treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / mtd / nand / raw / cadence-nand-controller.c
blobf6c7102a1e3253f79cbc1f6c0bf54858661c7564
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Cadence NAND flash controller driver
5 * Copyright (C) 2019 Cadence
7 * Author: Piotr Sroka <piotrs@cadence.com>
8 */
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/of_device.h>
19 #include <linux/iopoll.h>
22 * HPNFC can work in 3 modes:
23 * - PIO - can work in master or slave DMA
24 * - CDMA - needs Master DMA for accessing command descriptors.
25 * - Generic mode - can use only slave DMA.
26 * CDMA and PIO modes can be used to execute only base commands.
27 * Generic mode can be used to execute any command
28 * on NAND flash memory. Driver uses CDMA mode for
29 * block erasing, page reading, page programing.
30 * Generic mode is used for executing rest of commands.
33 #define MAX_OOB_SIZE_PER_SECTOR 32
34 #define MAX_ADDRESS_CYC 6
35 #define MAX_ERASE_ADDRESS_CYC 3
36 #define MAX_DATA_SIZE 0xFFFC
37 #define DMA_DATA_SIZE_ALIGN 8
39 /* Register definition. */
41 * Command register 0.
42 * Writing data to this register will initiate a new transaction
43 * of the NF controller.
45 #define CMD_REG0 0x0000
46 /* Command type field mask. */
47 #define CMD_REG0_CT GENMASK(31, 30)
48 /* Command type CDMA. */
49 #define CMD_REG0_CT_CDMA 0uL
50 /* Command type generic. */
51 #define CMD_REG0_CT_GEN 3uL
52 /* Command thread number field mask. */
53 #define CMD_REG0_TN GENMASK(27, 24)
55 /* Command register 2. */
56 #define CMD_REG2 0x0008
57 /* Command register 3. */
58 #define CMD_REG3 0x000C
59 /* Pointer register to select which thread status will be selected. */
60 #define CMD_STATUS_PTR 0x0010
61 /* Command status register for selected thread. */
62 #define CMD_STATUS 0x0014
64 /* Interrupt status register. */
65 #define INTR_STATUS 0x0110
66 #define INTR_STATUS_SDMA_ERR BIT(22)
67 #define INTR_STATUS_SDMA_TRIGG BIT(21)
68 #define INTR_STATUS_UNSUPP_CMD BIT(19)
69 #define INTR_STATUS_DDMA_TERR BIT(18)
70 #define INTR_STATUS_CDMA_TERR BIT(17)
71 #define INTR_STATUS_CDMA_IDL BIT(16)
73 /* Interrupt enable register. */
74 #define INTR_ENABLE 0x0114
75 #define INTR_ENABLE_INTR_EN BIT(31)
76 #define INTR_ENABLE_SDMA_ERR_EN BIT(22)
77 #define INTR_ENABLE_SDMA_TRIGG_EN BIT(21)
78 #define INTR_ENABLE_UNSUPP_CMD_EN BIT(19)
79 #define INTR_ENABLE_DDMA_TERR_EN BIT(18)
80 #define INTR_ENABLE_CDMA_TERR_EN BIT(17)
81 #define INTR_ENABLE_CDMA_IDLE_EN BIT(16)
83 /* Controller internal state. */
84 #define CTRL_STATUS 0x0118
85 #define CTRL_STATUS_INIT_COMP BIT(9)
86 #define CTRL_STATUS_CTRL_BUSY BIT(8)
88 /* Command Engine threads state. */
89 #define TRD_STATUS 0x0120
91 /* Command Engine interrupt thread error status. */
92 #define TRD_ERR_INT_STATUS 0x0128
93 /* Command Engine interrupt thread error enable. */
94 #define TRD_ERR_INT_STATUS_EN 0x0130
95 /* Command Engine interrupt thread complete status. */
96 #define TRD_COMP_INT_STATUS 0x0138
99 * Transfer config 0 register.
100 * Configures data transfer parameters.
102 #define TRAN_CFG_0 0x0400
103 /* Offset value from the beginning of the page. */
104 #define TRAN_CFG_0_OFFSET GENMASK(31, 16)
105 /* Numbers of sectors to transfer within singlNF device's page. */
106 #define TRAN_CFG_0_SEC_CNT GENMASK(7, 0)
109 * Transfer config 1 register.
110 * Configures data transfer parameters.
112 #define TRAN_CFG_1 0x0404
113 /* Size of last data sector. */
114 #define TRAN_CFG_1_LAST_SEC_SIZE GENMASK(31, 16)
115 /* Size of not-last data sector. */
116 #define TRAN_CFG_1_SECTOR_SIZE GENMASK(15, 0)
118 /* ECC engine configuration register 0. */
119 #define ECC_CONFIG_0 0x0428
120 /* Correction strength. */
121 #define ECC_CONFIG_0_CORR_STR GENMASK(10, 8)
122 /* Enable erased pages detection mechanism. */
123 #define ECC_CONFIG_0_ERASE_DET_EN BIT(1)
124 /* Enable controller ECC check bits generation and correction. */
125 #define ECC_CONFIG_0_ECC_EN BIT(0)
127 /* ECC engine configuration register 1. */
128 #define ECC_CONFIG_1 0x042C
130 /* Multiplane settings register. */
131 #define MULTIPLANE_CFG 0x0434
132 /* Cache operation settings. */
133 #define CACHE_CFG 0x0438
135 /* DMA settings register. */
136 #define DMA_SETINGS 0x043C
137 /* Enable SDMA error report on access unprepared slave DMA interface. */
138 #define DMA_SETINGS_SDMA_ERR_RSP BIT(17)
140 /* Transferred data block size for the slave DMA module. */
141 #define SDMA_SIZE 0x0440
143 /* Thread number associated with transferred data block
144 * for the slave DMA module.
146 #define SDMA_TRD_NUM 0x0444
147 /* Thread number mask. */
148 #define SDMA_TRD_NUM_SDMA_TRD GENMASK(2, 0)
150 #define CONTROL_DATA_CTRL 0x0494
151 /* Thread number mask. */
152 #define CONTROL_DATA_CTRL_SIZE GENMASK(15, 0)
154 #define CTRL_VERSION 0x800
155 #define CTRL_VERSION_REV GENMASK(7, 0)
157 /* Available hardware features of the controller. */
158 #define CTRL_FEATURES 0x804
159 /* Support for NV-DDR2/3 work mode. */
160 #define CTRL_FEATURES_NVDDR_2_3 BIT(28)
161 /* Support for NV-DDR work mode. */
162 #define CTRL_FEATURES_NVDDR BIT(27)
163 /* Support for asynchronous work mode. */
164 #define CTRL_FEATURES_ASYNC BIT(26)
165 /* Support for asynchronous work mode. */
166 #define CTRL_FEATURES_N_BANKS GENMASK(25, 24)
167 /* Slave and Master DMA data width. */
168 #define CTRL_FEATURES_DMA_DWITH64 BIT(21)
169 /* Availability of Control Data feature.*/
170 #define CTRL_FEATURES_CONTROL_DATA BIT(10)
172 /* BCH Engine identification register 0 - correction strengths. */
173 #define BCH_CFG_0 0x838
174 #define BCH_CFG_0_CORR_CAP_0 GENMASK(7, 0)
175 #define BCH_CFG_0_CORR_CAP_1 GENMASK(15, 8)
176 #define BCH_CFG_0_CORR_CAP_2 GENMASK(23, 16)
177 #define BCH_CFG_0_CORR_CAP_3 GENMASK(31, 24)
179 /* BCH Engine identification register 1 - correction strengths. */
180 #define BCH_CFG_1 0x83C
181 #define BCH_CFG_1_CORR_CAP_4 GENMASK(7, 0)
182 #define BCH_CFG_1_CORR_CAP_5 GENMASK(15, 8)
183 #define BCH_CFG_1_CORR_CAP_6 GENMASK(23, 16)
184 #define BCH_CFG_1_CORR_CAP_7 GENMASK(31, 24)
186 /* BCH Engine identification register 2 - sector sizes. */
187 #define BCH_CFG_2 0x840
188 #define BCH_CFG_2_SECT_0 GENMASK(15, 0)
189 #define BCH_CFG_2_SECT_1 GENMASK(31, 16)
191 /* BCH Engine identification register 3. */
192 #define BCH_CFG_3 0x844
194 /* Ready/Busy# line status. */
195 #define RBN_SETINGS 0x1004
197 /* Common settings. */
198 #define COMMON_SET 0x1008
199 /* 16 bit device connected to the NAND Flash interface. */
200 #define COMMON_SET_DEVICE_16BIT BIT(8)
202 /* Skip_bytes registers. */
203 #define SKIP_BYTES_CONF 0x100C
204 #define SKIP_BYTES_MARKER_VALUE GENMASK(31, 16)
205 #define SKIP_BYTES_NUM_OF_BYTES GENMASK(7, 0)
207 #define SKIP_BYTES_OFFSET 0x1010
208 #define SKIP_BYTES_OFFSET_VALUE GENMASK(23, 0)
210 /* Timings configuration. */
211 #define ASYNC_TOGGLE_TIMINGS 0x101c
212 #define ASYNC_TOGGLE_TIMINGS_TRH GENMASK(28, 24)
213 #define ASYNC_TOGGLE_TIMINGS_TRP GENMASK(20, 16)
214 #define ASYNC_TOGGLE_TIMINGS_TWH GENMASK(12, 8)
215 #define ASYNC_TOGGLE_TIMINGS_TWP GENMASK(4, 0)
217 #define TIMINGS0 0x1024
218 #define TIMINGS0_TADL GENMASK(31, 24)
219 #define TIMINGS0_TCCS GENMASK(23, 16)
220 #define TIMINGS0_TWHR GENMASK(15, 8)
221 #define TIMINGS0_TRHW GENMASK(7, 0)
223 #define TIMINGS1 0x1028
224 #define TIMINGS1_TRHZ GENMASK(31, 24)
225 #define TIMINGS1_TWB GENMASK(23, 16)
226 #define TIMINGS1_TVDLY GENMASK(7, 0)
228 #define TIMINGS2 0x102c
229 #define TIMINGS2_TFEAT GENMASK(25, 16)
230 #define TIMINGS2_CS_HOLD_TIME GENMASK(13, 8)
231 #define TIMINGS2_CS_SETUP_TIME GENMASK(5, 0)
233 /* Configuration of the resynchronization of slave DLL of PHY. */
234 #define DLL_PHY_CTRL 0x1034
235 #define DLL_PHY_CTRL_DLL_RST_N BIT(24)
236 #define DLL_PHY_CTRL_EXTENDED_WR_MODE BIT(17)
237 #define DLL_PHY_CTRL_EXTENDED_RD_MODE BIT(16)
238 #define DLL_PHY_CTRL_RS_HIGH_WAIT_CNT GENMASK(11, 8)
239 #define DLL_PHY_CTRL_RS_IDLE_CNT GENMASK(7, 0)
241 /* Register controlling DQ related timing. */
242 #define PHY_DQ_TIMING 0x2000
243 /* Register controlling DSQ related timing. */
244 #define PHY_DQS_TIMING 0x2004
245 #define PHY_DQS_TIMING_DQS_SEL_OE_END GENMASK(3, 0)
246 #define PHY_DQS_TIMING_PHONY_DQS_SEL BIT(16)
247 #define PHY_DQS_TIMING_USE_PHONY_DQS BIT(20)
249 /* Register controlling the gate and loopback control related timing. */
250 #define PHY_GATE_LPBK_CTRL 0x2008
251 #define PHY_GATE_LPBK_CTRL_RDS GENMASK(24, 19)
253 /* Register holds the control for the master DLL logic. */
254 #define PHY_DLL_MASTER_CTRL 0x200C
255 #define PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23)
257 /* Register holds the control for the slave DLL logic. */
258 #define PHY_DLL_SLAVE_CTRL 0x2010
260 /* This register handles the global control settings for the PHY. */
261 #define PHY_CTRL 0x2080
262 #define PHY_CTRL_SDR_DQS BIT(14)
263 #define PHY_CTRL_PHONY_DQS GENMASK(9, 4)
266 * This register handles the global control settings
267 * for the termination selects for reads.
269 #define PHY_TSEL 0x2084
271 /* Generic command layout. */
272 #define GCMD_LAY_CS GENMASK_ULL(11, 8)
274 * This bit informs the minicotroller if it has to wait for tWB
275 * after sending the last CMD/ADDR/DATA in the sequence.
277 #define GCMD_LAY_TWB BIT_ULL(6)
278 /* Type of generic instruction. */
279 #define GCMD_LAY_INSTR GENMASK_ULL(5, 0)
281 /* Generic CMD sequence type. */
282 #define GCMD_LAY_INSTR_CMD 0
283 /* Generic ADDR sequence type. */
284 #define GCMD_LAY_INSTR_ADDR 1
285 /* Generic data transfer sequence type. */
286 #define GCMD_LAY_INSTR_DATA 2
288 /* Input part of generic command type of input is command. */
289 #define GCMD_LAY_INPUT_CMD GENMASK_ULL(23, 16)
291 /* Generic command address sequence - address fields. */
292 #define GCMD_LAY_INPUT_ADDR GENMASK_ULL(63, 16)
293 /* Generic command address sequence - address size. */
294 #define GCMD_LAY_INPUT_ADDR_SIZE GENMASK_ULL(13, 11)
296 /* Transfer direction field of generic command data sequence. */
297 #define GCMD_DIR BIT_ULL(11)
298 /* Read transfer direction of generic command data sequence. */
299 #define GCMD_DIR_READ 0
300 /* Write transfer direction of generic command data sequence. */
301 #define GCMD_DIR_WRITE 1
303 /* ECC enabled flag of generic command data sequence - ECC enabled. */
304 #define GCMD_ECC_EN BIT_ULL(12)
305 /* Generic command data sequence - sector size. */
306 #define GCMD_SECT_SIZE GENMASK_ULL(31, 16)
307 /* Generic command data sequence - sector count. */
308 #define GCMD_SECT_CNT GENMASK_ULL(39, 32)
309 /* Generic command data sequence - last sector size. */
310 #define GCMD_LAST_SIZE GENMASK_ULL(55, 40)
312 /* CDMA descriptor fields. */
313 /* Erase command type of CDMA descriptor. */
314 #define CDMA_CT_ERASE 0x1000
315 /* Program page command type of CDMA descriptor. */
316 #define CDMA_CT_WR 0x2100
317 /* Read page command type of CDMA descriptor. */
318 #define CDMA_CT_RD 0x2200
320 /* Flash pointer memory shift. */
321 #define CDMA_CFPTR_MEM_SHIFT 24
322 /* Flash pointer memory mask. */
323 #define CDMA_CFPTR_MEM GENMASK(26, 24)
326 * Command DMA descriptor flags. If set causes issue interrupt after
327 * the completion of descriptor processing.
329 #define CDMA_CF_INT BIT(8)
331 * Command DMA descriptor flags - the next descriptor
332 * address field is valid and descriptor processing should continue.
334 #define CDMA_CF_CONT BIT(9)
335 /* DMA master flag of command DMA descriptor. */
336 #define CDMA_CF_DMA_MASTER BIT(10)
338 /* Operation complete status of command descriptor. */
339 #define CDMA_CS_COMP BIT(15)
340 /* Operation complete status of command descriptor. */
341 /* Command descriptor status - operation fail. */
342 #define CDMA_CS_FAIL BIT(14)
343 /* Command descriptor status - page erased. */
344 #define CDMA_CS_ERP BIT(11)
345 /* Command descriptor status - timeout occurred. */
346 #define CDMA_CS_TOUT BIT(10)
348 * Maximum amount of correction applied to one ECC sector.
349 * It is part of command descriptor status.
351 #define CDMA_CS_MAXERR GENMASK(9, 2)
352 /* Command descriptor status - uncorrectable ECC error. */
353 #define CDMA_CS_UNCE BIT(1)
354 /* Command descriptor status - descriptor error. */
355 #define CDMA_CS_ERR BIT(0)
357 /* Status of operation - OK. */
358 #define STAT_OK 0
359 /* Status of operation - FAIL. */
360 #define STAT_FAIL 2
361 /* Status of operation - uncorrectable ECC error. */
362 #define STAT_ECC_UNCORR 3
363 /* Status of operation - page erased. */
364 #define STAT_ERASED 5
365 /* Status of operation - correctable ECC error. */
366 #define STAT_ECC_CORR 6
367 /* Status of operation - unsuspected state. */
368 #define STAT_UNKNOWN 7
369 /* Status of operation - operation is not completed yet. */
370 #define STAT_BUSY 0xFF
372 #define BCH_MAX_NUM_CORR_CAPS 8
373 #define BCH_MAX_NUM_SECTOR_SIZES 2
375 struct cadence_nand_timings {
376 u32 async_toggle_timings;
377 u32 timings0;
378 u32 timings1;
379 u32 timings2;
380 u32 dll_phy_ctrl;
381 u32 phy_ctrl;
382 u32 phy_dqs_timing;
383 u32 phy_gate_lpbk_ctrl;
386 /* Command DMA descriptor. */
387 struct cadence_nand_cdma_desc {
388 /* Next descriptor address. */
389 u64 next_pointer;
391 /* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */
392 u32 flash_pointer;
393 /*field appears in HPNFC version 13*/
394 u16 bank;
395 u16 rsvd0;
397 /* Operation the controller needs to perform. */
398 u16 command_type;
399 u16 rsvd1;
400 /* Flags for operation of this command. */
401 u16 command_flags;
402 u16 rsvd2;
404 /* System/host memory address required for data DMA commands. */
405 u64 memory_pointer;
407 /* Status of operation. */
408 u32 status;
409 u32 rsvd3;
411 /* Address pointer to sync buffer location. */
412 u64 sync_flag_pointer;
414 /* Controls the buffer sync mechanism. */
415 u32 sync_arguments;
416 u32 rsvd4;
418 /* Control data pointer. */
419 u64 ctrl_data_ptr;
422 /* Interrupt status. */
423 struct cadence_nand_irq_status {
424 /* Thread operation complete status. */
425 u32 trd_status;
426 /* Thread operation error. */
427 u32 trd_error;
428 /* Controller status. */
429 u32 status;
432 /* Cadence NAND flash controller capabilities get from driver data. */
433 struct cadence_nand_dt_devdata {
434 /* Skew value of the output signals of the NAND Flash interface. */
435 u32 if_skew;
436 /* It informs if slave DMA interface is connected to DMA engine. */
437 unsigned int has_dma:1;
440 /* Cadence NAND flash controller capabilities read from registers. */
441 struct cdns_nand_caps {
442 /* Maximum number of banks supported by hardware. */
443 u8 max_banks;
444 /* Slave and Master DMA data width in bytes (4 or 8). */
445 u8 data_dma_width;
446 /* Control Data feature supported. */
447 bool data_control_supp;
448 /* Is PHY type DLL. */
449 bool is_phy_type_dll;
452 struct cdns_nand_ctrl {
453 struct device *dev;
454 struct nand_controller controller;
455 struct cadence_nand_cdma_desc *cdma_desc;
456 /* IP capability. */
457 const struct cadence_nand_dt_devdata *caps1;
458 struct cdns_nand_caps caps2;
459 u8 ctrl_rev;
460 dma_addr_t dma_cdma_desc;
461 u8 *buf;
462 u32 buf_size;
463 u8 curr_corr_str_idx;
465 /* Register interface. */
466 void __iomem *reg;
468 struct {
469 void __iomem *virt;
470 dma_addr_t dma;
471 } io;
473 int irq;
474 /* Interrupts that have happened. */
475 struct cadence_nand_irq_status irq_status;
476 /* Interrupts we are waiting for. */
477 struct cadence_nand_irq_status irq_mask;
478 struct completion complete;
479 /* Protect irq_mask and irq_status. */
480 spinlock_t irq_lock;
482 int ecc_strengths[BCH_MAX_NUM_CORR_CAPS];
483 struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES];
484 struct nand_ecc_caps ecc_caps;
486 int curr_trans_type;
488 struct dma_chan *dmac;
490 u32 nf_clk_rate;
492 * Estimated Board delay. The value includes the total
493 * round trip delay for the signals and is used for deciding on values
494 * associated with data read capture.
496 u32 board_delay;
498 struct nand_chip *selected_chip;
500 unsigned long assigned_cs;
501 struct list_head chips;
504 struct cdns_nand_chip {
505 struct cadence_nand_timings timings;
506 struct nand_chip chip;
507 u8 nsels;
508 struct list_head node;
511 * part of oob area of NAND flash memory page.
512 * This part is available for user to read or write.
514 u32 avail_oob_size;
516 /* Sector size. There are few sectors per mtd->writesize */
517 u32 sector_size;
518 u32 sector_count;
520 /* Offset of BBM. */
521 u8 bbm_offs;
522 /* Number of bytes reserved for BBM. */
523 u8 bbm_len;
524 /* ECC strength index. */
525 u8 corr_str_idx;
527 u8 cs[];
530 struct ecc_info {
531 int (*calc_ecc_bytes)(int step_size, int strength);
532 int max_step_size;
535 static inline struct
536 cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
538 return container_of(chip, struct cdns_nand_chip, chip);
541 static inline struct
542 cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller)
544 return container_of(controller, struct cdns_nand_ctrl, controller);
547 static bool
548 cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf,
549 u32 buf_len)
551 u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
553 return buf && virt_addr_valid(buf) &&
554 likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
555 likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
558 static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl,
559 u32 reg_offset, u32 timeout_us,
560 u32 mask, bool is_clear)
562 u32 val;
563 int ret;
565 ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset,
566 val, !(val & mask) == is_clear,
567 10, timeout_us);
569 if (ret < 0) {
570 dev_err(cdns_ctrl->dev,
571 "Timeout while waiting for reg %x with mask %x is clear %d\n",
572 reg_offset, mask, is_clear);
575 return ret;
578 static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl,
579 bool enable)
581 u32 reg;
583 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
584 1000000,
585 CTRL_STATUS_CTRL_BUSY, true))
586 return -ETIMEDOUT;
588 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
590 if (enable)
591 reg |= ECC_CONFIG_0_ECC_EN;
592 else
593 reg &= ~ECC_CONFIG_0_ECC_EN;
595 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
597 return 0;
600 static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl,
601 u8 corr_str_idx)
603 u32 reg;
605 if (cdns_ctrl->curr_corr_str_idx == corr_str_idx)
606 return;
608 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
609 reg &= ~ECC_CONFIG_0_CORR_STR;
610 reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
611 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
613 cdns_ctrl->curr_corr_str_idx = corr_str_idx;
616 static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl,
617 u8 strength)
619 int i, corr_str_idx = -1;
621 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
622 if (cdns_ctrl->ecc_strengths[i] == strength) {
623 corr_str_idx = i;
624 break;
628 return corr_str_idx;
631 static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl,
632 u16 marker_value)
634 u32 reg;
636 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
637 1000000,
638 CTRL_STATUS_CTRL_BUSY, true))
639 return -ETIMEDOUT;
641 reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
642 reg &= ~SKIP_BYTES_MARKER_VALUE;
643 reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
644 marker_value);
646 writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
648 return 0;
651 static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl,
652 u8 num_of_bytes,
653 u32 offset_value,
654 int enable)
656 u32 reg, skip_bytes_offset;
658 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
659 1000000,
660 CTRL_STATUS_CTRL_BUSY, true))
661 return -ETIMEDOUT;
663 if (!enable) {
664 num_of_bytes = 0;
665 offset_value = 0;
668 reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
669 reg &= ~SKIP_BYTES_NUM_OF_BYTES;
670 reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
671 num_of_bytes);
672 skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
673 offset_value);
675 writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
676 writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET);
678 return 0;
681 /* Functions enables/disables hardware detection of erased data */
682 static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl,
683 bool enable,
684 u8 bitflips_threshold)
686 u32 reg;
688 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
690 if (enable)
691 reg |= ECC_CONFIG_0_ERASE_DET_EN;
692 else
693 reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
695 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
696 writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1);
699 static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl,
700 bool bit_bus16)
702 u32 reg;
704 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
705 1000000,
706 CTRL_STATUS_CTRL_BUSY, true))
707 return -ETIMEDOUT;
709 reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET);
711 if (!bit_bus16)
712 reg &= ~COMMON_SET_DEVICE_16BIT;
713 else
714 reg |= COMMON_SET_DEVICE_16BIT;
715 writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET);
717 return 0;
720 static void
721 cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl,
722 struct cadence_nand_irq_status *irq_status)
724 writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS);
725 writel_relaxed(irq_status->trd_status,
726 cdns_ctrl->reg + TRD_COMP_INT_STATUS);
727 writel_relaxed(irq_status->trd_error,
728 cdns_ctrl->reg + TRD_ERR_INT_STATUS);
731 static void
732 cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl,
733 struct cadence_nand_irq_status *irq_status)
735 irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS);
736 irq_status->trd_status = readl_relaxed(cdns_ctrl->reg
737 + TRD_COMP_INT_STATUS);
738 irq_status->trd_error = readl_relaxed(cdns_ctrl->reg
739 + TRD_ERR_INT_STATUS);
742 static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl,
743 struct cadence_nand_irq_status *irq_status)
745 cadence_nand_read_int_status(cdns_ctrl, irq_status);
747 return irq_status->status || irq_status->trd_status ||
748 irq_status->trd_error;
751 static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl)
753 unsigned long flags;
755 spin_lock_irqsave(&cdns_ctrl->irq_lock, flags);
756 memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status));
757 memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask));
758 spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags);
762 * This is the interrupt service routine. It handles all interrupts
763 * sent to this device.
765 static irqreturn_t cadence_nand_isr(int irq, void *dev_id)
767 struct cdns_nand_ctrl *cdns_ctrl = dev_id;
768 struct cadence_nand_irq_status irq_status;
769 irqreturn_t result = IRQ_NONE;
771 spin_lock(&cdns_ctrl->irq_lock);
773 if (irq_detected(cdns_ctrl, &irq_status)) {
774 /* Handle interrupt. */
775 /* First acknowledge it. */
776 cadence_nand_clear_interrupt(cdns_ctrl, &irq_status);
777 /* Status in the device context for someone to read. */
778 cdns_ctrl->irq_status.status |= irq_status.status;
779 cdns_ctrl->irq_status.trd_status |= irq_status.trd_status;
780 cdns_ctrl->irq_status.trd_error |= irq_status.trd_error;
781 /* Notify anyone who cares that it happened. */
782 complete(&cdns_ctrl->complete);
783 /* Tell the OS that we've handled this. */
784 result = IRQ_HANDLED;
786 spin_unlock(&cdns_ctrl->irq_lock);
788 return result;
791 static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl,
792 struct cadence_nand_irq_status *irq_mask)
794 writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
795 cdns_ctrl->reg + INTR_ENABLE);
797 writel_relaxed(irq_mask->trd_error,
798 cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN);
801 static void
802 cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl,
803 struct cadence_nand_irq_status *irq_mask,
804 struct cadence_nand_irq_status *irq_status)
806 unsigned long timeout = msecs_to_jiffies(10000);
807 unsigned long time_left;
809 time_left = wait_for_completion_timeout(&cdns_ctrl->complete,
810 timeout);
812 *irq_status = cdns_ctrl->irq_status;
813 if (time_left == 0) {
814 /* Timeout error. */
815 dev_err(cdns_ctrl->dev, "timeout occurred:\n");
816 dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n",
817 irq_status->status, irq_mask->status);
818 dev_err(cdns_ctrl->dev,
819 "\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
820 irq_status->trd_status, irq_mask->trd_status);
821 dev_err(cdns_ctrl->dev,
822 "\t trd_error = 0x%x, trd_error mask = 0x%x\n",
823 irq_status->trd_error, irq_mask->trd_error);
827 /* Execute generic command on NAND controller. */
828 static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl,
829 u8 chip_nr,
830 u64 mini_ctrl_cmd)
832 u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
834 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
835 mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
836 mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
838 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
839 1000000,
840 CTRL_STATUS_CTRL_BUSY, true))
841 return -ETIMEDOUT;
843 cadence_nand_reset_irq(cdns_ctrl);
845 writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2);
846 writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3);
848 /* Select generic command. */
849 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
850 /* Thread number. */
851 reg |= FIELD_PREP(CMD_REG0_TN, 0);
853 /* Issue command. */
854 writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
856 return 0;
859 /* Wait for data on slave DMA interface. */
860 static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl,
861 u8 *out_sdma_trd,
862 u32 *out_sdma_size)
864 struct cadence_nand_irq_status irq_mask, irq_status;
866 irq_mask.trd_status = 0;
867 irq_mask.trd_error = 0;
868 irq_mask.status = INTR_STATUS_SDMA_TRIGG
869 | INTR_STATUS_SDMA_ERR
870 | INTR_STATUS_UNSUPP_CMD;
872 cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
873 cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
874 if (irq_status.status == 0) {
875 dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n");
876 return -ETIMEDOUT;
879 if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
880 *out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE);
881 *out_sdma_trd = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM);
882 *out_sdma_trd =
883 FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
884 } else {
885 dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n",
886 irq_status.status);
887 return -EIO;
890 return 0;
893 static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl)
895 u32 reg;
897 reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES);
899 cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
901 if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
902 cdns_ctrl->caps2.data_dma_width = 8;
903 else
904 cdns_ctrl->caps2.data_dma_width = 4;
906 if (reg & CTRL_FEATURES_CONTROL_DATA)
907 cdns_ctrl->caps2.data_control_supp = true;
909 if (reg & (CTRL_FEATURES_NVDDR_2_3
910 | CTRL_FEATURES_NVDDR))
911 cdns_ctrl->caps2.is_phy_type_dll = true;
914 /* Prepare CDMA descriptor. */
915 static void
916 cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl,
917 char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr,
918 dma_addr_t ctrl_data_ptr, u16 ctype)
920 struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc;
922 memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
924 /* Set fields for one descriptor. */
925 cdma_desc->flash_pointer = flash_ptr;
926 if (cdns_ctrl->ctrl_rev >= 13)
927 cdma_desc->bank = nf_mem;
928 else
929 cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
931 cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
932 cdma_desc->command_flags |= CDMA_CF_INT;
934 cdma_desc->memory_pointer = mem_ptr;
935 cdma_desc->status = 0;
936 cdma_desc->sync_flag_pointer = 0;
937 cdma_desc->sync_arguments = 0;
939 cdma_desc->command_type = ctype;
940 cdma_desc->ctrl_data_ptr = ctrl_data_ptr;
943 static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl,
944 u32 desc_status)
946 if (desc_status & CDMA_CS_ERP)
947 return STAT_ERASED;
949 if (desc_status & CDMA_CS_UNCE)
950 return STAT_ECC_UNCORR;
952 if (desc_status & CDMA_CS_ERR) {
953 dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n");
954 return STAT_FAIL;
957 if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
958 return STAT_ECC_CORR;
960 return STAT_FAIL;
963 static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl)
965 struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc;
966 u8 status = STAT_BUSY;
968 if (desc_ptr->status & CDMA_CS_FAIL) {
969 status = cadence_nand_check_desc_error(cdns_ctrl,
970 desc_ptr->status);
971 dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status);
972 } else if (desc_ptr->status & CDMA_CS_COMP) {
973 /* Descriptor finished with no errors. */
974 if (desc_ptr->command_flags & CDMA_CF_CONT) {
975 dev_info(cdns_ctrl->dev, "DMA unsupported flag is set");
976 status = STAT_UNKNOWN;
977 } else {
978 /* Last descriptor. */
979 status = STAT_OK;
983 return status;
986 static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl,
987 u8 thread)
989 u32 reg;
990 int status;
992 /* Wait for thread ready. */
993 status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS,
994 1000000,
995 BIT(thread), true);
996 if (status)
997 return status;
999 cadence_nand_reset_irq(cdns_ctrl);
1001 writel_relaxed((u32)cdns_ctrl->dma_cdma_desc,
1002 cdns_ctrl->reg + CMD_REG2);
1003 writel_relaxed(0, cdns_ctrl->reg + CMD_REG3);
1005 /* Select CDMA mode. */
1006 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
1007 /* Thread number. */
1008 reg |= FIELD_PREP(CMD_REG0_TN, thread);
1009 /* Issue command. */
1010 writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
1012 return 0;
1015 /* Send SDMA command and wait for finish. */
1016 static u32
1017 cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl,
1018 u8 thread)
1020 struct cadence_nand_irq_status irq_mask, irq_status = {0};
1021 int status;
1023 irq_mask.trd_status = BIT(thread);
1024 irq_mask.trd_error = BIT(thread);
1025 irq_mask.status = INTR_STATUS_CDMA_TERR;
1027 cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
1029 status = cadence_nand_cdma_send(cdns_ctrl, thread);
1030 if (status)
1031 return status;
1033 cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
1035 if (irq_status.status == 0 && irq_status.trd_status == 0 &&
1036 irq_status.trd_error == 0) {
1037 dev_err(cdns_ctrl->dev, "CDMA command timeout\n");
1038 return -ETIMEDOUT;
1040 if (irq_status.status & irq_mask.status) {
1041 dev_err(cdns_ctrl->dev, "CDMA command failed\n");
1042 return -EIO;
1045 return 0;
1049 * ECC size depends on configured ECC strength and on maximum supported
1050 * ECC step size.
1052 static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
1054 int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
1056 return ALIGN(nbytes, 2);
1059 #define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
1060 static int \
1061 cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
1062 int strength)\
1064 return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
1067 CADENCE_NAND_CALC_ECC_BYTES(256)
1068 CADENCE_NAND_CALC_ECC_BYTES(512)
1069 CADENCE_NAND_CALC_ECC_BYTES(1024)
1070 CADENCE_NAND_CALC_ECC_BYTES(2048)
1071 CADENCE_NAND_CALC_ECC_BYTES(4096)
1073 /* Function reads BCH capabilities. */
1074 static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl)
1076 struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps;
1077 int max_step_size = 0, nstrengths, i;
1078 u32 reg;
1080 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0);
1081 cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
1082 cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
1083 cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
1084 cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
1086 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1);
1087 cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
1088 cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
1089 cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
1090 cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
1092 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2);
1093 cdns_ctrl->ecc_stepinfos[0].stepsize =
1094 FIELD_GET(BCH_CFG_2_SECT_0, reg);
1096 cdns_ctrl->ecc_stepinfos[1].stepsize =
1097 FIELD_GET(BCH_CFG_2_SECT_1, reg);
1099 nstrengths = 0;
1100 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
1101 if (cdns_ctrl->ecc_strengths[i] != 0)
1102 nstrengths++;
1105 ecc_caps->nstepinfos = 0;
1106 for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
1107 /* ECC strengths are common for all step infos. */
1108 cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths;
1109 cdns_ctrl->ecc_stepinfos[i].strengths =
1110 cdns_ctrl->ecc_strengths;
1112 if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0)
1113 ecc_caps->nstepinfos++;
1115 if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size)
1116 max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize;
1118 ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0];
1120 switch (max_step_size) {
1121 case 256:
1122 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
1123 break;
1124 case 512:
1125 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
1126 break;
1127 case 1024:
1128 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
1129 break;
1130 case 2048:
1131 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
1132 break;
1133 case 4096:
1134 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
1135 break;
1136 default:
1137 dev_err(cdns_ctrl->dev,
1138 "Unsupported sector size(ecc step size) %d\n",
1139 max_step_size);
1140 return -EIO;
1143 return 0;
1146 /* Hardware initialization. */
1147 static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl)
1149 int status;
1150 u32 reg;
1152 status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1153 1000000,
1154 CTRL_STATUS_INIT_COMP, false);
1155 if (status)
1156 return status;
1158 reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION);
1159 cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
1161 dev_info(cdns_ctrl->dev,
1162 "%s: cadence nand controller version reg %x\n",
1163 __func__, reg);
1165 /* Disable cache and multiplane. */
1166 writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG);
1167 writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG);
1169 /* Clear all interrupts. */
1170 writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS);
1172 cadence_nand_get_caps(cdns_ctrl);
1173 cadence_nand_read_bch_caps(cdns_ctrl);
1176 * Set IO width access to 8.
1177 * It is because during SW device discovering width access
1178 * is expected to be 8.
1180 status = cadence_nand_set_access_width16(cdns_ctrl, false);
1182 return status;
1185 #define TT_MAIN_OOB_AREAS 2
1186 #define TT_RAW_PAGE 3
1187 #define TT_BBM 4
1188 #define TT_MAIN_OOB_AREA_EXT 5
1190 /* Prepare size of data to transfer. */
1191 static void
1192 cadence_nand_prepare_data_size(struct nand_chip *chip,
1193 int transfer_type)
1195 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1196 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1197 struct mtd_info *mtd = nand_to_mtd(chip);
1198 u32 sec_size = 0, offset = 0, sec_cnt = 1;
1199 u32 last_sec_size = cdns_chip->sector_size;
1200 u32 data_ctrl_size = 0;
1201 u32 reg = 0;
1203 if (cdns_ctrl->curr_trans_type == transfer_type)
1204 return;
1206 switch (transfer_type) {
1207 case TT_MAIN_OOB_AREA_EXT:
1208 sec_cnt = cdns_chip->sector_count;
1209 sec_size = cdns_chip->sector_size;
1210 data_ctrl_size = cdns_chip->avail_oob_size;
1211 break;
1212 case TT_MAIN_OOB_AREAS:
1213 sec_cnt = cdns_chip->sector_count;
1214 last_sec_size = cdns_chip->sector_size
1215 + cdns_chip->avail_oob_size;
1216 sec_size = cdns_chip->sector_size;
1217 break;
1218 case TT_RAW_PAGE:
1219 last_sec_size = mtd->writesize + mtd->oobsize;
1220 break;
1221 case TT_BBM:
1222 offset = mtd->writesize + cdns_chip->bbm_offs;
1223 last_sec_size = 8;
1224 break;
1227 reg = 0;
1228 reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
1229 reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
1230 writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0);
1232 reg = 0;
1233 reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
1234 reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
1235 writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1);
1237 if (cdns_ctrl->caps2.data_control_supp) {
1238 reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL);
1239 reg &= ~CONTROL_DATA_CTRL_SIZE;
1240 reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
1241 writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL);
1244 cdns_ctrl->curr_trans_type = transfer_type;
1247 static int
1248 cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr,
1249 int page, void *buf, void *ctrl_dat, u32 buf_size,
1250 u32 ctrl_dat_size, enum dma_data_direction dir,
1251 bool with_ecc)
1253 dma_addr_t dma_buf, dma_ctrl_dat = 0;
1254 u8 thread_nr = chip_nr;
1255 int status;
1256 u16 ctype;
1258 if (dir == DMA_FROM_DEVICE)
1259 ctype = CDMA_CT_RD;
1260 else
1261 ctype = CDMA_CT_WR;
1263 cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc);
1265 dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir);
1266 if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) {
1267 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1268 return -EIO;
1271 if (ctrl_dat && ctrl_dat_size) {
1272 dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat,
1273 ctrl_dat_size, dir);
1274 if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) {
1275 dma_unmap_single(cdns_ctrl->dev, dma_buf,
1276 buf_size, dir);
1277 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1278 return -EIO;
1282 cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page,
1283 dma_buf, dma_ctrl_dat, ctype);
1285 status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1287 dma_unmap_single(cdns_ctrl->dev, dma_buf,
1288 buf_size, dir);
1290 if (ctrl_dat && ctrl_dat_size)
1291 dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat,
1292 ctrl_dat_size, dir);
1293 if (status)
1294 return status;
1296 return cadence_nand_cdma_finish(cdns_ctrl);
1299 static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl,
1300 struct cadence_nand_timings *t)
1302 writel_relaxed(t->async_toggle_timings,
1303 cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS);
1304 writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0);
1305 writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1);
1306 writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2);
1308 if (cdns_ctrl->caps2.is_phy_type_dll)
1309 writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL);
1311 writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL);
1313 if (cdns_ctrl->caps2.is_phy_type_dll) {
1314 writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL);
1315 writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING);
1316 writel_relaxed(t->phy_dqs_timing,
1317 cdns_ctrl->reg + PHY_DQS_TIMING);
1318 writel_relaxed(t->phy_gate_lpbk_ctrl,
1319 cdns_ctrl->reg + PHY_GATE_LPBK_CTRL);
1320 writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
1321 cdns_ctrl->reg + PHY_DLL_MASTER_CTRL);
1322 writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL);
1326 static int cadence_nand_select_target(struct nand_chip *chip)
1328 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1329 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1331 if (chip == cdns_ctrl->selected_chip)
1332 return 0;
1334 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1335 1000000,
1336 CTRL_STATUS_CTRL_BUSY, true))
1337 return -ETIMEDOUT;
1339 cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings);
1341 cadence_nand_set_ecc_strength(cdns_ctrl,
1342 cdns_chip->corr_str_idx);
1344 cadence_nand_set_erase_detection(cdns_ctrl, true,
1345 chip->ecc.strength);
1347 cdns_ctrl->curr_trans_type = -1;
1348 cdns_ctrl->selected_chip = chip;
1350 return 0;
1353 static int cadence_nand_erase(struct nand_chip *chip, u32 page)
1355 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1356 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1357 int status;
1358 u8 thread_nr = cdns_chip->cs[chip->cur_cs];
1360 cadence_nand_cdma_desc_prepare(cdns_ctrl,
1361 cdns_chip->cs[chip->cur_cs],
1362 page, 0, 0,
1363 CDMA_CT_ERASE);
1364 status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1365 if (status) {
1366 dev_err(cdns_ctrl->dev, "erase operation failed\n");
1367 return -EIO;
1370 status = cadence_nand_cdma_finish(cdns_ctrl);
1371 if (status)
1372 return status;
1374 return 0;
1377 static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf)
1379 int status;
1380 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1381 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1382 struct mtd_info *mtd = nand_to_mtd(chip);
1384 cadence_nand_prepare_data_size(chip, TT_BBM);
1386 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1389 * Read only bad block marker from offset
1390 * defined by a memory manufacturer.
1392 status = cadence_nand_cdma_transfer(cdns_ctrl,
1393 cdns_chip->cs[chip->cur_cs],
1394 page, cdns_ctrl->buf, NULL,
1395 mtd->oobsize,
1396 0, DMA_FROM_DEVICE, false);
1397 if (status) {
1398 dev_err(cdns_ctrl->dev, "read BBM failed\n");
1399 return -EIO;
1402 memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len);
1404 return 0;
1407 static int cadence_nand_write_page(struct nand_chip *chip,
1408 const u8 *buf, int oob_required,
1409 int page)
1411 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1412 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1413 struct mtd_info *mtd = nand_to_mtd(chip);
1414 int status;
1415 u16 marker_val = 0xFFFF;
1417 status = cadence_nand_select_target(chip);
1418 if (status)
1419 return status;
1421 cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1422 mtd->writesize
1423 + cdns_chip->bbm_offs,
1426 if (oob_required) {
1427 marker_val = *(u16 *)(chip->oob_poi
1428 + cdns_chip->bbm_offs);
1429 } else {
1430 /* Set oob data to 0xFF. */
1431 memset(cdns_ctrl->buf + mtd->writesize, 0xFF,
1432 cdns_chip->avail_oob_size);
1435 cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val);
1437 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1439 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1440 cdns_ctrl->caps2.data_control_supp) {
1441 u8 *oob;
1443 if (oob_required)
1444 oob = chip->oob_poi;
1445 else
1446 oob = cdns_ctrl->buf + mtd->writesize;
1448 status = cadence_nand_cdma_transfer(cdns_ctrl,
1449 cdns_chip->cs[chip->cur_cs],
1450 page, (void *)buf, oob,
1451 mtd->writesize,
1452 cdns_chip->avail_oob_size,
1453 DMA_TO_DEVICE, true);
1454 if (status) {
1455 dev_err(cdns_ctrl->dev, "write page failed\n");
1456 return -EIO;
1459 return 0;
1462 if (oob_required) {
1463 /* Transfer the data to the oob area. */
1464 memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi,
1465 cdns_chip->avail_oob_size);
1468 memcpy(cdns_ctrl->buf, buf, mtd->writesize);
1470 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1472 return cadence_nand_cdma_transfer(cdns_ctrl,
1473 cdns_chip->cs[chip->cur_cs],
1474 page, cdns_ctrl->buf, NULL,
1475 mtd->writesize
1476 + cdns_chip->avail_oob_size,
1477 0, DMA_TO_DEVICE, true);
1480 static int cadence_nand_write_oob(struct nand_chip *chip, int page)
1482 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1483 struct mtd_info *mtd = nand_to_mtd(chip);
1485 memset(cdns_ctrl->buf, 0xFF, mtd->writesize);
1487 return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page);
1490 static int cadence_nand_write_page_raw(struct nand_chip *chip,
1491 const u8 *buf, int oob_required,
1492 int page)
1494 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1495 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1496 struct mtd_info *mtd = nand_to_mtd(chip);
1497 int writesize = mtd->writesize;
1498 int oobsize = mtd->oobsize;
1499 int ecc_steps = chip->ecc.steps;
1500 int ecc_size = chip->ecc.size;
1501 int ecc_bytes = chip->ecc.bytes;
1502 void *tmp_buf = cdns_ctrl->buf;
1503 int oob_skip = cdns_chip->bbm_len;
1504 size_t size = writesize + oobsize;
1505 int i, pos, len;
1506 int status = 0;
1508 status = cadence_nand_select_target(chip);
1509 if (status)
1510 return status;
1513 * Fill the buffer with 0xff first except the full page transfer.
1514 * This simplifies the logic.
1516 if (!buf || !oob_required)
1517 memset(tmp_buf, 0xff, size);
1519 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1521 /* Arrange the buffer for syndrome payload/ecc layout. */
1522 if (buf) {
1523 for (i = 0; i < ecc_steps; i++) {
1524 pos = i * (ecc_size + ecc_bytes);
1525 len = ecc_size;
1527 if (pos >= writesize)
1528 pos += oob_skip;
1529 else if (pos + len > writesize)
1530 len = writesize - pos;
1532 memcpy(tmp_buf + pos, buf, len);
1533 buf += len;
1534 if (len < ecc_size) {
1535 len = ecc_size - len;
1536 memcpy(tmp_buf + writesize + oob_skip, buf,
1537 len);
1538 buf += len;
1543 if (oob_required) {
1544 const u8 *oob = chip->oob_poi;
1545 u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1546 (cdns_chip->sector_size + chip->ecc.bytes)
1547 + cdns_chip->sector_size + oob_skip;
1549 /* BBM at the beginning of the OOB area. */
1550 memcpy(tmp_buf + writesize, oob, oob_skip);
1552 /* OOB free. */
1553 memcpy(tmp_buf + oob_data_offset, oob,
1554 cdns_chip->avail_oob_size);
1555 oob += cdns_chip->avail_oob_size;
1557 /* OOB ECC. */
1558 for (i = 0; i < ecc_steps; i++) {
1559 pos = ecc_size + i * (ecc_size + ecc_bytes);
1560 if (i == (ecc_steps - 1))
1561 pos += cdns_chip->avail_oob_size;
1563 len = ecc_bytes;
1565 if (pos >= writesize)
1566 pos += oob_skip;
1567 else if (pos + len > writesize)
1568 len = writesize - pos;
1570 memcpy(tmp_buf + pos, oob, len);
1571 oob += len;
1572 if (len < ecc_bytes) {
1573 len = ecc_bytes - len;
1574 memcpy(tmp_buf + writesize + oob_skip, oob,
1575 len);
1576 oob += len;
1581 cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1583 return cadence_nand_cdma_transfer(cdns_ctrl,
1584 cdns_chip->cs[chip->cur_cs],
1585 page, cdns_ctrl->buf, NULL,
1586 mtd->writesize +
1587 mtd->oobsize,
1588 0, DMA_TO_DEVICE, false);
1591 static int cadence_nand_write_oob_raw(struct nand_chip *chip,
1592 int page)
1594 return cadence_nand_write_page_raw(chip, NULL, true, page);
1597 static int cadence_nand_read_page(struct nand_chip *chip,
1598 u8 *buf, int oob_required, int page)
1600 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1601 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1602 struct mtd_info *mtd = nand_to_mtd(chip);
1603 int status = 0;
1604 int ecc_err_count = 0;
1606 status = cadence_nand_select_target(chip);
1607 if (status)
1608 return status;
1610 cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1611 mtd->writesize
1612 + cdns_chip->bbm_offs, 1);
1615 * If data buffer can be accessed by DMA and data_control feature
1616 * is supported then transfer data and oob directly.
1618 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1619 cdns_ctrl->caps2.data_control_supp) {
1620 u8 *oob;
1622 if (oob_required)
1623 oob = chip->oob_poi;
1624 else
1625 oob = cdns_ctrl->buf + mtd->writesize;
1627 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1628 status = cadence_nand_cdma_transfer(cdns_ctrl,
1629 cdns_chip->cs[chip->cur_cs],
1630 page, buf, oob,
1631 mtd->writesize,
1632 cdns_chip->avail_oob_size,
1633 DMA_FROM_DEVICE, true);
1634 /* Otherwise use bounce buffer. */
1635 } else {
1636 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1637 status = cadence_nand_cdma_transfer(cdns_ctrl,
1638 cdns_chip->cs[chip->cur_cs],
1639 page, cdns_ctrl->buf,
1640 NULL, mtd->writesize
1641 + cdns_chip->avail_oob_size,
1642 0, DMA_FROM_DEVICE, true);
1644 memcpy(buf, cdns_ctrl->buf, mtd->writesize);
1645 if (oob_required)
1646 memcpy(chip->oob_poi,
1647 cdns_ctrl->buf + mtd->writesize,
1648 mtd->oobsize);
1651 switch (status) {
1652 case STAT_ECC_UNCORR:
1653 mtd->ecc_stats.failed++;
1654 ecc_err_count++;
1655 break;
1656 case STAT_ECC_CORR:
1657 ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
1658 cdns_ctrl->cdma_desc->status);
1659 mtd->ecc_stats.corrected += ecc_err_count;
1660 break;
1661 case STAT_ERASED:
1662 case STAT_OK:
1663 break;
1664 default:
1665 dev_err(cdns_ctrl->dev, "read page failed\n");
1666 return -EIO;
1669 if (oob_required)
1670 if (cadence_nand_read_bbm(chip, page, chip->oob_poi))
1671 return -EIO;
1673 return ecc_err_count;
1676 /* Reads OOB data from the device. */
1677 static int cadence_nand_read_oob(struct nand_chip *chip, int page)
1679 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1681 return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page);
1684 static int cadence_nand_read_page_raw(struct nand_chip *chip,
1685 u8 *buf, int oob_required, int page)
1687 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1688 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1689 struct mtd_info *mtd = nand_to_mtd(chip);
1690 int oob_skip = cdns_chip->bbm_len;
1691 int writesize = mtd->writesize;
1692 int ecc_steps = chip->ecc.steps;
1693 int ecc_size = chip->ecc.size;
1694 int ecc_bytes = chip->ecc.bytes;
1695 void *tmp_buf = cdns_ctrl->buf;
1696 int i, pos, len;
1697 int status = 0;
1699 status = cadence_nand_select_target(chip);
1700 if (status)
1701 return status;
1703 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1705 cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1706 status = cadence_nand_cdma_transfer(cdns_ctrl,
1707 cdns_chip->cs[chip->cur_cs],
1708 page, cdns_ctrl->buf, NULL,
1709 mtd->writesize
1710 + mtd->oobsize,
1711 0, DMA_FROM_DEVICE, false);
1713 switch (status) {
1714 case STAT_ERASED:
1715 case STAT_OK:
1716 break;
1717 default:
1718 dev_err(cdns_ctrl->dev, "read raw page failed\n");
1719 return -EIO;
1722 /* Arrange the buffer for syndrome payload/ecc layout. */
1723 if (buf) {
1724 for (i = 0; i < ecc_steps; i++) {
1725 pos = i * (ecc_size + ecc_bytes);
1726 len = ecc_size;
1728 if (pos >= writesize)
1729 pos += oob_skip;
1730 else if (pos + len > writesize)
1731 len = writesize - pos;
1733 memcpy(buf, tmp_buf + pos, len);
1734 buf += len;
1735 if (len < ecc_size) {
1736 len = ecc_size - len;
1737 memcpy(buf, tmp_buf + writesize + oob_skip,
1738 len);
1739 buf += len;
1744 if (oob_required) {
1745 u8 *oob = chip->oob_poi;
1746 u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1747 (cdns_chip->sector_size + chip->ecc.bytes)
1748 + cdns_chip->sector_size + oob_skip;
1750 /* OOB free. */
1751 memcpy(oob, tmp_buf + oob_data_offset,
1752 cdns_chip->avail_oob_size);
1754 /* BBM at the beginning of the OOB area. */
1755 memcpy(oob, tmp_buf + writesize, oob_skip);
1757 oob += cdns_chip->avail_oob_size;
1759 /* OOB ECC */
1760 for (i = 0; i < ecc_steps; i++) {
1761 pos = ecc_size + i * (ecc_size + ecc_bytes);
1762 len = ecc_bytes;
1764 if (i == (ecc_steps - 1))
1765 pos += cdns_chip->avail_oob_size;
1767 if (pos >= writesize)
1768 pos += oob_skip;
1769 else if (pos + len > writesize)
1770 len = writesize - pos;
1772 memcpy(oob, tmp_buf + pos, len);
1773 oob += len;
1774 if (len < ecc_bytes) {
1775 len = ecc_bytes - len;
1776 memcpy(oob, tmp_buf + writesize + oob_skip,
1777 len);
1778 oob += len;
1783 return 0;
1786 static int cadence_nand_read_oob_raw(struct nand_chip *chip,
1787 int page)
1789 return cadence_nand_read_page_raw(chip, NULL, true, page);
1792 static void cadence_nand_slave_dma_transfer_finished(void *data)
1794 struct completion *finished = data;
1796 complete(finished);
1799 static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl,
1800 void *buf,
1801 dma_addr_t dev_dma, size_t len,
1802 enum dma_data_direction dir)
1804 DECLARE_COMPLETION_ONSTACK(finished);
1805 struct dma_chan *chan;
1806 struct dma_device *dma_dev;
1807 dma_addr_t src_dma, dst_dma, buf_dma;
1808 struct dma_async_tx_descriptor *tx;
1809 dma_cookie_t cookie;
1811 chan = cdns_ctrl->dmac;
1812 dma_dev = chan->device;
1814 buf_dma = dma_map_single(dma_dev->dev, buf, len, dir);
1815 if (dma_mapping_error(dma_dev->dev, buf_dma)) {
1816 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1817 goto err;
1820 if (dir == DMA_FROM_DEVICE) {
1821 src_dma = cdns_ctrl->io.dma;
1822 dst_dma = buf_dma;
1823 } else {
1824 src_dma = buf_dma;
1825 dst_dma = cdns_ctrl->io.dma;
1828 tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len,
1829 DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
1830 if (!tx) {
1831 dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n");
1832 goto err_unmap;
1835 tx->callback = cadence_nand_slave_dma_transfer_finished;
1836 tx->callback_param = &finished;
1838 cookie = dmaengine_submit(tx);
1839 if (dma_submit_error(cookie)) {
1840 dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n");
1841 goto err_unmap;
1844 dma_async_issue_pending(cdns_ctrl->dmac);
1845 wait_for_completion(&finished);
1847 dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
1849 return 0;
1851 err_unmap:
1852 dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
1854 err:
1855 dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n");
1857 return -EIO;
1860 static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl,
1861 u8 *buf, int len)
1863 u8 thread_nr = 0;
1864 u32 sdma_size;
1865 int status;
1867 /* Wait until slave DMA interface is ready to data transfer. */
1868 status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
1869 if (status)
1870 return status;
1872 if (!cdns_ctrl->caps1->has_dma) {
1873 int len_in_words = len >> 2;
1875 /* read alingment data */
1876 ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words);
1877 if (sdma_size > len) {
1878 /* read rest data from slave DMA interface if any */
1879 ioread32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf,
1880 sdma_size / 4 - len_in_words);
1881 /* copy rest of data */
1882 memcpy(buf + (len_in_words << 2), cdns_ctrl->buf,
1883 len - (len_in_words << 2));
1885 return 0;
1888 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
1889 status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf,
1890 cdns_ctrl->io.dma,
1891 len, DMA_FROM_DEVICE);
1892 if (status == 0)
1893 return 0;
1895 dev_warn(cdns_ctrl->dev,
1896 "Slave DMA transfer failed. Try again using bounce buffer.");
1899 /* If DMA transfer is not possible or failed then use bounce buffer. */
1900 status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
1901 cdns_ctrl->io.dma,
1902 sdma_size, DMA_FROM_DEVICE);
1904 if (status) {
1905 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
1906 return status;
1909 memcpy(buf, cdns_ctrl->buf, len);
1911 return 0;
1914 static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl,
1915 const u8 *buf, int len)
1917 u8 thread_nr = 0;
1918 u32 sdma_size;
1919 int status;
1921 /* Wait until slave DMA interface is ready to data transfer. */
1922 status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
1923 if (status)
1924 return status;
1926 if (!cdns_ctrl->caps1->has_dma) {
1927 int len_in_words = len >> 2;
1929 iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words);
1930 if (sdma_size > len) {
1931 /* copy rest of data */
1932 memcpy(cdns_ctrl->buf, buf + (len_in_words << 2),
1933 len - (len_in_words << 2));
1934 /* write all expected by nand controller data */
1935 iowrite32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf,
1936 sdma_size / 4 - len_in_words);
1939 return 0;
1942 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
1943 status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf,
1944 cdns_ctrl->io.dma,
1945 len, DMA_TO_DEVICE);
1946 if (status == 0)
1947 return 0;
1949 dev_warn(cdns_ctrl->dev,
1950 "Slave DMA transfer failed. Try again using bounce buffer.");
1953 /* If DMA transfer is not possible or failed then use bounce buffer. */
1954 memcpy(cdns_ctrl->buf, buf, len);
1956 status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
1957 cdns_ctrl->io.dma,
1958 sdma_size, DMA_TO_DEVICE);
1960 if (status)
1961 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
1963 return status;
1966 static int cadence_nand_force_byte_access(struct nand_chip *chip,
1967 bool force_8bit)
1969 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1970 int status;
1973 * Callers of this function do not verify if the NAND is using a 16-bit
1974 * an 8-bit bus for normal operations, so we need to take care of that
1975 * here by leaving the configuration unchanged if the NAND does not have
1976 * the NAND_BUSWIDTH_16 flag set.
1978 if (!(chip->options & NAND_BUSWIDTH_16))
1979 return 0;
1981 status = cadence_nand_set_access_width16(cdns_ctrl, !force_8bit);
1983 return status;
1986 static int cadence_nand_cmd_opcode(struct nand_chip *chip,
1987 const struct nand_subop *subop)
1989 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1990 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1991 const struct nand_op_instr *instr;
1992 unsigned int op_id = 0;
1993 u64 mini_ctrl_cmd = 0;
1994 int ret;
1996 instr = &subop->instrs[op_id];
1998 if (instr->delay_ns > 0)
1999 mini_ctrl_cmd |= GCMD_LAY_TWB;
2001 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2002 GCMD_LAY_INSTR_CMD);
2003 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD,
2004 instr->ctx.cmd.opcode);
2006 ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2007 cdns_chip->cs[chip->cur_cs],
2008 mini_ctrl_cmd);
2009 if (ret)
2010 dev_err(cdns_ctrl->dev, "send cmd %x failed\n",
2011 instr->ctx.cmd.opcode);
2013 return ret;
2016 static int cadence_nand_cmd_address(struct nand_chip *chip,
2017 const struct nand_subop *subop)
2019 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2020 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2021 const struct nand_op_instr *instr;
2022 unsigned int op_id = 0;
2023 u64 mini_ctrl_cmd = 0;
2024 unsigned int offset, naddrs;
2025 u64 address = 0;
2026 const u8 *addrs;
2027 int ret;
2028 int i;
2030 instr = &subop->instrs[op_id];
2032 if (instr->delay_ns > 0)
2033 mini_ctrl_cmd |= GCMD_LAY_TWB;
2035 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2036 GCMD_LAY_INSTR_ADDR);
2038 offset = nand_subop_get_addr_start_off(subop, op_id);
2039 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
2040 addrs = &instr->ctx.addr.addrs[offset];
2042 for (i = 0; i < naddrs; i++)
2043 address |= (u64)addrs[i] << (8 * i);
2045 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
2046 address);
2047 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
2048 naddrs - 1);
2050 ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2051 cdns_chip->cs[chip->cur_cs],
2052 mini_ctrl_cmd);
2053 if (ret)
2054 dev_err(cdns_ctrl->dev, "send address %llx failed\n", address);
2056 return ret;
2059 static int cadence_nand_cmd_erase(struct nand_chip *chip,
2060 const struct nand_subop *subop)
2062 unsigned int op_id;
2064 if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) {
2065 int i;
2066 const struct nand_op_instr *instr = NULL;
2067 unsigned int offset, naddrs;
2068 const u8 *addrs;
2069 u32 page = 0;
2071 instr = &subop->instrs[1];
2072 offset = nand_subop_get_addr_start_off(subop, 1);
2073 naddrs = nand_subop_get_num_addr_cyc(subop, 1);
2074 addrs = &instr->ctx.addr.addrs[offset];
2076 for (i = 0; i < naddrs; i++)
2077 page |= (u32)addrs[i] << (8 * i);
2079 return cadence_nand_erase(chip, page);
2083 * If it is not an erase operation then handle operation
2084 * by calling exec_op function.
2086 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
2087 int ret;
2088 const struct nand_operation nand_op = {
2089 .cs = chip->cur_cs,
2090 .instrs = &subop->instrs[op_id],
2091 .ninstrs = 1};
2092 ret = chip->controller->ops->exec_op(chip, &nand_op, false);
2093 if (ret)
2094 return ret;
2097 return 0;
2100 static int cadence_nand_cmd_data(struct nand_chip *chip,
2101 const struct nand_subop *subop)
2103 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2104 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2105 const struct nand_op_instr *instr;
2106 unsigned int offset, op_id = 0;
2107 u64 mini_ctrl_cmd = 0;
2108 int len = 0;
2109 int ret;
2111 instr = &subop->instrs[op_id];
2113 if (instr->delay_ns > 0)
2114 mini_ctrl_cmd |= GCMD_LAY_TWB;
2116 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2117 GCMD_LAY_INSTR_DATA);
2119 if (instr->type == NAND_OP_DATA_OUT_INSTR)
2120 mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR,
2121 GCMD_DIR_WRITE);
2123 len = nand_subop_get_data_len(subop, op_id);
2124 offset = nand_subop_get_data_start_off(subop, op_id);
2125 mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
2126 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
2127 if (instr->ctx.data.force_8bit) {
2128 ret = cadence_nand_force_byte_access(chip, true);
2129 if (ret) {
2130 dev_err(cdns_ctrl->dev,
2131 "cannot change byte access generic data cmd failed\n");
2132 return ret;
2136 ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2137 cdns_chip->cs[chip->cur_cs],
2138 mini_ctrl_cmd);
2139 if (ret) {
2140 dev_err(cdns_ctrl->dev, "send generic data cmd failed\n");
2141 return ret;
2144 if (instr->type == NAND_OP_DATA_IN_INSTR) {
2145 void *buf = instr->ctx.data.buf.in + offset;
2147 ret = cadence_nand_read_buf(cdns_ctrl, buf, len);
2148 } else {
2149 const void *buf = instr->ctx.data.buf.out + offset;
2151 ret = cadence_nand_write_buf(cdns_ctrl, buf, len);
2154 if (ret) {
2155 dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n");
2156 return ret;
2159 if (instr->ctx.data.force_8bit) {
2160 ret = cadence_nand_force_byte_access(chip, false);
2161 if (ret) {
2162 dev_err(cdns_ctrl->dev,
2163 "cannot change byte access generic data cmd failed\n");
2167 return ret;
2170 static int cadence_nand_cmd_waitrdy(struct nand_chip *chip,
2171 const struct nand_subop *subop)
2173 int status;
2174 unsigned int op_id = 0;
2175 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2176 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2177 const struct nand_op_instr *instr = &subop->instrs[op_id];
2178 u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
2180 status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS,
2181 timeout_us,
2182 BIT(cdns_chip->cs[chip->cur_cs]),
2183 false);
2184 return status;
2187 static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER(
2188 NAND_OP_PARSER_PATTERN(
2189 cadence_nand_cmd_erase,
2190 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2191 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC),
2192 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2193 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2194 NAND_OP_PARSER_PATTERN(
2195 cadence_nand_cmd_opcode,
2196 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2197 NAND_OP_PARSER_PATTERN(
2198 cadence_nand_cmd_address,
2199 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)),
2200 NAND_OP_PARSER_PATTERN(
2201 cadence_nand_cmd_data,
2202 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)),
2203 NAND_OP_PARSER_PATTERN(
2204 cadence_nand_cmd_data,
2205 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)),
2206 NAND_OP_PARSER_PATTERN(
2207 cadence_nand_cmd_waitrdy,
2208 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false))
2211 static int cadence_nand_exec_op(struct nand_chip *chip,
2212 const struct nand_operation *op,
2213 bool check_only)
2215 int status = cadence_nand_select_target(chip);
2217 if (status)
2218 return status;
2220 return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op,
2221 check_only);
2224 static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
2225 struct mtd_oob_region *oobregion)
2227 struct nand_chip *chip = mtd_to_nand(mtd);
2228 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2230 if (section)
2231 return -ERANGE;
2233 oobregion->offset = cdns_chip->bbm_len;
2234 oobregion->length = cdns_chip->avail_oob_size
2235 - cdns_chip->bbm_len;
2237 return 0;
2240 static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2241 struct mtd_oob_region *oobregion)
2243 struct nand_chip *chip = mtd_to_nand(mtd);
2244 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2246 if (section)
2247 return -ERANGE;
2249 oobregion->offset = cdns_chip->avail_oob_size;
2250 oobregion->length = chip->ecc.total;
2252 return 0;
2255 static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
2256 .free = cadence_nand_ooblayout_free,
2257 .ecc = cadence_nand_ooblayout_ecc,
2260 static int calc_cycl(u32 timing, u32 clock)
2262 if (timing == 0 || clock == 0)
2263 return 0;
2265 if ((timing % clock) > 0)
2266 return timing / clock;
2267 else
2268 return timing / clock - 1;
2271 /* Calculate max data valid window. */
2272 static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2273 u32 board_delay_skew_min, u32 ext_mode)
2275 if (ext_mode == 0)
2276 clk_period /= 2;
2278 return (trp_cnt + 1) * clk_period + trhoh_min +
2279 board_delay_skew_min;
2282 /* Calculate data valid window. */
2283 static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2284 u32 trea_max, u32 ext_mode)
2286 if (ext_mode == 0)
2287 clk_period /= 2;
2289 return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
2292 static int
2293 cadence_nand_setup_data_interface(struct nand_chip *chip, int chipnr,
2294 const struct nand_data_interface *conf)
2296 const struct nand_sdr_timings *sdr;
2297 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2298 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2299 struct cadence_nand_timings *t = &cdns_chip->timings;
2300 u32 reg;
2301 u32 board_delay = cdns_ctrl->board_delay;
2302 u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
2303 cdns_ctrl->nf_clk_rate);
2304 u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
2305 u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
2306 u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
2307 u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
2308 u32 if_skew = cdns_ctrl->caps1->if_skew;
2309 u32 board_delay_skew_min = board_delay - if_skew;
2310 u32 board_delay_skew_max = board_delay + if_skew;
2311 u32 dqs_sampl_res, phony_dqs_mod;
2312 u32 tdvw, tdvw_min, tdvw_max;
2313 u32 ext_rd_mode, ext_wr_mode;
2314 u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
2315 u32 sampling_point;
2317 sdr = nand_get_sdr_timings(conf);
2318 if (IS_ERR(sdr))
2319 return PTR_ERR(sdr);
2321 memset(t, 0, sizeof(*t));
2322 /* Sampling point calculation. */
2324 if (cdns_ctrl->caps2.is_phy_type_dll)
2325 phony_dqs_mod = 2;
2326 else
2327 phony_dqs_mod = 1;
2329 dqs_sampl_res = clk_period / phony_dqs_mod;
2331 tdvw_min = sdr->tREA_max + board_delay_skew_max;
2333 * The idea of those calculation is to get the optimum value
2334 * for tRP and tRH timings. If it is NOT possible to sample data
2335 * with optimal tRP/tRH settings, the parameters will be extended.
2336 * If clk_period is 50ns (the lowest value) this condition is met
2337 * for asynchronous timing modes 1, 2, 3, 4 and 5.
2338 * If clk_period is 20ns the condition is met only
2339 * for asynchronous timing mode 5.
2341 if (sdr->tRC_min <= clk_period &&
2342 sdr->tRP_min <= (clk_period / 2) &&
2343 sdr->tREH_min <= (clk_period / 2)) {
2344 /* Performance mode. */
2345 ext_rd_mode = 0;
2346 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2347 sdr->tREA_max, ext_rd_mode);
2348 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
2349 board_delay_skew_min,
2350 ext_rd_mode);
2352 * Check if data valid window and sampling point can be found
2353 * and is not on the edge (ie. we have hold margin).
2354 * If not extend the tRP timings.
2356 if (tdvw > 0) {
2357 if (tdvw_max <= tdvw_min ||
2358 (tdvw_max % dqs_sampl_res) == 0) {
2360 * No valid sampling point so the RE pulse need
2361 * to be widen widening by half clock cycle.
2363 ext_rd_mode = 1;
2365 } else {
2367 * There is no valid window
2368 * to be able to sample data the tRP need to be widen.
2369 * Very safe calculations are performed here.
2371 trp_cnt = (sdr->tREA_max + board_delay_skew_max
2372 + dqs_sampl_res) / clk_period;
2373 ext_rd_mode = 1;
2376 } else {
2377 /* Extended read mode. */
2378 u32 trh;
2380 ext_rd_mode = 1;
2381 trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
2382 trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
2383 if (sdr->tREH_min >= trh)
2384 trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
2385 else
2386 trh_cnt = calc_cycl(trh, clk_period);
2388 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2389 sdr->tREA_max, ext_rd_mode);
2391 * Check if data valid window and sampling point can be found
2392 * or if it is at the edge check if previous is valid
2393 * - if not extend the tRP timings.
2395 if (tdvw > 0) {
2396 tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2397 sdr->tRHOH_min,
2398 board_delay_skew_min,
2399 ext_rd_mode);
2401 if ((((tdvw_max / dqs_sampl_res)
2402 * dqs_sampl_res) <= tdvw_min) ||
2403 (((tdvw_max % dqs_sampl_res) == 0) &&
2404 (((tdvw_max / dqs_sampl_res - 1)
2405 * dqs_sampl_res) <= tdvw_min))) {
2407 * Data valid window width is lower than
2408 * sampling resolution and do not hit any
2409 * sampling point to be sure the sampling point
2410 * will be found the RE low pulse width will be
2411 * extended by one clock cycle.
2413 trp_cnt = trp_cnt + 1;
2415 } else {
2417 * There is no valid window to be able to sample data.
2418 * The tRP need to be widen.
2419 * Very safe calculations are performed here.
2421 trp_cnt = (sdr->tREA_max + board_delay_skew_max
2422 + dqs_sampl_res) / clk_period;
2426 tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2427 sdr->tRHOH_min,
2428 board_delay_skew_min, ext_rd_mode);
2430 if (sdr->tWC_min <= clk_period &&
2431 (sdr->tWP_min + if_skew) <= (clk_period / 2) &&
2432 (sdr->tWH_min + if_skew) <= (clk_period / 2)) {
2433 ext_wr_mode = 0;
2434 } else {
2435 u32 twh;
2437 ext_wr_mode = 1;
2438 twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
2439 if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
2440 twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
2441 clk_period);
2443 twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
2444 if (sdr->tWH_min >= twh)
2445 twh = sdr->tWH_min;
2447 twh_cnt = calc_cycl(twh + if_skew, clk_period);
2450 reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
2451 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
2452 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
2453 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
2454 t->async_toggle_timings = reg;
2455 dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
2457 tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
2458 tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
2459 twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
2460 trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
2461 reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
2464 * If timing exceeds delay field in timing register
2465 * then use maximum value.
2467 if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
2468 reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
2469 else
2470 reg |= TIMINGS0_TCCS;
2472 reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
2473 reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
2474 t->timings0 = reg;
2475 dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg);
2477 /* The following is related to single signal so skew is not needed. */
2478 trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
2479 trhz_cnt = trhz_cnt + 1;
2480 twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
2482 * Because of the two stage syncflop the value must be increased by 3
2483 * first value is related with sync, second value is related
2484 * with output if delay.
2486 twb_cnt = twb_cnt + 3 + 5;
2488 * The following is related to the we edge of the random data input
2489 * sequence so skew is not needed.
2491 tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
2492 reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
2493 reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
2494 reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
2495 t->timings1 = reg;
2496 dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg);
2498 tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
2499 if (tfeat_cnt < twb_cnt)
2500 tfeat_cnt = twb_cnt;
2502 tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
2503 tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
2505 reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
2506 reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
2507 reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
2508 t->timings2 = reg;
2509 dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg);
2511 if (cdns_ctrl->caps2.is_phy_type_dll) {
2512 reg = DLL_PHY_CTRL_DLL_RST_N;
2513 if (ext_wr_mode)
2514 reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
2515 if (ext_rd_mode)
2516 reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
2518 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
2519 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
2520 t->dll_phy_ctrl = reg;
2521 dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
2524 /* Sampling point calculation. */
2525 if ((tdvw_max % dqs_sampl_res) > 0)
2526 sampling_point = tdvw_max / dqs_sampl_res;
2527 else
2528 sampling_point = (tdvw_max / dqs_sampl_res - 1);
2530 if (sampling_point * dqs_sampl_res > tdvw_min) {
2531 dll_phy_dqs_timing =
2532 FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
2533 dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
2534 phony_dqs_timing = sampling_point / phony_dqs_mod;
2536 if ((sampling_point % 2) > 0) {
2537 dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
2538 if ((tdvw_max % dqs_sampl_res) == 0)
2540 * Calculation for sampling point at the edge
2541 * of data and being odd number.
2543 phony_dqs_timing = (tdvw_max / dqs_sampl_res)
2544 / phony_dqs_mod - 1;
2546 if (!cdns_ctrl->caps2.is_phy_type_dll)
2547 phony_dqs_timing--;
2549 } else {
2550 phony_dqs_timing--;
2552 rd_del_sel = phony_dqs_timing + 3;
2553 } else {
2554 dev_warn(cdns_ctrl->dev,
2555 "ERROR : cannot find valid sampling point\n");
2558 reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
2559 if (cdns_ctrl->caps2.is_phy_type_dll)
2560 reg |= PHY_CTRL_SDR_DQS;
2561 t->phy_ctrl = reg;
2562 dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
2564 if (cdns_ctrl->caps2.is_phy_type_dll) {
2565 dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
2566 dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
2567 dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
2568 dll_phy_dqs_timing);
2569 t->phy_dqs_timing = dll_phy_dqs_timing;
2571 reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
2572 dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
2573 reg);
2574 t->phy_gate_lpbk_ctrl = reg;
2576 dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
2577 PHY_DLL_MASTER_CTRL_BYPASS_MODE);
2578 dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
2581 return 0;
2584 int cadence_nand_attach_chip(struct nand_chip *chip)
2586 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2587 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2588 u32 ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
2589 struct mtd_info *mtd = nand_to_mtd(chip);
2590 u32 max_oob_data_size;
2591 int ret;
2593 if (chip->options & NAND_BUSWIDTH_16) {
2594 ret = cadence_nand_set_access_width16(cdns_ctrl, true);
2595 if (ret)
2596 return ret;
2599 chip->bbt_options |= NAND_BBT_USE_FLASH;
2600 chip->bbt_options |= NAND_BBT_NO_OOB;
2601 chip->ecc.mode = NAND_ECC_HW;
2603 chip->options |= NAND_NO_SUBPAGE_WRITE;
2605 cdns_chip->bbm_offs = chip->badblockpos;
2606 if (chip->options & NAND_BUSWIDTH_16) {
2607 cdns_chip->bbm_offs &= ~0x01;
2608 cdns_chip->bbm_len = 2;
2609 } else {
2610 cdns_chip->bbm_len = 1;
2613 ret = nand_ecc_choose_conf(chip,
2614 &cdns_ctrl->ecc_caps,
2615 mtd->oobsize - cdns_chip->bbm_len);
2616 if (ret) {
2617 dev_err(cdns_ctrl->dev, "ECC configuration failed\n");
2618 return ret;
2621 dev_dbg(cdns_ctrl->dev,
2622 "chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
2623 chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
2625 /* Error correction configuration. */
2626 cdns_chip->sector_size = chip->ecc.size;
2627 cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
2629 cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
2631 max_oob_data_size = MAX_OOB_SIZE_PER_SECTOR;
2633 if (cdns_chip->avail_oob_size > max_oob_data_size)
2634 cdns_chip->avail_oob_size = max_oob_data_size;
2636 if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
2637 > mtd->oobsize)
2638 cdns_chip->avail_oob_size -= 4;
2640 ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength);
2641 if (ret < 0)
2642 return -EINVAL;
2644 cdns_chip->corr_str_idx = (u8)ret;
2646 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
2647 1000000,
2648 CTRL_STATUS_CTRL_BUSY, true))
2649 return -ETIMEDOUT;
2651 cadence_nand_set_ecc_strength(cdns_ctrl,
2652 cdns_chip->corr_str_idx);
2654 cadence_nand_set_erase_detection(cdns_ctrl, true,
2655 chip->ecc.strength);
2657 /* Override the default read operations. */
2658 chip->ecc.read_page = cadence_nand_read_page;
2659 chip->ecc.read_page_raw = cadence_nand_read_page_raw;
2660 chip->ecc.write_page = cadence_nand_write_page;
2661 chip->ecc.write_page_raw = cadence_nand_write_page_raw;
2662 chip->ecc.read_oob = cadence_nand_read_oob;
2663 chip->ecc.write_oob = cadence_nand_write_oob;
2664 chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
2665 chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
2667 if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size)
2668 cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize;
2670 /* Is 32-bit DMA supported? */
2671 ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32));
2672 if (ret) {
2673 dev_err(cdns_ctrl->dev, "no usable DMA configuration\n");
2674 return ret;
2677 mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
2679 return 0;
2682 static const struct nand_controller_ops cadence_nand_controller_ops = {
2683 .attach_chip = cadence_nand_attach_chip,
2684 .exec_op = cadence_nand_exec_op,
2685 .setup_data_interface = cadence_nand_setup_data_interface,
2688 static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl,
2689 struct device_node *np)
2691 struct cdns_nand_chip *cdns_chip;
2692 struct mtd_info *mtd;
2693 struct nand_chip *chip;
2694 int nsels, ret, i;
2695 u32 cs;
2697 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2698 if (nsels <= 0) {
2699 dev_err(cdns_ctrl->dev, "missing/invalid reg property\n");
2700 return -EINVAL;
2703 /* Allocate the nand chip structure. */
2704 cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) +
2705 (nsels * sizeof(u8)),
2706 GFP_KERNEL);
2707 if (!cdns_chip) {
2708 dev_err(cdns_ctrl->dev, "could not allocate chip structure\n");
2709 return -ENOMEM;
2712 cdns_chip->nsels = nsels;
2714 for (i = 0; i < nsels; i++) {
2715 /* Retrieve CS id. */
2716 ret = of_property_read_u32_index(np, "reg", i, &cs);
2717 if (ret) {
2718 dev_err(cdns_ctrl->dev,
2719 "could not retrieve reg property: %d\n",
2720 ret);
2721 return ret;
2724 if (cs >= cdns_ctrl->caps2.max_banks) {
2725 dev_err(cdns_ctrl->dev,
2726 "invalid reg value: %u (max CS = %d)\n",
2727 cs, cdns_ctrl->caps2.max_banks);
2728 return -EINVAL;
2731 if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) {
2732 dev_err(cdns_ctrl->dev,
2733 "CS %d already assigned\n", cs);
2734 return -EINVAL;
2737 cdns_chip->cs[i] = cs;
2740 chip = &cdns_chip->chip;
2741 chip->controller = &cdns_ctrl->controller;
2742 nand_set_flash_node(chip, np);
2744 mtd = nand_to_mtd(chip);
2745 mtd->dev.parent = cdns_ctrl->dev;
2748 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2749 * in the DT node, this entry will be overwritten in nand_scan_ident().
2751 chip->ecc.mode = NAND_ECC_HW;
2753 ret = nand_scan(chip, cdns_chip->nsels);
2754 if (ret) {
2755 dev_err(cdns_ctrl->dev, "could not scan the nand chip\n");
2756 return ret;
2759 ret = mtd_device_register(mtd, NULL, 0);
2760 if (ret) {
2761 dev_err(cdns_ctrl->dev,
2762 "failed to register mtd device: %d\n", ret);
2763 nand_cleanup(chip);
2764 return ret;
2767 list_add_tail(&cdns_chip->node, &cdns_ctrl->chips);
2769 return 0;
2772 static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl)
2774 struct cdns_nand_chip *entry, *temp;
2776 list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) {
2777 nand_release(&entry->chip);
2778 list_del(&entry->node);
2782 static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl)
2784 struct device_node *np = cdns_ctrl->dev->of_node;
2785 struct device_node *nand_np;
2786 int max_cs = cdns_ctrl->caps2.max_banks;
2787 int nchips, ret;
2789 nchips = of_get_child_count(np);
2791 if (nchips > max_cs) {
2792 dev_err(cdns_ctrl->dev,
2793 "too many NAND chips: %d (max = %d CS)\n",
2794 nchips, max_cs);
2795 return -EINVAL;
2798 for_each_child_of_node(np, nand_np) {
2799 ret = cadence_nand_chip_init(cdns_ctrl, nand_np);
2800 if (ret) {
2801 of_node_put(nand_np);
2802 cadence_nand_chips_cleanup(cdns_ctrl);
2803 return ret;
2807 return 0;
2810 static void
2811 cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl)
2813 /* Disable interrupts. */
2814 writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE);
2817 static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl)
2819 dma_cap_mask_t mask;
2820 int ret;
2822 cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev,
2823 sizeof(*cdns_ctrl->cdma_desc),
2824 &cdns_ctrl->dma_cdma_desc,
2825 GFP_KERNEL);
2826 if (!cdns_ctrl->dma_cdma_desc)
2827 return -ENOMEM;
2829 cdns_ctrl->buf_size = SZ_16K;
2830 cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL);
2831 if (!cdns_ctrl->buf) {
2832 ret = -ENOMEM;
2833 goto free_buf_desc;
2836 if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr,
2837 IRQF_SHARED, "cadence-nand-controller",
2838 cdns_ctrl)) {
2839 dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n");
2840 ret = -ENODEV;
2841 goto free_buf;
2844 spin_lock_init(&cdns_ctrl->irq_lock);
2845 init_completion(&cdns_ctrl->complete);
2847 ret = cadence_nand_hw_init(cdns_ctrl);
2848 if (ret)
2849 goto disable_irq;
2851 dma_cap_zero(mask);
2852 dma_cap_set(DMA_MEMCPY, mask);
2854 if (cdns_ctrl->caps1->has_dma) {
2855 cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL);
2856 if (!cdns_ctrl->dmac) {
2857 dev_err(cdns_ctrl->dev,
2858 "Unable to get a DMA channel\n");
2859 ret = -EBUSY;
2860 goto disable_irq;
2864 nand_controller_init(&cdns_ctrl->controller);
2865 INIT_LIST_HEAD(&cdns_ctrl->chips);
2867 cdns_ctrl->controller.ops = &cadence_nand_controller_ops;
2868 cdns_ctrl->curr_corr_str_idx = 0xFF;
2870 ret = cadence_nand_chips_init(cdns_ctrl);
2871 if (ret) {
2872 dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n",
2873 ret);
2874 goto dma_release_chnl;
2877 kfree(cdns_ctrl->buf);
2878 cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL);
2879 if (!cdns_ctrl->buf) {
2880 ret = -ENOMEM;
2881 goto dma_release_chnl;
2884 return 0;
2886 dma_release_chnl:
2887 if (cdns_ctrl->dmac)
2888 dma_release_channel(cdns_ctrl->dmac);
2890 disable_irq:
2891 cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
2893 free_buf:
2894 kfree(cdns_ctrl->buf);
2896 free_buf_desc:
2897 dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
2898 cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
2900 return ret;
2903 /* Driver exit point. */
2904 static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl)
2906 cadence_nand_chips_cleanup(cdns_ctrl);
2907 cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
2908 kfree(cdns_ctrl->buf);
2909 dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
2910 cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
2912 if (cdns_ctrl->dmac)
2913 dma_release_channel(cdns_ctrl->dmac);
2916 struct cadence_nand_dt {
2917 struct cdns_nand_ctrl cdns_ctrl;
2918 struct clk *clk;
2921 static const struct cadence_nand_dt_devdata cadence_nand_default = {
2922 .if_skew = 0,
2923 .has_dma = 1,
2926 static const struct of_device_id cadence_nand_dt_ids[] = {
2928 .compatible = "cdns,hp-nfc",
2929 .data = &cadence_nand_default
2930 }, {}
2933 MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids);
2935 static int cadence_nand_dt_probe(struct platform_device *ofdev)
2937 struct resource *res;
2938 struct cadence_nand_dt *dt;
2939 struct cdns_nand_ctrl *cdns_ctrl;
2940 int ret;
2941 const struct of_device_id *of_id;
2942 const struct cadence_nand_dt_devdata *devdata;
2943 u32 val;
2945 of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev);
2946 if (of_id) {
2947 ofdev->id_entry = of_id->data;
2948 devdata = of_id->data;
2949 } else {
2950 pr_err("Failed to find the right device id.\n");
2951 return -ENOMEM;
2954 dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL);
2955 if (!dt)
2956 return -ENOMEM;
2958 cdns_ctrl = &dt->cdns_ctrl;
2959 cdns_ctrl->caps1 = devdata;
2961 cdns_ctrl->dev = &ofdev->dev;
2962 cdns_ctrl->irq = platform_get_irq(ofdev, 0);
2963 if (cdns_ctrl->irq < 0)
2964 return cdns_ctrl->irq;
2966 dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq);
2968 cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0);
2969 if (IS_ERR(cdns_ctrl->reg)) {
2970 dev_err(&ofdev->dev, "devm_ioremap_resource res 0 failed\n");
2971 return PTR_ERR(cdns_ctrl->reg);
2974 res = platform_get_resource(ofdev, IORESOURCE_MEM, 1);
2975 cdns_ctrl->io.dma = res->start;
2976 cdns_ctrl->io.virt = devm_ioremap_resource(&ofdev->dev, res);
2977 if (IS_ERR(cdns_ctrl->io.virt)) {
2978 dev_err(cdns_ctrl->dev, "devm_ioremap_resource res 1 failed\n");
2979 return PTR_ERR(cdns_ctrl->io.virt);
2982 dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk");
2983 if (IS_ERR(dt->clk))
2984 return PTR_ERR(dt->clk);
2986 cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk);
2988 ret = of_property_read_u32(ofdev->dev.of_node,
2989 "cdns,board-delay-ps", &val);
2990 if (ret) {
2991 val = 4830;
2992 dev_info(cdns_ctrl->dev,
2993 "missing cdns,board-delay-ps property, %d was set\n",
2994 val);
2996 cdns_ctrl->board_delay = val;
2998 ret = cadence_nand_init(cdns_ctrl);
2999 if (ret)
3000 return ret;
3002 platform_set_drvdata(ofdev, dt);
3003 return 0;
3006 static int cadence_nand_dt_remove(struct platform_device *ofdev)
3008 struct cadence_nand_dt *dt = platform_get_drvdata(ofdev);
3010 cadence_nand_remove(&dt->cdns_ctrl);
3012 return 0;
3015 static struct platform_driver cadence_nand_dt_driver = {
3016 .probe = cadence_nand_dt_probe,
3017 .remove = cadence_nand_dt_remove,
3018 .driver = {
3019 .name = "cadence-nand-controller",
3020 .of_match_table = cadence_nand_dt_ids,
3024 module_platform_driver(cadence_nand_dt_driver);
3026 MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>");
3027 MODULE_LICENSE("GPL v2");
3028 MODULE_DESCRIPTION("Driver for Cadence NAND flash controller");