1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright © 2004-2008 Simtec Electronics
4 * http://armlinux.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
10 #define pr_fmt(fmt) "nand-s3c2410: " fmt
12 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
16 #include <linux/module.h>
17 #include <linux/types.h>
18 #include <linux/kernel.h>
19 #include <linux/string.h>
21 #include <linux/ioport.h>
22 #include <linux/platform_device.h>
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26 #include <linux/clk.h>
27 #include <linux/cpufreq.h>
29 #include <linux/of_device.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/rawnand.h>
33 #include <linux/mtd/nand_ecc.h>
34 #include <linux/mtd/partitions.h>
36 #include <linux/platform_data/mtd-nand-s3c2410.h>
38 #define S3C2410_NFREG(x) (x)
40 #define S3C2410_NFCONF S3C2410_NFREG(0x00)
41 #define S3C2410_NFCMD S3C2410_NFREG(0x04)
42 #define S3C2410_NFADDR S3C2410_NFREG(0x08)
43 #define S3C2410_NFDATA S3C2410_NFREG(0x0C)
44 #define S3C2410_NFSTAT S3C2410_NFREG(0x10)
45 #define S3C2410_NFECC S3C2410_NFREG(0x14)
46 #define S3C2440_NFCONT S3C2410_NFREG(0x04)
47 #define S3C2440_NFCMD S3C2410_NFREG(0x08)
48 #define S3C2440_NFADDR S3C2410_NFREG(0x0C)
49 #define S3C2440_NFDATA S3C2410_NFREG(0x10)
50 #define S3C2440_NFSTAT S3C2410_NFREG(0x20)
51 #define S3C2440_NFMECC0 S3C2410_NFREG(0x2C)
52 #define S3C2412_NFSTAT S3C2410_NFREG(0x28)
53 #define S3C2412_NFMECC0 S3C2410_NFREG(0x34)
54 #define S3C2410_NFCONF_EN (1<<15)
55 #define S3C2410_NFCONF_INITECC (1<<12)
56 #define S3C2410_NFCONF_nFCE (1<<11)
57 #define S3C2410_NFCONF_TACLS(x) ((x)<<8)
58 #define S3C2410_NFCONF_TWRPH0(x) ((x)<<4)
59 #define S3C2410_NFCONF_TWRPH1(x) ((x)<<0)
60 #define S3C2410_NFSTAT_BUSY (1<<0)
61 #define S3C2440_NFCONF_TACLS(x) ((x)<<12)
62 #define S3C2440_NFCONF_TWRPH0(x) ((x)<<8)
63 #define S3C2440_NFCONF_TWRPH1(x) ((x)<<4)
64 #define S3C2440_NFCONT_INITECC (1<<4)
65 #define S3C2440_NFCONT_nFCE (1<<1)
66 #define S3C2440_NFCONT_ENABLE (1<<0)
67 #define S3C2440_NFSTAT_READY (1<<0)
68 #define S3C2412_NFCONF_NANDBOOT (1<<31)
69 #define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5)
70 #define S3C2412_NFCONT_nFCE0 (1<<1)
71 #define S3C2412_NFSTAT_READY (1<<0)
73 /* new oob placement block for use with hardware ecc generation
75 static int s3c2410_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
76 struct mtd_oob_region
*oobregion
)
81 oobregion
->offset
= 0;
82 oobregion
->length
= 3;
87 static int s3c2410_ooblayout_free(struct mtd_info
*mtd
, int section
,
88 struct mtd_oob_region
*oobregion
)
93 oobregion
->offset
= 8;
94 oobregion
->length
= 8;
99 static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops
= {
100 .ecc
= s3c2410_ooblayout_ecc
,
101 .free
= s3c2410_ooblayout_free
,
104 /* controller and mtd information */
106 struct s3c2410_nand_info
;
109 * struct s3c2410_nand_mtd - driver MTD structure
110 * @mtd: The MTD instance to pass to the MTD layer.
111 * @chip: The NAND chip information.
112 * @set: The platform information supplied for this set of NAND chips.
113 * @info: Link back to the hardware information.
115 struct s3c2410_nand_mtd
{
116 struct nand_chip chip
;
117 struct s3c2410_nand_set
*set
;
118 struct s3c2410_nand_info
*info
;
127 enum s3c_nand_clk_state
{
133 /* overview of the s3c2410 nand state */
136 * struct s3c2410_nand_info - NAND controller state.
137 * @mtds: An array of MTD instances on this controoler.
138 * @platform: The platform data for this board.
139 * @device: The platform device we bound to.
140 * @clk: The clock resource for this controller.
141 * @regs: The area mapped for the hardware registers.
142 * @sel_reg: Pointer to the register controlling the NAND selection.
143 * @sel_bit: The bit in @sel_reg to select the NAND chip.
144 * @mtd_count: The number of MTDs created from this controller.
145 * @save_sel: The contents of @sel_reg to be saved over suspend.
146 * @clk_rate: The clock rate from @clk.
147 * @clk_state: The current clock state.
148 * @cpu_type: The exact type of this controller.
150 struct s3c2410_nand_info
{
152 struct nand_controller controller
;
153 struct s3c2410_nand_mtd
*mtds
;
154 struct s3c2410_platform_nand
*platform
;
157 struct device
*device
;
160 void __iomem
*sel_reg
;
163 unsigned long save_sel
;
164 unsigned long clk_rate
;
165 enum s3c_nand_clk_state clk_state
;
167 enum s3c_cpu_type cpu_type
;
169 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
170 struct notifier_block freq_transition
;
174 struct s3c24XX_nand_devtype_data
{
175 enum s3c_cpu_type type
;
178 static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data
= {
179 .type
= TYPE_S3C2410
,
182 static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data
= {
183 .type
= TYPE_S3C2412
,
186 static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data
= {
187 .type
= TYPE_S3C2440
,
190 /* conversion functions */
192 static struct s3c2410_nand_mtd
*s3c2410_nand_mtd_toours(struct mtd_info
*mtd
)
194 return container_of(mtd_to_nand(mtd
), struct s3c2410_nand_mtd
,
198 static struct s3c2410_nand_info
*s3c2410_nand_mtd_toinfo(struct mtd_info
*mtd
)
200 return s3c2410_nand_mtd_toours(mtd
)->info
;
203 static struct s3c2410_nand_info
*to_nand_info(struct platform_device
*dev
)
205 return platform_get_drvdata(dev
);
208 static struct s3c2410_platform_nand
*to_nand_plat(struct platform_device
*dev
)
210 return dev_get_platdata(&dev
->dev
);
213 static inline int allow_clk_suspend(struct s3c2410_nand_info
*info
)
215 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
223 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
224 * @info: The controller instance.
225 * @new_state: State to which clock should be set.
227 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info
*info
,
228 enum s3c_nand_clk_state new_state
)
230 if (!allow_clk_suspend(info
) && new_state
== CLOCK_SUSPEND
)
233 if (info
->clk_state
== CLOCK_ENABLE
) {
234 if (new_state
!= CLOCK_ENABLE
)
235 clk_disable_unprepare(info
->clk
);
237 if (new_state
== CLOCK_ENABLE
)
238 clk_prepare_enable(info
->clk
);
241 info
->clk_state
= new_state
;
244 /* timing calculations */
246 #define NS_IN_KHZ 1000000
249 * s3c_nand_calc_rate - calculate timing data.
250 * @wanted: The cycle time in nanoseconds.
251 * @clk: The clock rate in kHz.
252 * @max: The maximum divider value.
254 * Calculate the timing value from the given parameters.
256 static int s3c_nand_calc_rate(int wanted
, unsigned long clk
, int max
)
260 result
= DIV_ROUND_UP((wanted
* clk
), NS_IN_KHZ
);
262 pr_debug("result %d from %ld, %d\n", result
, clk
, wanted
);
265 pr_err("%d ns is too big for current clock rate %ld\n",
276 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
278 /* controller setup */
281 * s3c2410_nand_setrate - setup controller timing information.
282 * @info: The controller instance.
284 * Given the information supplied by the platform, calculate and set
285 * the necessary timing registers in the hardware to generate the
286 * necessary timing cycles to the hardware.
288 static int s3c2410_nand_setrate(struct s3c2410_nand_info
*info
)
290 struct s3c2410_platform_nand
*plat
= info
->platform
;
291 int tacls_max
= (info
->cpu_type
== TYPE_S3C2412
) ? 8 : 4;
292 int tacls
, twrph0
, twrph1
;
293 unsigned long clkrate
= clk_get_rate(info
->clk
);
294 unsigned long uninitialized_var(set
), cfg
, uninitialized_var(mask
);
297 /* calculate the timing information for the controller */
299 info
->clk_rate
= clkrate
;
300 clkrate
/= 1000; /* turn clock into kHz for ease of use */
303 tacls
= s3c_nand_calc_rate(plat
->tacls
, clkrate
, tacls_max
);
304 twrph0
= s3c_nand_calc_rate(plat
->twrph0
, clkrate
, 8);
305 twrph1
= s3c_nand_calc_rate(plat
->twrph1
, clkrate
, 8);
307 /* default timings */
313 if (tacls
< 0 || twrph0
< 0 || twrph1
< 0) {
314 dev_err(info
->device
, "cannot get suitable timings\n");
318 dev_info(info
->device
, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
319 tacls
, to_ns(tacls
, clkrate
), twrph0
, to_ns(twrph0
, clkrate
),
320 twrph1
, to_ns(twrph1
, clkrate
));
322 switch (info
->cpu_type
) {
324 mask
= (S3C2410_NFCONF_TACLS(3) |
325 S3C2410_NFCONF_TWRPH0(7) |
326 S3C2410_NFCONF_TWRPH1(7));
327 set
= S3C2410_NFCONF_EN
;
328 set
|= S3C2410_NFCONF_TACLS(tacls
- 1);
329 set
|= S3C2410_NFCONF_TWRPH0(twrph0
- 1);
330 set
|= S3C2410_NFCONF_TWRPH1(twrph1
- 1);
335 mask
= (S3C2440_NFCONF_TACLS(tacls_max
- 1) |
336 S3C2440_NFCONF_TWRPH0(7) |
337 S3C2440_NFCONF_TWRPH1(7));
339 set
= S3C2440_NFCONF_TACLS(tacls
- 1);
340 set
|= S3C2440_NFCONF_TWRPH0(twrph0
- 1);
341 set
|= S3C2440_NFCONF_TWRPH1(twrph1
- 1);
348 local_irq_save(flags
);
350 cfg
= readl(info
->regs
+ S3C2410_NFCONF
);
353 writel(cfg
, info
->regs
+ S3C2410_NFCONF
);
355 local_irq_restore(flags
);
357 dev_dbg(info
->device
, "NF_CONF is 0x%lx\n", cfg
);
363 * s3c2410_nand_inithw - basic hardware initialisation
364 * @info: The hardware state.
366 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
367 * to setup the hardware access speeds and set the controller to be enabled.
369 static int s3c2410_nand_inithw(struct s3c2410_nand_info
*info
)
373 ret
= s3c2410_nand_setrate(info
);
377 switch (info
->cpu_type
) {
384 /* enable the controller and de-assert nFCE */
386 writel(S3C2440_NFCONT_ENABLE
, info
->regs
+ S3C2440_NFCONT
);
393 * s3c2410_nand_select_chip - select the given nand chip
394 * @this: NAND chip object.
395 * @chip: The chip number.
397 * This is called by the MTD layer to either select a given chip for the
398 * @mtd instance, or to indicate that the access has finished and the
399 * chip can be de-selected.
401 * The routine ensures that the nFCE line is correctly setup, and any
402 * platform specific selection code is called to route nFCE to the specific
405 static void s3c2410_nand_select_chip(struct nand_chip
*this, int chip
)
407 struct s3c2410_nand_info
*info
;
408 struct s3c2410_nand_mtd
*nmtd
;
411 nmtd
= nand_get_controller_data(this);
415 s3c2410_nand_clk_set_state(info
, CLOCK_ENABLE
);
417 cur
= readl(info
->sel_reg
);
420 cur
|= info
->sel_bit
;
422 if (nmtd
->set
!= NULL
&& chip
> nmtd
->set
->nr_chips
) {
423 dev_err(info
->device
, "invalid chip %d\n", chip
);
427 if (info
->platform
!= NULL
) {
428 if (info
->platform
->select_chip
!= NULL
)
429 (info
->platform
->select_chip
) (nmtd
->set
, chip
);
432 cur
&= ~info
->sel_bit
;
435 writel(cur
, info
->sel_reg
);
438 s3c2410_nand_clk_set_state(info
, CLOCK_SUSPEND
);
441 /* s3c2410_nand_hwcontrol
443 * Issue command and address cycles to the chip
446 static void s3c2410_nand_hwcontrol(struct nand_chip
*chip
, int cmd
,
449 struct mtd_info
*mtd
= nand_to_mtd(chip
);
450 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
452 if (cmd
== NAND_CMD_NONE
)
456 writeb(cmd
, info
->regs
+ S3C2410_NFCMD
);
458 writeb(cmd
, info
->regs
+ S3C2410_NFADDR
);
461 /* command and control functions */
463 static void s3c2440_nand_hwcontrol(struct nand_chip
*chip
, int cmd
,
466 struct mtd_info
*mtd
= nand_to_mtd(chip
);
467 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
469 if (cmd
== NAND_CMD_NONE
)
473 writeb(cmd
, info
->regs
+ S3C2440_NFCMD
);
475 writeb(cmd
, info
->regs
+ S3C2440_NFADDR
);
478 /* s3c2410_nand_devready()
480 * returns 0 if the nand is busy, 1 if it is ready
483 static int s3c2410_nand_devready(struct nand_chip
*chip
)
485 struct mtd_info
*mtd
= nand_to_mtd(chip
);
486 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
487 return readb(info
->regs
+ S3C2410_NFSTAT
) & S3C2410_NFSTAT_BUSY
;
490 static int s3c2440_nand_devready(struct nand_chip
*chip
)
492 struct mtd_info
*mtd
= nand_to_mtd(chip
);
493 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
494 return readb(info
->regs
+ S3C2440_NFSTAT
) & S3C2440_NFSTAT_READY
;
497 static int s3c2412_nand_devready(struct nand_chip
*chip
)
499 struct mtd_info
*mtd
= nand_to_mtd(chip
);
500 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
501 return readb(info
->regs
+ S3C2412_NFSTAT
) & S3C2412_NFSTAT_READY
;
504 /* ECC handling functions */
506 static int s3c2410_nand_correct_data(struct nand_chip
*chip
, u_char
*dat
,
507 u_char
*read_ecc
, u_char
*calc_ecc
)
509 struct mtd_info
*mtd
= nand_to_mtd(chip
);
510 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
511 unsigned int diff0
, diff1
, diff2
;
512 unsigned int bit
, byte
;
514 pr_debug("%s(%p,%p,%p,%p)\n", __func__
, mtd
, dat
, read_ecc
, calc_ecc
);
516 diff0
= read_ecc
[0] ^ calc_ecc
[0];
517 diff1
= read_ecc
[1] ^ calc_ecc
[1];
518 diff2
= read_ecc
[2] ^ calc_ecc
[2];
520 pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
521 __func__
, 3, read_ecc
, 3, calc_ecc
,
522 diff0
, diff1
, diff2
);
524 if (diff0
== 0 && diff1
== 0 && diff2
== 0)
525 return 0; /* ECC is ok */
527 /* sometimes people do not think about using the ECC, so check
528 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
529 * the error, on the assumption that this is an un-eccd page.
531 if (read_ecc
[0] == 0xff && read_ecc
[1] == 0xff && read_ecc
[2] == 0xff
532 && info
->platform
->ignore_unset_ecc
)
535 /* Can we correct this ECC (ie, one row and column change).
536 * Note, this is similar to the 256 error code on smartmedia */
538 if (((diff0
^ (diff0
>> 1)) & 0x55) == 0x55 &&
539 ((diff1
^ (diff1
>> 1)) & 0x55) == 0x55 &&
540 ((diff2
^ (diff2
>> 1)) & 0x55) == 0x55) {
541 /* calculate the bit position of the error */
543 bit
= ((diff2
>> 3) & 1) |
547 /* calculate the byte position of the error */
549 byte
= ((diff2
<< 7) & 0x100) |
550 ((diff1
<< 0) & 0x80) |
551 ((diff1
<< 1) & 0x40) |
552 ((diff1
<< 2) & 0x20) |
553 ((diff1
<< 3) & 0x10) |
554 ((diff0
>> 4) & 0x08) |
555 ((diff0
>> 3) & 0x04) |
556 ((diff0
>> 2) & 0x02) |
557 ((diff0
>> 1) & 0x01);
559 dev_dbg(info
->device
, "correcting error bit %d, byte %d\n",
562 dat
[byte
] ^= (1 << bit
);
566 /* if there is only one bit difference in the ECC, then
567 * one of only a row or column parity has changed, which
568 * means the error is most probably in the ECC itself */
570 diff0
|= (diff1
<< 8);
571 diff0
|= (diff2
<< 16);
573 /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
574 if ((diff0
& (diff0
- 1)) == 0)
582 * These allow the s3c2410 and s3c2440 to use the controller's ECC
583 * generator block to ECC the data as it passes through]
586 static void s3c2410_nand_enable_hwecc(struct nand_chip
*chip
, int mode
)
588 struct s3c2410_nand_info
*info
;
591 info
= s3c2410_nand_mtd_toinfo(nand_to_mtd(chip
));
592 ctrl
= readl(info
->regs
+ S3C2410_NFCONF
);
593 ctrl
|= S3C2410_NFCONF_INITECC
;
594 writel(ctrl
, info
->regs
+ S3C2410_NFCONF
);
597 static void s3c2412_nand_enable_hwecc(struct nand_chip
*chip
, int mode
)
599 struct s3c2410_nand_info
*info
;
602 info
= s3c2410_nand_mtd_toinfo(nand_to_mtd(chip
));
603 ctrl
= readl(info
->regs
+ S3C2440_NFCONT
);
604 writel(ctrl
| S3C2412_NFCONT_INIT_MAIN_ECC
,
605 info
->regs
+ S3C2440_NFCONT
);
608 static void s3c2440_nand_enable_hwecc(struct nand_chip
*chip
, int mode
)
610 struct s3c2410_nand_info
*info
;
613 info
= s3c2410_nand_mtd_toinfo(nand_to_mtd(chip
));
614 ctrl
= readl(info
->regs
+ S3C2440_NFCONT
);
615 writel(ctrl
| S3C2440_NFCONT_INITECC
, info
->regs
+ S3C2440_NFCONT
);
618 static int s3c2410_nand_calculate_ecc(struct nand_chip
*chip
,
619 const u_char
*dat
, u_char
*ecc_code
)
621 struct mtd_info
*mtd
= nand_to_mtd(chip
);
622 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
624 ecc_code
[0] = readb(info
->regs
+ S3C2410_NFECC
+ 0);
625 ecc_code
[1] = readb(info
->regs
+ S3C2410_NFECC
+ 1);
626 ecc_code
[2] = readb(info
->regs
+ S3C2410_NFECC
+ 2);
628 pr_debug("%s: returning ecc %*phN\n", __func__
, 3, ecc_code
);
633 static int s3c2412_nand_calculate_ecc(struct nand_chip
*chip
,
634 const u_char
*dat
, u_char
*ecc_code
)
636 struct mtd_info
*mtd
= nand_to_mtd(chip
);
637 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
638 unsigned long ecc
= readl(info
->regs
+ S3C2412_NFMECC0
);
641 ecc_code
[1] = ecc
>> 8;
642 ecc_code
[2] = ecc
>> 16;
644 pr_debug("%s: returning ecc %*phN\n", __func__
, 3, ecc_code
);
649 static int s3c2440_nand_calculate_ecc(struct nand_chip
*chip
,
650 const u_char
*dat
, u_char
*ecc_code
)
652 struct mtd_info
*mtd
= nand_to_mtd(chip
);
653 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
654 unsigned long ecc
= readl(info
->regs
+ S3C2440_NFMECC0
);
657 ecc_code
[1] = ecc
>> 8;
658 ecc_code
[2] = ecc
>> 16;
660 pr_debug("%s: returning ecc %06lx\n", __func__
, ecc
& 0xffffff);
665 /* over-ride the standard functions for a little more speed. We can
666 * use read/write block to move the data buffers to/from the controller
669 static void s3c2410_nand_read_buf(struct nand_chip
*this, u_char
*buf
, int len
)
671 readsb(this->legacy
.IO_ADDR_R
, buf
, len
);
674 static void s3c2440_nand_read_buf(struct nand_chip
*this, u_char
*buf
, int len
)
676 struct mtd_info
*mtd
= nand_to_mtd(this);
677 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
679 readsl(info
->regs
+ S3C2440_NFDATA
, buf
, len
>> 2);
681 /* cleanup if we've got less than a word to do */
685 for (; len
& 3; len
--)
686 *buf
++ = readb(info
->regs
+ S3C2440_NFDATA
);
690 static void s3c2410_nand_write_buf(struct nand_chip
*this, const u_char
*buf
,
693 writesb(this->legacy
.IO_ADDR_W
, buf
, len
);
696 static void s3c2440_nand_write_buf(struct nand_chip
*this, const u_char
*buf
,
699 struct mtd_info
*mtd
= nand_to_mtd(this);
700 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
702 writesl(info
->regs
+ S3C2440_NFDATA
, buf
, len
>> 2);
704 /* cleanup any fractional write */
708 for (; len
& 3; len
--, buf
++)
709 writeb(*buf
, info
->regs
+ S3C2440_NFDATA
);
713 /* cpufreq driver support */
715 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
717 static int s3c2410_nand_cpufreq_transition(struct notifier_block
*nb
,
718 unsigned long val
, void *data
)
720 struct s3c2410_nand_info
*info
;
721 unsigned long newclk
;
723 info
= container_of(nb
, struct s3c2410_nand_info
, freq_transition
);
724 newclk
= clk_get_rate(info
->clk
);
726 if ((val
== CPUFREQ_POSTCHANGE
&& newclk
< info
->clk_rate
) ||
727 (val
== CPUFREQ_PRECHANGE
&& newclk
> info
->clk_rate
)) {
728 s3c2410_nand_setrate(info
);
734 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info
*info
)
736 info
->freq_transition
.notifier_call
= s3c2410_nand_cpufreq_transition
;
738 return cpufreq_register_notifier(&info
->freq_transition
,
739 CPUFREQ_TRANSITION_NOTIFIER
);
743 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info
*info
)
745 cpufreq_unregister_notifier(&info
->freq_transition
,
746 CPUFREQ_TRANSITION_NOTIFIER
);
750 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info
*info
)
756 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info
*info
)
761 /* device management functions */
763 static int s3c24xx_nand_remove(struct platform_device
*pdev
)
765 struct s3c2410_nand_info
*info
= to_nand_info(pdev
);
770 s3c2410_nand_cpufreq_deregister(info
);
772 /* Release all our mtds and their partitions, then go through
773 * freeing the resources used
776 if (info
->mtds
!= NULL
) {
777 struct s3c2410_nand_mtd
*ptr
= info
->mtds
;
780 for (mtdno
= 0; mtdno
< info
->mtd_count
; mtdno
++, ptr
++) {
781 pr_debug("releasing mtd %d (%p)\n", mtdno
, ptr
);
782 nand_release(&ptr
->chip
);
786 /* free the common resources */
788 if (!IS_ERR(info
->clk
))
789 s3c2410_nand_clk_set_state(info
, CLOCK_DISABLE
);
794 static int s3c2410_nand_add_partition(struct s3c2410_nand_info
*info
,
795 struct s3c2410_nand_mtd
*mtd
,
796 struct s3c2410_nand_set
*set
)
799 struct mtd_info
*mtdinfo
= nand_to_mtd(&mtd
->chip
);
801 mtdinfo
->name
= set
->name
;
803 return mtd_device_register(mtdinfo
, set
->partitions
,
810 static int s3c2410_nand_setup_data_interface(struct nand_chip
*chip
, int csline
,
811 const struct nand_data_interface
*conf
)
813 struct mtd_info
*mtd
= nand_to_mtd(chip
);
814 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
815 struct s3c2410_platform_nand
*pdata
= info
->platform
;
816 const struct nand_sdr_timings
*timings
;
819 timings
= nand_get_sdr_timings(conf
);
823 tacls
= timings
->tCLS_min
- timings
->tWP_min
;
827 pdata
->tacls
= DIV_ROUND_UP(tacls
, 1000);
828 pdata
->twrph0
= DIV_ROUND_UP(timings
->tWP_min
, 1000);
829 pdata
->twrph1
= DIV_ROUND_UP(timings
->tCLH_min
, 1000);
831 return s3c2410_nand_setrate(info
);
835 * s3c2410_nand_init_chip - initialise a single instance of an chip
836 * @info: The base NAND controller the chip is on.
837 * @nmtd: The new controller MTD instance to fill in.
838 * @set: The information passed from the board specific platform data.
840 * Initialise the given @nmtd from the information in @info and @set. This
841 * readies the structure for use with the MTD layer functions by ensuring
842 * all pointers are setup and the necessary control routines selected.
844 static void s3c2410_nand_init_chip(struct s3c2410_nand_info
*info
,
845 struct s3c2410_nand_mtd
*nmtd
,
846 struct s3c2410_nand_set
*set
)
848 struct device_node
*np
= info
->device
->of_node
;
849 struct nand_chip
*chip
= &nmtd
->chip
;
850 void __iomem
*regs
= info
->regs
;
852 nand_set_flash_node(chip
, set
->of_node
);
854 chip
->legacy
.write_buf
= s3c2410_nand_write_buf
;
855 chip
->legacy
.read_buf
= s3c2410_nand_read_buf
;
856 chip
->legacy
.select_chip
= s3c2410_nand_select_chip
;
857 chip
->legacy
.chip_delay
= 50;
858 nand_set_controller_data(chip
, nmtd
);
859 chip
->options
= set
->options
;
860 chip
->controller
= &info
->controller
;
863 * let's keep behavior unchanged for legacy boards booting via pdata and
864 * auto-detect timings only when booting with a device tree.
867 chip
->options
|= NAND_KEEP_TIMINGS
;
869 switch (info
->cpu_type
) {
871 chip
->legacy
.IO_ADDR_W
= regs
+ S3C2410_NFDATA
;
872 info
->sel_reg
= regs
+ S3C2410_NFCONF
;
873 info
->sel_bit
= S3C2410_NFCONF_nFCE
;
874 chip
->legacy
.cmd_ctrl
= s3c2410_nand_hwcontrol
;
875 chip
->legacy
.dev_ready
= s3c2410_nand_devready
;
879 chip
->legacy
.IO_ADDR_W
= regs
+ S3C2440_NFDATA
;
880 info
->sel_reg
= regs
+ S3C2440_NFCONT
;
881 info
->sel_bit
= S3C2440_NFCONT_nFCE
;
882 chip
->legacy
.cmd_ctrl
= s3c2440_nand_hwcontrol
;
883 chip
->legacy
.dev_ready
= s3c2440_nand_devready
;
884 chip
->legacy
.read_buf
= s3c2440_nand_read_buf
;
885 chip
->legacy
.write_buf
= s3c2440_nand_write_buf
;
889 chip
->legacy
.IO_ADDR_W
= regs
+ S3C2440_NFDATA
;
890 info
->sel_reg
= regs
+ S3C2440_NFCONT
;
891 info
->sel_bit
= S3C2412_NFCONT_nFCE0
;
892 chip
->legacy
.cmd_ctrl
= s3c2440_nand_hwcontrol
;
893 chip
->legacy
.dev_ready
= s3c2412_nand_devready
;
895 if (readl(regs
+ S3C2410_NFCONF
) & S3C2412_NFCONF_NANDBOOT
)
896 dev_info(info
->device
, "System booted from NAND\n");
901 chip
->legacy
.IO_ADDR_R
= chip
->legacy
.IO_ADDR_W
;
906 chip
->ecc
.mode
= info
->platform
->ecc_mode
;
909 * If you use u-boot BBT creation code, specifying this flag will
910 * let the kernel fish out the BBT from the NAND.
913 chip
->bbt_options
|= NAND_BBT_USE_FLASH
;
917 * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan
918 * @chip: The NAND chip
920 * This hook is called by the core after the identification of the NAND chip,
921 * once the relevant per-chip information is up to date.. This call ensure that
922 * we update the internal state accordingly.
924 * The internal state is currently limited to the ECC state information.
926 static int s3c2410_nand_attach_chip(struct nand_chip
*chip
)
928 struct mtd_info
*mtd
= nand_to_mtd(chip
);
929 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
931 switch (chip
->ecc
.mode
) {
934 dev_info(info
->device
, "ECC disabled\n");
939 * This driver expects Hamming based ECC when ecc_mode is set
940 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
941 * avoid adding an extra ecc_algo field to
942 * s3c2410_platform_nand.
944 chip
->ecc
.algo
= NAND_ECC_HAMMING
;
945 dev_info(info
->device
, "soft ECC\n");
949 chip
->ecc
.calculate
= s3c2410_nand_calculate_ecc
;
950 chip
->ecc
.correct
= s3c2410_nand_correct_data
;
951 chip
->ecc
.strength
= 1;
953 switch (info
->cpu_type
) {
955 chip
->ecc
.hwctl
= s3c2410_nand_enable_hwecc
;
956 chip
->ecc
.calculate
= s3c2410_nand_calculate_ecc
;
960 chip
->ecc
.hwctl
= s3c2412_nand_enable_hwecc
;
961 chip
->ecc
.calculate
= s3c2412_nand_calculate_ecc
;
965 chip
->ecc
.hwctl
= s3c2440_nand_enable_hwecc
;
966 chip
->ecc
.calculate
= s3c2440_nand_calculate_ecc
;
970 dev_dbg(info
->device
, "chip %p => page shift %d\n",
971 chip
, chip
->page_shift
);
973 /* change the behaviour depending on whether we are using
974 * the large or small page nand device */
975 if (chip
->page_shift
> 10) {
976 chip
->ecc
.size
= 256;
979 chip
->ecc
.size
= 512;
981 mtd_set_ooblayout(nand_to_mtd(chip
),
982 &s3c2410_ooblayout_ops
);
985 dev_info(info
->device
, "hardware ECC\n");
989 dev_err(info
->device
, "invalid ECC mode!\n");
993 if (chip
->bbt_options
& NAND_BBT_USE_FLASH
)
994 chip
->options
|= NAND_SKIP_BBTSCAN
;
999 static const struct nand_controller_ops s3c24xx_nand_controller_ops
= {
1000 .attach_chip
= s3c2410_nand_attach_chip
,
1001 .setup_data_interface
= s3c2410_nand_setup_data_interface
,
1004 static const struct of_device_id s3c24xx_nand_dt_ids
[] = {
1006 .compatible
= "samsung,s3c2410-nand",
1007 .data
= &s3c2410_nand_devtype_data
,
1009 /* also compatible with s3c6400 */
1010 .compatible
= "samsung,s3c2412-nand",
1011 .data
= &s3c2412_nand_devtype_data
,
1013 .compatible
= "samsung,s3c2440-nand",
1014 .data
= &s3c2440_nand_devtype_data
,
1018 MODULE_DEVICE_TABLE(of
, s3c24xx_nand_dt_ids
);
1020 static int s3c24xx_nand_probe_dt(struct platform_device
*pdev
)
1022 const struct s3c24XX_nand_devtype_data
*devtype_data
;
1023 struct s3c2410_platform_nand
*pdata
;
1024 struct s3c2410_nand_info
*info
= platform_get_drvdata(pdev
);
1025 struct device_node
*np
= pdev
->dev
.of_node
, *child
;
1026 struct s3c2410_nand_set
*sets
;
1028 devtype_data
= of_device_get_match_data(&pdev
->dev
);
1032 info
->cpu_type
= devtype_data
->type
;
1034 pdata
= devm_kzalloc(&pdev
->dev
, sizeof(*pdata
), GFP_KERNEL
);
1038 pdev
->dev
.platform_data
= pdata
;
1040 pdata
->nr_sets
= of_get_child_count(np
);
1041 if (!pdata
->nr_sets
)
1044 sets
= devm_kcalloc(&pdev
->dev
, pdata
->nr_sets
, sizeof(*sets
),
1051 for_each_available_child_of_node(np
, child
) {
1052 sets
->name
= (char *)child
->name
;
1053 sets
->of_node
= child
;
1064 static int s3c24xx_nand_probe_pdata(struct platform_device
*pdev
)
1066 struct s3c2410_nand_info
*info
= platform_get_drvdata(pdev
);
1068 info
->cpu_type
= platform_get_device_id(pdev
)->driver_data
;
1073 /* s3c24xx_nand_probe
1075 * called by device layer when it finds a device matching
1076 * one our driver can handled. This code checks to see if
1077 * it can allocate all necessary resources then calls the
1078 * nand layer to look for devices
1080 static int s3c24xx_nand_probe(struct platform_device
*pdev
)
1082 struct s3c2410_platform_nand
*plat
;
1083 struct s3c2410_nand_info
*info
;
1084 struct s3c2410_nand_mtd
*nmtd
;
1085 struct s3c2410_nand_set
*sets
;
1086 struct resource
*res
;
1092 info
= devm_kzalloc(&pdev
->dev
, sizeof(*info
), GFP_KERNEL
);
1098 platform_set_drvdata(pdev
, info
);
1100 nand_controller_init(&info
->controller
);
1101 info
->controller
.ops
= &s3c24xx_nand_controller_ops
;
1103 /* get the clock source and enable it */
1105 info
->clk
= devm_clk_get(&pdev
->dev
, "nand");
1106 if (IS_ERR(info
->clk
)) {
1107 dev_err(&pdev
->dev
, "failed to get clock\n");
1112 s3c2410_nand_clk_set_state(info
, CLOCK_ENABLE
);
1114 if (pdev
->dev
.of_node
)
1115 err
= s3c24xx_nand_probe_dt(pdev
);
1117 err
= s3c24xx_nand_probe_pdata(pdev
);
1122 plat
= to_nand_plat(pdev
);
1124 /* allocate and map the resource */
1126 /* currently we assume we have the one resource */
1127 res
= pdev
->resource
;
1128 size
= resource_size(res
);
1130 info
->device
= &pdev
->dev
;
1131 info
->platform
= plat
;
1133 info
->regs
= devm_ioremap_resource(&pdev
->dev
, res
);
1134 if (IS_ERR(info
->regs
)) {
1135 err
= PTR_ERR(info
->regs
);
1139 dev_dbg(&pdev
->dev
, "mapped registers at %p\n", info
->regs
);
1141 if (!plat
->sets
|| plat
->nr_sets
< 1) {
1147 nr_sets
= plat
->nr_sets
;
1149 info
->mtd_count
= nr_sets
;
1151 /* allocate our information */
1153 size
= nr_sets
* sizeof(*info
->mtds
);
1154 info
->mtds
= devm_kzalloc(&pdev
->dev
, size
, GFP_KERNEL
);
1155 if (info
->mtds
== NULL
) {
1160 /* initialise all possible chips */
1164 for (setno
= 0; setno
< nr_sets
; setno
++, nmtd
++, sets
++) {
1165 struct mtd_info
*mtd
= nand_to_mtd(&nmtd
->chip
);
1167 pr_debug("initialising set %d (%p, info %p)\n",
1170 mtd
->dev
.parent
= &pdev
->dev
;
1171 s3c2410_nand_init_chip(info
, nmtd
, sets
);
1173 err
= nand_scan(&nmtd
->chip
, sets
? sets
->nr_chips
: 1);
1177 s3c2410_nand_add_partition(info
, nmtd
, sets
);
1180 /* initialise the hardware */
1181 err
= s3c2410_nand_inithw(info
);
1185 err
= s3c2410_nand_cpufreq_register(info
);
1187 dev_err(&pdev
->dev
, "failed to init cpufreq support\n");
1191 if (allow_clk_suspend(info
)) {
1192 dev_info(&pdev
->dev
, "clock idle support enabled\n");
1193 s3c2410_nand_clk_set_state(info
, CLOCK_SUSPEND
);
1199 s3c24xx_nand_remove(pdev
);
1209 static int s3c24xx_nand_suspend(struct platform_device
*dev
, pm_message_t pm
)
1211 struct s3c2410_nand_info
*info
= platform_get_drvdata(dev
);
1214 info
->save_sel
= readl(info
->sel_reg
);
1216 /* For the moment, we must ensure nFCE is high during
1217 * the time we are suspended. This really should be
1218 * handled by suspending the MTDs we are using, but
1219 * that is currently not the case. */
1221 writel(info
->save_sel
| info
->sel_bit
, info
->sel_reg
);
1223 s3c2410_nand_clk_set_state(info
, CLOCK_DISABLE
);
1229 static int s3c24xx_nand_resume(struct platform_device
*dev
)
1231 struct s3c2410_nand_info
*info
= platform_get_drvdata(dev
);
1235 s3c2410_nand_clk_set_state(info
, CLOCK_ENABLE
);
1236 s3c2410_nand_inithw(info
);
1238 /* Restore the state of the nFCE line. */
1240 sel
= readl(info
->sel_reg
);
1241 sel
&= ~info
->sel_bit
;
1242 sel
|= info
->save_sel
& info
->sel_bit
;
1243 writel(sel
, info
->sel_reg
);
1245 s3c2410_nand_clk_set_state(info
, CLOCK_SUSPEND
);
1252 #define s3c24xx_nand_suspend NULL
1253 #define s3c24xx_nand_resume NULL
1256 /* driver device registration */
1258 static const struct platform_device_id s3c24xx_driver_ids
[] = {
1260 .name
= "s3c2410-nand",
1261 .driver_data
= TYPE_S3C2410
,
1263 .name
= "s3c2440-nand",
1264 .driver_data
= TYPE_S3C2440
,
1266 .name
= "s3c2412-nand",
1267 .driver_data
= TYPE_S3C2412
,
1269 .name
= "s3c6400-nand",
1270 .driver_data
= TYPE_S3C2412
, /* compatible with 2412 */
1275 MODULE_DEVICE_TABLE(platform
, s3c24xx_driver_ids
);
1277 static struct platform_driver s3c24xx_nand_driver
= {
1278 .probe
= s3c24xx_nand_probe
,
1279 .remove
= s3c24xx_nand_remove
,
1280 .suspend
= s3c24xx_nand_suspend
,
1281 .resume
= s3c24xx_nand_resume
,
1282 .id_table
= s3c24xx_driver_ids
,
1284 .name
= "s3c24xx-nand",
1285 .of_match_table
= s3c24xx_nand_dt_ids
,
1289 module_platform_driver(s3c24xx_nand_driver
);
1291 MODULE_LICENSE("GPL");
1292 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1293 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");