treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / mtd / nand / raw / nandsim.c
blob9a70754a61efe5dd1694c25f786c53598d7dc3b1
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NAND flash simulator.
5 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
7 * Copyright (C) 2004 Nokia Corporation
9 * Note: NS means "NAND Simulator".
10 * Note: Input means input TO flash chip, output means output FROM chip.
13 #define pr_fmt(fmt) "[nandsim]" fmt
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/vmalloc.h>
20 #include <linux/math64.h>
21 #include <linux/slab.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/rawnand.h>
26 #include <linux/mtd/nand_bch.h>
27 #include <linux/mtd/partitions.h>
28 #include <linux/delay.h>
29 #include <linux/list.h>
30 #include <linux/random.h>
31 #include <linux/sched.h>
32 #include <linux/sched/mm.h>
33 #include <linux/fs.h>
34 #include <linux/pagemap.h>
35 #include <linux/seq_file.h>
36 #include <linux/debugfs.h>
38 /* Default simulator parameters values */
39 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
40 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
41 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
42 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
43 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
44 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
45 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
46 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
47 #endif
49 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
50 #define CONFIG_NANDSIM_ACCESS_DELAY 25
51 #endif
52 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
53 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
54 #endif
55 #ifndef CONFIG_NANDSIM_ERASE_DELAY
56 #define CONFIG_NANDSIM_ERASE_DELAY 2
57 #endif
58 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
59 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
60 #endif
61 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
62 #define CONFIG_NANDSIM_INPUT_CYCLE 50
63 #endif
64 #ifndef CONFIG_NANDSIM_BUS_WIDTH
65 #define CONFIG_NANDSIM_BUS_WIDTH 8
66 #endif
67 #ifndef CONFIG_NANDSIM_DO_DELAYS
68 #define CONFIG_NANDSIM_DO_DELAYS 0
69 #endif
70 #ifndef CONFIG_NANDSIM_LOG
71 #define CONFIG_NANDSIM_LOG 0
72 #endif
73 #ifndef CONFIG_NANDSIM_DBG
74 #define CONFIG_NANDSIM_DBG 0
75 #endif
76 #ifndef CONFIG_NANDSIM_MAX_PARTS
77 #define CONFIG_NANDSIM_MAX_PARTS 32
78 #endif
80 static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
81 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
82 static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
83 static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
84 static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
85 static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
86 static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
87 static uint log = CONFIG_NANDSIM_LOG;
88 static uint dbg = CONFIG_NANDSIM_DBG;
89 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
90 static unsigned int parts_num;
91 static char *badblocks = NULL;
92 static char *weakblocks = NULL;
93 static char *weakpages = NULL;
94 static unsigned int bitflips = 0;
95 static char *gravepages = NULL;
96 static unsigned int overridesize = 0;
97 static char *cache_file = NULL;
98 static unsigned int bbt;
99 static unsigned int bch;
100 static u_char id_bytes[8] = {
101 [0] = CONFIG_NANDSIM_FIRST_ID_BYTE,
102 [1] = CONFIG_NANDSIM_SECOND_ID_BYTE,
103 [2] = CONFIG_NANDSIM_THIRD_ID_BYTE,
104 [3] = CONFIG_NANDSIM_FOURTH_ID_BYTE,
105 [4 ... 7] = 0xFF,
108 module_param_array(id_bytes, byte, NULL, 0400);
109 module_param_named(first_id_byte, id_bytes[0], byte, 0400);
110 module_param_named(second_id_byte, id_bytes[1], byte, 0400);
111 module_param_named(third_id_byte, id_bytes[2], byte, 0400);
112 module_param_named(fourth_id_byte, id_bytes[3], byte, 0400);
113 module_param(access_delay, uint, 0400);
114 module_param(programm_delay, uint, 0400);
115 module_param(erase_delay, uint, 0400);
116 module_param(output_cycle, uint, 0400);
117 module_param(input_cycle, uint, 0400);
118 module_param(bus_width, uint, 0400);
119 module_param(do_delays, uint, 0400);
120 module_param(log, uint, 0400);
121 module_param(dbg, uint, 0400);
122 module_param_array(parts, ulong, &parts_num, 0400);
123 module_param(badblocks, charp, 0400);
124 module_param(weakblocks, charp, 0400);
125 module_param(weakpages, charp, 0400);
126 module_param(bitflips, uint, 0400);
127 module_param(gravepages, charp, 0400);
128 module_param(overridesize, uint, 0400);
129 module_param(cache_file, charp, 0400);
130 module_param(bbt, uint, 0400);
131 module_param(bch, uint, 0400);
133 MODULE_PARM_DESC(id_bytes, "The ID bytes returned by NAND Flash 'read ID' command");
134 MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)");
135 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)");
136 MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command (obsolete)");
137 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)");
138 MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)");
139 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
140 MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
141 MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)");
142 MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)");
143 MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
144 MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
145 MODULE_PARM_DESC(log, "Perform logging if not zero");
146 MODULE_PARM_DESC(dbg, "Output debug information if not zero");
147 MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas");
148 /* Page and erase block positions for the following parameters are independent of any partitions */
149 MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas");
150 MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
151 " separated by commas e.g. 113:2 means eb 113"
152 " can be erased only twice before failing");
153 MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]"
154 " separated by commas e.g. 1401:2 means page 1401"
155 " can be written only twice before failing");
156 MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)");
157 MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]"
158 " separated by commas e.g. 1401:2 means page 1401"
159 " can be read only twice before failing");
160 MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. "
161 "The size is specified in erase blocks and as the exponent of a power of two"
162 " e.g. 5 means a size of 32 erase blocks");
163 MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory");
164 MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
165 MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should "
166 "be correctable in 512-byte blocks");
168 /* The largest possible page size */
169 #define NS_LARGEST_PAGE_SIZE 4096
171 /* Simulator's output macros (logging, debugging, warning, error) */
172 #define NS_LOG(args...) \
173 do { if (log) pr_debug(" log: " args); } while(0)
174 #define NS_DBG(args...) \
175 do { if (dbg) pr_debug(" debug: " args); } while(0)
176 #define NS_WARN(args...) \
177 do { pr_warn(" warning: " args); } while(0)
178 #define NS_ERR(args...) \
179 do { pr_err(" error: " args); } while(0)
180 #define NS_INFO(args...) \
181 do { pr_info(" " args); } while(0)
183 /* Busy-wait delay macros (microseconds, milliseconds) */
184 #define NS_UDELAY(us) \
185 do { if (do_delays) udelay(us); } while(0)
186 #define NS_MDELAY(us) \
187 do { if (do_delays) mdelay(us); } while(0)
189 /* Is the nandsim structure initialized ? */
190 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
192 /* Good operation completion status */
193 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
195 /* Operation failed completion status */
196 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
198 /* Calculate the page offset in flash RAM image by (row, column) address */
199 #define NS_RAW_OFFSET(ns) \
200 (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
202 /* Calculate the OOB offset in flash RAM image by (row, column) address */
203 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
205 /* After a command is input, the simulator goes to one of the following states */
206 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
207 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
208 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
209 #define STATE_CMD_PAGEPROG 0x00000004 /* start page program */
210 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
211 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
212 #define STATE_CMD_STATUS 0x00000007 /* read status */
213 #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */
214 #define STATE_CMD_READID 0x0000000A /* read ID */
215 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
216 #define STATE_CMD_RESET 0x0000000C /* reset */
217 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */
218 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
219 #define STATE_CMD_MASK 0x0000000F /* command states mask */
221 /* After an address is input, the simulator goes to one of these states */
222 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
223 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
224 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
225 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
226 #define STATE_ADDR_MASK 0x00000070 /* address states mask */
228 /* During data input/output the simulator is in these states */
229 #define STATE_DATAIN 0x00000100 /* waiting for data input */
230 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
232 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
233 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
234 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
235 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
237 /* Previous operation is done, ready to accept new requests */
238 #define STATE_READY 0x00000000
240 /* This state is used to mark that the next state isn't known yet */
241 #define STATE_UNKNOWN 0x10000000
243 /* Simulator's actions bit masks */
244 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
245 #define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */
246 #define ACTION_SECERASE 0x00300000 /* erase sector */
247 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
248 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
249 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
250 #define ACTION_MASK 0x00700000 /* action mask */
252 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
253 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
255 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
256 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
257 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
258 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
259 #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */
260 #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
261 #define OPT_SMALLPAGE (OPT_PAGE512) /* 512-byte page chips */
263 /* Remove action bits from state */
264 #define NS_STATE(x) ((x) & ~ACTION_MASK)
267 * Maximum previous states which need to be saved. Currently saving is
268 * only needed for page program operation with preceded read command
269 * (which is only valid for 512-byte pages).
271 #define NS_MAX_PREVSTATES 1
273 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
274 #define NS_MAX_HELD_PAGES 16
277 * A union to represent flash memory contents and flash buffer.
279 union ns_mem {
280 u_char *byte; /* for byte access */
281 uint16_t *word; /* for 16-bit word access */
285 * The structure which describes all the internal simulator data.
287 struct nandsim {
288 struct nand_chip chip;
289 struct nand_controller base;
290 struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
291 unsigned int nbparts;
293 uint busw; /* flash chip bus width (8 or 16) */
294 u_char ids[8]; /* chip's ID bytes */
295 uint32_t options; /* chip's characteristic bits */
296 uint32_t state; /* current chip state */
297 uint32_t nxstate; /* next expected state */
299 uint32_t *op; /* current operation, NULL operations isn't known yet */
300 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
301 uint16_t npstates; /* number of previous states saved */
302 uint16_t stateidx; /* current state index */
304 /* The simulated NAND flash pages array */
305 union ns_mem *pages;
307 /* Slab allocator for nand pages */
308 struct kmem_cache *nand_pages_slab;
310 /* Internal buffer of page + OOB size bytes */
311 union ns_mem buf;
313 /* NAND flash "geometry" */
314 struct {
315 uint64_t totsz; /* total flash size, bytes */
316 uint32_t secsz; /* flash sector (erase block) size, bytes */
317 uint pgsz; /* NAND flash page size, bytes */
318 uint oobsz; /* page OOB area size, bytes */
319 uint64_t totszoob; /* total flash size including OOB, bytes */
320 uint pgszoob; /* page size including OOB , bytes*/
321 uint secszoob; /* sector size including OOB, bytes */
322 uint pgnum; /* total number of pages */
323 uint pgsec; /* number of pages per sector */
324 uint secshift; /* bits number in sector size */
325 uint pgshift; /* bits number in page size */
326 uint pgaddrbytes; /* bytes per page address */
327 uint secaddrbytes; /* bytes per sector address */
328 uint idbytes; /* the number ID bytes that this chip outputs */
329 } geom;
331 /* NAND flash internal registers */
332 struct {
333 unsigned command; /* the command register */
334 u_char status; /* the status register */
335 uint row; /* the page number */
336 uint column; /* the offset within page */
337 uint count; /* internal counter */
338 uint num; /* number of bytes which must be processed */
339 uint off; /* fixed page offset */
340 } regs;
342 /* NAND flash lines state */
343 struct {
344 int ce; /* chip Enable */
345 int cle; /* command Latch Enable */
346 int ale; /* address Latch Enable */
347 int wp; /* write Protect */
348 } lines;
350 /* Fields needed when using a cache file */
351 struct file *cfile; /* Open file */
352 unsigned long *pages_written; /* Which pages have been written */
353 void *file_buf;
354 struct page *held_pages[NS_MAX_HELD_PAGES];
355 int held_cnt;
359 * Operations array. To perform any operation the simulator must pass
360 * through the correspondent states chain.
362 static struct nandsim_operations {
363 uint32_t reqopts; /* options which are required to perform the operation */
364 uint32_t states[NS_OPER_STATES]; /* operation's states */
365 } ops[NS_OPER_NUM] = {
366 /* Read page + OOB from the beginning */
367 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
368 STATE_DATAOUT, STATE_READY}},
369 /* Read page + OOB from the second half */
370 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
371 STATE_DATAOUT, STATE_READY}},
372 /* Read OOB */
373 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
374 STATE_DATAOUT, STATE_READY}},
375 /* Program page starting from the beginning */
376 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
377 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
378 /* Program page starting from the beginning */
379 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
380 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
381 /* Program page starting from the second half */
382 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
383 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
384 /* Program OOB */
385 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
386 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
387 /* Erase sector */
388 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
389 /* Read status */
390 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
391 /* Read ID */
392 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
393 /* Large page devices read page */
394 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
395 STATE_DATAOUT, STATE_READY}},
396 /* Large page devices random page read */
397 {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
398 STATE_DATAOUT, STATE_READY}},
401 struct weak_block {
402 struct list_head list;
403 unsigned int erase_block_no;
404 unsigned int max_erases;
405 unsigned int erases_done;
408 static LIST_HEAD(weak_blocks);
410 struct weak_page {
411 struct list_head list;
412 unsigned int page_no;
413 unsigned int max_writes;
414 unsigned int writes_done;
417 static LIST_HEAD(weak_pages);
419 struct grave_page {
420 struct list_head list;
421 unsigned int page_no;
422 unsigned int max_reads;
423 unsigned int reads_done;
426 static LIST_HEAD(grave_pages);
428 static unsigned long *erase_block_wear = NULL;
429 static unsigned int wear_eb_count = 0;
430 static unsigned long total_wear = 0;
432 /* MTD structure for NAND controller */
433 static struct mtd_info *nsmtd;
435 static int nandsim_show(struct seq_file *m, void *private)
437 unsigned long wmin = -1, wmax = 0, avg;
438 unsigned long deciles[10], decile_max[10], tot = 0;
439 unsigned int i;
441 /* Calc wear stats */
442 for (i = 0; i < wear_eb_count; ++i) {
443 unsigned long wear = erase_block_wear[i];
444 if (wear < wmin)
445 wmin = wear;
446 if (wear > wmax)
447 wmax = wear;
448 tot += wear;
451 for (i = 0; i < 9; ++i) {
452 deciles[i] = 0;
453 decile_max[i] = (wmax * (i + 1) + 5) / 10;
455 deciles[9] = 0;
456 decile_max[9] = wmax;
457 for (i = 0; i < wear_eb_count; ++i) {
458 int d;
459 unsigned long wear = erase_block_wear[i];
460 for (d = 0; d < 10; ++d)
461 if (wear <= decile_max[d]) {
462 deciles[d] += 1;
463 break;
466 avg = tot / wear_eb_count;
468 /* Output wear report */
469 seq_printf(m, "Total numbers of erases: %lu\n", tot);
470 seq_printf(m, "Number of erase blocks: %u\n", wear_eb_count);
471 seq_printf(m, "Average number of erases: %lu\n", avg);
472 seq_printf(m, "Maximum number of erases: %lu\n", wmax);
473 seq_printf(m, "Minimum number of erases: %lu\n", wmin);
474 for (i = 0; i < 10; ++i) {
475 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
476 if (from > decile_max[i])
477 continue;
478 seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
479 from,
480 decile_max[i],
481 deciles[i]);
484 return 0;
486 DEFINE_SHOW_ATTRIBUTE(nandsim);
489 * nandsim_debugfs_create - initialize debugfs
490 * @dev: nandsim device description object
492 * This function creates all debugfs files for UBI device @ubi. Returns zero in
493 * case of success and a negative error code in case of failure.
495 static int nandsim_debugfs_create(struct nandsim *dev)
497 struct dentry *root = nsmtd->dbg.dfs_dir;
498 struct dentry *dent;
501 * Just skip debugfs initialization when the debugfs directory is
502 * missing.
504 if (IS_ERR_OR_NULL(root)) {
505 if (IS_ENABLED(CONFIG_DEBUG_FS) &&
506 !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
507 NS_WARN("CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n");
508 return 0;
511 dent = debugfs_create_file("nandsim_wear_report", S_IRUSR,
512 root, dev, &nandsim_fops);
513 if (IS_ERR_OR_NULL(dent)) {
514 NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n");
515 return -1;
518 return 0;
522 * Allocate array of page pointers, create slab allocation for an array
523 * and initialize the array by NULL pointers.
525 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
527 static int __init alloc_device(struct nandsim *ns)
529 struct file *cfile;
530 int i, err;
532 if (cache_file) {
533 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
534 if (IS_ERR(cfile))
535 return PTR_ERR(cfile);
536 if (!(cfile->f_mode & FMODE_CAN_READ)) {
537 NS_ERR("alloc_device: cache file not readable\n");
538 err = -EINVAL;
539 goto err_close;
541 if (!(cfile->f_mode & FMODE_CAN_WRITE)) {
542 NS_ERR("alloc_device: cache file not writeable\n");
543 err = -EINVAL;
544 goto err_close;
546 ns->pages_written =
547 vzalloc(array_size(sizeof(unsigned long),
548 BITS_TO_LONGS(ns->geom.pgnum)));
549 if (!ns->pages_written) {
550 NS_ERR("alloc_device: unable to allocate pages written array\n");
551 err = -ENOMEM;
552 goto err_close;
554 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
555 if (!ns->file_buf) {
556 NS_ERR("alloc_device: unable to allocate file buf\n");
557 err = -ENOMEM;
558 goto err_free;
560 ns->cfile = cfile;
561 return 0;
564 ns->pages = vmalloc(array_size(sizeof(union ns_mem), ns->geom.pgnum));
565 if (!ns->pages) {
566 NS_ERR("alloc_device: unable to allocate page array\n");
567 return -ENOMEM;
569 for (i = 0; i < ns->geom.pgnum; i++) {
570 ns->pages[i].byte = NULL;
572 ns->nand_pages_slab = kmem_cache_create("nandsim",
573 ns->geom.pgszoob, 0, 0, NULL);
574 if (!ns->nand_pages_slab) {
575 NS_ERR("cache_create: unable to create kmem_cache\n");
576 return -ENOMEM;
579 return 0;
581 err_free:
582 vfree(ns->pages_written);
583 err_close:
584 filp_close(cfile, NULL);
585 return err;
589 * Free any allocated pages, and free the array of page pointers.
591 static void free_device(struct nandsim *ns)
593 int i;
595 if (ns->cfile) {
596 kfree(ns->file_buf);
597 vfree(ns->pages_written);
598 filp_close(ns->cfile, NULL);
599 return;
602 if (ns->pages) {
603 for (i = 0; i < ns->geom.pgnum; i++) {
604 if (ns->pages[i].byte)
605 kmem_cache_free(ns->nand_pages_slab,
606 ns->pages[i].byte);
608 kmem_cache_destroy(ns->nand_pages_slab);
609 vfree(ns->pages);
613 static char __init *get_partition_name(int i)
615 return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i);
619 * Initialize the nandsim structure.
621 * RETURNS: 0 if success, -ERRNO if failure.
623 static int __init init_nandsim(struct mtd_info *mtd)
625 struct nand_chip *chip = mtd_to_nand(mtd);
626 struct nandsim *ns = nand_get_controller_data(chip);
627 int i, ret = 0;
628 uint64_t remains;
629 uint64_t next_offset;
631 if (NS_IS_INITIALIZED(ns)) {
632 NS_ERR("init_nandsim: nandsim is already initialized\n");
633 return -EIO;
636 /* Initialize the NAND flash parameters */
637 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
638 ns->geom.totsz = mtd->size;
639 ns->geom.pgsz = mtd->writesize;
640 ns->geom.oobsz = mtd->oobsize;
641 ns->geom.secsz = mtd->erasesize;
642 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
643 ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz);
644 ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
645 ns->geom.secshift = ffs(ns->geom.secsz) - 1;
646 ns->geom.pgshift = chip->page_shift;
647 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
648 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
649 ns->options = 0;
651 if (ns->geom.pgsz == 512) {
652 ns->options |= OPT_PAGE512;
653 if (ns->busw == 8)
654 ns->options |= OPT_PAGE512_8BIT;
655 } else if (ns->geom.pgsz == 2048) {
656 ns->options |= OPT_PAGE2048;
657 } else if (ns->geom.pgsz == 4096) {
658 ns->options |= OPT_PAGE4096;
659 } else {
660 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
661 return -EIO;
664 if (ns->options & OPT_SMALLPAGE) {
665 if (ns->geom.totsz <= (32 << 20)) {
666 ns->geom.pgaddrbytes = 3;
667 ns->geom.secaddrbytes = 2;
668 } else {
669 ns->geom.pgaddrbytes = 4;
670 ns->geom.secaddrbytes = 3;
672 } else {
673 if (ns->geom.totsz <= (128 << 20)) {
674 ns->geom.pgaddrbytes = 4;
675 ns->geom.secaddrbytes = 2;
676 } else {
677 ns->geom.pgaddrbytes = 5;
678 ns->geom.secaddrbytes = 3;
682 /* Fill the partition_info structure */
683 if (parts_num > ARRAY_SIZE(ns->partitions)) {
684 NS_ERR("too many partitions.\n");
685 return -EINVAL;
687 remains = ns->geom.totsz;
688 next_offset = 0;
689 for (i = 0; i < parts_num; ++i) {
690 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
692 if (!part_sz || part_sz > remains) {
693 NS_ERR("bad partition size.\n");
694 return -EINVAL;
696 ns->partitions[i].name = get_partition_name(i);
697 if (!ns->partitions[i].name) {
698 NS_ERR("unable to allocate memory.\n");
699 return -ENOMEM;
701 ns->partitions[i].offset = next_offset;
702 ns->partitions[i].size = part_sz;
703 next_offset += ns->partitions[i].size;
704 remains -= ns->partitions[i].size;
706 ns->nbparts = parts_num;
707 if (remains) {
708 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
709 NS_ERR("too many partitions.\n");
710 return -EINVAL;
712 ns->partitions[i].name = get_partition_name(i);
713 if (!ns->partitions[i].name) {
714 NS_ERR("unable to allocate memory.\n");
715 return -ENOMEM;
717 ns->partitions[i].offset = next_offset;
718 ns->partitions[i].size = remains;
719 ns->nbparts += 1;
722 if (ns->busw == 16)
723 NS_WARN("16-bit flashes support wasn't tested\n");
725 printk("flash size: %llu MiB\n",
726 (unsigned long long)ns->geom.totsz >> 20);
727 printk("page size: %u bytes\n", ns->geom.pgsz);
728 printk("OOB area size: %u bytes\n", ns->geom.oobsz);
729 printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
730 printk("pages number: %u\n", ns->geom.pgnum);
731 printk("pages per sector: %u\n", ns->geom.pgsec);
732 printk("bus width: %u\n", ns->busw);
733 printk("bits in sector size: %u\n", ns->geom.secshift);
734 printk("bits in page size: %u\n", ns->geom.pgshift);
735 printk("bits in OOB size: %u\n", ffs(ns->geom.oobsz) - 1);
736 printk("flash size with OOB: %llu KiB\n",
737 (unsigned long long)ns->geom.totszoob >> 10);
738 printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
739 printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
740 printk("options: %#x\n", ns->options);
742 if ((ret = alloc_device(ns)) != 0)
743 return ret;
745 /* Allocate / initialize the internal buffer */
746 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
747 if (!ns->buf.byte) {
748 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
749 ns->geom.pgszoob);
750 return -ENOMEM;
752 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
754 return 0;
758 * Free the nandsim structure.
760 static void free_nandsim(struct nandsim *ns)
762 kfree(ns->buf.byte);
763 free_device(ns);
765 return;
768 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
770 char *w;
771 int zero_ok;
772 unsigned int erase_block_no;
773 loff_t offset;
775 if (!badblocks)
776 return 0;
777 w = badblocks;
778 do {
779 zero_ok = (*w == '0' ? 1 : 0);
780 erase_block_no = simple_strtoul(w, &w, 0);
781 if (!zero_ok && !erase_block_no) {
782 NS_ERR("invalid badblocks.\n");
783 return -EINVAL;
785 offset = (loff_t)erase_block_no * ns->geom.secsz;
786 if (mtd_block_markbad(mtd, offset)) {
787 NS_ERR("invalid badblocks.\n");
788 return -EINVAL;
790 if (*w == ',')
791 w += 1;
792 } while (*w);
793 return 0;
796 static int parse_weakblocks(void)
798 char *w;
799 int zero_ok;
800 unsigned int erase_block_no;
801 unsigned int max_erases;
802 struct weak_block *wb;
804 if (!weakblocks)
805 return 0;
806 w = weakblocks;
807 do {
808 zero_ok = (*w == '0' ? 1 : 0);
809 erase_block_no = simple_strtoul(w, &w, 0);
810 if (!zero_ok && !erase_block_no) {
811 NS_ERR("invalid weakblocks.\n");
812 return -EINVAL;
814 max_erases = 3;
815 if (*w == ':') {
816 w += 1;
817 max_erases = simple_strtoul(w, &w, 0);
819 if (*w == ',')
820 w += 1;
821 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
822 if (!wb) {
823 NS_ERR("unable to allocate memory.\n");
824 return -ENOMEM;
826 wb->erase_block_no = erase_block_no;
827 wb->max_erases = max_erases;
828 list_add(&wb->list, &weak_blocks);
829 } while (*w);
830 return 0;
833 static int erase_error(unsigned int erase_block_no)
835 struct weak_block *wb;
837 list_for_each_entry(wb, &weak_blocks, list)
838 if (wb->erase_block_no == erase_block_no) {
839 if (wb->erases_done >= wb->max_erases)
840 return 1;
841 wb->erases_done += 1;
842 return 0;
844 return 0;
847 static int parse_weakpages(void)
849 char *w;
850 int zero_ok;
851 unsigned int page_no;
852 unsigned int max_writes;
853 struct weak_page *wp;
855 if (!weakpages)
856 return 0;
857 w = weakpages;
858 do {
859 zero_ok = (*w == '0' ? 1 : 0);
860 page_no = simple_strtoul(w, &w, 0);
861 if (!zero_ok && !page_no) {
862 NS_ERR("invalid weakpages.\n");
863 return -EINVAL;
865 max_writes = 3;
866 if (*w == ':') {
867 w += 1;
868 max_writes = simple_strtoul(w, &w, 0);
870 if (*w == ',')
871 w += 1;
872 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
873 if (!wp) {
874 NS_ERR("unable to allocate memory.\n");
875 return -ENOMEM;
877 wp->page_no = page_no;
878 wp->max_writes = max_writes;
879 list_add(&wp->list, &weak_pages);
880 } while (*w);
881 return 0;
884 static int write_error(unsigned int page_no)
886 struct weak_page *wp;
888 list_for_each_entry(wp, &weak_pages, list)
889 if (wp->page_no == page_no) {
890 if (wp->writes_done >= wp->max_writes)
891 return 1;
892 wp->writes_done += 1;
893 return 0;
895 return 0;
898 static int parse_gravepages(void)
900 char *g;
901 int zero_ok;
902 unsigned int page_no;
903 unsigned int max_reads;
904 struct grave_page *gp;
906 if (!gravepages)
907 return 0;
908 g = gravepages;
909 do {
910 zero_ok = (*g == '0' ? 1 : 0);
911 page_no = simple_strtoul(g, &g, 0);
912 if (!zero_ok && !page_no) {
913 NS_ERR("invalid gravepagess.\n");
914 return -EINVAL;
916 max_reads = 3;
917 if (*g == ':') {
918 g += 1;
919 max_reads = simple_strtoul(g, &g, 0);
921 if (*g == ',')
922 g += 1;
923 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
924 if (!gp) {
925 NS_ERR("unable to allocate memory.\n");
926 return -ENOMEM;
928 gp->page_no = page_no;
929 gp->max_reads = max_reads;
930 list_add(&gp->list, &grave_pages);
931 } while (*g);
932 return 0;
935 static int read_error(unsigned int page_no)
937 struct grave_page *gp;
939 list_for_each_entry(gp, &grave_pages, list)
940 if (gp->page_no == page_no) {
941 if (gp->reads_done >= gp->max_reads)
942 return 1;
943 gp->reads_done += 1;
944 return 0;
946 return 0;
949 static void free_lists(void)
951 struct list_head *pos, *n;
952 list_for_each_safe(pos, n, &weak_blocks) {
953 list_del(pos);
954 kfree(list_entry(pos, struct weak_block, list));
956 list_for_each_safe(pos, n, &weak_pages) {
957 list_del(pos);
958 kfree(list_entry(pos, struct weak_page, list));
960 list_for_each_safe(pos, n, &grave_pages) {
961 list_del(pos);
962 kfree(list_entry(pos, struct grave_page, list));
964 kfree(erase_block_wear);
967 static int setup_wear_reporting(struct mtd_info *mtd)
969 size_t mem;
971 wear_eb_count = div_u64(mtd->size, mtd->erasesize);
972 mem = wear_eb_count * sizeof(unsigned long);
973 if (mem / sizeof(unsigned long) != wear_eb_count) {
974 NS_ERR("Too many erase blocks for wear reporting\n");
975 return -ENOMEM;
977 erase_block_wear = kzalloc(mem, GFP_KERNEL);
978 if (!erase_block_wear) {
979 NS_ERR("Too many erase blocks for wear reporting\n");
980 return -ENOMEM;
982 return 0;
985 static void update_wear(unsigned int erase_block_no)
987 if (!erase_block_wear)
988 return;
989 total_wear += 1;
991 * TODO: Notify this through a debugfs entry,
992 * instead of showing an error message.
994 if (total_wear == 0)
995 NS_ERR("Erase counter total overflow\n");
996 erase_block_wear[erase_block_no] += 1;
997 if (erase_block_wear[erase_block_no] == 0)
998 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
1002 * Returns the string representation of 'state' state.
1004 static char *get_state_name(uint32_t state)
1006 switch (NS_STATE(state)) {
1007 case STATE_CMD_READ0:
1008 return "STATE_CMD_READ0";
1009 case STATE_CMD_READ1:
1010 return "STATE_CMD_READ1";
1011 case STATE_CMD_PAGEPROG:
1012 return "STATE_CMD_PAGEPROG";
1013 case STATE_CMD_READOOB:
1014 return "STATE_CMD_READOOB";
1015 case STATE_CMD_READSTART:
1016 return "STATE_CMD_READSTART";
1017 case STATE_CMD_ERASE1:
1018 return "STATE_CMD_ERASE1";
1019 case STATE_CMD_STATUS:
1020 return "STATE_CMD_STATUS";
1021 case STATE_CMD_SEQIN:
1022 return "STATE_CMD_SEQIN";
1023 case STATE_CMD_READID:
1024 return "STATE_CMD_READID";
1025 case STATE_CMD_ERASE2:
1026 return "STATE_CMD_ERASE2";
1027 case STATE_CMD_RESET:
1028 return "STATE_CMD_RESET";
1029 case STATE_CMD_RNDOUT:
1030 return "STATE_CMD_RNDOUT";
1031 case STATE_CMD_RNDOUTSTART:
1032 return "STATE_CMD_RNDOUTSTART";
1033 case STATE_ADDR_PAGE:
1034 return "STATE_ADDR_PAGE";
1035 case STATE_ADDR_SEC:
1036 return "STATE_ADDR_SEC";
1037 case STATE_ADDR_ZERO:
1038 return "STATE_ADDR_ZERO";
1039 case STATE_ADDR_COLUMN:
1040 return "STATE_ADDR_COLUMN";
1041 case STATE_DATAIN:
1042 return "STATE_DATAIN";
1043 case STATE_DATAOUT:
1044 return "STATE_DATAOUT";
1045 case STATE_DATAOUT_ID:
1046 return "STATE_DATAOUT_ID";
1047 case STATE_DATAOUT_STATUS:
1048 return "STATE_DATAOUT_STATUS";
1049 case STATE_READY:
1050 return "STATE_READY";
1051 case STATE_UNKNOWN:
1052 return "STATE_UNKNOWN";
1055 NS_ERR("get_state_name: unknown state, BUG\n");
1056 return NULL;
1060 * Check if command is valid.
1062 * RETURNS: 1 if wrong command, 0 if right.
1064 static int check_command(int cmd)
1066 switch (cmd) {
1068 case NAND_CMD_READ0:
1069 case NAND_CMD_READ1:
1070 case NAND_CMD_READSTART:
1071 case NAND_CMD_PAGEPROG:
1072 case NAND_CMD_READOOB:
1073 case NAND_CMD_ERASE1:
1074 case NAND_CMD_STATUS:
1075 case NAND_CMD_SEQIN:
1076 case NAND_CMD_READID:
1077 case NAND_CMD_ERASE2:
1078 case NAND_CMD_RESET:
1079 case NAND_CMD_RNDOUT:
1080 case NAND_CMD_RNDOUTSTART:
1081 return 0;
1083 default:
1084 return 1;
1089 * Returns state after command is accepted by command number.
1091 static uint32_t get_state_by_command(unsigned command)
1093 switch (command) {
1094 case NAND_CMD_READ0:
1095 return STATE_CMD_READ0;
1096 case NAND_CMD_READ1:
1097 return STATE_CMD_READ1;
1098 case NAND_CMD_PAGEPROG:
1099 return STATE_CMD_PAGEPROG;
1100 case NAND_CMD_READSTART:
1101 return STATE_CMD_READSTART;
1102 case NAND_CMD_READOOB:
1103 return STATE_CMD_READOOB;
1104 case NAND_CMD_ERASE1:
1105 return STATE_CMD_ERASE1;
1106 case NAND_CMD_STATUS:
1107 return STATE_CMD_STATUS;
1108 case NAND_CMD_SEQIN:
1109 return STATE_CMD_SEQIN;
1110 case NAND_CMD_READID:
1111 return STATE_CMD_READID;
1112 case NAND_CMD_ERASE2:
1113 return STATE_CMD_ERASE2;
1114 case NAND_CMD_RESET:
1115 return STATE_CMD_RESET;
1116 case NAND_CMD_RNDOUT:
1117 return STATE_CMD_RNDOUT;
1118 case NAND_CMD_RNDOUTSTART:
1119 return STATE_CMD_RNDOUTSTART;
1122 NS_ERR("get_state_by_command: unknown command, BUG\n");
1123 return 0;
1127 * Move an address byte to the correspondent internal register.
1129 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1131 uint byte = (uint)bt;
1133 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1134 ns->regs.column |= (byte << 8 * ns->regs.count);
1135 else {
1136 ns->regs.row |= (byte << 8 * (ns->regs.count -
1137 ns->geom.pgaddrbytes +
1138 ns->geom.secaddrbytes));
1141 return;
1145 * Switch to STATE_READY state.
1147 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1149 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1151 ns->state = STATE_READY;
1152 ns->nxstate = STATE_UNKNOWN;
1153 ns->op = NULL;
1154 ns->npstates = 0;
1155 ns->stateidx = 0;
1156 ns->regs.num = 0;
1157 ns->regs.count = 0;
1158 ns->regs.off = 0;
1159 ns->regs.row = 0;
1160 ns->regs.column = 0;
1161 ns->regs.status = status;
1165 * If the operation isn't known yet, try to find it in the global array
1166 * of supported operations.
1168 * Operation can be unknown because of the following.
1169 * 1. New command was accepted and this is the first call to find the
1170 * correspondent states chain. In this case ns->npstates = 0;
1171 * 2. There are several operations which begin with the same command(s)
1172 * (for example program from the second half and read from the
1173 * second half operations both begin with the READ1 command). In this
1174 * case the ns->pstates[] array contains previous states.
1176 * Thus, the function tries to find operation containing the following
1177 * states (if the 'flag' parameter is 0):
1178 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1180 * If (one and only one) matching operation is found, it is accepted (
1181 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1182 * zeroed).
1184 * If there are several matches, the current state is pushed to the
1185 * ns->pstates.
1187 * The operation can be unknown only while commands are input to the chip.
1188 * As soon as address command is accepted, the operation must be known.
1189 * In such situation the function is called with 'flag' != 0, and the
1190 * operation is searched using the following pattern:
1191 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1193 * It is supposed that this pattern must either match one operation or
1194 * none. There can't be ambiguity in that case.
1196 * If no matches found, the function does the following:
1197 * 1. if there are saved states present, try to ignore them and search
1198 * again only using the last command. If nothing was found, switch
1199 * to the STATE_READY state.
1200 * 2. if there are no saved states, switch to the STATE_READY state.
1202 * RETURNS: -2 - no matched operations found.
1203 * -1 - several matches.
1204 * 0 - operation is found.
1206 static int find_operation(struct nandsim *ns, uint32_t flag)
1208 int opsfound = 0;
1209 int i, j, idx = 0;
1211 for (i = 0; i < NS_OPER_NUM; i++) {
1213 int found = 1;
1215 if (!(ns->options & ops[i].reqopts))
1216 /* Ignore operations we can't perform */
1217 continue;
1219 if (flag) {
1220 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1221 continue;
1222 } else {
1223 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1224 continue;
1227 for (j = 0; j < ns->npstates; j++)
1228 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1229 && (ns->options & ops[idx].reqopts)) {
1230 found = 0;
1231 break;
1234 if (found) {
1235 idx = i;
1236 opsfound += 1;
1240 if (opsfound == 1) {
1241 /* Exact match */
1242 ns->op = &ops[idx].states[0];
1243 if (flag) {
1245 * In this case the find_operation function was
1246 * called when address has just began input. But it isn't
1247 * yet fully input and the current state must
1248 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1249 * state must be the next state (ns->nxstate).
1251 ns->stateidx = ns->npstates - 1;
1252 } else {
1253 ns->stateidx = ns->npstates;
1255 ns->npstates = 0;
1256 ns->state = ns->op[ns->stateidx];
1257 ns->nxstate = ns->op[ns->stateidx + 1];
1258 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1259 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1260 return 0;
1263 if (opsfound == 0) {
1264 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1265 if (ns->npstates != 0) {
1266 NS_DBG("find_operation: no operation found, try again with state %s\n",
1267 get_state_name(ns->state));
1268 ns->npstates = 0;
1269 return find_operation(ns, 0);
1272 NS_DBG("find_operation: no operations found\n");
1273 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1274 return -2;
1277 if (flag) {
1278 /* This shouldn't happen */
1279 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1280 return -2;
1283 NS_DBG("find_operation: there is still ambiguity\n");
1285 ns->pstates[ns->npstates++] = ns->state;
1287 return -1;
1290 static void put_pages(struct nandsim *ns)
1292 int i;
1294 for (i = 0; i < ns->held_cnt; i++)
1295 put_page(ns->held_pages[i]);
1298 /* Get page cache pages in advance to provide NOFS memory allocation */
1299 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1301 pgoff_t index, start_index, end_index;
1302 struct page *page;
1303 struct address_space *mapping = file->f_mapping;
1305 start_index = pos >> PAGE_SHIFT;
1306 end_index = (pos + count - 1) >> PAGE_SHIFT;
1307 if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1308 return -EINVAL;
1309 ns->held_cnt = 0;
1310 for (index = start_index; index <= end_index; index++) {
1311 page = find_get_page(mapping, index);
1312 if (page == NULL) {
1313 page = find_or_create_page(mapping, index, GFP_NOFS);
1314 if (page == NULL) {
1315 write_inode_now(mapping->host, 1);
1316 page = find_or_create_page(mapping, index, GFP_NOFS);
1318 if (page == NULL) {
1319 put_pages(ns);
1320 return -ENOMEM;
1322 unlock_page(page);
1324 ns->held_pages[ns->held_cnt++] = page;
1326 return 0;
1329 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1331 ssize_t tx;
1332 int err;
1333 unsigned int noreclaim_flag;
1335 err = get_pages(ns, file, count, pos);
1336 if (err)
1337 return err;
1338 noreclaim_flag = memalloc_noreclaim_save();
1339 tx = kernel_read(file, buf, count, &pos);
1340 memalloc_noreclaim_restore(noreclaim_flag);
1341 put_pages(ns);
1342 return tx;
1345 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1347 ssize_t tx;
1348 int err;
1349 unsigned int noreclaim_flag;
1351 err = get_pages(ns, file, count, pos);
1352 if (err)
1353 return err;
1354 noreclaim_flag = memalloc_noreclaim_save();
1355 tx = kernel_write(file, buf, count, &pos);
1356 memalloc_noreclaim_restore(noreclaim_flag);
1357 put_pages(ns);
1358 return tx;
1362 * Returns a pointer to the current page.
1364 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1366 return &(ns->pages[ns->regs.row]);
1370 * Retuns a pointer to the current byte, within the current page.
1372 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1374 return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1377 static int do_read_error(struct nandsim *ns, int num)
1379 unsigned int page_no = ns->regs.row;
1381 if (read_error(page_no)) {
1382 prandom_bytes(ns->buf.byte, num);
1383 NS_WARN("simulating read error in page %u\n", page_no);
1384 return 1;
1386 return 0;
1389 static void do_bit_flips(struct nandsim *ns, int num)
1391 if (bitflips && prandom_u32() < (1 << 22)) {
1392 int flips = 1;
1393 if (bitflips > 1)
1394 flips = (prandom_u32() % (int) bitflips) + 1;
1395 while (flips--) {
1396 int pos = prandom_u32() % (num * 8);
1397 ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1398 NS_WARN("read_page: flipping bit %d in page %d "
1399 "reading from %d ecc: corrected=%u failed=%u\n",
1400 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1401 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1407 * Fill the NAND buffer with data read from the specified page.
1409 static void read_page(struct nandsim *ns, int num)
1411 union ns_mem *mypage;
1413 if (ns->cfile) {
1414 if (!test_bit(ns->regs.row, ns->pages_written)) {
1415 NS_DBG("read_page: page %d not written\n", ns->regs.row);
1416 memset(ns->buf.byte, 0xFF, num);
1417 } else {
1418 loff_t pos;
1419 ssize_t tx;
1421 NS_DBG("read_page: page %d written, reading from %d\n",
1422 ns->regs.row, ns->regs.column + ns->regs.off);
1423 if (do_read_error(ns, num))
1424 return;
1425 pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1426 tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos);
1427 if (tx != num) {
1428 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1429 return;
1431 do_bit_flips(ns, num);
1433 return;
1436 mypage = NS_GET_PAGE(ns);
1437 if (mypage->byte == NULL) {
1438 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1439 memset(ns->buf.byte, 0xFF, num);
1440 } else {
1441 NS_DBG("read_page: page %d allocated, reading from %d\n",
1442 ns->regs.row, ns->regs.column + ns->regs.off);
1443 if (do_read_error(ns, num))
1444 return;
1445 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1446 do_bit_flips(ns, num);
1451 * Erase all pages in the specified sector.
1453 static void erase_sector(struct nandsim *ns)
1455 union ns_mem *mypage;
1456 int i;
1458 if (ns->cfile) {
1459 for (i = 0; i < ns->geom.pgsec; i++)
1460 if (__test_and_clear_bit(ns->regs.row + i,
1461 ns->pages_written)) {
1462 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1464 return;
1467 mypage = NS_GET_PAGE(ns);
1468 for (i = 0; i < ns->geom.pgsec; i++) {
1469 if (mypage->byte != NULL) {
1470 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1471 kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1472 mypage->byte = NULL;
1474 mypage++;
1479 * Program the specified page with the contents from the NAND buffer.
1481 static int prog_page(struct nandsim *ns, int num)
1483 int i;
1484 union ns_mem *mypage;
1485 u_char *pg_off;
1487 if (ns->cfile) {
1488 loff_t off;
1489 ssize_t tx;
1490 int all;
1492 NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1493 pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1494 off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1495 if (!test_bit(ns->regs.row, ns->pages_written)) {
1496 all = 1;
1497 memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1498 } else {
1499 all = 0;
1500 tx = read_file(ns, ns->cfile, pg_off, num, off);
1501 if (tx != num) {
1502 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1503 return -1;
1506 for (i = 0; i < num; i++)
1507 pg_off[i] &= ns->buf.byte[i];
1508 if (all) {
1509 loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1510 tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos);
1511 if (tx != ns->geom.pgszoob) {
1512 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1513 return -1;
1515 __set_bit(ns->regs.row, ns->pages_written);
1516 } else {
1517 tx = write_file(ns, ns->cfile, pg_off, num, off);
1518 if (tx != num) {
1519 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1520 return -1;
1523 return 0;
1526 mypage = NS_GET_PAGE(ns);
1527 if (mypage->byte == NULL) {
1528 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1530 * We allocate memory with GFP_NOFS because a flash FS may
1531 * utilize this. If it is holding an FS lock, then gets here,
1532 * then kernel memory alloc runs writeback which goes to the FS
1533 * again and deadlocks. This was seen in practice.
1535 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1536 if (mypage->byte == NULL) {
1537 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1538 return -1;
1540 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1543 pg_off = NS_PAGE_BYTE_OFF(ns);
1544 for (i = 0; i < num; i++)
1545 pg_off[i] &= ns->buf.byte[i];
1547 return 0;
1551 * If state has any action bit, perform this action.
1553 * RETURNS: 0 if success, -1 if error.
1555 static int do_state_action(struct nandsim *ns, uint32_t action)
1557 int num;
1558 int busdiv = ns->busw == 8 ? 1 : 2;
1559 unsigned int erase_block_no, page_no;
1561 action &= ACTION_MASK;
1563 /* Check that page address input is correct */
1564 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1565 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1566 return -1;
1569 switch (action) {
1571 case ACTION_CPY:
1573 * Copy page data to the internal buffer.
1576 /* Column shouldn't be very large */
1577 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1578 NS_ERR("do_state_action: column number is too large\n");
1579 break;
1581 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1582 read_page(ns, num);
1584 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1585 num, NS_RAW_OFFSET(ns) + ns->regs.off);
1587 if (ns->regs.off == 0)
1588 NS_LOG("read page %d\n", ns->regs.row);
1589 else if (ns->regs.off < ns->geom.pgsz)
1590 NS_LOG("read page %d (second half)\n", ns->regs.row);
1591 else
1592 NS_LOG("read OOB of page %d\n", ns->regs.row);
1594 NS_UDELAY(access_delay);
1595 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1597 break;
1599 case ACTION_SECERASE:
1601 * Erase sector.
1604 if (ns->lines.wp) {
1605 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1606 return -1;
1609 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1610 || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1611 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1612 return -1;
1615 ns->regs.row = (ns->regs.row <<
1616 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1617 ns->regs.column = 0;
1619 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1621 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1622 ns->regs.row, NS_RAW_OFFSET(ns));
1623 NS_LOG("erase sector %u\n", erase_block_no);
1625 erase_sector(ns);
1627 NS_MDELAY(erase_delay);
1629 if (erase_block_wear)
1630 update_wear(erase_block_no);
1632 if (erase_error(erase_block_no)) {
1633 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1634 return -1;
1637 break;
1639 case ACTION_PRGPAGE:
1641 * Program page - move internal buffer data to the page.
1644 if (ns->lines.wp) {
1645 NS_WARN("do_state_action: device is write-protected, programm\n");
1646 return -1;
1649 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1650 if (num != ns->regs.count) {
1651 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1652 ns->regs.count, num);
1653 return -1;
1656 if (prog_page(ns, num) == -1)
1657 return -1;
1659 page_no = ns->regs.row;
1661 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1662 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1663 NS_LOG("programm page %d\n", ns->regs.row);
1665 NS_UDELAY(programm_delay);
1666 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1668 if (write_error(page_no)) {
1669 NS_WARN("simulating write failure in page %u\n", page_no);
1670 return -1;
1673 break;
1675 case ACTION_ZEROOFF:
1676 NS_DBG("do_state_action: set internal offset to 0\n");
1677 ns->regs.off = 0;
1678 break;
1680 case ACTION_HALFOFF:
1681 if (!(ns->options & OPT_PAGE512_8BIT)) {
1682 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1683 "byte page size 8x chips\n");
1684 return -1;
1686 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1687 ns->regs.off = ns->geom.pgsz/2;
1688 break;
1690 case ACTION_OOBOFF:
1691 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1692 ns->regs.off = ns->geom.pgsz;
1693 break;
1695 default:
1696 NS_DBG("do_state_action: BUG! unknown action\n");
1699 return 0;
1703 * Switch simulator's state.
1705 static void switch_state(struct nandsim *ns)
1707 if (ns->op) {
1709 * The current operation have already been identified.
1710 * Just follow the states chain.
1713 ns->stateidx += 1;
1714 ns->state = ns->nxstate;
1715 ns->nxstate = ns->op[ns->stateidx + 1];
1717 NS_DBG("switch_state: operation is known, switch to the next state, "
1718 "state: %s, nxstate: %s\n",
1719 get_state_name(ns->state), get_state_name(ns->nxstate));
1721 /* See, whether we need to do some action */
1722 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1723 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1724 return;
1727 } else {
1729 * We don't yet know which operation we perform.
1730 * Try to identify it.
1734 * The only event causing the switch_state function to
1735 * be called with yet unknown operation is new command.
1737 ns->state = get_state_by_command(ns->regs.command);
1739 NS_DBG("switch_state: operation is unknown, try to find it\n");
1741 if (find_operation(ns, 0) != 0)
1742 return;
1744 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1745 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1746 return;
1750 /* For 16x devices column means the page offset in words */
1751 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1752 NS_DBG("switch_state: double the column number for 16x device\n");
1753 ns->regs.column <<= 1;
1756 if (NS_STATE(ns->nxstate) == STATE_READY) {
1758 * The current state is the last. Return to STATE_READY
1761 u_char status = NS_STATUS_OK(ns);
1763 /* In case of data states, see if all bytes were input/output */
1764 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1765 && ns->regs.count != ns->regs.num) {
1766 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1767 ns->regs.num - ns->regs.count);
1768 status = NS_STATUS_FAILED(ns);
1771 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1773 switch_to_ready_state(ns, status);
1775 return;
1776 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1778 * If the next state is data input/output, switch to it now
1781 ns->state = ns->nxstate;
1782 ns->nxstate = ns->op[++ns->stateidx + 1];
1783 ns->regs.num = ns->regs.count = 0;
1785 NS_DBG("switch_state: the next state is data I/O, switch, "
1786 "state: %s, nxstate: %s\n",
1787 get_state_name(ns->state), get_state_name(ns->nxstate));
1790 * Set the internal register to the count of bytes which
1791 * are expected to be input or output
1793 switch (NS_STATE(ns->state)) {
1794 case STATE_DATAIN:
1795 case STATE_DATAOUT:
1796 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1797 break;
1799 case STATE_DATAOUT_ID:
1800 ns->regs.num = ns->geom.idbytes;
1801 break;
1803 case STATE_DATAOUT_STATUS:
1804 ns->regs.count = ns->regs.num = 0;
1805 break;
1807 default:
1808 NS_ERR("switch_state: BUG! unknown data state\n");
1811 } else if (ns->nxstate & STATE_ADDR_MASK) {
1813 * If the next state is address input, set the internal
1814 * register to the number of expected address bytes
1817 ns->regs.count = 0;
1819 switch (NS_STATE(ns->nxstate)) {
1820 case STATE_ADDR_PAGE:
1821 ns->regs.num = ns->geom.pgaddrbytes;
1823 break;
1824 case STATE_ADDR_SEC:
1825 ns->regs.num = ns->geom.secaddrbytes;
1826 break;
1828 case STATE_ADDR_ZERO:
1829 ns->regs.num = 1;
1830 break;
1832 case STATE_ADDR_COLUMN:
1833 /* Column address is always 2 bytes */
1834 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1835 break;
1837 default:
1838 NS_ERR("switch_state: BUG! unknown address state\n");
1840 } else {
1842 * Just reset internal counters.
1845 ns->regs.num = 0;
1846 ns->regs.count = 0;
1850 static u_char ns_nand_read_byte(struct nand_chip *chip)
1852 struct nandsim *ns = nand_get_controller_data(chip);
1853 u_char outb = 0x00;
1855 /* Sanity and correctness checks */
1856 if (!ns->lines.ce) {
1857 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1858 return outb;
1860 if (ns->lines.ale || ns->lines.cle) {
1861 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1862 return outb;
1864 if (!(ns->state & STATE_DATAOUT_MASK)) {
1865 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1866 "return %#x\n", get_state_name(ns->state), (uint)outb);
1867 return outb;
1870 /* Status register may be read as many times as it is wanted */
1871 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1872 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1873 return ns->regs.status;
1876 /* Check if there is any data in the internal buffer which may be read */
1877 if (ns->regs.count == ns->regs.num) {
1878 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1879 return outb;
1882 switch (NS_STATE(ns->state)) {
1883 case STATE_DATAOUT:
1884 if (ns->busw == 8) {
1885 outb = ns->buf.byte[ns->regs.count];
1886 ns->regs.count += 1;
1887 } else {
1888 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1889 ns->regs.count += 2;
1891 break;
1892 case STATE_DATAOUT_ID:
1893 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1894 outb = ns->ids[ns->regs.count];
1895 ns->regs.count += 1;
1896 break;
1897 default:
1898 BUG();
1901 if (ns->regs.count == ns->regs.num) {
1902 NS_DBG("read_byte: all bytes were read\n");
1904 if (NS_STATE(ns->nxstate) == STATE_READY)
1905 switch_state(ns);
1908 return outb;
1911 static void ns_nand_write_byte(struct nand_chip *chip, u_char byte)
1913 struct nandsim *ns = nand_get_controller_data(chip);
1915 /* Sanity and correctness checks */
1916 if (!ns->lines.ce) {
1917 NS_ERR("write_byte: chip is disabled, ignore write\n");
1918 return;
1920 if (ns->lines.ale && ns->lines.cle) {
1921 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1922 return;
1925 if (ns->lines.cle == 1) {
1927 * The byte written is a command.
1930 if (byte == NAND_CMD_RESET) {
1931 NS_LOG("reset chip\n");
1932 switch_to_ready_state(ns, NS_STATUS_OK(ns));
1933 return;
1936 /* Check that the command byte is correct */
1937 if (check_command(byte)) {
1938 NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1939 return;
1942 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1943 || NS_STATE(ns->state) == STATE_DATAOUT) {
1944 int row = ns->regs.row;
1946 switch_state(ns);
1947 if (byte == NAND_CMD_RNDOUT)
1948 ns->regs.row = row;
1951 /* Check if chip is expecting command */
1952 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1953 /* Do not warn if only 2 id bytes are read */
1954 if (!(ns->regs.command == NAND_CMD_READID &&
1955 NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
1957 * We are in situation when something else (not command)
1958 * was expected but command was input. In this case ignore
1959 * previous command(s)/state(s) and accept the last one.
1961 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1962 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1964 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1967 NS_DBG("command byte corresponding to %s state accepted\n",
1968 get_state_name(get_state_by_command(byte)));
1969 ns->regs.command = byte;
1970 switch_state(ns);
1972 } else if (ns->lines.ale == 1) {
1974 * The byte written is an address.
1977 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
1979 NS_DBG("write_byte: operation isn't known yet, identify it\n");
1981 if (find_operation(ns, 1) < 0)
1982 return;
1984 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1985 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1986 return;
1989 ns->regs.count = 0;
1990 switch (NS_STATE(ns->nxstate)) {
1991 case STATE_ADDR_PAGE:
1992 ns->regs.num = ns->geom.pgaddrbytes;
1993 break;
1994 case STATE_ADDR_SEC:
1995 ns->regs.num = ns->geom.secaddrbytes;
1996 break;
1997 case STATE_ADDR_ZERO:
1998 ns->regs.num = 1;
1999 break;
2000 default:
2001 BUG();
2005 /* Check that chip is expecting address */
2006 if (!(ns->nxstate & STATE_ADDR_MASK)) {
2007 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2008 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2009 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2010 return;
2013 /* Check if this is expected byte */
2014 if (ns->regs.count == ns->regs.num) {
2015 NS_ERR("write_byte: no more address bytes expected\n");
2016 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2017 return;
2020 accept_addr_byte(ns, byte);
2022 ns->regs.count += 1;
2024 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2025 (uint)byte, ns->regs.count, ns->regs.num);
2027 if (ns->regs.count == ns->regs.num) {
2028 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2029 switch_state(ns);
2032 } else {
2034 * The byte written is an input data.
2037 /* Check that chip is expecting data input */
2038 if (!(ns->state & STATE_DATAIN_MASK)) {
2039 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2040 "switch to %s\n", (uint)byte,
2041 get_state_name(ns->state), get_state_name(STATE_READY));
2042 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2043 return;
2046 /* Check if this is expected byte */
2047 if (ns->regs.count == ns->regs.num) {
2048 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2049 ns->regs.num);
2050 return;
2053 if (ns->busw == 8) {
2054 ns->buf.byte[ns->regs.count] = byte;
2055 ns->regs.count += 1;
2056 } else {
2057 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2058 ns->regs.count += 2;
2062 return;
2065 static void ns_nand_write_buf(struct nand_chip *chip, const u_char *buf,
2066 int len)
2068 struct nandsim *ns = nand_get_controller_data(chip);
2070 /* Check that chip is expecting data input */
2071 if (!(ns->state & STATE_DATAIN_MASK)) {
2072 NS_ERR("write_buf: data input isn't expected, state is %s, "
2073 "switch to STATE_READY\n", get_state_name(ns->state));
2074 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2075 return;
2078 /* Check if these are expected bytes */
2079 if (ns->regs.count + len > ns->regs.num) {
2080 NS_ERR("write_buf: too many input bytes\n");
2081 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2082 return;
2085 memcpy(ns->buf.byte + ns->regs.count, buf, len);
2086 ns->regs.count += len;
2088 if (ns->regs.count == ns->regs.num) {
2089 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2093 static void ns_nand_read_buf(struct nand_chip *chip, u_char *buf, int len)
2095 struct nandsim *ns = nand_get_controller_data(chip);
2097 /* Sanity and correctness checks */
2098 if (!ns->lines.ce) {
2099 NS_ERR("read_buf: chip is disabled\n");
2100 return;
2102 if (ns->lines.ale || ns->lines.cle) {
2103 NS_ERR("read_buf: ALE or CLE pin is high\n");
2104 return;
2106 if (!(ns->state & STATE_DATAOUT_MASK)) {
2107 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2108 get_state_name(ns->state));
2109 return;
2112 if (NS_STATE(ns->state) != STATE_DATAOUT) {
2113 int i;
2115 for (i = 0; i < len; i++)
2116 buf[i] = ns_nand_read_byte(chip);
2118 return;
2121 /* Check if these are expected bytes */
2122 if (ns->regs.count + len > ns->regs.num) {
2123 NS_ERR("read_buf: too many bytes to read\n");
2124 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2125 return;
2128 memcpy(buf, ns->buf.byte + ns->regs.count, len);
2129 ns->regs.count += len;
2131 if (ns->regs.count == ns->regs.num) {
2132 if (NS_STATE(ns->nxstate) == STATE_READY)
2133 switch_state(ns);
2136 return;
2139 static int ns_exec_op(struct nand_chip *chip, const struct nand_operation *op,
2140 bool check_only)
2142 int i;
2143 unsigned int op_id;
2144 const struct nand_op_instr *instr = NULL;
2145 struct nandsim *ns = nand_get_controller_data(chip);
2147 ns->lines.ce = 1;
2149 for (op_id = 0; op_id < op->ninstrs; op_id++) {
2150 instr = &op->instrs[op_id];
2151 ns->lines.cle = 0;
2152 ns->lines.ale = 0;
2154 switch (instr->type) {
2155 case NAND_OP_CMD_INSTR:
2156 ns->lines.cle = 1;
2157 ns_nand_write_byte(chip, instr->ctx.cmd.opcode);
2158 break;
2159 case NAND_OP_ADDR_INSTR:
2160 ns->lines.ale = 1;
2161 for (i = 0; i < instr->ctx.addr.naddrs; i++)
2162 ns_nand_write_byte(chip, instr->ctx.addr.addrs[i]);
2163 break;
2164 case NAND_OP_DATA_IN_INSTR:
2165 ns_nand_read_buf(chip, instr->ctx.data.buf.in, instr->ctx.data.len);
2166 break;
2167 case NAND_OP_DATA_OUT_INSTR:
2168 ns_nand_write_buf(chip, instr->ctx.data.buf.out, instr->ctx.data.len);
2169 break;
2170 case NAND_OP_WAITRDY_INSTR:
2171 /* we are always ready */
2172 break;
2176 return 0;
2179 static int ns_attach_chip(struct nand_chip *chip)
2181 unsigned int eccsteps, eccbytes;
2183 if (!bch)
2184 return 0;
2186 if (!mtd_nand_has_bch()) {
2187 NS_ERR("BCH ECC support is disabled\n");
2188 return -EINVAL;
2191 /* Use 512-byte ecc blocks */
2192 eccsteps = nsmtd->writesize / 512;
2193 eccbytes = ((bch * 13) + 7) / 8;
2195 /* Do not bother supporting small page devices */
2196 if (nsmtd->oobsize < 64 || !eccsteps) {
2197 NS_ERR("BCH not available on small page devices\n");
2198 return -EINVAL;
2201 if (((eccbytes * eccsteps) + 2) > nsmtd->oobsize) {
2202 NS_ERR("Invalid BCH value %u\n", bch);
2203 return -EINVAL;
2206 chip->ecc.mode = NAND_ECC_SOFT;
2207 chip->ecc.algo = NAND_ECC_BCH;
2208 chip->ecc.size = 512;
2209 chip->ecc.strength = bch;
2210 chip->ecc.bytes = eccbytes;
2212 NS_INFO("Using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2214 return 0;
2217 static const struct nand_controller_ops ns_controller_ops = {
2218 .attach_chip = ns_attach_chip,
2219 .exec_op = ns_exec_op,
2223 * Module initialization function
2225 static int __init ns_init_module(void)
2227 struct nand_chip *chip;
2228 struct nandsim *ns;
2229 int retval = -ENOMEM, i;
2231 if (bus_width != 8 && bus_width != 16) {
2232 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2233 return -EINVAL;
2236 ns = kzalloc(sizeof(struct nandsim), GFP_KERNEL);
2237 if (!ns) {
2238 NS_ERR("unable to allocate core structures.\n");
2239 return -ENOMEM;
2241 chip = &ns->chip;
2242 nsmtd = nand_to_mtd(chip);
2243 nand_set_controller_data(chip, (void *)ns);
2245 chip->ecc.mode = NAND_ECC_SOFT;
2246 chip->ecc.algo = NAND_ECC_HAMMING;
2247 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2248 /* and 'badblocks' parameters to work */
2249 chip->options |= NAND_SKIP_BBTSCAN;
2251 switch (bbt) {
2252 case 2:
2253 chip->bbt_options |= NAND_BBT_NO_OOB;
2254 /* fall through */
2255 case 1:
2256 chip->bbt_options |= NAND_BBT_USE_FLASH;
2257 /* fall through */
2258 case 0:
2259 break;
2260 default:
2261 NS_ERR("bbt has to be 0..2\n");
2262 retval = -EINVAL;
2263 goto error;
2266 * Perform minimum nandsim structure initialization to handle
2267 * the initial ID read command correctly
2269 if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF)
2270 ns->geom.idbytes = 8;
2271 else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF)
2272 ns->geom.idbytes = 6;
2273 else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF)
2274 ns->geom.idbytes = 4;
2275 else
2276 ns->geom.idbytes = 2;
2277 ns->regs.status = NS_STATUS_OK(ns);
2278 ns->nxstate = STATE_UNKNOWN;
2279 ns->options |= OPT_PAGE512; /* temporary value */
2280 memcpy(ns->ids, id_bytes, sizeof(ns->ids));
2281 if (bus_width == 16) {
2282 ns->busw = 16;
2283 chip->options |= NAND_BUSWIDTH_16;
2286 nsmtd->owner = THIS_MODULE;
2288 if ((retval = parse_weakblocks()) != 0)
2289 goto error;
2291 if ((retval = parse_weakpages()) != 0)
2292 goto error;
2294 if ((retval = parse_gravepages()) != 0)
2295 goto error;
2297 nand_controller_init(&ns->base);
2298 ns->base.ops = &ns_controller_ops;
2299 chip->controller = &ns->base;
2301 retval = nand_scan(chip, 1);
2302 if (retval) {
2303 NS_ERR("Could not scan NAND Simulator device\n");
2304 goto error;
2307 if (overridesize) {
2308 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2309 struct nand_memory_organization *memorg;
2310 u64 targetsize;
2312 memorg = nanddev_get_memorg(&chip->base);
2314 if (new_size >> overridesize != nsmtd->erasesize) {
2315 NS_ERR("overridesize is too big\n");
2316 retval = -EINVAL;
2317 goto err_exit;
2320 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2321 nsmtd->size = new_size;
2322 memorg->eraseblocks_per_lun = 1 << overridesize;
2323 targetsize = nanddev_target_size(&chip->base);
2324 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2325 chip->pagemask = (targetsize >> chip->page_shift) - 1;
2328 if ((retval = setup_wear_reporting(nsmtd)) != 0)
2329 goto err_exit;
2331 if ((retval = init_nandsim(nsmtd)) != 0)
2332 goto err_exit;
2334 if ((retval = nand_create_bbt(chip)) != 0)
2335 goto err_exit;
2337 if ((retval = parse_badblocks(ns, nsmtd)) != 0)
2338 goto err_exit;
2340 /* Register NAND partitions */
2341 retval = mtd_device_register(nsmtd, &ns->partitions[0],
2342 ns->nbparts);
2343 if (retval != 0)
2344 goto err_exit;
2346 if ((retval = nandsim_debugfs_create(ns)) != 0)
2347 goto err_exit;
2349 return 0;
2351 err_exit:
2352 free_nandsim(ns);
2353 nand_release(chip);
2354 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2355 kfree(ns->partitions[i].name);
2356 error:
2357 kfree(ns);
2358 free_lists();
2360 return retval;
2363 module_init(ns_init_module);
2366 * Module clean-up function
2368 static void __exit ns_cleanup_module(void)
2370 struct nand_chip *chip = mtd_to_nand(nsmtd);
2371 struct nandsim *ns = nand_get_controller_data(chip);
2372 int i;
2374 free_nandsim(ns); /* Free nandsim private resources */
2375 nand_release(chip); /* Unregister driver */
2376 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2377 kfree(ns->partitions[i].name);
2378 kfree(ns); /* Free other structures */
2379 free_lists();
2382 module_exit(ns_cleanup_module);
2384 MODULE_LICENSE ("GPL");
2385 MODULE_AUTHOR ("Artem B. Bityuckiy");
2386 MODULE_DESCRIPTION ("The NAND flash simulator");