1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NAND flash simulator.
5 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
7 * Copyright (C) 2004 Nokia Corporation
9 * Note: NS means "NAND Simulator".
10 * Note: Input means input TO flash chip, output means output FROM chip.
13 #define pr_fmt(fmt) "[nandsim]" fmt
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/vmalloc.h>
20 #include <linux/math64.h>
21 #include <linux/slab.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/rawnand.h>
26 #include <linux/mtd/nand_bch.h>
27 #include <linux/mtd/partitions.h>
28 #include <linux/delay.h>
29 #include <linux/list.h>
30 #include <linux/random.h>
31 #include <linux/sched.h>
32 #include <linux/sched/mm.h>
34 #include <linux/pagemap.h>
35 #include <linux/seq_file.h>
36 #include <linux/debugfs.h>
38 /* Default simulator parameters values */
39 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
40 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
41 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
42 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
43 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
44 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
45 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
46 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
49 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
50 #define CONFIG_NANDSIM_ACCESS_DELAY 25
52 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
53 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
55 #ifndef CONFIG_NANDSIM_ERASE_DELAY
56 #define CONFIG_NANDSIM_ERASE_DELAY 2
58 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
59 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
61 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
62 #define CONFIG_NANDSIM_INPUT_CYCLE 50
64 #ifndef CONFIG_NANDSIM_BUS_WIDTH
65 #define CONFIG_NANDSIM_BUS_WIDTH 8
67 #ifndef CONFIG_NANDSIM_DO_DELAYS
68 #define CONFIG_NANDSIM_DO_DELAYS 0
70 #ifndef CONFIG_NANDSIM_LOG
71 #define CONFIG_NANDSIM_LOG 0
73 #ifndef CONFIG_NANDSIM_DBG
74 #define CONFIG_NANDSIM_DBG 0
76 #ifndef CONFIG_NANDSIM_MAX_PARTS
77 #define CONFIG_NANDSIM_MAX_PARTS 32
80 static uint access_delay
= CONFIG_NANDSIM_ACCESS_DELAY
;
81 static uint programm_delay
= CONFIG_NANDSIM_PROGRAMM_DELAY
;
82 static uint erase_delay
= CONFIG_NANDSIM_ERASE_DELAY
;
83 static uint output_cycle
= CONFIG_NANDSIM_OUTPUT_CYCLE
;
84 static uint input_cycle
= CONFIG_NANDSIM_INPUT_CYCLE
;
85 static uint bus_width
= CONFIG_NANDSIM_BUS_WIDTH
;
86 static uint do_delays
= CONFIG_NANDSIM_DO_DELAYS
;
87 static uint log
= CONFIG_NANDSIM_LOG
;
88 static uint dbg
= CONFIG_NANDSIM_DBG
;
89 static unsigned long parts
[CONFIG_NANDSIM_MAX_PARTS
];
90 static unsigned int parts_num
;
91 static char *badblocks
= NULL
;
92 static char *weakblocks
= NULL
;
93 static char *weakpages
= NULL
;
94 static unsigned int bitflips
= 0;
95 static char *gravepages
= NULL
;
96 static unsigned int overridesize
= 0;
97 static char *cache_file
= NULL
;
98 static unsigned int bbt
;
99 static unsigned int bch
;
100 static u_char id_bytes
[8] = {
101 [0] = CONFIG_NANDSIM_FIRST_ID_BYTE
,
102 [1] = CONFIG_NANDSIM_SECOND_ID_BYTE
,
103 [2] = CONFIG_NANDSIM_THIRD_ID_BYTE
,
104 [3] = CONFIG_NANDSIM_FOURTH_ID_BYTE
,
108 module_param_array(id_bytes
, byte
, NULL
, 0400);
109 module_param_named(first_id_byte
, id_bytes
[0], byte
, 0400);
110 module_param_named(second_id_byte
, id_bytes
[1], byte
, 0400);
111 module_param_named(third_id_byte
, id_bytes
[2], byte
, 0400);
112 module_param_named(fourth_id_byte
, id_bytes
[3], byte
, 0400);
113 module_param(access_delay
, uint
, 0400);
114 module_param(programm_delay
, uint
, 0400);
115 module_param(erase_delay
, uint
, 0400);
116 module_param(output_cycle
, uint
, 0400);
117 module_param(input_cycle
, uint
, 0400);
118 module_param(bus_width
, uint
, 0400);
119 module_param(do_delays
, uint
, 0400);
120 module_param(log
, uint
, 0400);
121 module_param(dbg
, uint
, 0400);
122 module_param_array(parts
, ulong
, &parts_num
, 0400);
123 module_param(badblocks
, charp
, 0400);
124 module_param(weakblocks
, charp
, 0400);
125 module_param(weakpages
, charp
, 0400);
126 module_param(bitflips
, uint
, 0400);
127 module_param(gravepages
, charp
, 0400);
128 module_param(overridesize
, uint
, 0400);
129 module_param(cache_file
, charp
, 0400);
130 module_param(bbt
, uint
, 0400);
131 module_param(bch
, uint
, 0400);
133 MODULE_PARM_DESC(id_bytes
, "The ID bytes returned by NAND Flash 'read ID' command");
134 MODULE_PARM_DESC(first_id_byte
, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)");
135 MODULE_PARM_DESC(second_id_byte
, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)");
136 MODULE_PARM_DESC(third_id_byte
, "The third byte returned by NAND Flash 'read ID' command (obsolete)");
137 MODULE_PARM_DESC(fourth_id_byte
, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)");
138 MODULE_PARM_DESC(access_delay
, "Initial page access delay (microseconds)");
139 MODULE_PARM_DESC(programm_delay
, "Page programm delay (microseconds");
140 MODULE_PARM_DESC(erase_delay
, "Sector erase delay (milliseconds)");
141 MODULE_PARM_DESC(output_cycle
, "Word output (from flash) time (nanoseconds)");
142 MODULE_PARM_DESC(input_cycle
, "Word input (to flash) time (nanoseconds)");
143 MODULE_PARM_DESC(bus_width
, "Chip's bus width (8- or 16-bit)");
144 MODULE_PARM_DESC(do_delays
, "Simulate NAND delays using busy-waits if not zero");
145 MODULE_PARM_DESC(log
, "Perform logging if not zero");
146 MODULE_PARM_DESC(dbg
, "Output debug information if not zero");
147 MODULE_PARM_DESC(parts
, "Partition sizes (in erase blocks) separated by commas");
148 /* Page and erase block positions for the following parameters are independent of any partitions */
149 MODULE_PARM_DESC(badblocks
, "Erase blocks that are initially marked bad, separated by commas");
150 MODULE_PARM_DESC(weakblocks
, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
151 " separated by commas e.g. 113:2 means eb 113"
152 " can be erased only twice before failing");
153 MODULE_PARM_DESC(weakpages
, "Weak pages [: maximum writes (defaults to 3)]"
154 " separated by commas e.g. 1401:2 means page 1401"
155 " can be written only twice before failing");
156 MODULE_PARM_DESC(bitflips
, "Maximum number of random bit flips per page (zero by default)");
157 MODULE_PARM_DESC(gravepages
, "Pages that lose data [: maximum reads (defaults to 3)]"
158 " separated by commas e.g. 1401:2 means page 1401"
159 " can be read only twice before failing");
160 MODULE_PARM_DESC(overridesize
, "Specifies the NAND Flash size overriding the ID bytes. "
161 "The size is specified in erase blocks and as the exponent of a power of two"
162 " e.g. 5 means a size of 32 erase blocks");
163 MODULE_PARM_DESC(cache_file
, "File to use to cache nand pages instead of memory");
164 MODULE_PARM_DESC(bbt
, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
165 MODULE_PARM_DESC(bch
, "Enable BCH ecc and set how many bits should "
166 "be correctable in 512-byte blocks");
168 /* The largest possible page size */
169 #define NS_LARGEST_PAGE_SIZE 4096
171 /* Simulator's output macros (logging, debugging, warning, error) */
172 #define NS_LOG(args...) \
173 do { if (log) pr_debug(" log: " args); } while(0)
174 #define NS_DBG(args...) \
175 do { if (dbg) pr_debug(" debug: " args); } while(0)
176 #define NS_WARN(args...) \
177 do { pr_warn(" warning: " args); } while(0)
178 #define NS_ERR(args...) \
179 do { pr_err(" error: " args); } while(0)
180 #define NS_INFO(args...) \
181 do { pr_info(" " args); } while(0)
183 /* Busy-wait delay macros (microseconds, milliseconds) */
184 #define NS_UDELAY(us) \
185 do { if (do_delays) udelay(us); } while(0)
186 #define NS_MDELAY(us) \
187 do { if (do_delays) mdelay(us); } while(0)
189 /* Is the nandsim structure initialized ? */
190 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
192 /* Good operation completion status */
193 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
195 /* Operation failed completion status */
196 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
198 /* Calculate the page offset in flash RAM image by (row, column) address */
199 #define NS_RAW_OFFSET(ns) \
200 (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
202 /* Calculate the OOB offset in flash RAM image by (row, column) address */
203 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
205 /* After a command is input, the simulator goes to one of the following states */
206 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
207 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
208 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
209 #define STATE_CMD_PAGEPROG 0x00000004 /* start page program */
210 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
211 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
212 #define STATE_CMD_STATUS 0x00000007 /* read status */
213 #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */
214 #define STATE_CMD_READID 0x0000000A /* read ID */
215 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
216 #define STATE_CMD_RESET 0x0000000C /* reset */
217 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */
218 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
219 #define STATE_CMD_MASK 0x0000000F /* command states mask */
221 /* After an address is input, the simulator goes to one of these states */
222 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
223 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
224 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
225 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
226 #define STATE_ADDR_MASK 0x00000070 /* address states mask */
228 /* During data input/output the simulator is in these states */
229 #define STATE_DATAIN 0x00000100 /* waiting for data input */
230 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
232 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
233 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
234 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
235 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
237 /* Previous operation is done, ready to accept new requests */
238 #define STATE_READY 0x00000000
240 /* This state is used to mark that the next state isn't known yet */
241 #define STATE_UNKNOWN 0x10000000
243 /* Simulator's actions bit masks */
244 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
245 #define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */
246 #define ACTION_SECERASE 0x00300000 /* erase sector */
247 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
248 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
249 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
250 #define ACTION_MASK 0x00700000 /* action mask */
252 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
253 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
255 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
256 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
257 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
258 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
259 #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */
260 #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
261 #define OPT_SMALLPAGE (OPT_PAGE512) /* 512-byte page chips */
263 /* Remove action bits from state */
264 #define NS_STATE(x) ((x) & ~ACTION_MASK)
267 * Maximum previous states which need to be saved. Currently saving is
268 * only needed for page program operation with preceded read command
269 * (which is only valid for 512-byte pages).
271 #define NS_MAX_PREVSTATES 1
273 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
274 #define NS_MAX_HELD_PAGES 16
277 * A union to represent flash memory contents and flash buffer.
280 u_char
*byte
; /* for byte access */
281 uint16_t *word
; /* for 16-bit word access */
285 * The structure which describes all the internal simulator data.
288 struct nand_chip chip
;
289 struct nand_controller base
;
290 struct mtd_partition partitions
[CONFIG_NANDSIM_MAX_PARTS
];
291 unsigned int nbparts
;
293 uint busw
; /* flash chip bus width (8 or 16) */
294 u_char ids
[8]; /* chip's ID bytes */
295 uint32_t options
; /* chip's characteristic bits */
296 uint32_t state
; /* current chip state */
297 uint32_t nxstate
; /* next expected state */
299 uint32_t *op
; /* current operation, NULL operations isn't known yet */
300 uint32_t pstates
[NS_MAX_PREVSTATES
]; /* previous states */
301 uint16_t npstates
; /* number of previous states saved */
302 uint16_t stateidx
; /* current state index */
304 /* The simulated NAND flash pages array */
307 /* Slab allocator for nand pages */
308 struct kmem_cache
*nand_pages_slab
;
310 /* Internal buffer of page + OOB size bytes */
313 /* NAND flash "geometry" */
315 uint64_t totsz
; /* total flash size, bytes */
316 uint32_t secsz
; /* flash sector (erase block) size, bytes */
317 uint pgsz
; /* NAND flash page size, bytes */
318 uint oobsz
; /* page OOB area size, bytes */
319 uint64_t totszoob
; /* total flash size including OOB, bytes */
320 uint pgszoob
; /* page size including OOB , bytes*/
321 uint secszoob
; /* sector size including OOB, bytes */
322 uint pgnum
; /* total number of pages */
323 uint pgsec
; /* number of pages per sector */
324 uint secshift
; /* bits number in sector size */
325 uint pgshift
; /* bits number in page size */
326 uint pgaddrbytes
; /* bytes per page address */
327 uint secaddrbytes
; /* bytes per sector address */
328 uint idbytes
; /* the number ID bytes that this chip outputs */
331 /* NAND flash internal registers */
333 unsigned command
; /* the command register */
334 u_char status
; /* the status register */
335 uint row
; /* the page number */
336 uint column
; /* the offset within page */
337 uint count
; /* internal counter */
338 uint num
; /* number of bytes which must be processed */
339 uint off
; /* fixed page offset */
342 /* NAND flash lines state */
344 int ce
; /* chip Enable */
345 int cle
; /* command Latch Enable */
346 int ale
; /* address Latch Enable */
347 int wp
; /* write Protect */
350 /* Fields needed when using a cache file */
351 struct file
*cfile
; /* Open file */
352 unsigned long *pages_written
; /* Which pages have been written */
354 struct page
*held_pages
[NS_MAX_HELD_PAGES
];
359 * Operations array. To perform any operation the simulator must pass
360 * through the correspondent states chain.
362 static struct nandsim_operations
{
363 uint32_t reqopts
; /* options which are required to perform the operation */
364 uint32_t states
[NS_OPER_STATES
]; /* operation's states */
365 } ops
[NS_OPER_NUM
] = {
366 /* Read page + OOB from the beginning */
367 {OPT_SMALLPAGE
, {STATE_CMD_READ0
| ACTION_ZEROOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
368 STATE_DATAOUT
, STATE_READY
}},
369 /* Read page + OOB from the second half */
370 {OPT_PAGE512_8BIT
, {STATE_CMD_READ1
| ACTION_HALFOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
371 STATE_DATAOUT
, STATE_READY
}},
373 {OPT_SMALLPAGE
, {STATE_CMD_READOOB
| ACTION_OOBOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
374 STATE_DATAOUT
, STATE_READY
}},
375 /* Program page starting from the beginning */
376 {OPT_ANY
, {STATE_CMD_SEQIN
, STATE_ADDR_PAGE
, STATE_DATAIN
,
377 STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
378 /* Program page starting from the beginning */
379 {OPT_SMALLPAGE
, {STATE_CMD_READ0
, STATE_CMD_SEQIN
| ACTION_ZEROOFF
, STATE_ADDR_PAGE
,
380 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
381 /* Program page starting from the second half */
382 {OPT_PAGE512
, {STATE_CMD_READ1
, STATE_CMD_SEQIN
| ACTION_HALFOFF
, STATE_ADDR_PAGE
,
383 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
385 {OPT_SMALLPAGE
, {STATE_CMD_READOOB
, STATE_CMD_SEQIN
| ACTION_OOBOFF
, STATE_ADDR_PAGE
,
386 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
388 {OPT_ANY
, {STATE_CMD_ERASE1
, STATE_ADDR_SEC
, STATE_CMD_ERASE2
| ACTION_SECERASE
, STATE_READY
}},
390 {OPT_ANY
, {STATE_CMD_STATUS
, STATE_DATAOUT_STATUS
, STATE_READY
}},
392 {OPT_ANY
, {STATE_CMD_READID
, STATE_ADDR_ZERO
, STATE_DATAOUT_ID
, STATE_READY
}},
393 /* Large page devices read page */
394 {OPT_LARGEPAGE
, {STATE_CMD_READ0
, STATE_ADDR_PAGE
, STATE_CMD_READSTART
| ACTION_CPY
,
395 STATE_DATAOUT
, STATE_READY
}},
396 /* Large page devices random page read */
397 {OPT_LARGEPAGE
, {STATE_CMD_RNDOUT
, STATE_ADDR_COLUMN
, STATE_CMD_RNDOUTSTART
| ACTION_CPY
,
398 STATE_DATAOUT
, STATE_READY
}},
402 struct list_head list
;
403 unsigned int erase_block_no
;
404 unsigned int max_erases
;
405 unsigned int erases_done
;
408 static LIST_HEAD(weak_blocks
);
411 struct list_head list
;
412 unsigned int page_no
;
413 unsigned int max_writes
;
414 unsigned int writes_done
;
417 static LIST_HEAD(weak_pages
);
420 struct list_head list
;
421 unsigned int page_no
;
422 unsigned int max_reads
;
423 unsigned int reads_done
;
426 static LIST_HEAD(grave_pages
);
428 static unsigned long *erase_block_wear
= NULL
;
429 static unsigned int wear_eb_count
= 0;
430 static unsigned long total_wear
= 0;
432 /* MTD structure for NAND controller */
433 static struct mtd_info
*nsmtd
;
435 static int nandsim_show(struct seq_file
*m
, void *private)
437 unsigned long wmin
= -1, wmax
= 0, avg
;
438 unsigned long deciles
[10], decile_max
[10], tot
= 0;
441 /* Calc wear stats */
442 for (i
= 0; i
< wear_eb_count
; ++i
) {
443 unsigned long wear
= erase_block_wear
[i
];
451 for (i
= 0; i
< 9; ++i
) {
453 decile_max
[i
] = (wmax
* (i
+ 1) + 5) / 10;
456 decile_max
[9] = wmax
;
457 for (i
= 0; i
< wear_eb_count
; ++i
) {
459 unsigned long wear
= erase_block_wear
[i
];
460 for (d
= 0; d
< 10; ++d
)
461 if (wear
<= decile_max
[d
]) {
466 avg
= tot
/ wear_eb_count
;
468 /* Output wear report */
469 seq_printf(m
, "Total numbers of erases: %lu\n", tot
);
470 seq_printf(m
, "Number of erase blocks: %u\n", wear_eb_count
);
471 seq_printf(m
, "Average number of erases: %lu\n", avg
);
472 seq_printf(m
, "Maximum number of erases: %lu\n", wmax
);
473 seq_printf(m
, "Minimum number of erases: %lu\n", wmin
);
474 for (i
= 0; i
< 10; ++i
) {
475 unsigned long from
= (i
? decile_max
[i
- 1] + 1 : 0);
476 if (from
> decile_max
[i
])
478 seq_printf(m
, "Number of ebs with erase counts from %lu to %lu : %lu\n",
486 DEFINE_SHOW_ATTRIBUTE(nandsim
);
489 * nandsim_debugfs_create - initialize debugfs
490 * @dev: nandsim device description object
492 * This function creates all debugfs files for UBI device @ubi. Returns zero in
493 * case of success and a negative error code in case of failure.
495 static int nandsim_debugfs_create(struct nandsim
*dev
)
497 struct dentry
*root
= nsmtd
->dbg
.dfs_dir
;
501 * Just skip debugfs initialization when the debugfs directory is
504 if (IS_ERR_OR_NULL(root
)) {
505 if (IS_ENABLED(CONFIG_DEBUG_FS
) &&
506 !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER
))
507 NS_WARN("CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n");
511 dent
= debugfs_create_file("nandsim_wear_report", S_IRUSR
,
512 root
, dev
, &nandsim_fops
);
513 if (IS_ERR_OR_NULL(dent
)) {
514 NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n");
522 * Allocate array of page pointers, create slab allocation for an array
523 * and initialize the array by NULL pointers.
525 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
527 static int __init
alloc_device(struct nandsim
*ns
)
533 cfile
= filp_open(cache_file
, O_CREAT
| O_RDWR
| O_LARGEFILE
, 0600);
535 return PTR_ERR(cfile
);
536 if (!(cfile
->f_mode
& FMODE_CAN_READ
)) {
537 NS_ERR("alloc_device: cache file not readable\n");
541 if (!(cfile
->f_mode
& FMODE_CAN_WRITE
)) {
542 NS_ERR("alloc_device: cache file not writeable\n");
547 vzalloc(array_size(sizeof(unsigned long),
548 BITS_TO_LONGS(ns
->geom
.pgnum
)));
549 if (!ns
->pages_written
) {
550 NS_ERR("alloc_device: unable to allocate pages written array\n");
554 ns
->file_buf
= kmalloc(ns
->geom
.pgszoob
, GFP_KERNEL
);
556 NS_ERR("alloc_device: unable to allocate file buf\n");
564 ns
->pages
= vmalloc(array_size(sizeof(union ns_mem
), ns
->geom
.pgnum
));
566 NS_ERR("alloc_device: unable to allocate page array\n");
569 for (i
= 0; i
< ns
->geom
.pgnum
; i
++) {
570 ns
->pages
[i
].byte
= NULL
;
572 ns
->nand_pages_slab
= kmem_cache_create("nandsim",
573 ns
->geom
.pgszoob
, 0, 0, NULL
);
574 if (!ns
->nand_pages_slab
) {
575 NS_ERR("cache_create: unable to create kmem_cache\n");
582 vfree(ns
->pages_written
);
584 filp_close(cfile
, NULL
);
589 * Free any allocated pages, and free the array of page pointers.
591 static void free_device(struct nandsim
*ns
)
597 vfree(ns
->pages_written
);
598 filp_close(ns
->cfile
, NULL
);
603 for (i
= 0; i
< ns
->geom
.pgnum
; i
++) {
604 if (ns
->pages
[i
].byte
)
605 kmem_cache_free(ns
->nand_pages_slab
,
608 kmem_cache_destroy(ns
->nand_pages_slab
);
613 static char __init
*get_partition_name(int i
)
615 return kasprintf(GFP_KERNEL
, "NAND simulator partition %d", i
);
619 * Initialize the nandsim structure.
621 * RETURNS: 0 if success, -ERRNO if failure.
623 static int __init
init_nandsim(struct mtd_info
*mtd
)
625 struct nand_chip
*chip
= mtd_to_nand(mtd
);
626 struct nandsim
*ns
= nand_get_controller_data(chip
);
629 uint64_t next_offset
;
631 if (NS_IS_INITIALIZED(ns
)) {
632 NS_ERR("init_nandsim: nandsim is already initialized\n");
636 /* Initialize the NAND flash parameters */
637 ns
->busw
= chip
->options
& NAND_BUSWIDTH_16
? 16 : 8;
638 ns
->geom
.totsz
= mtd
->size
;
639 ns
->geom
.pgsz
= mtd
->writesize
;
640 ns
->geom
.oobsz
= mtd
->oobsize
;
641 ns
->geom
.secsz
= mtd
->erasesize
;
642 ns
->geom
.pgszoob
= ns
->geom
.pgsz
+ ns
->geom
.oobsz
;
643 ns
->geom
.pgnum
= div_u64(ns
->geom
.totsz
, ns
->geom
.pgsz
);
644 ns
->geom
.totszoob
= ns
->geom
.totsz
+ (uint64_t)ns
->geom
.pgnum
* ns
->geom
.oobsz
;
645 ns
->geom
.secshift
= ffs(ns
->geom
.secsz
) - 1;
646 ns
->geom
.pgshift
= chip
->page_shift
;
647 ns
->geom
.pgsec
= ns
->geom
.secsz
/ ns
->geom
.pgsz
;
648 ns
->geom
.secszoob
= ns
->geom
.secsz
+ ns
->geom
.oobsz
* ns
->geom
.pgsec
;
651 if (ns
->geom
.pgsz
== 512) {
652 ns
->options
|= OPT_PAGE512
;
654 ns
->options
|= OPT_PAGE512_8BIT
;
655 } else if (ns
->geom
.pgsz
== 2048) {
656 ns
->options
|= OPT_PAGE2048
;
657 } else if (ns
->geom
.pgsz
== 4096) {
658 ns
->options
|= OPT_PAGE4096
;
660 NS_ERR("init_nandsim: unknown page size %u\n", ns
->geom
.pgsz
);
664 if (ns
->options
& OPT_SMALLPAGE
) {
665 if (ns
->geom
.totsz
<= (32 << 20)) {
666 ns
->geom
.pgaddrbytes
= 3;
667 ns
->geom
.secaddrbytes
= 2;
669 ns
->geom
.pgaddrbytes
= 4;
670 ns
->geom
.secaddrbytes
= 3;
673 if (ns
->geom
.totsz
<= (128 << 20)) {
674 ns
->geom
.pgaddrbytes
= 4;
675 ns
->geom
.secaddrbytes
= 2;
677 ns
->geom
.pgaddrbytes
= 5;
678 ns
->geom
.secaddrbytes
= 3;
682 /* Fill the partition_info structure */
683 if (parts_num
> ARRAY_SIZE(ns
->partitions
)) {
684 NS_ERR("too many partitions.\n");
687 remains
= ns
->geom
.totsz
;
689 for (i
= 0; i
< parts_num
; ++i
) {
690 uint64_t part_sz
= (uint64_t)parts
[i
] * ns
->geom
.secsz
;
692 if (!part_sz
|| part_sz
> remains
) {
693 NS_ERR("bad partition size.\n");
696 ns
->partitions
[i
].name
= get_partition_name(i
);
697 if (!ns
->partitions
[i
].name
) {
698 NS_ERR("unable to allocate memory.\n");
701 ns
->partitions
[i
].offset
= next_offset
;
702 ns
->partitions
[i
].size
= part_sz
;
703 next_offset
+= ns
->partitions
[i
].size
;
704 remains
-= ns
->partitions
[i
].size
;
706 ns
->nbparts
= parts_num
;
708 if (parts_num
+ 1 > ARRAY_SIZE(ns
->partitions
)) {
709 NS_ERR("too many partitions.\n");
712 ns
->partitions
[i
].name
= get_partition_name(i
);
713 if (!ns
->partitions
[i
].name
) {
714 NS_ERR("unable to allocate memory.\n");
717 ns
->partitions
[i
].offset
= next_offset
;
718 ns
->partitions
[i
].size
= remains
;
723 NS_WARN("16-bit flashes support wasn't tested\n");
725 printk("flash size: %llu MiB\n",
726 (unsigned long long)ns
->geom
.totsz
>> 20);
727 printk("page size: %u bytes\n", ns
->geom
.pgsz
);
728 printk("OOB area size: %u bytes\n", ns
->geom
.oobsz
);
729 printk("sector size: %u KiB\n", ns
->geom
.secsz
>> 10);
730 printk("pages number: %u\n", ns
->geom
.pgnum
);
731 printk("pages per sector: %u\n", ns
->geom
.pgsec
);
732 printk("bus width: %u\n", ns
->busw
);
733 printk("bits in sector size: %u\n", ns
->geom
.secshift
);
734 printk("bits in page size: %u\n", ns
->geom
.pgshift
);
735 printk("bits in OOB size: %u\n", ffs(ns
->geom
.oobsz
) - 1);
736 printk("flash size with OOB: %llu KiB\n",
737 (unsigned long long)ns
->geom
.totszoob
>> 10);
738 printk("page address bytes: %u\n", ns
->geom
.pgaddrbytes
);
739 printk("sector address bytes: %u\n", ns
->geom
.secaddrbytes
);
740 printk("options: %#x\n", ns
->options
);
742 if ((ret
= alloc_device(ns
)) != 0)
745 /* Allocate / initialize the internal buffer */
746 ns
->buf
.byte
= kmalloc(ns
->geom
.pgszoob
, GFP_KERNEL
);
748 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
752 memset(ns
->buf
.byte
, 0xFF, ns
->geom
.pgszoob
);
758 * Free the nandsim structure.
760 static void free_nandsim(struct nandsim
*ns
)
768 static int parse_badblocks(struct nandsim
*ns
, struct mtd_info
*mtd
)
772 unsigned int erase_block_no
;
779 zero_ok
= (*w
== '0' ? 1 : 0);
780 erase_block_no
= simple_strtoul(w
, &w
, 0);
781 if (!zero_ok
&& !erase_block_no
) {
782 NS_ERR("invalid badblocks.\n");
785 offset
= (loff_t
)erase_block_no
* ns
->geom
.secsz
;
786 if (mtd_block_markbad(mtd
, offset
)) {
787 NS_ERR("invalid badblocks.\n");
796 static int parse_weakblocks(void)
800 unsigned int erase_block_no
;
801 unsigned int max_erases
;
802 struct weak_block
*wb
;
808 zero_ok
= (*w
== '0' ? 1 : 0);
809 erase_block_no
= simple_strtoul(w
, &w
, 0);
810 if (!zero_ok
&& !erase_block_no
) {
811 NS_ERR("invalid weakblocks.\n");
817 max_erases
= simple_strtoul(w
, &w
, 0);
821 wb
= kzalloc(sizeof(*wb
), GFP_KERNEL
);
823 NS_ERR("unable to allocate memory.\n");
826 wb
->erase_block_no
= erase_block_no
;
827 wb
->max_erases
= max_erases
;
828 list_add(&wb
->list
, &weak_blocks
);
833 static int erase_error(unsigned int erase_block_no
)
835 struct weak_block
*wb
;
837 list_for_each_entry(wb
, &weak_blocks
, list
)
838 if (wb
->erase_block_no
== erase_block_no
) {
839 if (wb
->erases_done
>= wb
->max_erases
)
841 wb
->erases_done
+= 1;
847 static int parse_weakpages(void)
851 unsigned int page_no
;
852 unsigned int max_writes
;
853 struct weak_page
*wp
;
859 zero_ok
= (*w
== '0' ? 1 : 0);
860 page_no
= simple_strtoul(w
, &w
, 0);
861 if (!zero_ok
&& !page_no
) {
862 NS_ERR("invalid weakpages.\n");
868 max_writes
= simple_strtoul(w
, &w
, 0);
872 wp
= kzalloc(sizeof(*wp
), GFP_KERNEL
);
874 NS_ERR("unable to allocate memory.\n");
877 wp
->page_no
= page_no
;
878 wp
->max_writes
= max_writes
;
879 list_add(&wp
->list
, &weak_pages
);
884 static int write_error(unsigned int page_no
)
886 struct weak_page
*wp
;
888 list_for_each_entry(wp
, &weak_pages
, list
)
889 if (wp
->page_no
== page_no
) {
890 if (wp
->writes_done
>= wp
->max_writes
)
892 wp
->writes_done
+= 1;
898 static int parse_gravepages(void)
902 unsigned int page_no
;
903 unsigned int max_reads
;
904 struct grave_page
*gp
;
910 zero_ok
= (*g
== '0' ? 1 : 0);
911 page_no
= simple_strtoul(g
, &g
, 0);
912 if (!zero_ok
&& !page_no
) {
913 NS_ERR("invalid gravepagess.\n");
919 max_reads
= simple_strtoul(g
, &g
, 0);
923 gp
= kzalloc(sizeof(*gp
), GFP_KERNEL
);
925 NS_ERR("unable to allocate memory.\n");
928 gp
->page_no
= page_no
;
929 gp
->max_reads
= max_reads
;
930 list_add(&gp
->list
, &grave_pages
);
935 static int read_error(unsigned int page_no
)
937 struct grave_page
*gp
;
939 list_for_each_entry(gp
, &grave_pages
, list
)
940 if (gp
->page_no
== page_no
) {
941 if (gp
->reads_done
>= gp
->max_reads
)
949 static void free_lists(void)
951 struct list_head
*pos
, *n
;
952 list_for_each_safe(pos
, n
, &weak_blocks
) {
954 kfree(list_entry(pos
, struct weak_block
, list
));
956 list_for_each_safe(pos
, n
, &weak_pages
) {
958 kfree(list_entry(pos
, struct weak_page
, list
));
960 list_for_each_safe(pos
, n
, &grave_pages
) {
962 kfree(list_entry(pos
, struct grave_page
, list
));
964 kfree(erase_block_wear
);
967 static int setup_wear_reporting(struct mtd_info
*mtd
)
971 wear_eb_count
= div_u64(mtd
->size
, mtd
->erasesize
);
972 mem
= wear_eb_count
* sizeof(unsigned long);
973 if (mem
/ sizeof(unsigned long) != wear_eb_count
) {
974 NS_ERR("Too many erase blocks for wear reporting\n");
977 erase_block_wear
= kzalloc(mem
, GFP_KERNEL
);
978 if (!erase_block_wear
) {
979 NS_ERR("Too many erase blocks for wear reporting\n");
985 static void update_wear(unsigned int erase_block_no
)
987 if (!erase_block_wear
)
991 * TODO: Notify this through a debugfs entry,
992 * instead of showing an error message.
995 NS_ERR("Erase counter total overflow\n");
996 erase_block_wear
[erase_block_no
] += 1;
997 if (erase_block_wear
[erase_block_no
] == 0)
998 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no
);
1002 * Returns the string representation of 'state' state.
1004 static char *get_state_name(uint32_t state
)
1006 switch (NS_STATE(state
)) {
1007 case STATE_CMD_READ0
:
1008 return "STATE_CMD_READ0";
1009 case STATE_CMD_READ1
:
1010 return "STATE_CMD_READ1";
1011 case STATE_CMD_PAGEPROG
:
1012 return "STATE_CMD_PAGEPROG";
1013 case STATE_CMD_READOOB
:
1014 return "STATE_CMD_READOOB";
1015 case STATE_CMD_READSTART
:
1016 return "STATE_CMD_READSTART";
1017 case STATE_CMD_ERASE1
:
1018 return "STATE_CMD_ERASE1";
1019 case STATE_CMD_STATUS
:
1020 return "STATE_CMD_STATUS";
1021 case STATE_CMD_SEQIN
:
1022 return "STATE_CMD_SEQIN";
1023 case STATE_CMD_READID
:
1024 return "STATE_CMD_READID";
1025 case STATE_CMD_ERASE2
:
1026 return "STATE_CMD_ERASE2";
1027 case STATE_CMD_RESET
:
1028 return "STATE_CMD_RESET";
1029 case STATE_CMD_RNDOUT
:
1030 return "STATE_CMD_RNDOUT";
1031 case STATE_CMD_RNDOUTSTART
:
1032 return "STATE_CMD_RNDOUTSTART";
1033 case STATE_ADDR_PAGE
:
1034 return "STATE_ADDR_PAGE";
1035 case STATE_ADDR_SEC
:
1036 return "STATE_ADDR_SEC";
1037 case STATE_ADDR_ZERO
:
1038 return "STATE_ADDR_ZERO";
1039 case STATE_ADDR_COLUMN
:
1040 return "STATE_ADDR_COLUMN";
1042 return "STATE_DATAIN";
1044 return "STATE_DATAOUT";
1045 case STATE_DATAOUT_ID
:
1046 return "STATE_DATAOUT_ID";
1047 case STATE_DATAOUT_STATUS
:
1048 return "STATE_DATAOUT_STATUS";
1050 return "STATE_READY";
1052 return "STATE_UNKNOWN";
1055 NS_ERR("get_state_name: unknown state, BUG\n");
1060 * Check if command is valid.
1062 * RETURNS: 1 if wrong command, 0 if right.
1064 static int check_command(int cmd
)
1068 case NAND_CMD_READ0
:
1069 case NAND_CMD_READ1
:
1070 case NAND_CMD_READSTART
:
1071 case NAND_CMD_PAGEPROG
:
1072 case NAND_CMD_READOOB
:
1073 case NAND_CMD_ERASE1
:
1074 case NAND_CMD_STATUS
:
1075 case NAND_CMD_SEQIN
:
1076 case NAND_CMD_READID
:
1077 case NAND_CMD_ERASE2
:
1078 case NAND_CMD_RESET
:
1079 case NAND_CMD_RNDOUT
:
1080 case NAND_CMD_RNDOUTSTART
:
1089 * Returns state after command is accepted by command number.
1091 static uint32_t get_state_by_command(unsigned command
)
1094 case NAND_CMD_READ0
:
1095 return STATE_CMD_READ0
;
1096 case NAND_CMD_READ1
:
1097 return STATE_CMD_READ1
;
1098 case NAND_CMD_PAGEPROG
:
1099 return STATE_CMD_PAGEPROG
;
1100 case NAND_CMD_READSTART
:
1101 return STATE_CMD_READSTART
;
1102 case NAND_CMD_READOOB
:
1103 return STATE_CMD_READOOB
;
1104 case NAND_CMD_ERASE1
:
1105 return STATE_CMD_ERASE1
;
1106 case NAND_CMD_STATUS
:
1107 return STATE_CMD_STATUS
;
1108 case NAND_CMD_SEQIN
:
1109 return STATE_CMD_SEQIN
;
1110 case NAND_CMD_READID
:
1111 return STATE_CMD_READID
;
1112 case NAND_CMD_ERASE2
:
1113 return STATE_CMD_ERASE2
;
1114 case NAND_CMD_RESET
:
1115 return STATE_CMD_RESET
;
1116 case NAND_CMD_RNDOUT
:
1117 return STATE_CMD_RNDOUT
;
1118 case NAND_CMD_RNDOUTSTART
:
1119 return STATE_CMD_RNDOUTSTART
;
1122 NS_ERR("get_state_by_command: unknown command, BUG\n");
1127 * Move an address byte to the correspondent internal register.
1129 static inline void accept_addr_byte(struct nandsim
*ns
, u_char bt
)
1131 uint byte
= (uint
)bt
;
1133 if (ns
->regs
.count
< (ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
))
1134 ns
->regs
.column
|= (byte
<< 8 * ns
->regs
.count
);
1136 ns
->regs
.row
|= (byte
<< 8 * (ns
->regs
.count
-
1137 ns
->geom
.pgaddrbytes
+
1138 ns
->geom
.secaddrbytes
));
1145 * Switch to STATE_READY state.
1147 static inline void switch_to_ready_state(struct nandsim
*ns
, u_char status
)
1149 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY
));
1151 ns
->state
= STATE_READY
;
1152 ns
->nxstate
= STATE_UNKNOWN
;
1160 ns
->regs
.column
= 0;
1161 ns
->regs
.status
= status
;
1165 * If the operation isn't known yet, try to find it in the global array
1166 * of supported operations.
1168 * Operation can be unknown because of the following.
1169 * 1. New command was accepted and this is the first call to find the
1170 * correspondent states chain. In this case ns->npstates = 0;
1171 * 2. There are several operations which begin with the same command(s)
1172 * (for example program from the second half and read from the
1173 * second half operations both begin with the READ1 command). In this
1174 * case the ns->pstates[] array contains previous states.
1176 * Thus, the function tries to find operation containing the following
1177 * states (if the 'flag' parameter is 0):
1178 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1180 * If (one and only one) matching operation is found, it is accepted (
1181 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1184 * If there are several matches, the current state is pushed to the
1187 * The operation can be unknown only while commands are input to the chip.
1188 * As soon as address command is accepted, the operation must be known.
1189 * In such situation the function is called with 'flag' != 0, and the
1190 * operation is searched using the following pattern:
1191 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1193 * It is supposed that this pattern must either match one operation or
1194 * none. There can't be ambiguity in that case.
1196 * If no matches found, the function does the following:
1197 * 1. if there are saved states present, try to ignore them and search
1198 * again only using the last command. If nothing was found, switch
1199 * to the STATE_READY state.
1200 * 2. if there are no saved states, switch to the STATE_READY state.
1202 * RETURNS: -2 - no matched operations found.
1203 * -1 - several matches.
1204 * 0 - operation is found.
1206 static int find_operation(struct nandsim
*ns
, uint32_t flag
)
1211 for (i
= 0; i
< NS_OPER_NUM
; i
++) {
1215 if (!(ns
->options
& ops
[i
].reqopts
))
1216 /* Ignore operations we can't perform */
1220 if (!(ops
[i
].states
[ns
->npstates
] & STATE_ADDR_MASK
))
1223 if (NS_STATE(ns
->state
) != NS_STATE(ops
[i
].states
[ns
->npstates
]))
1227 for (j
= 0; j
< ns
->npstates
; j
++)
1228 if (NS_STATE(ops
[i
].states
[j
]) != NS_STATE(ns
->pstates
[j
])
1229 && (ns
->options
& ops
[idx
].reqopts
)) {
1240 if (opsfound
== 1) {
1242 ns
->op
= &ops
[idx
].states
[0];
1245 * In this case the find_operation function was
1246 * called when address has just began input. But it isn't
1247 * yet fully input and the current state must
1248 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1249 * state must be the next state (ns->nxstate).
1251 ns
->stateidx
= ns
->npstates
- 1;
1253 ns
->stateidx
= ns
->npstates
;
1256 ns
->state
= ns
->op
[ns
->stateidx
];
1257 ns
->nxstate
= ns
->op
[ns
->stateidx
+ 1];
1258 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1259 idx
, get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1263 if (opsfound
== 0) {
1264 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1265 if (ns
->npstates
!= 0) {
1266 NS_DBG("find_operation: no operation found, try again with state %s\n",
1267 get_state_name(ns
->state
));
1269 return find_operation(ns
, 0);
1272 NS_DBG("find_operation: no operations found\n");
1273 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1278 /* This shouldn't happen */
1279 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1283 NS_DBG("find_operation: there is still ambiguity\n");
1285 ns
->pstates
[ns
->npstates
++] = ns
->state
;
1290 static void put_pages(struct nandsim
*ns
)
1294 for (i
= 0; i
< ns
->held_cnt
; i
++)
1295 put_page(ns
->held_pages
[i
]);
1298 /* Get page cache pages in advance to provide NOFS memory allocation */
1299 static int get_pages(struct nandsim
*ns
, struct file
*file
, size_t count
, loff_t pos
)
1301 pgoff_t index
, start_index
, end_index
;
1303 struct address_space
*mapping
= file
->f_mapping
;
1305 start_index
= pos
>> PAGE_SHIFT
;
1306 end_index
= (pos
+ count
- 1) >> PAGE_SHIFT
;
1307 if (end_index
- start_index
+ 1 > NS_MAX_HELD_PAGES
)
1310 for (index
= start_index
; index
<= end_index
; index
++) {
1311 page
= find_get_page(mapping
, index
);
1313 page
= find_or_create_page(mapping
, index
, GFP_NOFS
);
1315 write_inode_now(mapping
->host
, 1);
1316 page
= find_or_create_page(mapping
, index
, GFP_NOFS
);
1324 ns
->held_pages
[ns
->held_cnt
++] = page
;
1329 static ssize_t
read_file(struct nandsim
*ns
, struct file
*file
, void *buf
, size_t count
, loff_t pos
)
1333 unsigned int noreclaim_flag
;
1335 err
= get_pages(ns
, file
, count
, pos
);
1338 noreclaim_flag
= memalloc_noreclaim_save();
1339 tx
= kernel_read(file
, buf
, count
, &pos
);
1340 memalloc_noreclaim_restore(noreclaim_flag
);
1345 static ssize_t
write_file(struct nandsim
*ns
, struct file
*file
, void *buf
, size_t count
, loff_t pos
)
1349 unsigned int noreclaim_flag
;
1351 err
= get_pages(ns
, file
, count
, pos
);
1354 noreclaim_flag
= memalloc_noreclaim_save();
1355 tx
= kernel_write(file
, buf
, count
, &pos
);
1356 memalloc_noreclaim_restore(noreclaim_flag
);
1362 * Returns a pointer to the current page.
1364 static inline union ns_mem
*NS_GET_PAGE(struct nandsim
*ns
)
1366 return &(ns
->pages
[ns
->regs
.row
]);
1370 * Retuns a pointer to the current byte, within the current page.
1372 static inline u_char
*NS_PAGE_BYTE_OFF(struct nandsim
*ns
)
1374 return NS_GET_PAGE(ns
)->byte
+ ns
->regs
.column
+ ns
->regs
.off
;
1377 static int do_read_error(struct nandsim
*ns
, int num
)
1379 unsigned int page_no
= ns
->regs
.row
;
1381 if (read_error(page_no
)) {
1382 prandom_bytes(ns
->buf
.byte
, num
);
1383 NS_WARN("simulating read error in page %u\n", page_no
);
1389 static void do_bit_flips(struct nandsim
*ns
, int num
)
1391 if (bitflips
&& prandom_u32() < (1 << 22)) {
1394 flips
= (prandom_u32() % (int) bitflips
) + 1;
1396 int pos
= prandom_u32() % (num
* 8);
1397 ns
->buf
.byte
[pos
/ 8] ^= (1 << (pos
% 8));
1398 NS_WARN("read_page: flipping bit %d in page %d "
1399 "reading from %d ecc: corrected=%u failed=%u\n",
1400 pos
, ns
->regs
.row
, ns
->regs
.column
+ ns
->regs
.off
,
1401 nsmtd
->ecc_stats
.corrected
, nsmtd
->ecc_stats
.failed
);
1407 * Fill the NAND buffer with data read from the specified page.
1409 static void read_page(struct nandsim
*ns
, int num
)
1411 union ns_mem
*mypage
;
1414 if (!test_bit(ns
->regs
.row
, ns
->pages_written
)) {
1415 NS_DBG("read_page: page %d not written\n", ns
->regs
.row
);
1416 memset(ns
->buf
.byte
, 0xFF, num
);
1421 NS_DBG("read_page: page %d written, reading from %d\n",
1422 ns
->regs
.row
, ns
->regs
.column
+ ns
->regs
.off
);
1423 if (do_read_error(ns
, num
))
1425 pos
= (loff_t
)NS_RAW_OFFSET(ns
) + ns
->regs
.off
;
1426 tx
= read_file(ns
, ns
->cfile
, ns
->buf
.byte
, num
, pos
);
1428 NS_ERR("read_page: read error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1431 do_bit_flips(ns
, num
);
1436 mypage
= NS_GET_PAGE(ns
);
1437 if (mypage
->byte
== NULL
) {
1438 NS_DBG("read_page: page %d not allocated\n", ns
->regs
.row
);
1439 memset(ns
->buf
.byte
, 0xFF, num
);
1441 NS_DBG("read_page: page %d allocated, reading from %d\n",
1442 ns
->regs
.row
, ns
->regs
.column
+ ns
->regs
.off
);
1443 if (do_read_error(ns
, num
))
1445 memcpy(ns
->buf
.byte
, NS_PAGE_BYTE_OFF(ns
), num
);
1446 do_bit_flips(ns
, num
);
1451 * Erase all pages in the specified sector.
1453 static void erase_sector(struct nandsim
*ns
)
1455 union ns_mem
*mypage
;
1459 for (i
= 0; i
< ns
->geom
.pgsec
; i
++)
1460 if (__test_and_clear_bit(ns
->regs
.row
+ i
,
1461 ns
->pages_written
)) {
1462 NS_DBG("erase_sector: freeing page %d\n", ns
->regs
.row
+ i
);
1467 mypage
= NS_GET_PAGE(ns
);
1468 for (i
= 0; i
< ns
->geom
.pgsec
; i
++) {
1469 if (mypage
->byte
!= NULL
) {
1470 NS_DBG("erase_sector: freeing page %d\n", ns
->regs
.row
+i
);
1471 kmem_cache_free(ns
->nand_pages_slab
, mypage
->byte
);
1472 mypage
->byte
= NULL
;
1479 * Program the specified page with the contents from the NAND buffer.
1481 static int prog_page(struct nandsim
*ns
, int num
)
1484 union ns_mem
*mypage
;
1492 NS_DBG("prog_page: writing page %d\n", ns
->regs
.row
);
1493 pg_off
= ns
->file_buf
+ ns
->regs
.column
+ ns
->regs
.off
;
1494 off
= (loff_t
)NS_RAW_OFFSET(ns
) + ns
->regs
.off
;
1495 if (!test_bit(ns
->regs
.row
, ns
->pages_written
)) {
1497 memset(ns
->file_buf
, 0xff, ns
->geom
.pgszoob
);
1500 tx
= read_file(ns
, ns
->cfile
, pg_off
, num
, off
);
1502 NS_ERR("prog_page: read error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1506 for (i
= 0; i
< num
; i
++)
1507 pg_off
[i
] &= ns
->buf
.byte
[i
];
1509 loff_t pos
= (loff_t
)ns
->regs
.row
* ns
->geom
.pgszoob
;
1510 tx
= write_file(ns
, ns
->cfile
, ns
->file_buf
, ns
->geom
.pgszoob
, pos
);
1511 if (tx
!= ns
->geom
.pgszoob
) {
1512 NS_ERR("prog_page: write error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1515 __set_bit(ns
->regs
.row
, ns
->pages_written
);
1517 tx
= write_file(ns
, ns
->cfile
, pg_off
, num
, off
);
1519 NS_ERR("prog_page: write error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1526 mypage
= NS_GET_PAGE(ns
);
1527 if (mypage
->byte
== NULL
) {
1528 NS_DBG("prog_page: allocating page %d\n", ns
->regs
.row
);
1530 * We allocate memory with GFP_NOFS because a flash FS may
1531 * utilize this. If it is holding an FS lock, then gets here,
1532 * then kernel memory alloc runs writeback which goes to the FS
1533 * again and deadlocks. This was seen in practice.
1535 mypage
->byte
= kmem_cache_alloc(ns
->nand_pages_slab
, GFP_NOFS
);
1536 if (mypage
->byte
== NULL
) {
1537 NS_ERR("prog_page: error allocating memory for page %d\n", ns
->regs
.row
);
1540 memset(mypage
->byte
, 0xFF, ns
->geom
.pgszoob
);
1543 pg_off
= NS_PAGE_BYTE_OFF(ns
);
1544 for (i
= 0; i
< num
; i
++)
1545 pg_off
[i
] &= ns
->buf
.byte
[i
];
1551 * If state has any action bit, perform this action.
1553 * RETURNS: 0 if success, -1 if error.
1555 static int do_state_action(struct nandsim
*ns
, uint32_t action
)
1558 int busdiv
= ns
->busw
== 8 ? 1 : 2;
1559 unsigned int erase_block_no
, page_no
;
1561 action
&= ACTION_MASK
;
1563 /* Check that page address input is correct */
1564 if (action
!= ACTION_SECERASE
&& ns
->regs
.row
>= ns
->geom
.pgnum
) {
1565 NS_WARN("do_state_action: wrong page number (%#x)\n", ns
->regs
.row
);
1573 * Copy page data to the internal buffer.
1576 /* Column shouldn't be very large */
1577 if (ns
->regs
.column
>= (ns
->geom
.pgszoob
- ns
->regs
.off
)) {
1578 NS_ERR("do_state_action: column number is too large\n");
1581 num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1584 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1585 num
, NS_RAW_OFFSET(ns
) + ns
->regs
.off
);
1587 if (ns
->regs
.off
== 0)
1588 NS_LOG("read page %d\n", ns
->regs
.row
);
1589 else if (ns
->regs
.off
< ns
->geom
.pgsz
)
1590 NS_LOG("read page %d (second half)\n", ns
->regs
.row
);
1592 NS_LOG("read OOB of page %d\n", ns
->regs
.row
);
1594 NS_UDELAY(access_delay
);
1595 NS_UDELAY(input_cycle
* ns
->geom
.pgsz
/ 1000 / busdiv
);
1599 case ACTION_SECERASE
:
1605 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1609 if (ns
->regs
.row
>= ns
->geom
.pgnum
- ns
->geom
.pgsec
1610 || (ns
->regs
.row
& ~(ns
->geom
.secsz
- 1))) {
1611 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns
->regs
.row
);
1615 ns
->regs
.row
= (ns
->regs
.row
<<
1616 8 * (ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
)) | ns
->regs
.column
;
1617 ns
->regs
.column
= 0;
1619 erase_block_no
= ns
->regs
.row
>> (ns
->geom
.secshift
- ns
->geom
.pgshift
);
1621 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1622 ns
->regs
.row
, NS_RAW_OFFSET(ns
));
1623 NS_LOG("erase sector %u\n", erase_block_no
);
1627 NS_MDELAY(erase_delay
);
1629 if (erase_block_wear
)
1630 update_wear(erase_block_no
);
1632 if (erase_error(erase_block_no
)) {
1633 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no
);
1639 case ACTION_PRGPAGE
:
1641 * Program page - move internal buffer data to the page.
1645 NS_WARN("do_state_action: device is write-protected, programm\n");
1649 num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1650 if (num
!= ns
->regs
.count
) {
1651 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1652 ns
->regs
.count
, num
);
1656 if (prog_page(ns
, num
) == -1)
1659 page_no
= ns
->regs
.row
;
1661 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1662 num
, ns
->regs
.row
, ns
->regs
.column
, NS_RAW_OFFSET(ns
) + ns
->regs
.off
);
1663 NS_LOG("programm page %d\n", ns
->regs
.row
);
1665 NS_UDELAY(programm_delay
);
1666 NS_UDELAY(output_cycle
* ns
->geom
.pgsz
/ 1000 / busdiv
);
1668 if (write_error(page_no
)) {
1669 NS_WARN("simulating write failure in page %u\n", page_no
);
1675 case ACTION_ZEROOFF
:
1676 NS_DBG("do_state_action: set internal offset to 0\n");
1680 case ACTION_HALFOFF
:
1681 if (!(ns
->options
& OPT_PAGE512_8BIT
)) {
1682 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1683 "byte page size 8x chips\n");
1686 NS_DBG("do_state_action: set internal offset to %d\n", ns
->geom
.pgsz
/2);
1687 ns
->regs
.off
= ns
->geom
.pgsz
/2;
1691 NS_DBG("do_state_action: set internal offset to %d\n", ns
->geom
.pgsz
);
1692 ns
->regs
.off
= ns
->geom
.pgsz
;
1696 NS_DBG("do_state_action: BUG! unknown action\n");
1703 * Switch simulator's state.
1705 static void switch_state(struct nandsim
*ns
)
1709 * The current operation have already been identified.
1710 * Just follow the states chain.
1714 ns
->state
= ns
->nxstate
;
1715 ns
->nxstate
= ns
->op
[ns
->stateidx
+ 1];
1717 NS_DBG("switch_state: operation is known, switch to the next state, "
1718 "state: %s, nxstate: %s\n",
1719 get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1721 /* See, whether we need to do some action */
1722 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
1723 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1729 * We don't yet know which operation we perform.
1730 * Try to identify it.
1734 * The only event causing the switch_state function to
1735 * be called with yet unknown operation is new command.
1737 ns
->state
= get_state_by_command(ns
->regs
.command
);
1739 NS_DBG("switch_state: operation is unknown, try to find it\n");
1741 if (find_operation(ns
, 0) != 0)
1744 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
1745 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1750 /* For 16x devices column means the page offset in words */
1751 if ((ns
->nxstate
& STATE_ADDR_MASK
) && ns
->busw
== 16) {
1752 NS_DBG("switch_state: double the column number for 16x device\n");
1753 ns
->regs
.column
<<= 1;
1756 if (NS_STATE(ns
->nxstate
) == STATE_READY
) {
1758 * The current state is the last. Return to STATE_READY
1761 u_char status
= NS_STATUS_OK(ns
);
1763 /* In case of data states, see if all bytes were input/output */
1764 if ((ns
->state
& (STATE_DATAIN_MASK
| STATE_DATAOUT_MASK
))
1765 && ns
->regs
.count
!= ns
->regs
.num
) {
1766 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1767 ns
->regs
.num
- ns
->regs
.count
);
1768 status
= NS_STATUS_FAILED(ns
);
1771 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1773 switch_to_ready_state(ns
, status
);
1776 } else if (ns
->nxstate
& (STATE_DATAIN_MASK
| STATE_DATAOUT_MASK
)) {
1778 * If the next state is data input/output, switch to it now
1781 ns
->state
= ns
->nxstate
;
1782 ns
->nxstate
= ns
->op
[++ns
->stateidx
+ 1];
1783 ns
->regs
.num
= ns
->regs
.count
= 0;
1785 NS_DBG("switch_state: the next state is data I/O, switch, "
1786 "state: %s, nxstate: %s\n",
1787 get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1790 * Set the internal register to the count of bytes which
1791 * are expected to be input or output
1793 switch (NS_STATE(ns
->state
)) {
1796 ns
->regs
.num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1799 case STATE_DATAOUT_ID
:
1800 ns
->regs
.num
= ns
->geom
.idbytes
;
1803 case STATE_DATAOUT_STATUS
:
1804 ns
->regs
.count
= ns
->regs
.num
= 0;
1808 NS_ERR("switch_state: BUG! unknown data state\n");
1811 } else if (ns
->nxstate
& STATE_ADDR_MASK
) {
1813 * If the next state is address input, set the internal
1814 * register to the number of expected address bytes
1819 switch (NS_STATE(ns
->nxstate
)) {
1820 case STATE_ADDR_PAGE
:
1821 ns
->regs
.num
= ns
->geom
.pgaddrbytes
;
1824 case STATE_ADDR_SEC
:
1825 ns
->regs
.num
= ns
->geom
.secaddrbytes
;
1828 case STATE_ADDR_ZERO
:
1832 case STATE_ADDR_COLUMN
:
1833 /* Column address is always 2 bytes */
1834 ns
->regs
.num
= ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
;
1838 NS_ERR("switch_state: BUG! unknown address state\n");
1842 * Just reset internal counters.
1850 static u_char
ns_nand_read_byte(struct nand_chip
*chip
)
1852 struct nandsim
*ns
= nand_get_controller_data(chip
);
1855 /* Sanity and correctness checks */
1856 if (!ns
->lines
.ce
) {
1857 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint
)outb
);
1860 if (ns
->lines
.ale
|| ns
->lines
.cle
) {
1861 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint
)outb
);
1864 if (!(ns
->state
& STATE_DATAOUT_MASK
)) {
1865 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1866 "return %#x\n", get_state_name(ns
->state
), (uint
)outb
);
1870 /* Status register may be read as many times as it is wanted */
1871 if (NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS
) {
1872 NS_DBG("read_byte: return %#x status\n", ns
->regs
.status
);
1873 return ns
->regs
.status
;
1876 /* Check if there is any data in the internal buffer which may be read */
1877 if (ns
->regs
.count
== ns
->regs
.num
) {
1878 NS_WARN("read_byte: no more data to output, return %#x\n", (uint
)outb
);
1882 switch (NS_STATE(ns
->state
)) {
1884 if (ns
->busw
== 8) {
1885 outb
= ns
->buf
.byte
[ns
->regs
.count
];
1886 ns
->regs
.count
+= 1;
1888 outb
= (u_char
)cpu_to_le16(ns
->buf
.word
[ns
->regs
.count
>> 1]);
1889 ns
->regs
.count
+= 2;
1892 case STATE_DATAOUT_ID
:
1893 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns
->regs
.count
, ns
->regs
.num
);
1894 outb
= ns
->ids
[ns
->regs
.count
];
1895 ns
->regs
.count
+= 1;
1901 if (ns
->regs
.count
== ns
->regs
.num
) {
1902 NS_DBG("read_byte: all bytes were read\n");
1904 if (NS_STATE(ns
->nxstate
) == STATE_READY
)
1911 static void ns_nand_write_byte(struct nand_chip
*chip
, u_char byte
)
1913 struct nandsim
*ns
= nand_get_controller_data(chip
);
1915 /* Sanity and correctness checks */
1916 if (!ns
->lines
.ce
) {
1917 NS_ERR("write_byte: chip is disabled, ignore write\n");
1920 if (ns
->lines
.ale
&& ns
->lines
.cle
) {
1921 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1925 if (ns
->lines
.cle
== 1) {
1927 * The byte written is a command.
1930 if (byte
== NAND_CMD_RESET
) {
1931 NS_LOG("reset chip\n");
1932 switch_to_ready_state(ns
, NS_STATUS_OK(ns
));
1936 /* Check that the command byte is correct */
1937 if (check_command(byte
)) {
1938 NS_ERR("write_byte: unknown command %#x\n", (uint
)byte
);
1942 if (NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS
1943 || NS_STATE(ns
->state
) == STATE_DATAOUT
) {
1944 int row
= ns
->regs
.row
;
1947 if (byte
== NAND_CMD_RNDOUT
)
1951 /* Check if chip is expecting command */
1952 if (NS_STATE(ns
->nxstate
) != STATE_UNKNOWN
&& !(ns
->nxstate
& STATE_CMD_MASK
)) {
1953 /* Do not warn if only 2 id bytes are read */
1954 if (!(ns
->regs
.command
== NAND_CMD_READID
&&
1955 NS_STATE(ns
->state
) == STATE_DATAOUT_ID
&& ns
->regs
.count
== 2)) {
1957 * We are in situation when something else (not command)
1958 * was expected but command was input. In this case ignore
1959 * previous command(s)/state(s) and accept the last one.
1961 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1962 "ignore previous states\n", (uint
)byte
, get_state_name(ns
->nxstate
));
1964 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1967 NS_DBG("command byte corresponding to %s state accepted\n",
1968 get_state_name(get_state_by_command(byte
)));
1969 ns
->regs
.command
= byte
;
1972 } else if (ns
->lines
.ale
== 1) {
1974 * The byte written is an address.
1977 if (NS_STATE(ns
->nxstate
) == STATE_UNKNOWN
) {
1979 NS_DBG("write_byte: operation isn't known yet, identify it\n");
1981 if (find_operation(ns
, 1) < 0)
1984 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
1985 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1990 switch (NS_STATE(ns
->nxstate
)) {
1991 case STATE_ADDR_PAGE
:
1992 ns
->regs
.num
= ns
->geom
.pgaddrbytes
;
1994 case STATE_ADDR_SEC
:
1995 ns
->regs
.num
= ns
->geom
.secaddrbytes
;
1997 case STATE_ADDR_ZERO
:
2005 /* Check that chip is expecting address */
2006 if (!(ns
->nxstate
& STATE_ADDR_MASK
)) {
2007 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2008 "switch to STATE_READY\n", (uint
)byte
, get_state_name(ns
->nxstate
));
2009 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2013 /* Check if this is expected byte */
2014 if (ns
->regs
.count
== ns
->regs
.num
) {
2015 NS_ERR("write_byte: no more address bytes expected\n");
2016 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2020 accept_addr_byte(ns
, byte
);
2022 ns
->regs
.count
+= 1;
2024 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2025 (uint
)byte
, ns
->regs
.count
, ns
->regs
.num
);
2027 if (ns
->regs
.count
== ns
->regs
.num
) {
2028 NS_DBG("address (%#x, %#x) is accepted\n", ns
->regs
.row
, ns
->regs
.column
);
2034 * The byte written is an input data.
2037 /* Check that chip is expecting data input */
2038 if (!(ns
->state
& STATE_DATAIN_MASK
)) {
2039 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2040 "switch to %s\n", (uint
)byte
,
2041 get_state_name(ns
->state
), get_state_name(STATE_READY
));
2042 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2046 /* Check if this is expected byte */
2047 if (ns
->regs
.count
== ns
->regs
.num
) {
2048 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2053 if (ns
->busw
== 8) {
2054 ns
->buf
.byte
[ns
->regs
.count
] = byte
;
2055 ns
->regs
.count
+= 1;
2057 ns
->buf
.word
[ns
->regs
.count
>> 1] = cpu_to_le16((uint16_t)byte
);
2058 ns
->regs
.count
+= 2;
2065 static void ns_nand_write_buf(struct nand_chip
*chip
, const u_char
*buf
,
2068 struct nandsim
*ns
= nand_get_controller_data(chip
);
2070 /* Check that chip is expecting data input */
2071 if (!(ns
->state
& STATE_DATAIN_MASK
)) {
2072 NS_ERR("write_buf: data input isn't expected, state is %s, "
2073 "switch to STATE_READY\n", get_state_name(ns
->state
));
2074 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2078 /* Check if these are expected bytes */
2079 if (ns
->regs
.count
+ len
> ns
->regs
.num
) {
2080 NS_ERR("write_buf: too many input bytes\n");
2081 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2085 memcpy(ns
->buf
.byte
+ ns
->regs
.count
, buf
, len
);
2086 ns
->regs
.count
+= len
;
2088 if (ns
->regs
.count
== ns
->regs
.num
) {
2089 NS_DBG("write_buf: %d bytes were written\n", ns
->regs
.count
);
2093 static void ns_nand_read_buf(struct nand_chip
*chip
, u_char
*buf
, int len
)
2095 struct nandsim
*ns
= nand_get_controller_data(chip
);
2097 /* Sanity and correctness checks */
2098 if (!ns
->lines
.ce
) {
2099 NS_ERR("read_buf: chip is disabled\n");
2102 if (ns
->lines
.ale
|| ns
->lines
.cle
) {
2103 NS_ERR("read_buf: ALE or CLE pin is high\n");
2106 if (!(ns
->state
& STATE_DATAOUT_MASK
)) {
2107 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2108 get_state_name(ns
->state
));
2112 if (NS_STATE(ns
->state
) != STATE_DATAOUT
) {
2115 for (i
= 0; i
< len
; i
++)
2116 buf
[i
] = ns_nand_read_byte(chip
);
2121 /* Check if these are expected bytes */
2122 if (ns
->regs
.count
+ len
> ns
->regs
.num
) {
2123 NS_ERR("read_buf: too many bytes to read\n");
2124 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2128 memcpy(buf
, ns
->buf
.byte
+ ns
->regs
.count
, len
);
2129 ns
->regs
.count
+= len
;
2131 if (ns
->regs
.count
== ns
->regs
.num
) {
2132 if (NS_STATE(ns
->nxstate
) == STATE_READY
)
2139 static int ns_exec_op(struct nand_chip
*chip
, const struct nand_operation
*op
,
2144 const struct nand_op_instr
*instr
= NULL
;
2145 struct nandsim
*ns
= nand_get_controller_data(chip
);
2149 for (op_id
= 0; op_id
< op
->ninstrs
; op_id
++) {
2150 instr
= &op
->instrs
[op_id
];
2154 switch (instr
->type
) {
2155 case NAND_OP_CMD_INSTR
:
2157 ns_nand_write_byte(chip
, instr
->ctx
.cmd
.opcode
);
2159 case NAND_OP_ADDR_INSTR
:
2161 for (i
= 0; i
< instr
->ctx
.addr
.naddrs
; i
++)
2162 ns_nand_write_byte(chip
, instr
->ctx
.addr
.addrs
[i
]);
2164 case NAND_OP_DATA_IN_INSTR
:
2165 ns_nand_read_buf(chip
, instr
->ctx
.data
.buf
.in
, instr
->ctx
.data
.len
);
2167 case NAND_OP_DATA_OUT_INSTR
:
2168 ns_nand_write_buf(chip
, instr
->ctx
.data
.buf
.out
, instr
->ctx
.data
.len
);
2170 case NAND_OP_WAITRDY_INSTR
:
2171 /* we are always ready */
2179 static int ns_attach_chip(struct nand_chip
*chip
)
2181 unsigned int eccsteps
, eccbytes
;
2186 if (!mtd_nand_has_bch()) {
2187 NS_ERR("BCH ECC support is disabled\n");
2191 /* Use 512-byte ecc blocks */
2192 eccsteps
= nsmtd
->writesize
/ 512;
2193 eccbytes
= ((bch
* 13) + 7) / 8;
2195 /* Do not bother supporting small page devices */
2196 if (nsmtd
->oobsize
< 64 || !eccsteps
) {
2197 NS_ERR("BCH not available on small page devices\n");
2201 if (((eccbytes
* eccsteps
) + 2) > nsmtd
->oobsize
) {
2202 NS_ERR("Invalid BCH value %u\n", bch
);
2206 chip
->ecc
.mode
= NAND_ECC_SOFT
;
2207 chip
->ecc
.algo
= NAND_ECC_BCH
;
2208 chip
->ecc
.size
= 512;
2209 chip
->ecc
.strength
= bch
;
2210 chip
->ecc
.bytes
= eccbytes
;
2212 NS_INFO("Using %u-bit/%u bytes BCH ECC\n", bch
, chip
->ecc
.size
);
2217 static const struct nand_controller_ops ns_controller_ops
= {
2218 .attach_chip
= ns_attach_chip
,
2219 .exec_op
= ns_exec_op
,
2223 * Module initialization function
2225 static int __init
ns_init_module(void)
2227 struct nand_chip
*chip
;
2229 int retval
= -ENOMEM
, i
;
2231 if (bus_width
!= 8 && bus_width
!= 16) {
2232 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width
);
2236 ns
= kzalloc(sizeof(struct nandsim
), GFP_KERNEL
);
2238 NS_ERR("unable to allocate core structures.\n");
2242 nsmtd
= nand_to_mtd(chip
);
2243 nand_set_controller_data(chip
, (void *)ns
);
2245 chip
->ecc
.mode
= NAND_ECC_SOFT
;
2246 chip
->ecc
.algo
= NAND_ECC_HAMMING
;
2247 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2248 /* and 'badblocks' parameters to work */
2249 chip
->options
|= NAND_SKIP_BBTSCAN
;
2253 chip
->bbt_options
|= NAND_BBT_NO_OOB
;
2256 chip
->bbt_options
|= NAND_BBT_USE_FLASH
;
2261 NS_ERR("bbt has to be 0..2\n");
2266 * Perform minimum nandsim structure initialization to handle
2267 * the initial ID read command correctly
2269 if (id_bytes
[6] != 0xFF || id_bytes
[7] != 0xFF)
2270 ns
->geom
.idbytes
= 8;
2271 else if (id_bytes
[4] != 0xFF || id_bytes
[5] != 0xFF)
2272 ns
->geom
.idbytes
= 6;
2273 else if (id_bytes
[2] != 0xFF || id_bytes
[3] != 0xFF)
2274 ns
->geom
.idbytes
= 4;
2276 ns
->geom
.idbytes
= 2;
2277 ns
->regs
.status
= NS_STATUS_OK(ns
);
2278 ns
->nxstate
= STATE_UNKNOWN
;
2279 ns
->options
|= OPT_PAGE512
; /* temporary value */
2280 memcpy(ns
->ids
, id_bytes
, sizeof(ns
->ids
));
2281 if (bus_width
== 16) {
2283 chip
->options
|= NAND_BUSWIDTH_16
;
2286 nsmtd
->owner
= THIS_MODULE
;
2288 if ((retval
= parse_weakblocks()) != 0)
2291 if ((retval
= parse_weakpages()) != 0)
2294 if ((retval
= parse_gravepages()) != 0)
2297 nand_controller_init(&ns
->base
);
2298 ns
->base
.ops
= &ns_controller_ops
;
2299 chip
->controller
= &ns
->base
;
2301 retval
= nand_scan(chip
, 1);
2303 NS_ERR("Could not scan NAND Simulator device\n");
2308 uint64_t new_size
= (uint64_t)nsmtd
->erasesize
<< overridesize
;
2309 struct nand_memory_organization
*memorg
;
2312 memorg
= nanddev_get_memorg(&chip
->base
);
2314 if (new_size
>> overridesize
!= nsmtd
->erasesize
) {
2315 NS_ERR("overridesize is too big\n");
2320 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2321 nsmtd
->size
= new_size
;
2322 memorg
->eraseblocks_per_lun
= 1 << overridesize
;
2323 targetsize
= nanddev_target_size(&chip
->base
);
2324 chip
->chip_shift
= ffs(nsmtd
->erasesize
) + overridesize
- 1;
2325 chip
->pagemask
= (targetsize
>> chip
->page_shift
) - 1;
2328 if ((retval
= setup_wear_reporting(nsmtd
)) != 0)
2331 if ((retval
= init_nandsim(nsmtd
)) != 0)
2334 if ((retval
= nand_create_bbt(chip
)) != 0)
2337 if ((retval
= parse_badblocks(ns
, nsmtd
)) != 0)
2340 /* Register NAND partitions */
2341 retval
= mtd_device_register(nsmtd
, &ns
->partitions
[0],
2346 if ((retval
= nandsim_debugfs_create(ns
)) != 0)
2354 for (i
= 0;i
< ARRAY_SIZE(ns
->partitions
); ++i
)
2355 kfree(ns
->partitions
[i
].name
);
2363 module_init(ns_init_module
);
2366 * Module clean-up function
2368 static void __exit
ns_cleanup_module(void)
2370 struct nand_chip
*chip
= mtd_to_nand(nsmtd
);
2371 struct nandsim
*ns
= nand_get_controller_data(chip
);
2374 free_nandsim(ns
); /* Free nandsim private resources */
2375 nand_release(chip
); /* Unregister driver */
2376 for (i
= 0;i
< ARRAY_SIZE(ns
->partitions
); ++i
)
2377 kfree(ns
->partitions
[i
].name
);
2378 kfree(ns
); /* Free other structures */
2382 module_exit(ns_cleanup_module
);
2384 MODULE_LICENSE ("GPL");
2385 MODULE_AUTHOR ("Artem B. Bityuckiy");
2386 MODULE_DESCRIPTION ("The NAND flash simulator");