2 * Common Flash Interface support:
3 * ST Advanced Architecture Command Set (ID 0x0020)
5 * (C) 2000 Red Hat. GPL'd
7 * 10/10/2000 Nicolas Pitre <nico@fluxnic.net>
8 * - completely revamped method functions so they are aware and
9 * independent of the flash geometry (buswidth, interleave, etc.)
10 * - scalability vs code size is completely set at compile-time
11 * (see include/linux/mtd/cfi.h for selection)
12 * - optimized write buffer method
13 * 06/21/2002 Joern Engel <joern@wh.fh-wedel.de> and others
14 * - modified Intel Command Set 0x0001 to support ST Advanced Architecture
15 * (command set 0x0020)
16 * - added a writev function
17 * 07/13/2005 Joern Engel <joern@wh.fh-wedel.de>
18 * - Plugged memory leak in cfi_staa_writev().
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
26 #include <asm/byteorder.h>
28 #include <linux/errno.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/mtd/map.h>
33 #include <linux/mtd/cfi.h>
34 #include <linux/mtd/mtd.h>
37 static int cfi_staa_read(struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
38 static int cfi_staa_write_buffers(struct mtd_info
*, loff_t
, size_t, size_t *, const u_char
*);
39 static int cfi_staa_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
40 unsigned long count
, loff_t to
, size_t *retlen
);
41 static int cfi_staa_erase_varsize(struct mtd_info
*, struct erase_info
*);
42 static void cfi_staa_sync (struct mtd_info
*);
43 static int cfi_staa_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
44 static int cfi_staa_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
45 static int cfi_staa_suspend (struct mtd_info
*);
46 static void cfi_staa_resume (struct mtd_info
*);
48 static void cfi_staa_destroy(struct mtd_info
*);
50 struct mtd_info
*cfi_cmdset_0020(struct map_info
*, int);
52 static struct mtd_info
*cfi_staa_setup (struct map_info
*);
54 static struct mtd_chip_driver cfi_staa_chipdrv
= {
55 .probe
= NULL
, /* Not usable directly */
56 .destroy
= cfi_staa_destroy
,
57 .name
= "cfi_cmdset_0020",
61 /* #define DEBUG_LOCK_BITS */
62 //#define DEBUG_CFI_FEATURES
64 #ifdef DEBUG_CFI_FEATURES
65 static void cfi_tell_features(struct cfi_pri_intelext
*extp
)
68 printk(" Feature/Command Support: %4.4X\n", extp
->FeatureSupport
);
69 printk(" - Chip Erase: %s\n", extp
->FeatureSupport
&1?"supported":"unsupported");
70 printk(" - Suspend Erase: %s\n", extp
->FeatureSupport
&2?"supported":"unsupported");
71 printk(" - Suspend Program: %s\n", extp
->FeatureSupport
&4?"supported":"unsupported");
72 printk(" - Legacy Lock/Unlock: %s\n", extp
->FeatureSupport
&8?"supported":"unsupported");
73 printk(" - Queued Erase: %s\n", extp
->FeatureSupport
&16?"supported":"unsupported");
74 printk(" - Instant block lock: %s\n", extp
->FeatureSupport
&32?"supported":"unsupported");
75 printk(" - Protection Bits: %s\n", extp
->FeatureSupport
&64?"supported":"unsupported");
76 printk(" - Page-mode read: %s\n", extp
->FeatureSupport
&128?"supported":"unsupported");
77 printk(" - Synchronous read: %s\n", extp
->FeatureSupport
&256?"supported":"unsupported");
78 for (i
=9; i
<32; i
++) {
79 if (extp
->FeatureSupport
& (1<<i
))
80 printk(" - Unknown Bit %X: supported\n", i
);
83 printk(" Supported functions after Suspend: %2.2X\n", extp
->SuspendCmdSupport
);
84 printk(" - Program after Erase Suspend: %s\n", extp
->SuspendCmdSupport
&1?"supported":"unsupported");
86 if (extp
->SuspendCmdSupport
& (1<<i
))
87 printk(" - Unknown Bit %X: supported\n", i
);
90 printk(" Block Status Register Mask: %4.4X\n", extp
->BlkStatusRegMask
);
91 printk(" - Lock Bit Active: %s\n", extp
->BlkStatusRegMask
&1?"yes":"no");
92 printk(" - Valid Bit Active: %s\n", extp
->BlkStatusRegMask
&2?"yes":"no");
93 for (i
=2; i
<16; i
++) {
94 if (extp
->BlkStatusRegMask
& (1<<i
))
95 printk(" - Unknown Bit %X Active: yes\n",i
);
98 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
99 extp
->VccOptimal
>> 8, extp
->VccOptimal
& 0xf);
100 if (extp
->VppOptimal
)
101 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
102 extp
->VppOptimal
>> 8, extp
->VppOptimal
& 0xf);
106 /* This routine is made available to other mtd code via
107 * inter_module_register. It must only be accessed through
108 * inter_module_get which will bump the use count of this module. The
109 * addresses passed back in cfi are valid as long as the use count of
110 * this module is non-zero, i.e. between inter_module_get and
111 * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
113 struct mtd_info
*cfi_cmdset_0020(struct map_info
*map
, int primary
)
115 struct cfi_private
*cfi
= map
->fldrv_priv
;
120 * It's a real CFI chip, not one for which the probe
121 * routine faked a CFI structure. So we read the feature
124 __u16 adr
= primary
?cfi
->cfiq
->P_ADR
:cfi
->cfiq
->A_ADR
;
125 struct cfi_pri_intelext
*extp
;
127 extp
= (struct cfi_pri_intelext
*)cfi_read_pri(map
, adr
, sizeof(*extp
), "ST Microelectronics");
131 if (extp
->MajorVersion
!= '1' ||
132 (extp
->MinorVersion
< '0' || extp
->MinorVersion
> '3')) {
133 printk(KERN_ERR
" Unknown ST Microelectronics"
134 " Extended Query version %c.%c.\n",
135 extp
->MajorVersion
, extp
->MinorVersion
);
140 /* Do some byteswapping if necessary */
141 extp
->FeatureSupport
= cfi32_to_cpu(map
, extp
->FeatureSupport
);
142 extp
->BlkStatusRegMask
= cfi32_to_cpu(map
,
143 extp
->BlkStatusRegMask
);
145 #ifdef DEBUG_CFI_FEATURES
146 /* Tell the user about it in lots of lovely detail */
147 cfi_tell_features(extp
);
150 /* Install our own private info structure */
151 cfi
->cmdset_priv
= extp
;
154 for (i
=0; i
< cfi
->numchips
; i
++) {
155 cfi
->chips
[i
].word_write_time
= 128;
156 cfi
->chips
[i
].buffer_write_time
= 128;
157 cfi
->chips
[i
].erase_time
= 1024;
158 cfi
->chips
[i
].ref_point_counter
= 0;
159 init_waitqueue_head(&(cfi
->chips
[i
].wq
));
162 return cfi_staa_setup(map
);
164 EXPORT_SYMBOL_GPL(cfi_cmdset_0020
);
166 static struct mtd_info
*cfi_staa_setup(struct map_info
*map
)
168 struct cfi_private
*cfi
= map
->fldrv_priv
;
169 struct mtd_info
*mtd
;
170 unsigned long offset
= 0;
172 unsigned long devsize
= (1<<cfi
->cfiq
->DevSize
) * cfi
->interleave
;
174 mtd
= kzalloc(sizeof(*mtd
), GFP_KERNEL
);
175 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
178 kfree(cfi
->cmdset_priv
);
183 mtd
->type
= MTD_NORFLASH
;
184 mtd
->size
= devsize
* cfi
->numchips
;
186 mtd
->numeraseregions
= cfi
->cfiq
->NumEraseRegions
* cfi
->numchips
;
187 mtd
->eraseregions
= kmalloc_array(mtd
->numeraseregions
,
188 sizeof(struct mtd_erase_region_info
),
190 if (!mtd
->eraseregions
) {
191 kfree(cfi
->cmdset_priv
);
196 for (i
=0; i
<cfi
->cfiq
->NumEraseRegions
; i
++) {
197 unsigned long ernum
, ersize
;
198 ersize
= ((cfi
->cfiq
->EraseRegionInfo
[i
] >> 8) & ~0xff) * cfi
->interleave
;
199 ernum
= (cfi
->cfiq
->EraseRegionInfo
[i
] & 0xffff) + 1;
201 if (mtd
->erasesize
< ersize
) {
202 mtd
->erasesize
= ersize
;
204 for (j
=0; j
<cfi
->numchips
; j
++) {
205 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].offset
= (j
*devsize
)+offset
;
206 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].erasesize
= ersize
;
207 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].numblocks
= ernum
;
209 offset
+= (ersize
* ernum
);
212 if (offset
!= devsize
) {
214 printk(KERN_WARNING
"Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset
, devsize
);
215 kfree(mtd
->eraseregions
);
216 kfree(cfi
->cmdset_priv
);
221 for (i
=0; i
<mtd
->numeraseregions
;i
++){
222 printk(KERN_DEBUG
"%d: offset=0x%llx,size=0x%x,blocks=%d\n",
223 i
, (unsigned long long)mtd
->eraseregions
[i
].offset
,
224 mtd
->eraseregions
[i
].erasesize
,
225 mtd
->eraseregions
[i
].numblocks
);
228 /* Also select the correct geometry setup too */
229 mtd
->_erase
= cfi_staa_erase_varsize
;
230 mtd
->_read
= cfi_staa_read
;
231 mtd
->_write
= cfi_staa_write_buffers
;
232 mtd
->_writev
= cfi_staa_writev
;
233 mtd
->_sync
= cfi_staa_sync
;
234 mtd
->_lock
= cfi_staa_lock
;
235 mtd
->_unlock
= cfi_staa_unlock
;
236 mtd
->_suspend
= cfi_staa_suspend
;
237 mtd
->_resume
= cfi_staa_resume
;
238 mtd
->flags
= MTD_CAP_NORFLASH
& ~MTD_BIT_WRITEABLE
;
239 mtd
->writesize
= 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */
240 mtd
->writebufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
241 map
->fldrv
= &cfi_staa_chipdrv
;
242 __module_get(THIS_MODULE
);
243 mtd
->name
= map
->name
;
248 static inline int do_read_onechip(struct map_info
*map
, struct flchip
*chip
, loff_t adr
, size_t len
, u_char
*buf
)
250 map_word status
, status_OK
;
252 DECLARE_WAITQUEUE(wait
, current
);
254 unsigned long cmd_addr
;
255 struct cfi_private
*cfi
= map
->fldrv_priv
;
259 /* Ensure cmd read/writes are aligned. */
260 cmd_addr
= adr
& ~(map_bankwidth(map
)-1);
262 /* Let's determine this according to the interleave only once */
263 status_OK
= CMD(0x80);
265 timeo
= jiffies
+ HZ
;
267 mutex_lock(&chip
->mutex
);
269 /* Check that the chip's ready to talk to us.
270 * If it's in FL_ERASING state, suspend it and make it talk now.
272 switch (chip
->state
) {
274 if (!(((struct cfi_pri_intelext
*)cfi
->cmdset_priv
)->FeatureSupport
& 2))
275 goto sleep
; /* We don't support erase suspend */
277 map_write (map
, CMD(0xb0), cmd_addr
);
278 /* If the flash has finished erasing, then 'erase suspend'
279 * appears to make some (28F320) flash devices switch to
280 * 'read' mode. Make sure that we switch to 'read status'
281 * mode so we get the right data. --rmk
283 map_write(map
, CMD(0x70), cmd_addr
);
284 chip
->oldstate
= FL_ERASING
;
285 chip
->state
= FL_ERASE_SUSPENDING
;
286 // printk("Erase suspending at 0x%lx\n", cmd_addr);
288 status
= map_read(map
, cmd_addr
);
289 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
292 if (time_after(jiffies
, timeo
)) {
294 map_write(map
, CMD(0xd0), cmd_addr
);
295 /* make sure we're in 'read status' mode */
296 map_write(map
, CMD(0x70), cmd_addr
);
297 chip
->state
= FL_ERASING
;
299 mutex_unlock(&chip
->mutex
);
300 printk(KERN_ERR
"Chip not ready after erase "
301 "suspended: status = 0x%lx\n", status
.x
[0]);
305 mutex_unlock(&chip
->mutex
);
307 mutex_lock(&chip
->mutex
);
311 map_write(map
, CMD(0xff), cmd_addr
);
312 chip
->state
= FL_READY
;
325 map_write(map
, CMD(0x70), cmd_addr
);
326 chip
->state
= FL_STATUS
;
330 status
= map_read(map
, cmd_addr
);
331 if (map_word_andequal(map
, status
, status_OK
, status_OK
)) {
332 map_write(map
, CMD(0xff), cmd_addr
);
333 chip
->state
= FL_READY
;
337 /* Urgh. Chip not yet ready to talk to us. */
338 if (time_after(jiffies
, timeo
)) {
339 mutex_unlock(&chip
->mutex
);
340 printk(KERN_ERR
"waiting for chip to be ready timed out in read. WSM status = %lx\n", status
.x
[0]);
344 /* Latency issues. Drop the lock, wait a while and retry */
345 mutex_unlock(&chip
->mutex
);
351 /* Stick ourselves on a wait queue to be woken when
352 someone changes the status */
353 set_current_state(TASK_UNINTERRUPTIBLE
);
354 add_wait_queue(&chip
->wq
, &wait
);
355 mutex_unlock(&chip
->mutex
);
357 remove_wait_queue(&chip
->wq
, &wait
);
358 timeo
= jiffies
+ HZ
;
362 map_copy_from(map
, buf
, adr
, len
);
365 chip
->state
= chip
->oldstate
;
366 /* What if one interleaved chip has finished and the
367 other hasn't? The old code would leave the finished
368 one in READY mode. That's bad, and caused -EROFS
369 errors to be returned from do_erase_oneblock because
370 that's the only bit it checked for at the time.
371 As the state machine appears to explicitly allow
372 sending the 0x70 (Read Status) command to an erasing
373 chip and expecting it to be ignored, that's what we
375 map_write(map
, CMD(0xd0), cmd_addr
);
376 map_write(map
, CMD(0x70), cmd_addr
);
380 mutex_unlock(&chip
->mutex
);
384 static int cfi_staa_read (struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
, u_char
*buf
)
386 struct map_info
*map
= mtd
->priv
;
387 struct cfi_private
*cfi
= map
->fldrv_priv
;
392 /* ofs: offset within the first chip that the first read should start */
393 chipnum
= (from
>> cfi
->chipshift
);
394 ofs
= from
- (chipnum
<< cfi
->chipshift
);
397 unsigned long thislen
;
399 if (chipnum
>= cfi
->numchips
)
402 if ((len
+ ofs
-1) >> cfi
->chipshift
)
403 thislen
= (1<<cfi
->chipshift
) - ofs
;
407 ret
= do_read_onechip(map
, &cfi
->chips
[chipnum
], ofs
, thislen
, buf
);
421 static int do_write_buffer(struct map_info
*map
, struct flchip
*chip
,
422 unsigned long adr
, const u_char
*buf
, int len
)
424 struct cfi_private
*cfi
= map
->fldrv_priv
;
425 map_word status
, status_OK
;
426 unsigned long cmd_adr
, timeo
;
427 DECLARE_WAITQUEUE(wait
, current
);
430 /* M58LW064A requires bus alignment for buffer wriets -- saw */
431 if (adr
& (map_bankwidth(map
)-1))
434 wbufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
436 cmd_adr
= adr
& ~(wbufsize
-1);
438 /* Let's determine this according to the interleave only once */
439 status_OK
= CMD(0x80);
441 timeo
= jiffies
+ HZ
;
444 #ifdef DEBUG_CFI_FEATURES
445 printk("%s: chip->state[%d]\n", __func__
, chip
->state
);
447 mutex_lock(&chip
->mutex
);
449 /* Check that the chip's ready to talk to us.
450 * Later, we can actually think about interrupting it
451 * if it's in FL_ERASING state.
452 * Not just yet, though.
454 switch (chip
->state
) {
460 map_write(map
, CMD(0x70), cmd_adr
);
461 chip
->state
= FL_STATUS
;
462 #ifdef DEBUG_CFI_FEATURES
463 printk("%s: 1 status[%x]\n", __func__
, map_read(map
, cmd_adr
));
468 status
= map_read(map
, cmd_adr
);
469 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
471 /* Urgh. Chip not yet ready to talk to us. */
472 if (time_after(jiffies
, timeo
)) {
473 mutex_unlock(&chip
->mutex
);
474 printk(KERN_ERR
"waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n",
475 status
.x
[0], map_read(map
, cmd_adr
).x
[0]);
479 /* Latency issues. Drop the lock, wait a while and retry */
480 mutex_unlock(&chip
->mutex
);
485 /* Stick ourselves on a wait queue to be woken when
486 someone changes the status */
487 set_current_state(TASK_UNINTERRUPTIBLE
);
488 add_wait_queue(&chip
->wq
, &wait
);
489 mutex_unlock(&chip
->mutex
);
491 remove_wait_queue(&chip
->wq
, &wait
);
492 timeo
= jiffies
+ HZ
;
497 map_write(map
, CMD(0xe8), cmd_adr
);
498 chip
->state
= FL_WRITING_TO_BUFFER
;
502 status
= map_read(map
, cmd_adr
);
503 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
506 mutex_unlock(&chip
->mutex
);
508 mutex_lock(&chip
->mutex
);
511 /* Argh. Not ready for write to buffer */
513 map_write(map
, CMD(0x70), cmd_adr
);
514 chip
->state
= FL_STATUS
;
515 mutex_unlock(&chip
->mutex
);
516 printk(KERN_ERR
"Chip not ready for buffer write. Xstatus = %lx\n", status
.x
[0]);
521 /* Write length of data to come */
522 map_write(map
, CMD(len
/map_bankwidth(map
)-1), cmd_adr
);
526 z
+= map_bankwidth(map
), buf
+= map_bankwidth(map
)) {
528 d
= map_word_load(map
, buf
);
529 map_write(map
, d
, adr
+z
);
532 map_write(map
, CMD(0xd0), cmd_adr
);
533 chip
->state
= FL_WRITING
;
535 mutex_unlock(&chip
->mutex
);
536 cfi_udelay(chip
->buffer_write_time
);
537 mutex_lock(&chip
->mutex
);
539 timeo
= jiffies
+ (HZ
/2);
542 if (chip
->state
!= FL_WRITING
) {
543 /* Someone's suspended the write. Sleep */
544 set_current_state(TASK_UNINTERRUPTIBLE
);
545 add_wait_queue(&chip
->wq
, &wait
);
546 mutex_unlock(&chip
->mutex
);
548 remove_wait_queue(&chip
->wq
, &wait
);
549 timeo
= jiffies
+ (HZ
/ 2); /* FIXME */
550 mutex_lock(&chip
->mutex
);
554 status
= map_read(map
, cmd_adr
);
555 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
558 /* OK Still waiting */
559 if (time_after(jiffies
, timeo
)) {
561 map_write(map
, CMD(0x50), cmd_adr
);
562 /* put back into read status register mode */
563 map_write(map
, CMD(0x70), adr
);
564 chip
->state
= FL_STATUS
;
566 mutex_unlock(&chip
->mutex
);
567 printk(KERN_ERR
"waiting for chip to be ready timed out in bufwrite\n");
571 /* Latency issues. Drop the lock, wait a while and retry */
572 mutex_unlock(&chip
->mutex
);
575 mutex_lock(&chip
->mutex
);
578 chip
->buffer_write_time
--;
579 if (!chip
->buffer_write_time
)
580 chip
->buffer_write_time
++;
583 chip
->buffer_write_time
++;
585 /* Done and happy. */
587 chip
->state
= FL_STATUS
;
589 /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */
590 if (map_word_bitsset(map
, status
, CMD(0x3a))) {
591 #ifdef DEBUG_CFI_FEATURES
592 printk("%s: 2 status[%lx]\n", __func__
, status
.x
[0]);
595 map_write(map
, CMD(0x50), cmd_adr
);
596 /* put back into read status register mode */
597 map_write(map
, CMD(0x70), adr
);
599 mutex_unlock(&chip
->mutex
);
600 return map_word_bitsset(map
, status
, CMD(0x02)) ? -EROFS
: -EIO
;
603 mutex_unlock(&chip
->mutex
);
608 static int cfi_staa_write_buffers (struct mtd_info
*mtd
, loff_t to
,
609 size_t len
, size_t *retlen
, const u_char
*buf
)
611 struct map_info
*map
= mtd
->priv
;
612 struct cfi_private
*cfi
= map
->fldrv_priv
;
613 int wbufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
618 chipnum
= to
>> cfi
->chipshift
;
619 ofs
= to
- (chipnum
<< cfi
->chipshift
);
621 #ifdef DEBUG_CFI_FEATURES
622 printk("%s: map_bankwidth(map)[%x]\n", __func__
, map_bankwidth(map
));
623 printk("%s: chipnum[%x] wbufsize[%x]\n", __func__
, chipnum
, wbufsize
);
624 printk("%s: ofs[%x] len[%x]\n", __func__
, ofs
, len
);
627 /* Write buffer is worth it only if more than one word to write... */
629 /* We must not cross write block boundaries */
630 int size
= wbufsize
- (ofs
& (wbufsize
-1));
635 ret
= do_write_buffer(map
, &cfi
->chips
[chipnum
],
645 if (ofs
>> cfi
->chipshift
) {
648 if (chipnum
== cfi
->numchips
)
657 * Writev for ECC-Flashes is a little more complicated. We need to maintain
658 * a small buffer for this.
659 * XXX: If the buffer size is not a multiple of 2, this will break
661 #define ECCBUF_SIZE (mtd->writesize)
662 #define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1))
663 #define ECCBUF_MOD(x) ((x) & (ECCBUF_SIZE - 1))
665 cfi_staa_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
666 unsigned long count
, loff_t to
, size_t *retlen
)
669 size_t totlen
= 0, thislen
;
675 /* We should fall back to a general writev implementation.
676 * Until that is written, just break.
680 buffer
= kmalloc(ECCBUF_SIZE
, GFP_KERNEL
);
684 for (i
=0; i
<count
; i
++) {
685 size_t elem_len
= vecs
[i
].iov_len
;
686 void *elem_base
= vecs
[i
].iov_base
;
687 if (!elem_len
) /* FIXME: Might be unnecessary. Check that */
689 if (buflen
) { /* cut off head */
690 if (buflen
+ elem_len
< ECCBUF_SIZE
) { /* just accumulate */
691 memcpy(buffer
+buflen
, elem_base
, elem_len
);
695 memcpy(buffer
+buflen
, elem_base
, ECCBUF_SIZE
-buflen
);
696 ret
= mtd_write(mtd
, to
, ECCBUF_SIZE
, &thislen
,
699 if (ret
|| thislen
!= ECCBUF_SIZE
)
701 elem_len
-= thislen
-buflen
;
702 elem_base
+= thislen
-buflen
;
705 if (ECCBUF_DIV(elem_len
)) { /* write clean aligned data */
706 ret
= mtd_write(mtd
, to
, ECCBUF_DIV(elem_len
),
707 &thislen
, elem_base
);
709 if (ret
|| thislen
!= ECCBUF_DIV(elem_len
))
713 buflen
= ECCBUF_MOD(elem_len
); /* cut off tail */
715 memset(buffer
, 0xff, ECCBUF_SIZE
);
716 memcpy(buffer
, elem_base
+ thislen
, buflen
);
719 if (buflen
) { /* flush last page, even if not full */
720 /* This is sometimes intended behaviour, really */
721 ret
= mtd_write(mtd
, to
, buflen
, &thislen
, buffer
);
723 if (ret
|| thislen
!= ECCBUF_SIZE
)
734 static inline int do_erase_oneblock(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
736 struct cfi_private
*cfi
= map
->fldrv_priv
;
737 map_word status
, status_OK
;
740 DECLARE_WAITQUEUE(wait
, current
);
745 /* Let's determine this according to the interleave only once */
746 status_OK
= CMD(0x80);
748 timeo
= jiffies
+ HZ
;
750 mutex_lock(&chip
->mutex
);
752 /* Check that the chip's ready to talk to us. */
753 switch (chip
->state
) {
757 map_write(map
, CMD(0x70), adr
);
758 chip
->state
= FL_STATUS
;
762 status
= map_read(map
, adr
);
763 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
766 /* Urgh. Chip not yet ready to talk to us. */
767 if (time_after(jiffies
, timeo
)) {
768 mutex_unlock(&chip
->mutex
);
769 printk(KERN_ERR
"waiting for chip to be ready timed out in erase\n");
773 /* Latency issues. Drop the lock, wait a while and retry */
774 mutex_unlock(&chip
->mutex
);
779 /* Stick ourselves on a wait queue to be woken when
780 someone changes the status */
781 set_current_state(TASK_UNINTERRUPTIBLE
);
782 add_wait_queue(&chip
->wq
, &wait
);
783 mutex_unlock(&chip
->mutex
);
785 remove_wait_queue(&chip
->wq
, &wait
);
786 timeo
= jiffies
+ HZ
;
791 /* Clear the status register first */
792 map_write(map
, CMD(0x50), adr
);
795 map_write(map
, CMD(0x20), adr
);
796 map_write(map
, CMD(0xD0), adr
);
797 chip
->state
= FL_ERASING
;
799 mutex_unlock(&chip
->mutex
);
801 mutex_lock(&chip
->mutex
);
803 /* FIXME. Use a timer to check this, and return immediately. */
804 /* Once the state machine's known to be working I'll do that */
806 timeo
= jiffies
+ (HZ
*20);
808 if (chip
->state
!= FL_ERASING
) {
809 /* Someone's suspended the erase. Sleep */
810 set_current_state(TASK_UNINTERRUPTIBLE
);
811 add_wait_queue(&chip
->wq
, &wait
);
812 mutex_unlock(&chip
->mutex
);
814 remove_wait_queue(&chip
->wq
, &wait
);
815 timeo
= jiffies
+ (HZ
*20); /* FIXME */
816 mutex_lock(&chip
->mutex
);
820 status
= map_read(map
, adr
);
821 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
824 /* OK Still waiting */
825 if (time_after(jiffies
, timeo
)) {
826 map_write(map
, CMD(0x70), adr
);
827 chip
->state
= FL_STATUS
;
828 printk(KERN_ERR
"waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status
.x
[0], map_read(map
, adr
).x
[0]);
830 mutex_unlock(&chip
->mutex
);
834 /* Latency issues. Drop the lock, wait a while and retry */
835 mutex_unlock(&chip
->mutex
);
837 mutex_lock(&chip
->mutex
);
843 /* We've broken this before. It doesn't hurt to be safe */
844 map_write(map
, CMD(0x70), adr
);
845 chip
->state
= FL_STATUS
;
846 status
= map_read(map
, adr
);
848 /* check for lock bit */
849 if (map_word_bitsset(map
, status
, CMD(0x3a))) {
850 unsigned char chipstatus
= status
.x
[0];
851 if (!map_word_equal(map
, status
, CMD(chipstatus
))) {
853 for (w
=0; w
<map_words(map
); w
++) {
854 for (i
= 0; i
<cfi_interleave(cfi
); i
++) {
855 chipstatus
|= status
.x
[w
] >> (cfi
->device_type
* 8);
858 printk(KERN_WARNING
"Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n",
859 status
.x
[0], chipstatus
);
861 /* Reset the error bits */
862 map_write(map
, CMD(0x50), adr
);
863 map_write(map
, CMD(0x70), adr
);
865 if ((chipstatus
& 0x30) == 0x30) {
866 printk(KERN_NOTICE
"Chip reports improper command sequence: status 0x%x\n", chipstatus
);
868 } else if (chipstatus
& 0x02) {
869 /* Protection bit set */
871 } else if (chipstatus
& 0x8) {
873 printk(KERN_WARNING
"Chip reports voltage low on erase: status 0x%x\n", chipstatus
);
875 } else if (chipstatus
& 0x20) {
877 printk(KERN_DEBUG
"Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr
, chipstatus
);
878 timeo
= jiffies
+ HZ
;
879 chip
->state
= FL_STATUS
;
880 mutex_unlock(&chip
->mutex
);
883 printk(KERN_DEBUG
"Chip erase failed at 0x%08lx: status 0x%x\n", adr
, chipstatus
);
889 mutex_unlock(&chip
->mutex
);
893 static int cfi_staa_erase_varsize(struct mtd_info
*mtd
,
894 struct erase_info
*instr
)
895 { struct map_info
*map
= mtd
->priv
;
896 struct cfi_private
*cfi
= map
->fldrv_priv
;
897 unsigned long adr
, len
;
900 struct mtd_erase_region_info
*regions
= mtd
->eraseregions
;
902 /* Check that both start and end of the requested erase are
903 * aligned with the erasesize at the appropriate addresses.
908 /* Skip all erase regions which are ended before the start of
909 the requested erase. Actually, to save on the calculations,
910 we skip to the first erase region which starts after the
911 start of the requested erase, and then go back one.
914 while (i
< mtd
->numeraseregions
&& instr
->addr
>= regions
[i
].offset
)
918 /* OK, now i is pointing at the erase region in which this
919 erase request starts. Check the start of the requested
920 erase range is aligned with the erase size which is in
924 if (instr
->addr
& (regions
[i
].erasesize
-1))
927 /* Remember the erase region we start on */
930 /* Next, check that the end of the requested erase is aligned
931 * with the erase region at that address.
934 while (i
<mtd
->numeraseregions
&& (instr
->addr
+ instr
->len
) >= regions
[i
].offset
)
937 /* As before, drop back one to point at the region in which
938 the address actually falls
942 if ((instr
->addr
+ instr
->len
) & (regions
[i
].erasesize
-1))
945 chipnum
= instr
->addr
>> cfi
->chipshift
;
946 adr
= instr
->addr
- (chipnum
<< cfi
->chipshift
);
952 ret
= do_erase_oneblock(map
, &cfi
->chips
[chipnum
], adr
);
957 adr
+= regions
[i
].erasesize
;
958 len
-= regions
[i
].erasesize
;
960 if (adr
% (1<< cfi
->chipshift
) == (((unsigned long)regions
[i
].offset
+ (regions
[i
].erasesize
* regions
[i
].numblocks
)) %( 1<< cfi
->chipshift
)))
963 if (adr
>> cfi
->chipshift
) {
967 if (chipnum
>= cfi
->numchips
)
975 static void cfi_staa_sync (struct mtd_info
*mtd
)
977 struct map_info
*map
= mtd
->priv
;
978 struct cfi_private
*cfi
= map
->fldrv_priv
;
982 DECLARE_WAITQUEUE(wait
, current
);
984 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
985 chip
= &cfi
->chips
[i
];
988 mutex_lock(&chip
->mutex
);
990 switch(chip
->state
) {
995 chip
->oldstate
= chip
->state
;
996 chip
->state
= FL_SYNCING
;
997 /* No need to wake_up() on this state change -
998 * as the whole point is that nobody can do anything
999 * with the chip now anyway.
1003 mutex_unlock(&chip
->mutex
);
1007 /* Not an idle state */
1008 set_current_state(TASK_UNINTERRUPTIBLE
);
1009 add_wait_queue(&chip
->wq
, &wait
);
1011 mutex_unlock(&chip
->mutex
);
1013 remove_wait_queue(&chip
->wq
, &wait
);
1019 /* Unlock the chips again */
1021 for (i
--; i
>=0; i
--) {
1022 chip
= &cfi
->chips
[i
];
1024 mutex_lock(&chip
->mutex
);
1026 if (chip
->state
== FL_SYNCING
) {
1027 chip
->state
= chip
->oldstate
;
1030 mutex_unlock(&chip
->mutex
);
1034 static inline int do_lock_oneblock(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
1036 struct cfi_private
*cfi
= map
->fldrv_priv
;
1037 map_word status
, status_OK
;
1038 unsigned long timeo
= jiffies
+ HZ
;
1039 DECLARE_WAITQUEUE(wait
, current
);
1043 /* Let's determine this according to the interleave only once */
1044 status_OK
= CMD(0x80);
1046 timeo
= jiffies
+ HZ
;
1048 mutex_lock(&chip
->mutex
);
1050 /* Check that the chip's ready to talk to us. */
1051 switch (chip
->state
) {
1053 case FL_JEDEC_QUERY
:
1055 map_write(map
, CMD(0x70), adr
);
1056 chip
->state
= FL_STATUS
;
1060 status
= map_read(map
, adr
);
1061 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1064 /* Urgh. Chip not yet ready to talk to us. */
1065 if (time_after(jiffies
, timeo
)) {
1066 mutex_unlock(&chip
->mutex
);
1067 printk(KERN_ERR
"waiting for chip to be ready timed out in lock\n");
1071 /* Latency issues. Drop the lock, wait a while and retry */
1072 mutex_unlock(&chip
->mutex
);
1077 /* Stick ourselves on a wait queue to be woken when
1078 someone changes the status */
1079 set_current_state(TASK_UNINTERRUPTIBLE
);
1080 add_wait_queue(&chip
->wq
, &wait
);
1081 mutex_unlock(&chip
->mutex
);
1083 remove_wait_queue(&chip
->wq
, &wait
);
1084 timeo
= jiffies
+ HZ
;
1089 map_write(map
, CMD(0x60), adr
);
1090 map_write(map
, CMD(0x01), adr
);
1091 chip
->state
= FL_LOCKING
;
1093 mutex_unlock(&chip
->mutex
);
1095 mutex_lock(&chip
->mutex
);
1097 /* FIXME. Use a timer to check this, and return immediately. */
1098 /* Once the state machine's known to be working I'll do that */
1100 timeo
= jiffies
+ (HZ
*2);
1103 status
= map_read(map
, adr
);
1104 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1107 /* OK Still waiting */
1108 if (time_after(jiffies
, timeo
)) {
1109 map_write(map
, CMD(0x70), adr
);
1110 chip
->state
= FL_STATUS
;
1111 printk(KERN_ERR
"waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status
.x
[0], map_read(map
, adr
).x
[0]);
1113 mutex_unlock(&chip
->mutex
);
1117 /* Latency issues. Drop the lock, wait a while and retry */
1118 mutex_unlock(&chip
->mutex
);
1120 mutex_lock(&chip
->mutex
);
1123 /* Done and happy. */
1124 chip
->state
= FL_STATUS
;
1127 mutex_unlock(&chip
->mutex
);
1130 static int cfi_staa_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1132 struct map_info
*map
= mtd
->priv
;
1133 struct cfi_private
*cfi
= map
->fldrv_priv
;
1136 #ifdef DEBUG_LOCK_BITS
1137 int ofs_factor
= cfi
->interleave
* cfi
->device_type
;
1140 if (ofs
& (mtd
->erasesize
- 1))
1143 if (len
& (mtd
->erasesize
-1))
1146 chipnum
= ofs
>> cfi
->chipshift
;
1147 adr
= ofs
- (chipnum
<< cfi
->chipshift
);
1151 #ifdef DEBUG_LOCK_BITS
1152 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1153 printk("before lock: block status register is %x\n",cfi_read_query(map
, adr
+(2*ofs_factor
)));
1154 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1157 ret
= do_lock_oneblock(map
, &cfi
->chips
[chipnum
], adr
);
1159 #ifdef DEBUG_LOCK_BITS
1160 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1161 printk("after lock: block status register is %x\n",cfi_read_query(map
, adr
+(2*ofs_factor
)));
1162 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1168 adr
+= mtd
->erasesize
;
1169 len
-= mtd
->erasesize
;
1171 if (adr
>> cfi
->chipshift
) {
1175 if (chipnum
>= cfi
->numchips
)
1181 static inline int do_unlock_oneblock(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
1183 struct cfi_private
*cfi
= map
->fldrv_priv
;
1184 map_word status
, status_OK
;
1185 unsigned long timeo
= jiffies
+ HZ
;
1186 DECLARE_WAITQUEUE(wait
, current
);
1190 /* Let's determine this according to the interleave only once */
1191 status_OK
= CMD(0x80);
1193 timeo
= jiffies
+ HZ
;
1195 mutex_lock(&chip
->mutex
);
1197 /* Check that the chip's ready to talk to us. */
1198 switch (chip
->state
) {
1200 case FL_JEDEC_QUERY
:
1202 map_write(map
, CMD(0x70), adr
);
1203 chip
->state
= FL_STATUS
;
1207 status
= map_read(map
, adr
);
1208 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1211 /* Urgh. Chip not yet ready to talk to us. */
1212 if (time_after(jiffies
, timeo
)) {
1213 mutex_unlock(&chip
->mutex
);
1214 printk(KERN_ERR
"waiting for chip to be ready timed out in unlock\n");
1218 /* Latency issues. Drop the lock, wait a while and retry */
1219 mutex_unlock(&chip
->mutex
);
1224 /* Stick ourselves on a wait queue to be woken when
1225 someone changes the status */
1226 set_current_state(TASK_UNINTERRUPTIBLE
);
1227 add_wait_queue(&chip
->wq
, &wait
);
1228 mutex_unlock(&chip
->mutex
);
1230 remove_wait_queue(&chip
->wq
, &wait
);
1231 timeo
= jiffies
+ HZ
;
1236 map_write(map
, CMD(0x60), adr
);
1237 map_write(map
, CMD(0xD0), adr
);
1238 chip
->state
= FL_UNLOCKING
;
1240 mutex_unlock(&chip
->mutex
);
1242 mutex_lock(&chip
->mutex
);
1244 /* FIXME. Use a timer to check this, and return immediately. */
1245 /* Once the state machine's known to be working I'll do that */
1247 timeo
= jiffies
+ (HZ
*2);
1250 status
= map_read(map
, adr
);
1251 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1254 /* OK Still waiting */
1255 if (time_after(jiffies
, timeo
)) {
1256 map_write(map
, CMD(0x70), adr
);
1257 chip
->state
= FL_STATUS
;
1258 printk(KERN_ERR
"waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status
.x
[0], map_read(map
, adr
).x
[0]);
1260 mutex_unlock(&chip
->mutex
);
1264 /* Latency issues. Drop the unlock, wait a while and retry */
1265 mutex_unlock(&chip
->mutex
);
1267 mutex_lock(&chip
->mutex
);
1270 /* Done and happy. */
1271 chip
->state
= FL_STATUS
;
1274 mutex_unlock(&chip
->mutex
);
1277 static int cfi_staa_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1279 struct map_info
*map
= mtd
->priv
;
1280 struct cfi_private
*cfi
= map
->fldrv_priv
;
1283 #ifdef DEBUG_LOCK_BITS
1284 int ofs_factor
= cfi
->interleave
* cfi
->device_type
;
1287 chipnum
= ofs
>> cfi
->chipshift
;
1288 adr
= ofs
- (chipnum
<< cfi
->chipshift
);
1290 #ifdef DEBUG_LOCK_BITS
1292 unsigned long temp_adr
= adr
;
1293 unsigned long temp_len
= len
;
1295 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1297 printk("before unlock %x: block status register is %x\n",temp_adr
,cfi_read_query(map
, temp_adr
+(2*ofs_factor
)));
1298 temp_adr
+= mtd
->erasesize
;
1299 temp_len
-= mtd
->erasesize
;
1301 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1305 ret
= do_unlock_oneblock(map
, &cfi
->chips
[chipnum
], adr
);
1307 #ifdef DEBUG_LOCK_BITS
1308 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1309 printk("after unlock: block status register is %x\n",cfi_read_query(map
, adr
+(2*ofs_factor
)));
1310 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1316 static int cfi_staa_suspend(struct mtd_info
*mtd
)
1318 struct map_info
*map
= mtd
->priv
;
1319 struct cfi_private
*cfi
= map
->fldrv_priv
;
1321 struct flchip
*chip
;
1324 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
1325 chip
= &cfi
->chips
[i
];
1327 mutex_lock(&chip
->mutex
);
1329 switch(chip
->state
) {
1333 case FL_JEDEC_QUERY
:
1334 chip
->oldstate
= chip
->state
;
1335 chip
->state
= FL_PM_SUSPENDED
;
1336 /* No need to wake_up() on this state change -
1337 * as the whole point is that nobody can do anything
1338 * with the chip now anyway.
1340 case FL_PM_SUSPENDED
:
1347 mutex_unlock(&chip
->mutex
);
1350 /* Unlock the chips again */
1353 for (i
--; i
>=0; i
--) {
1354 chip
= &cfi
->chips
[i
];
1356 mutex_lock(&chip
->mutex
);
1358 if (chip
->state
== FL_PM_SUSPENDED
) {
1359 /* No need to force it into a known state here,
1360 because we're returning failure, and it didn't
1362 chip
->state
= chip
->oldstate
;
1365 mutex_unlock(&chip
->mutex
);
1372 static void cfi_staa_resume(struct mtd_info
*mtd
)
1374 struct map_info
*map
= mtd
->priv
;
1375 struct cfi_private
*cfi
= map
->fldrv_priv
;
1377 struct flchip
*chip
;
1379 for (i
=0; i
<cfi
->numchips
; i
++) {
1381 chip
= &cfi
->chips
[i
];
1383 mutex_lock(&chip
->mutex
);
1385 /* Go to known state. Chip may have been power cycled */
1386 if (chip
->state
== FL_PM_SUSPENDED
) {
1387 map_write(map
, CMD(0xFF), 0);
1388 chip
->state
= FL_READY
;
1392 mutex_unlock(&chip
->mutex
);
1396 static void cfi_staa_destroy(struct mtd_info
*mtd
)
1398 struct map_info
*map
= mtd
->priv
;
1399 struct cfi_private
*cfi
= map
->fldrv_priv
;
1400 kfree(cfi
->cmdset_priv
);
1404 MODULE_LICENSE("GPL");