel((value), (host)->reg_base + SDXC_##reg)
81 /* global control register bits */
82 #define SDXC_SOFT_RESET BIT(0)
83 #define SDXC_FIFO_RESET BIT(1)
84 #define SDXC_DMA_RESET BIT(2)
85 #define SDXC_INTERRUPT_ENABLE_BIT BIT(4)
86 #define SDXC_DMA_ENABLE_BIT BIT(5)
87 #define SDXC_DEBOUNCE_ENABLE_BIT BIT(8)
88 #define SDXC_POSEDGE_LATCH_DATA BIT(9)
89 #define SDXC_DDR_MODE BIT(10)
90 #define SDXC_MEMORY_ACCESS_DONE BIT(29)
91 #define SDXC_ACCESS_DONE_DIRECT BIT(30)
92 #define SDXC_ACCESS_BY_AHB BIT(31)
93 #define SDXC_ACCESS_BY_DMA (0 << 31)
94 #define SDXC_HARDWARE_RESET \
95 (SDXC_SOFT_RESET | SDXC_FIFO_RESET | SDXC_DMA_RESET)
97 /* clock control bits */
98 #define SDXC_MASK_DATA0 BIT(31)
99 #define SDXC_CARD_CLOCK_ON BIT(16)
100 #define SDXC_LOW_POWER_ON BIT(17)
102 /* bus width */
103 #define SDXC_WIDTH1 0
104 #define SDXC_WIDTH4 1
105 #define SDXC_WIDTH8 2
107 /* smc command bits */
108 #define SDXC_RESP_EXPIRE BIT(6)
109 #define SDXC_LONG_RESPONSE BIT(7)
110 #define SDXC_CHECK_RESPONSE_CRC BIT(8)
111 #define SDXC_DATA_EXPIRE BIT(9)
112 #define SDXC_WRITE BIT(10)
113 #define SDXC_SEQUENCE_MODE BIT(11)
114 #define SDXC_SEND_AUTO_STOP BIT(12)
115 #define SDXC_WAIT_PRE_OVER BIT(13)
116 #define SDXC_STOP_ABORT_CMD BIT(14)
117 #define SDXC_SEND_INIT_SEQUENCE BIT(15)
118 #define SDXC_UPCLK_ONLY BIT(21)
119 #define SDXC_READ_CEATA_DEV BIT(22)
120 #define SDXC_CCS_EXPIRE BIT(23)
121 #define SDXC_ENABLE_BIT_BOOT BIT(24)
122 #define SDXC_ALT_BOOT_OPTIONS BIT(25)
123 #define SDXC_BOOT_ACK_EXPIRE BIT(26)
124 #define SDXC_BOOT_ABORT BIT(27)
125 #define SDXC_VOLTAGE_SWITCH BIT(28)
126 #define SDXC_USE_HOLD_REGISTER BIT(29)
127 #define SDXC_START BIT(31)
129 /* interrupt bits */
130 #define SDXC_RESP_ERROR BIT(1)
131 #define SDXC_COMMAND_DONE BIT(2)
132 #define SDXC_DATA_OVER BIT(3)
133 #define SDXC_TX_DATA_REQUEST BIT(4)
134 #define SDXC_RX_DATA_REQUEST BIT(5)
135 #define SDXC_RESP_CRC_ERROR BIT(6)
136 #define SDXC_DATA_CRC_ERROR BIT(7)
137 #define SDXC_RESP_TIMEOUT BIT(8)
138 #define SDXC_DATA_TIMEOUT BIT(9)
139 #define SDXC_VOLTAGE_CHANGE_DONE BIT(10)
140 #define SDXC_FIFO_RUN_ERROR BIT(11)
141 #define SDXC_HARD_WARE_LOCKED BIT(12)
142 #define SDXC_START_BIT_ERROR BIT(13)
143 #define SDXC_AUTO_COMMAND_DONE BIT(14)
144 #define SDXC_END_BIT_ERROR BIT(15)
145 #define SDXC_SDIO_INTERRUPT BIT(16)
146 #define SDXC_CARD_INSERT BIT(30)
147 #define SDXC_CARD_REMOVE BIT(31)
148 #define SDXC_INTERRUPT_ERROR_BIT \
149 (SDXC_RESP_ERROR | SDXC_RESP_CRC_ERROR | SDXC_DATA_CRC_ERROR | \
150 SDXC_RESP_TIMEOUT | SDXC_DATA_TIMEOUT | SDXC_FIFO_RUN_ERROR | \
151 SDXC_HARD_WARE_LOCKED | SDXC_START_BIT_ERROR | SDXC_END_BIT_ERROR)
152 #define SDXC_INTERRUPT_DONE_BIT \
153 (SDXC_AUTO_COMMAND_DONE | SDXC_DATA_OVER | \
154 SDXC_COMMAND_DONE | SDXC_VOLTAGE_CHANGE_DONE)
156 /* status */
157 #define SDXC_RXWL_FLAG BIT(0)
158 #define SDXC_TXWL_FLAG BIT(1)
159 #define SDXC_FIFO_EMPTY BIT(2)
160 #define SDXC_FIFO_FULL BIT(3)
161 #define SDXC_CARD_PRESENT BIT(8)
162 #define SDXC_CARD_DATA_BUSY BIT(9)
163 #define SDXC_DATA_FSM_BUSY BIT(10)
164 #define SDXC_DMA_REQUEST BIT(31)
165 #define SDXC_FIFO_SIZE 16
167 /* Function select */
168 #define SDXC_CEATA_ON (0xceaa << 16)
169 #define SDXC_SEND_IRQ_RESPONSE BIT(0)
170 #define SDXC_SDIO_READ_WAIT BIT(1)
171 #define SDXC_ABORT_READ_DATA BIT(2)
172 #define SDXC_SEND_CCSD BIT(8)
173 #define SDXC_SEND_AUTO_STOPCCSD BIT(9)
174 #define SDXC_CEATA_DEV_IRQ_ENABLE BIT(10)
176 /* IDMA controller bus mod bit field */
177 #define SDXC_IDMAC_SOFT_RESET BIT(0)
178 #define SDXC_IDMAC_FIX_BURST BIT(1)
179 #define SDXC_IDMAC_IDMA_ON BIT(7)
180 #define SDXC_IDMAC_REFETCH_DES BIT(31)
182 /* IDMA status bit field */
183 #define SDXC_IDMAC_TRANSMIT_INTERRUPT BIT(0)
184 #define SDXC_IDMAC_RECEIVE_INTERRUPT BIT(1)
185 #define SDXC_IDMAC_FATAL_BUS_ERROR BIT(2)
186 #define SDXC_IDMAC_DESTINATION_INVALID BIT(4)
187 #define SDXC_IDMAC_CARD_ERROR_SUM BIT(5)
188 #define SDXC_IDMAC_NORMAL_INTERRUPT_SUM BIT(8)
189 #define SDXC_IDMAC_ABNORMAL_INTERRUPT_SUM BIT(9)
190 #define SDXC_IDMAC_HOST_ABORT_INTERRUPT BIT(10)
191 #define SDXC_IDMAC_IDLE (0 << 13)
192 #define SDXC_IDMAC_SUSPEND (1 << 13)
193 #define SDXC_IDMAC_DESC_READ (2 << 13)
194 #define SDXC_IDMAC_DESC_CHECK (3 << 13)
195 #define SDXC_IDMAC_READ_REQUEST_WAIT (4 << 13)
196 #define SDXC_IDMAC_WRITE_REQUEST_WAIT (5 << 13)
197 #define SDXC_IDMAC_READ (6 << 13)
198 #define SDXC_IDMAC_WRITE (7 << 13)
199 #define SDXC_IDMAC_DESC_CLOSE (8 << 13)
202 * If the idma-des-size-bits of property is ie 13, bufsize bits are:
203 * Bits 0-12: buf1 size
204 * Bits 13-25: buf2 size
205 * Bits 26-31: not used
206 * Since we only ever set buf1 size, we can simply store it directly.
208 #define SDXC_IDMAC_DES0_DIC BIT(1) /* disable interrupt on completion */
209 #define SDXC_IDMAC_DES0_LD BIT(2) /* last descriptor */
210 #define SDXC_IDMAC_DES0_FD BIT(3) /* first descriptor */
211 #define SDXC_IDMAC_DES0_CH BIT(4) /* chain mode */
212 #define SDXC_IDMAC_DES0_ER BIT(5) /* end of ring */
213 #define SDXC_IDMAC_DES0_CES BIT(30) /* card error summary */
214 #define SDXC_IDMAC_DES0_OWN BIT(31) /* 1-idma owns it, 0-host owns it */
216 #define SDXC_CLK_400K 0
217 #define SDXC_CLK_25M 1
218 #define SDXC_CLK_50M 2
219 #define SDXC_CLK_50M_DDR 3
220 #define SDXC_CLK_50M_DDR_8BIT 4
222 #define SDXC_2X_TIMING_MODE BIT(31)
224 #define SDXC_CAL_START BIT(15)
225 #define SDXC_CAL_DONE BIT(14)
226 #define SDXC_CAL_DL_SHIFT 8
227 #define SDXC_CAL_DL_SW_EN BIT(7)
228 #define SDXC_CAL_DL_SW_SHIFT 0
229 #define SDXC_CAL_DL_MASK 0x3f
231 #define SDXC_CAL_TIMEOUT 3 /* in seconds, 3s is enough*/
233 struct sunxi_mmc_clk_delay {
234 u32 output;
235 u32 sample;
238 struct sunxi_idma_des {
239 __le32 config;
240 __le32 buf_size;
241 __le32 buf_addr_ptr1;
242 __le32 buf_addr_ptr2;
245 struct sunxi_mmc_cfg {
246 u32 idma_des_size_bits;
247 const struct sunxi_mmc_clk_delay *clk_delays;
249 /* does the IP block support autocalibration? */
250 bool can_calibrate;
252 /* Does DATA0 needs to be masked while the clock is updated */
253 bool mask_data0;
256 * hardware only supports new timing mode, either due to lack of
257 * a mode switch in the clock controller, or the mmc controller
258 * is permanently configured in the new timing mode, without the
259 * NTSR mode switch.
261 bool needs_new_timings;
263 /* clock hardware can switch between old and new timing modes */
264 bool ccu_has_timings_switch;
267 struct sunxi_mmc_host {
268 struct device *dev;
269 struct mmc_host *mmc;
270 struct reset_control *reset;
271 const struct sunxi_mmc_cfg *cfg;
273 /* IO mapping base */
274 void __iomem *reg_base;
276 /* clock management */
277 struct clk *clk_ahb;
278 struct clk *clk_mmc;
279 struct clk *clk_sample;
280 struct clk *clk_output;
282 /* irq */
283 spinlock_t lock;
284 int irq;
285 u32 int_sum;
286 u32 sdio_imask;
288 /* dma */
289 dma_addr_t sg_dma;
290 void *sg_cpu;
291 bool wait_dma;
293 struct mmc_request *mrq;
294 struct mmc_request *manual_stop_mrq;
295 int ferror;
297 /* vqmmc */
298 bool vqmmc_enabled;
300 /* timings */
301 bool use_new_timings;
304 static int sunxi_mmc_reset_host(struct sunxi_mmc_host *host)
306 unsigned long expire = jiffies + msecs_to_jiffies(250);
307 u32 rval;
309 mmc_writel(host, REG_GCTRL, SDXC_HARDWARE_RESET);
310 do {
311 rval = mmc_readl(host, REG_GCTRL);
312 } while (time_before(jiffies, expire) && (rval & SDXC_HARDWARE_RESET));
314 if (rval & SDXC_HARDWARE_RESET) {
315 dev_err(mmc_dev(host->mmc), "fatal err reset timeout\n");
316 return -EIO;
319 return 0;
322 static int sunxi_mmc_init_host(struct sunxi_mmc_host *host)
324 u32 rval;
326 if (sunxi_mmc_reset_host(host))
327 return -EIO;
330 * Burst 8 transfers, RX trigger level: 7, TX trigger level: 8
332 * TODO: sun9i has a larger FIFO and supports higher trigger values
334 mmc_writel(host, REG_FTRGL, 0x20070008);
335 /* Maximum timeout value */
336 mmc_writel(host, REG_TMOUT, 0xffffffff);
337 /* Unmask SDIO interrupt if needed */
338 mmc_writel(host, REG_IMASK, host->sdio_imask);
339 /* Clear all pending interrupts */
340 mmc_writel(host, REG_RINTR, 0xffffffff);
341 /* Debug register? undocumented */
342 mmc_writel(host, REG_DBGC, 0xdeb);
343 /* Enable CEATA support */
344 mmc_writel(host, REG_FUNS, SDXC_CEATA_ON);
345 /* Set DMA descriptor list base address */
346 mmc_writel(host, REG_DLBA, host->sg_dma);
348 rval = mmc_readl(host, REG_GCTRL);
349 rval |= SDXC_INTERRUPT_ENABLE_BIT;
350 /* Undocumented, but found in Allwinner code */
351 rval &= ~SDXC_ACCESS_DONE_DIRECT;
352 mmc_writel(host, REG_GCTRL, rval);
354 return 0;
357 static void sunxi_mmc_init_idma_des(struct sunxi_mmc_host *host,
358 struct mmc_data *data)
360 struct sunxi_idma_des *pdes = (struct sunxi_idma_des *)host->sg_cpu;
361 dma_addr_t next_desc = host->sg_dma;
362 int i, max_len = (1 << host->cfg->idma_des_size_bits);
364 for (i = 0; i < data->sg_len; i++) {
365 pdes[i].config = cpu_to_le32(SDXC_IDMAC_DES0_CH |
366 SDXC_IDMAC_DES0_OWN |
367 SDXC_IDMAC_DES0_DIC);
369 if (data->sg[i].length == max_len)
370 pdes[i].buf_size = 0; /* 0 == max_len */
371 else
372 pdes[i].buf_size = cpu_to_le32(data->sg[i].length);
374 next_desc += sizeof(struct sunxi_idma_des);
375 pdes[i].buf_addr_ptr1 =
376 cpu_to_le32(sg_dma_address(&data->sg[i]));
377 pdes[i].buf_addr_ptr2 = cpu_to_le32((u32)next_desc);
380 pdes[0].config |= cpu_to_le32(SDXC_IDMAC_DES0_FD);
381 pdes[i - 1].config |= cpu_to_le32(SDXC_IDMAC_DES0_LD |
382 SDXC_IDMAC_DES0_ER);
383 pdes[i - 1].config &= cpu_to_le32(~SDXC_IDMAC_DES0_DIC);
384 pdes[i - 1].buf_addr_ptr2 = 0;
387 * Avoid the io-store starting the idmac hitting io-mem before the
388 * descriptors hit the main-mem.
390 wmb();
393 static int sunxi_mmc_map_dma(struct sunxi_mmc_host *host,
394 struct mmc_data *data)
396 u32 i, dma_len;
397 struct scatterlist *sg;
399 dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
400 mmc_get_dma_dir(data));
401 if (dma_len == 0) {
402 dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
403 return -ENOMEM;
406 for_each_sg(data->sg, sg, data->sg_len, i) {
407 if (sg->offset & 3 || sg->length & 3) {
408 dev_err(mmc_dev(host->mmc),
409 "unaligned scatterlist: os %x length %d\n",
410 sg->offset, sg->length);
411 return -EINVAL;
415 return 0;
418 static void sunxi_mmc_start_dma(struct sunxi_mmc_host *host,
419 struct mmc_data *data)
421 u32 rval;
423 sunxi_mmc_init_idma_des(host, data);
425 rval = mmc_readl(host, REG_GCTRL);
426 rval |= SDXC_DMA_ENABLE_BIT;
427 mmc_writel(host, REG_GCTRL, rval);
428 rval |= SDXC_DMA_RESET;
429 mmc_writel(host, REG_GCTRL, rval);
431 mmc_writel(host, REG_DMAC, SDXC_IDMAC_SOFT_RESET);
433 if (!(data->flags & MMC_DATA_WRITE))
434 mmc_writel(host, REG_IDIE, SDXC_IDMAC_RECEIVE_INTERRUPT);
436 mmc_writel(host, REG_DMAC,
437 SDXC_IDMAC_FIX_BURST | SDXC_IDMAC_IDMA_ON);
440 static void sunxi_mmc_send_manual_stop(struct sunxi_mmc_host *host,
441 struct mmc_request *req)
443 u32 arg, cmd_val, ri;
444 unsigned long expire = jiffies + msecs_to_jiffies(1000);
446 cmd_val = SDXC_START | SDXC_RESP_EXPIRE |
447 SDXC_STOP_ABORT_CMD | SDXC_CHECK_RESPONSE_CRC;
449 if (req->cmd->opcode == SD_IO_RW_EXTENDED) {
450 cmd_val |= SD_IO_RW_DIRECT;
451 arg = (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
452 ((req->cmd->arg >> 28) & 0x7);
453 } else {
454 cmd_val |= MMC_STOP_TRANSMISSION;
455 arg = 0;
458 mmc_writel(host, REG_CARG, arg);
459 mmc_writel(host, REG_CMDR, cmd_val);
461 do {
462 ri = mmc_readl(host, REG_RINTR);
463 } while (!(ri & (SDXC_COMMAND_DONE | SDXC_INTERRUPT_ERROR_BIT)) &&
464 time_before(jiffies, expire));
466 if (!(ri & SDXC_COMMAND_DONE) || (ri & SDXC_INTERRUPT_ERROR_BIT)) {
467 dev_err(mmc_dev(host->mmc), "send stop command failed\n");
468 if (req->stop)
469 req->stop->resp[0] = -ETIMEDOUT;
470 } else {
471 if (req->stop)
472 req->stop->resp[0] = mmc_readl(host, REG_RESP0);
475 mmc_writel(host, REG_RINTR, 0xffff);
478 static void sunxi_mmc_dump_errinfo(struct sunxi_mmc_host *host)
480 struct mmc_command *cmd = host->mrq->cmd;
481 struct mmc_data *data = host->mrq->data;
483 /* For some cmds timeout is normal with sd/mmc cards */
484 if ((host->int_sum & SDXC_INTERRUPT_ERROR_BIT) ==
485 SDXC_RESP_TIMEOUT && (cmd->opcode == SD_IO_SEND_OP_COND ||
486 cmd->opcode == SD_IO_RW_DIRECT))
487 return;
489 dev_dbg(mmc_dev(host->mmc),
490 "smc %d err, cmd %d,%s%s%s%s%s%s%s%s%s%s !!\n",
491 host->mmc->index, cmd->opcode,
492 data ? (data->flags & MMC_DATA_WRITE ? " WR" : " RD") : "",
493 host->int_sum & SDXC_RESP_ERROR ? " RE" : "",
494 host->int_sum & SDXC_RESP_CRC_ERROR ? " RCE" : "",
495 host->int_sum & SDXC_DATA_CRC_ERROR ? " DCE" : "",
496 host->int_sum & SDXC_RESP_TIMEOUT ? " RTO" : "",
497 host->int_sum & SDXC_DATA_TIMEOUT ? " DTO" : "",
498 host->int_sum & SDXC_FIFO_RUN_ERROR ? " FE" : "",
499 host->int_sum & SDXC_HARD_WARE_LOCKED ? " HL" : "",
500 host->int_sum & SDXC_START_BIT_ERROR ? " SBE" : "",
501 host->int_sum & SDXC_END_BIT_ERROR ? " EBE" : ""
505 /* Called in interrupt context! */
506 static irqreturn_t sunxi_mmc_finalize_request(struct sunxi_mmc_host *host)
508 struct mmc_request *mrq = host->mrq;
509 struct mmc_data *data = mrq->data;
510 u32 rval;
512 mmc_writel(host, REG_IMASK, host->sdio_imask);
513 mmc_writel(host, REG_IDIE, 0);
515 if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT) {
516 sunxi_mmc_dump_errinfo(host);
517 mrq->cmd->error = -ETIMEDOUT;
519 if (data) {
520 data->error = -ETIMEDOUT;
521 host->manual_stop_mrq = mrq;
524 if (mrq->stop)
525 mrq->stop->error = -ETIMEDOUT;
526 } else {
527 if (mrq->cmd->flags & MMC_RSP_136) {
528 mrq->cmd->resp[0] = mmc_readl(host, REG_RESP3);
529 mrq->cmd->resp[1] = mmc_readl(host, REG_RESP2);
530 mrq->cmd->resp[2] = mmc_readl(host, REG_RESP1);
531 mrq->cmd->resp[3] = mmc_readl(host, REG_RESP0);
532 } else {
533 mrq->cmd->resp[0] = mmc_readl(host, REG_RESP0);
536 if (data)
537 data->bytes_xfered = data->blocks * data->blksz;
540 if (data) {
541 mmc_writel(host, REG_IDST, 0x337);
542 mmc_writel(host, REG_DMAC, 0);
543 rval = mmc_readl(host, REG_GCTRL);
544 rval |= SDXC_DMA_RESET;
545 mmc_writel(host, REG_GCTRL, rval);
546 rval &= ~SDXC_DMA_ENABLE_BIT;
547 mmc_writel(host, REG_GCTRL, rval);
548 rval |= SDXC_FIFO_RESET;
549 mmc_writel(host, REG_GCTRL, rval);
550 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
551 mmc_get_dma_dir(data));
554 mmc_writel(host, REG_RINTR, 0xffff);
556 host->mrq = NULL;
557 host->int_sum = 0;
558 host->wait_dma = false;
560 return host->manual_stop_mrq ? IRQ_WAKE_THREAD : IRQ_HANDLED;
563 static irqreturn_t sunxi_mmc_irq(int irq, void *dev_id)
565 struct sunxi_mmc_host *host = dev_id;
566 struct mmc_request *mrq;
567 u32 msk_int, idma_int;
568 bool finalize = false;
569 bool sdio_int = false;
570 irqreturn_t ret = IRQ_HANDLED;
572 spin_lock(&host->lock);
574 idma_int = mmc_readl(host, REG_IDST);
575 msk_int = mmc_readl(host, REG_MISTA);
577 dev_dbg(mmc_dev(host->mmc), "irq: rq %p mi %08x idi %08x\n",
578 host->mrq, msk_int, idma_int);
580 mrq = host->mrq;
581 if (mrq) {
582 if (idma_int & SDXC_IDMAC_RECEIVE_INTERRUPT)
583 host->wait_dma = false;
585 host->int_sum |= msk_int;
587 /* Wait for COMMAND_DONE on RESPONSE_TIMEOUT before finalize */
588 if ((host->int_sum & SDXC_RESP_TIMEOUT) &&
589 !(host->int_sum & SDXC_COMMAND_DONE))
590 mmc_writel(host, REG_IMASK,
591 host->sdio_imask | SDXC_COMMAND_DONE);
592 /* Don't wait for dma on error */
593 else if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT)
594 finalize = true;
595 else if ((host->int_sum & SDXC_INTERRUPT_DONE_BIT) &&
596 !host->wait_dma)
597 finalize = true;
600 if (msk_int & SDXC_SDIO_INTERRUPT)
601 sdio_int = true;
603 mmc_writel(host, REG_RINTR, msk_int);
604 mmc_writel(host, REG_IDST, idma_int);
606 if (finalize)
607 ret = sunxi_mmc_finalize_request(host);
609 spin_unlock(&host->lock);
611 if (finalize && ret == IRQ_HANDLED)
612 mmc_request_done(host->mmc, mrq);
614 if (sdio_int)
615 mmc_signal_sdio_irq(host->mmc);
617 return ret;
620 static irqreturn_t sunxi_mmc_handle_manual_stop(int irq, void *dev_id)
622 struct sunxi_mmc_host *host = dev_id;
623 struct mmc_request *mrq;
624 unsigned long iflags;
626 spin_lock_irqsave(&host->lock, iflags);
627 mrq = host->manual_stop_mrq;
628 spin_unlock_irqrestore(&host->lock, iflags);
630 if (!mrq) {
631 dev_err(mmc_dev(host->mmc), "no request for manual stop\n");
632 return IRQ_HANDLED;
635 dev_err(mmc_dev(host->mmc), "data error, sending stop command\n");
638 * We will never have more than one outstanding request,
639 * and we do not complete the request until after
640 * we've cleared host->manual_stop_mrq so we do not need to
641 * spin lock this function.
642 * Additionally we have wait states within this function
643 * so having it in a lock is a very bad idea.
645 sunxi_mmc_send_manual_stop(host, mrq);
647 spin_lock_irqsave(&host->lock, iflags);
648 host->manual_stop_mrq = NULL;
649 spin_unlock_irqrestore(&host->lock, iflags);
651 mmc_request_done(host->mmc, mrq);
653 return IRQ_HANDLED;
656 static int sunxi_mmc_oclk_onoff(struct sunxi_mmc_host *host, u32 oclk_en)
658 unsigned long expire = jiffies + msecs_to_jiffies(750);
659 u32 rval;
661 dev_dbg(mmc_dev(host->mmc), "%sabling the clock\n",
662 oclk_en ? "en" : "dis");
664 rval = mmc_readl(host, REG_CLKCR);
665 rval &= ~(SDXC_CARD_CLOCK_ON | SDXC_LOW_POWER_ON | SDXC_MASK_DATA0);
667 if (oclk_en)
668 rval |= SDXC_CARD_CLOCK_ON;
669 if (host->cfg->mask_data0)
670 rval |= SDXC_MASK_DATA0;
672 mmc_writel(host, REG_CLKCR, rval);
674 rval = SDXC_START | SDXC_UPCLK_ONLY | SDXC_WAIT_PRE_OVER;
675 mmc_writel(host, REG_CMDR, rval);
677 do {
678 rval = mmc_readl(host, REG_CMDR);
679 } while (time_before(jiffies, expire) && (rval & SDXC_START));
681 /* clear irq status bits set by the command */
682 mmc_writel(host, REG_RINTR,
683 mmc_readl(host, REG_RINTR) & ~SDXC_SDIO_INTERRUPT);
685 if (rval & SDXC_START) {
686 dev_err(mmc_dev(host->mmc), "fatal err update clk timeout\n");
687 return -EIO;
690 if (host->cfg->mask_data0) {
691 rval = mmc_readl(host, REG_CLKCR);
692 mmc_writel(host, REG_CLKCR, rval & ~SDXC_MASK_DATA0);
695 return 0;
698 static int sunxi_mmc_calibrate(struct sunxi_mmc_host *host, int reg_off)
700 if (!host->cfg->can_calibrate)
701 return 0;
704 * FIXME:
705 * This is not clear how the calibration is supposed to work
706 * yet. The best rate have been obtained by simply setting the
707 * delay to 0, as Allwinner does in its BSP.
709 * The only mode that doesn't have such a delay is HS400, that
710 * is in itself a TODO.
712 writel(SDXC_CAL_DL_SW_EN, host->reg_base + reg_off);
714 return 0;
717 static int sunxi_mmc_clk_set_phase(struct sunxi_mmc_host *host,
718 struct mmc_ios *ios, u32 rate)
720 int index;
722 /* clk controller delays not used under new timings mode */
723 if (host->use_new_timings)
724 return 0;
726 /* some old controllers don't support delays */
727 if (!host->cfg->clk_delays)
728 return 0;
730 /* determine delays */
731 if (rate <= 400000) {
732 index = SDXC_CLK_400K;
733 } else if (rate <= 25000000) {
734 index = SDXC_CLK_25M;
735 } else if (rate <= 52000000) {
736 if (ios->timing != MMC_TIMING_UHS_DDR50 &&
737 ios->timing != MMC_TIMING_MMC_DDR52) {
738 index = SDXC_CLK_50M;
739 } else if (ios->bus_width == MMC_BUS_WIDTH_8) {
740 index = SDXC_CLK_50M_DDR_8BIT;
741 } else {
742 index = SDXC_CLK_50M_DDR;
744 } else {
745 dev_dbg(mmc_dev(host->mmc), "Invalid clock... returning\n");
746 return -EINVAL;
749 clk_set_phase(host->clk_sample, host->cfg->clk_delays[index].sample);
750 clk_set_phase(host->clk_output, host->cfg->clk_delays[index].output);
752 return 0;
755 static int sunxi_mmc_clk_set_rate(struct sunxi_mmc_host *host,
756 struct mmc_ios *ios)
758 struct mmc_host *mmc = host->mmc;
759 long rate;
760 u32 rval, clock = ios->clock, div = 1;
761 int ret;
763 ret = sunxi_mmc_oclk_onoff(host, 0);
764 if (ret)
765 return ret;
767 /* Our clock is gated now */
768 mmc->actual_clock = 0;
770 if (!ios->clock)
771 return 0;
774 * Under the old timing mode, 8 bit DDR requires the module
775 * clock to be double the card clock. Under the new timing
776 * mode, all DDR modes require a doubled module clock.
778 * We currently only support the standard MMC DDR52 mode.
779 * This block should be updated once support for other DDR
780 * modes is added.
782 if (ios->timing == MMC_TIMING_MMC_DDR52 &&
783 (host->use_new_timings ||
784 ios->bus_width == MMC_BUS_WIDTH_8)) {
785 div = 2;
786 clock <<= 1;
789 if (host->use_new_timings && host->cfg->ccu_has_timings_switch) {
790 ret = sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true);
791 if (ret) {
792 dev_err(mmc_dev(mmc),
793 "error setting new timing mode\n");
794 return ret;
798 rate = clk_round_rate(host->clk_mmc, clock);
799 if (rate < 0) {
800 dev_err(mmc_dev(mmc), "error rounding clk to %d: %ld\n",
801 clock, rate);
802 return rate;
804 dev_dbg(mmc_dev(mmc), "setting clk to %d, rounded %ld\n",
805 clock, rate);
807 /* setting clock rate */
808 ret = clk_set_rate(host->clk_mmc, rate);
809 if (ret) {
810 dev_err(mmc_dev(mmc), "error setting clk to %ld: %d\n",
811 rate, ret);
812 return ret;
815 /* set internal divider */
816 rval = mmc_readl(host, REG_CLKCR);
817 rval &= ~0xff;
818 rval |= div - 1;
819 mmc_writel(host, REG_CLKCR, rval);
821 /* update card clock rate to account for internal divider */
822 rate /= div;
825 * Configure the controller to use the new timing mode if needed.
826 * On controllers that only support the new timing mode, such as
827 * the eMMC controller on the A64, this register does not exist,
828 * and any writes to it are ignored.
830 if (host->use_new_timings) {
831 /* Don't touch the delay bits */
832 rval = mmc_readl(host, REG_SD_NTSR);
833 rval |= SDXC_2X_TIMING_MODE;
834 mmc_writel(host, REG_SD_NTSR, rval);
837 /* sunxi_mmc_clk_set_phase expects the actual card clock rate */
838 ret = sunxi_mmc_clk_set_phase(host, ios, rate);
839 if (ret)
840 return ret;
842 ret = sunxi_mmc_calibrate(host, SDXC_REG_SAMP_DL_REG);
843 if (ret)
844 return ret;
847 * FIXME:
849 * In HS400 we'll also need to calibrate the data strobe
850 * signal. This should only happen on the MMC2 controller (at
851 * least on the A64).
854 ret = sunxi_mmc_oclk_onoff(host, 1);
855 if (ret)
856 return ret;
858 /* And we just enabled our clock back */
859 mmc->actual_clock = rate;
861 return 0;
864 static void sunxi_mmc_set_bus_width(struct sunxi_mmc_host *host,
865 unsigned char width)
867 switch (width) {
868 case MMC_BUS_WIDTH_1:
869 mmc_writel(host, REG_WIDTH, SDXC_WIDTH1);
870 break;
871 case MMC_BUS_WIDTH_4:
872 mmc_writel(host, REG_WIDTH, SDXC_WIDTH4);
873 break;
874 case MMC_BUS_WIDTH_8:
875 mmc_writel(host, REG_WIDTH, SDXC_WIDTH8);
876 break;
880 static void sunxi_mmc_set_clk(struct sunxi_mmc_host *host, struct mmc_ios *ios)
882 u32 rval;
884 /* set ddr mode */
885 rval = mmc_readl(host, REG_GCTRL);
886 if (ios->timing == MMC_TIMING_UHS_DDR50 ||
887 ios->timing == MMC_TIMING_MMC_DDR52)
888 rval |= SDXC_DDR_MODE;
889 else
890 rval &= ~SDXC_DDR_MODE;
891 mmc_writel(host, REG_GCTRL, rval);
893 host->ferror = sunxi_mmc_clk_set_rate(host, ios);
894 /* Android code had a usleep_range(50000, 55000); here */
897 static void sunxi_mmc_card_power(struct sunxi_mmc_host *host,
898 struct mmc_ios *ios)
900 struct mmc_host *mmc = host->mmc;
902 switch (ios->power_mode) {
903 case MMC_POWER_UP:
904 dev_dbg(mmc_dev(mmc), "Powering card up\n");
906 if (!IS_ERR(mmc->supply.vmmc)) {
907 host->ferror = mmc_regulator_set_ocr(mmc,
908 mmc->supply.vmmc,
909 ios->vdd);
910 if (host->ferror)
911 return;
914 if (!IS_ERR(mmc->supply.vqmmc)) {
915 host->ferror = regulator_enable(mmc->supply.vqmmc);
916 if (host->ferror) {
917 dev_err(mmc_dev(mmc),
918 "failed to enable vqmmc\n");
919 return;
921 host->vqmmc_enabled = true;
923 break;
925 case MMC_POWER_OFF:
926 dev_dbg(mmc_dev(mmc), "Powering card off\n");
928 if (!IS_ERR(mmc->supply.vmmc))
929 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
931 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled)
932 regulator_disable(mmc->supply.vqmmc);
934 host->vqmmc_enabled = false;
935 break;
937 default:
938 dev_dbg(mmc_dev(mmc), "Ignoring unknown card power state\n");
939 break;
943 static void sunxi_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
945 struct sunxi_mmc_host *host = mmc_priv(mmc);
947 sunxi_mmc_card_power(host, ios);
948 sunxi_mmc_set_bus_width(host, ios->bus_width);
949 sunxi_mmc_set_clk(host, ios);
952 static int sunxi_mmc_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
954 /* vqmmc regulator is available */
955 if (!IS_ERR(mmc->supply.vqmmc))
956 return mmc_regulator_set_vqmmc(mmc, ios);
958 /* no vqmmc regulator, assume fixed regulator at 3/3.3V */
959 if (mmc->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330)
960 return 0;
962 return -EINVAL;
965 static void sunxi_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
967 struct sunxi_mmc_host *host = mmc_priv(mmc);
968 unsigned long flags;
969 u32 imask;
971 if (enable)
972 pm_runtime_get_noresume(host->dev);
974 spin_lock_irqsave(&host->lock, flags);
976 imask = mmc_readl(host, REG_IMASK);
977 if (enable) {
978 host->sdio_imask = SDXC_SDIO_INTERRUPT;
979 imask |= SDXC_SDIO_INTERRUPT;
980 } else {
981 host->sdio_imask = 0;
982 imask &= ~SDXC_SDIO_INTERRUPT;
984 mmc_writel(host, REG_IMASK, imask);
985 spin_unlock_irqrestore(&host->lock, flags);
987 if (!enable)
988 pm_runtime_put_noidle(host->mmc->parent);
991 static void sunxi_mmc_hw_reset(struct mmc_host *mmc)
993 struct sunxi_mmc_host *host = mmc_priv(mmc);
994 mmc_writel(host, REG_HWRST, 0);
995 udelay(10);
996 mmc_writel(host, REG_HWRST, 1);
997 udelay(300);
1000 static void sunxi_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
1002 struct sunxi_mmc_host *host = mmc_priv(mmc);
1003 struct mmc_command *cmd = mrq->cmd;
1004 struct mmc_data *data = mrq->data;
1005 unsigned long iflags;
1006 u32 imask = SDXC_INTERRUPT_ERROR_BIT;
1007 u32 cmd_val = SDXC_START | (cmd->opcode & 0x3f);
1008 bool wait_dma = host->wait_dma;
1009 int ret;
1011 /* Check for set_ios errors (should never happen) */
1012 if (host->ferror) {
1013 mrq->cmd->error = host->ferror;
1014 mmc_request_done(mmc, mrq);
1015 return;
1018 if (data) {
1019 ret = sunxi_mmc_map_dma(host, data);
1020 if (ret < 0) {
1021 dev_err(mmc_dev(mmc), "map DMA failed\n");
1022 cmd->error = ret;
1023 data->error = ret;
1024 mmc_request_done(mmc, mrq);
1025 return;
1029 if (cmd->opcode == MMC_GO_IDLE_STATE) {
1030 cmd_val |= SDXC_SEND_INIT_SEQUENCE;
1031 imask |= SDXC_COMMAND_DONE;
1034 if (cmd->flags & MMC_RSP_PRESENT) {
1035 cmd_val |= SDXC_RESP_EXPIRE;
1036 if (cmd->flags & MMC_RSP_136)
1037 cmd_val |= SDXC_LONG_RESPONSE;
1038 if (cmd->flags & MMC_RSP_CRC)
1039 cmd_val |= SDXC_CHECK_RESPONSE_CRC;
1041 if ((cmd->flags & MMC_CMD_MASK) == MMC_CMD_ADTC) {
1042 cmd_val |= SDXC_DATA_EXPIRE | SDXC_WAIT_PRE_OVER;
1044 if (cmd->data->stop) {
1045 imask |= SDXC_AUTO_COMMAND_DONE;
1046 cmd_val |= SDXC_SEND_AUTO_STOP;
1047 } else {
1048 imask |= SDXC_DATA_OVER;
1051 if (cmd->data->flags & MMC_DATA_WRITE)
1052 cmd_val |= SDXC_WRITE;
1053 else
1054 wait_dma = true;
1055 } else {
1056 imask |= SDXC_COMMAND_DONE;
1058 } else {
1059 imask |= SDXC_COMMAND_DONE;
1062 dev_dbg(mmc_dev(mmc), "cmd %d(%08x) arg %x ie 0x%08x len %d\n",
1063 cmd_val & 0x3f, cmd_val, cmd->arg, imask,
1064 mrq->data ? mrq->data->blksz * mrq->data->blocks : 0);
1066 spin_lock_irqsave(&host->lock, iflags);
1068 if (host->mrq || host->manual_stop_mrq) {
1069 spin_unlock_irqrestore(&host->lock, iflags);
1071 if (data)
1072 dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
1073 mmc_get_dma_dir(data));
1075 dev_err(mmc_dev(mmc), "request already pending\n");
1076 mrq->cmd->error = -EBUSY;
1077 mmc_request_done(mmc, mrq);
1078 return;
1081 if (data) {
1082 mmc_writel(host, REG_BLKSZ, data->blksz);
1083 mmc_writel(host, REG_BCNTR, data->blksz * data->blocks);
1084 sunxi_mmc_start_dma(host, data);
1087 host->mrq = mrq;
1088 host->wait_dma = wait_dma;
1089 mmc_writel(host, REG_IMASK, host->sdio_imask | imask);
1090 mmc_writel(host, REG_CARG, cmd->arg);
1091 mmc_writel(host, REG_CMDR, cmd_val);
1093 spin_unlock_irqrestore(&host->lock, iflags);
1096 static int sunxi_mmc_card_busy(struct mmc_host *mmc)
1098 struct sunxi_mmc_host *host = mmc_priv(mmc);
1100 return !!(mmc_readl(host, REG_STAS) & SDXC_CARD_DATA_BUSY);
1103 static const struct mmc_host_ops sunxi_mmc_ops = {
1104 .request = sunxi_mmc_request,
1105 .set_ios = sunxi_mmc_set_ios,
1106 .get_ro = mmc_gpio_get_ro,
1107 .get_cd = mmc_gpio_get_cd,
1108 .enable_sdio_irq = sunxi_mmc_enable_sdio_irq,
1109 .start_signal_voltage_switch = sunxi_mmc_volt_switch,
1110 .hw_reset = sunxi_mmc_hw_reset,
1111 .card_busy = sunxi_mmc_card_busy,
1114 static const struct sunxi_mmc_clk_delay sunxi_mmc_clk_delays[] = {
1115 [SDXC_CLK_400K] = { .output = 180, .sample = 180 },
1116 [SDXC_CLK_25M] = { .output = 180, .sample = 75 },
1117 [SDXC_CLK_50M] = { .output = 90, .sample = 120 },
1118 [SDXC_CLK_50M_DDR] = { .output = 60, .sample = 120 },
1119 /* Value from A83T "new timing mode". Works but might not be right. */
1120 [SDXC_CLK_50M_DDR_8BIT] = { .output = 90, .sample = 180 },
1123 static const struct sunxi_mmc_clk_delay sun9i_mmc_clk_delays[] = {
1124 [SDXC_CLK_400K] = { .output = 180, .sample = 180 },
1125 [SDXC_CLK_25M] = { .output = 180, .sample = 75 },
1126 [SDXC_CLK_50M] = { .output = 150, .sample = 120 },
1127 [SDXC_CLK_50M_DDR] = { .output = 54, .sample = 36 },
1128 [SDXC_CLK_50M_DDR_8BIT] = { .output = 72, .sample = 72 },
1131 static const struct sunxi_mmc_cfg sun4i_a10_cfg = {
1132 .idma_des_size_bits = 13,
1133 .clk_delays = NULL,
1134 .can_calibrate = false,
1137 static const struct sunxi_mmc_cfg sun5i_a13_cfg = {
1138 .idma_des_size_bits = 16,
1139 .clk_delays = NULL,
1140 .can_calibrate = false,
1143 static const struct sunxi_mmc_cfg sun7i_a20_cfg = {
1144 .idma_des_size_bits = 16,
1145 .clk_delays = sunxi_mmc_clk_delays,
1146 .can_calibrate = false,
1149 static const struct sunxi_mmc_cfg sun8i_a83t_emmc_cfg = {
1150 .idma_des_size_bits = 16,
1151 .clk_delays = sunxi_mmc_clk_delays,
1152 .can_calibrate = false,
1153 .ccu_has_timings_switch = true,
1156 static const struct sunxi_mmc_cfg sun9i_a80_cfg = {
1157 .idma_des_size_bits = 16,
1158 .clk_delays = sun9i_mmc_clk_delays,
1159 .can_calibrate = false,
1162 static const struct sunxi_mmc_cfg sun50i_a64_cfg = {
1163 .idma_des_size_bits = 16,
1164 .clk_delays = NULL,
1165 .can_calibrate = true,
1166 .mask_data0 = true,
1167 .needs_new_timings = true,
1170 static const struct sunxi_mmc_cfg sun50i_a64_emmc_cfg = {
1171 .idma_des_size_bits = 13,
1172 .clk_delays = NULL,
1173 .can_calibrate = true,
1174 .needs_new_timings = true,
1177 static const struct of_device_id sunxi_mmc_of_match[] = {
1178 { .compatible = "allwinner,sun4i-a10-mmc", .data = &sun4i_a10_cfg },
1179 { .compatible = "allwinner,sun5i-a13-mmc", .data = &sun5i_a13_cfg },
1180 { .compatible = "allwinner,sun7i-a20-mmc", .data = &sun7i_a20_cfg },
1181 { .compatible = "allwinner,sun8i-a83t-emmc", .data = &sun8i_a83t_emmc_cfg },
1182 { .compatible = "allwinner,sun9i-a80-mmc", .data = &sun9i_a80_cfg },
1183 { .compatible = "allwinner,sun50i-a64-mmc", .data = &sun50i_a64_cfg },
1184 { .compatible = "allwinner,sun50i-a64-emmc", .data = &sun50i_a64_emmc_cfg },
1185 { /* sentinel */ }
1187 MODULE_DEVICE_TABLE(of, sunxi_mmc_of_match);
1189 static int sunxi_mmc_enable(struct sunxi_mmc_host *host)
1191 int ret;
1193 if (!IS_ERR(host->reset)) {
1194 ret = reset_control_reset(host->reset);
1195 if (ret) {
1196 dev_err(host->dev, "Couldn't reset the MMC controller (%d)\n",
1197 ret);
1198 return ret;
1202 ret = clk_prepare_enable(host->clk_ahb);
1203 if (ret) {
1204 dev_err(host->dev, "Couldn't enable the bus clocks (%d)\n", ret);
1205 goto error_assert_reset;
1208 ret = clk_prepare_enable(host->clk_mmc);
1209 if (ret) {
1210 dev_err(host->dev, "Enable mmc clk err %d\n", ret);
1211 goto error_disable_clk_ahb;
1214 ret = clk_prepare_enable(host->clk_output);
1215 if (ret) {
1216 dev_err(host->dev, "Enable output clk err %d\n", ret);
1217 goto error_disable_clk_mmc;
1220 ret = clk_prepare_enable(host->clk_sample);
1221 if (ret) {
1222 dev_err(host->dev, "Enable sample clk err %d\n", ret);
1223 goto error_disable_clk_output;
1227 * Sometimes the controller asserts the irq on boot for some reason,
1228 * make sure the controller is in a sane state before enabling irqs.
1230 ret = sunxi_mmc_reset_host(host);
1231 if (ret)
1232 goto error_disable_clk_sample;
1234 return 0;
1236 error_disable_clk_sample:
1237 clk_disable_unprepare(host->clk_sample);
1238 error_disable_clk_output:
1239 clk_disable_unprepare(host->clk_output);
1240 error_disable_clk_mmc:
1241 clk_disable_unprepare(host->clk_mmc);
1242 error_disable_clk_ahb:
1243 clk_disable_unprepare(host->clk_ahb);
1244 error_assert_reset:
1245 if (!IS_ERR(host->reset))
1246 reset_control_assert(host->reset);
1247 return ret;
1250 static void sunxi_mmc_disable(struct sunxi_mmc_host *host)
1252 sunxi_mmc_reset_host(host);
1254 clk_disable_unprepare(host->clk_sample);
1255 clk_disable_unprepare(host->clk_output);
1256 clk_disable_unprepare(host->clk_mmc);
1257 clk_disable_unprepare(host->clk_ahb);
1259 if (!IS_ERR(host->reset))
1260 reset_control_assert(host->reset);
1263 static int sunxi_mmc_resource_request(struct sunxi_mmc_host *host,
1264 struct platform_device *pdev)
1266 int ret;
1268 host->cfg = of_device_get_match_data(&pdev->dev);
1269 if (!host->cfg)
1270 return -EINVAL;
1272 ret = mmc_regulator_get_supply(host->mmc);
1273 if (ret)
1274 return ret;
1276 host->reg_base = devm_platform_ioremap_resource(pdev, 0);
1277 if (IS_ERR(host->reg_base))
1278 return PTR_ERR(host->reg_base);
1280 host->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1281 if (IS_ERR(host->clk_ahb)) {
1282 dev_err(&pdev->dev, "Could not get ahb clock\n");
1283 return PTR_ERR(host->clk_ahb);
1286 host->clk_mmc = devm_clk_get(&pdev->dev, "mmc");
1287 if (IS_ERR(host->clk_mmc)) {
1288 dev_err(&pdev->dev, "Could not get mmc clock\n");
1289 return PTR_ERR(host->clk_mmc);
1292 if (host->cfg->clk_delays) {
1293 host->clk_output = devm_clk_get(&pdev->dev, "output");
1294 if (IS_ERR(host->clk_output)) {
1295 dev_err(&pdev->dev, "Could not get output clock\n");
1296 return PTR_ERR(host->clk_output);
1299 host->clk_sample = devm_clk_get(&pdev->dev, "sample");
1300 if (IS_ERR(host->clk_sample)) {
1301 dev_err(&pdev->dev, "Could not get sample clock\n");
1302 return PTR_ERR(host->clk_sample);
1306 host->reset = devm_reset_control_get_optional_exclusive(&pdev->dev,
1307 "ahb");
1308 if (PTR_ERR(host->reset) == -EPROBE_DEFER)
1309 return PTR_ERR(host->reset);
1311 ret = sunxi_mmc_enable(host);
1312 if (ret)
1313 return ret;
1315 host->irq = platform_get_irq(pdev, 0);
1316 if (host->irq <= 0) {
1317 ret = -EINVAL;
1318 goto error_disable_mmc;
1321 return devm_request_threaded_irq(&pdev->dev, host->irq, sunxi_mmc_irq,
1322 sunxi_mmc_handle_manual_stop, 0, "sunxi-mmc", host);
1324 error_disable_mmc:
1325 sunxi_mmc_disable(host);
1326 return ret;
1329 static int sunxi_mmc_probe(struct platform_device *pdev)
1331 struct sunxi_mmc_host *host;
1332 struct mmc_host *mmc;
1333 int ret;
1335 mmc = mmc_alloc_host(sizeof(struct sunxi_mmc_host), &pdev->dev);
1336 if (!mmc) {
1337 dev_err(&pdev->dev, "mmc alloc host failed\n");
1338 return -ENOMEM;
1340 platform_set_drvdata(pdev, mmc);
1342 host = mmc_priv(mmc);
1343 host->dev = &pdev->dev;
1344 host->mmc = mmc;
1345 spin_lock_init(&host->lock);
1347 ret = sunxi_mmc_resource_request(host, pdev);
1348 if (ret)
1349 goto error_free_host;
1351 host->sg_cpu = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
1352 &host->sg_dma, GFP_KERNEL);
1353 if (!host->sg_cpu) {
1354 dev_err(&pdev->dev, "Failed to allocate DMA descriptor mem\n");
1355 ret = -ENOMEM;
1356 goto error_free_host;
1359 if (host->cfg->ccu_has_timings_switch) {
1361 * Supports both old and new timing modes.
1362 * Try setting the clk to new timing mode.
1364 sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true);
1366 /* And check the result */
1367 ret = sunxi_ccu_get_mmc_timing_mode(host->clk_mmc);
1368 if (ret < 0) {
1370 * For whatever reason we were not able to get
1371 * the current active mode. Default to old mode.
1373 dev_warn(&pdev->dev, "MMC clk timing mode unknown\n");
1374 host->use_new_timings = false;
1375 } else {
1376 host->use_new_timings = !!ret;
1378 } else if (host->cfg->needs_new_timings) {
1379 /* Supports new timing mode only */
1380 host->use_new_timings = true;
1383 mmc->ops = &sunxi_mmc_ops;
1384 mmc->max_blk_count = 8192;
1385 mmc->max_blk_size = 4096;
1386 mmc->max_segs = PAGE_SIZE / sizeof(struct sunxi_idma_des);
1387 mmc->max_seg_size = (1 << host->cfg->idma_des_size_bits);
1388 mmc->max_req_size = mmc->max_seg_size * mmc->max_segs;
1389 /* 400kHz ~ 52MHz */
1390 mmc->f_min = 400000;
1391 mmc->f_max = 52000000;
1392 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1393 MMC_CAP_ERASE | MMC_CAP_SDIO_IRQ;
1396 * Some H5 devices do not have signal traces precise enough to
1397 * use HS DDR mode for their eMMC chips.
1399 * We still enable HS DDR modes for all the other controller
1400 * variants that support them.
1402 if ((host->cfg->clk_delays || host->use_new_timings) &&
1403 !of_device_is_compatible(pdev->dev.of_node,
1404 "allwinner,sun50i-h5-emmc"))
1405 mmc->caps |= MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR;
1407 ret = mmc_of_parse(mmc);
1408 if (ret)
1409 goto error_free_dma;
1412 * If we don't support delay chains in the SoC, we can't use any
1413 * of the higher speed modes. Mask them out in case the device
1414 * tree specifies the properties for them, which gets added to
1415 * the caps by mmc_of_parse() above.
1417 if (!(host->cfg->clk_delays || host->use_new_timings)) {
1418 mmc->caps &= ~(MMC_CAP_3_3V_DDR | MMC_CAP_1_8V_DDR |
1419 MMC_CAP_1_2V_DDR | MMC_CAP_UHS);
1420 mmc->caps2 &= ~MMC_CAP2_HS200;
1423 /* TODO: This driver doesn't support HS400 mode yet */
1424 mmc->caps2 &= ~MMC_CAP2_HS400;
1426 ret = sunxi_mmc_init_host(host);
1427 if (ret)
1428 goto error_free_dma;
1430 pm_runtime_set_active(&pdev->dev);
1431 pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1432 pm_runtime_use_autosuspend(&pdev->dev);
1433 pm_runtime_enable(&pdev->dev);
1435 ret = mmc_add_host(mmc);
1436 if (ret)
1437 goto error_free_dma;
1439 dev_info(&pdev->dev, "initialized, max. request size: %u KB%s\n",
1440 mmc->max_req_size >> 10,
1441 host->use_new_timings ? ", uses new timings mode" : "");
1443 return 0;
1445 error_free_dma:
1446 dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
1447 error_free_host:
1448 mmc_free_host(mmc);
1449 return ret;
1452 static int sunxi_mmc_remove(struct platform_device *pdev)
1454 struct mmc_host *mmc = platform_get_drvdata(pdev);
1455 struct sunxi_mmc_host *host = mmc_priv(mmc);
1457 mmc_remove_host(mmc);
1458 pm_runtime_force_suspend(&pdev->dev);
1459 disable_irq(host->irq);
1460 sunxi_mmc_disable(host);
1461 dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
1462 mmc_free_host(mmc);
1464 return 0;
1467 #ifdef CONFIG_PM
1468 static int sunxi_mmc_runtime_resume(struct device *dev)
1470 struct mmc_host *mmc = dev_get_drvdata(dev);
1471 struct sunxi_mmc_host *host = mmc_priv(mmc);
1472 int ret;
1474 ret = sunxi_mmc_enable(host);
1475 if (ret)
1476 return ret;
1478 sunxi_mmc_init_host(host);
1479 sunxi_mmc_set_bus_width(host, mmc->ios.bus_width);
1480 sunxi_mmc_set_clk(host, &mmc->ios);
1481 enable_irq(host->irq);
1483 return 0;
1486 static int sunxi_mmc_runtime_suspend(struct device *dev)
1488 struct mmc_host *mmc = dev_get_drvdata(dev);
1489 struct sunxi_mmc_host *host = mmc_priv(mmc);
1492 * When clocks are off, it's possible receiving
1493 * fake interrupts, which will stall the system.
1494 * Disabling the irq will prevent this.
1496 disable_irq(host->irq);
1497 sunxi_mmc_reset_host(host);
1498 sunxi_mmc_disable(host);
1500 return 0;
1502 #endif
1504 static const struct dev_pm_ops sunxi_mmc_pm_ops = {
1505 SET_RUNTIME_PM_OPS(sunxi_mmc_runtime_suspend,
1506 sunxi_mmc_runtime_resume,
1507 NULL)
1510 static struct platform_driver sunxi_mmc_driver = {
1511 .driver = {
1512 .name = "sunxi-mmc",
1513 .of_match_table = of_match_ptr(sunxi_mmc_of_match),
1514 .pm = &sunxi_mmc_pm_ops,
1516 .probe = sunxi_mmc_probe,
1517 .remove = sunxi_mmc_remove,
1519 module_platform_driver(sunxi_mmc_driver);
1521 MODULE_DESCRIPTION("Allwinner's SD/MMC Card Controller Driver");
1522 MODULE_LICENSE("GPL v2");
1523 MODULE_AUTHOR("David Lanzendörfer <david.lanzendoerfer@o2s.ch>");
1524 MODULE_ALIAS("platform:sunxi-mmc");