treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / mtd / nand / raw / s3c2410.c
blob0009c1820e217c0dea3e997674d3477b30ec553a
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright © 2004-2008 Simtec Electronics
4 * http://armlinux.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
8 */
10 #define pr_fmt(fmt) "nand-s3c2410: " fmt
12 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
13 #define DEBUG
14 #endif
16 #include <linux/module.h>
17 #include <linux/types.h>
18 #include <linux/kernel.h>
19 #include <linux/string.h>
20 #include <linux/io.h>
21 #include <linux/ioport.h>
22 #include <linux/platform_device.h>
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26 #include <linux/clk.h>
27 #include <linux/cpufreq.h>
28 #include <linux/of.h>
29 #include <linux/of_device.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/rawnand.h>
33 #include <linux/mtd/nand_ecc.h>
34 #include <linux/mtd/partitions.h>
36 #include <linux/platform_data/mtd-nand-s3c2410.h>
38 #define S3C2410_NFREG(x) (x)
40 #define S3C2410_NFCONF S3C2410_NFREG(0x00)
41 #define S3C2410_NFCMD S3C2410_NFREG(0x04)
42 #define S3C2410_NFADDR S3C2410_NFREG(0x08)
43 #define S3C2410_NFDATA S3C2410_NFREG(0x0C)
44 #define S3C2410_NFSTAT S3C2410_NFREG(0x10)
45 #define S3C2410_NFECC S3C2410_NFREG(0x14)
46 #define S3C2440_NFCONT S3C2410_NFREG(0x04)
47 #define S3C2440_NFCMD S3C2410_NFREG(0x08)
48 #define S3C2440_NFADDR S3C2410_NFREG(0x0C)
49 #define S3C2440_NFDATA S3C2410_NFREG(0x10)
50 #define S3C2440_NFSTAT S3C2410_NFREG(0x20)
51 #define S3C2440_NFMECC0 S3C2410_NFREG(0x2C)
52 #define S3C2412_NFSTAT S3C2410_NFREG(0x28)
53 #define S3C2412_NFMECC0 S3C2410_NFREG(0x34)
54 #define S3C2410_NFCONF_EN (1<<15)
55 #define S3C2410_NFCONF_INITECC (1<<12)
56 #define S3C2410_NFCONF_nFCE (1<<11)
57 #define S3C2410_NFCONF_TACLS(x) ((x)<<8)
58 #define S3C2410_NFCONF_TWRPH0(x) ((x)<<4)
59 #define S3C2410_NFCONF_TWRPH1(x) ((x)<<0)
60 #define S3C2410_NFSTAT_BUSY (1<<0)
61 #define S3C2440_NFCONF_TACLS(x) ((x)<<12)
62 #define S3C2440_NFCONF_TWRPH0(x) ((x)<<8)
63 #define S3C2440_NFCONF_TWRPH1(x) ((x)<<4)
64 #define S3C2440_NFCONT_INITECC (1<<4)
65 #define S3C2440_NFCONT_nFCE (1<<1)
66 #define S3C2440_NFCONT_ENABLE (1<<0)
67 #define S3C2440_NFSTAT_READY (1<<0)
68 #define S3C2412_NFCONF_NANDBOOT (1<<31)
69 #define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5)
70 #define S3C2412_NFCONT_nFCE0 (1<<1)
71 #define S3C2412_NFSTAT_READY (1<<0)
73 /* new oob placement block for use with hardware ecc generation
75 static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
76 struct mtd_oob_region *oobregion)
78 if (section)
79 return -ERANGE;
81 oobregion->offset = 0;
82 oobregion->length = 3;
84 return 0;
87 static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
88 struct mtd_oob_region *oobregion)
90 if (section)
91 return -ERANGE;
93 oobregion->offset = 8;
94 oobregion->length = 8;
96 return 0;
99 static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
100 .ecc = s3c2410_ooblayout_ecc,
101 .free = s3c2410_ooblayout_free,
104 /* controller and mtd information */
106 struct s3c2410_nand_info;
109 * struct s3c2410_nand_mtd - driver MTD structure
110 * @mtd: The MTD instance to pass to the MTD layer.
111 * @chip: The NAND chip information.
112 * @set: The platform information supplied for this set of NAND chips.
113 * @info: Link back to the hardware information.
115 struct s3c2410_nand_mtd {
116 struct nand_chip chip;
117 struct s3c2410_nand_set *set;
118 struct s3c2410_nand_info *info;
121 enum s3c_cpu_type {
122 TYPE_S3C2410,
123 TYPE_S3C2412,
124 TYPE_S3C2440,
127 enum s3c_nand_clk_state {
128 CLOCK_DISABLE = 0,
129 CLOCK_ENABLE,
130 CLOCK_SUSPEND,
133 /* overview of the s3c2410 nand state */
136 * struct s3c2410_nand_info - NAND controller state.
137 * @mtds: An array of MTD instances on this controoler.
138 * @platform: The platform data for this board.
139 * @device: The platform device we bound to.
140 * @clk: The clock resource for this controller.
141 * @regs: The area mapped for the hardware registers.
142 * @sel_reg: Pointer to the register controlling the NAND selection.
143 * @sel_bit: The bit in @sel_reg to select the NAND chip.
144 * @mtd_count: The number of MTDs created from this controller.
145 * @save_sel: The contents of @sel_reg to be saved over suspend.
146 * @clk_rate: The clock rate from @clk.
147 * @clk_state: The current clock state.
148 * @cpu_type: The exact type of this controller.
150 struct s3c2410_nand_info {
151 /* mtd info */
152 struct nand_controller controller;
153 struct s3c2410_nand_mtd *mtds;
154 struct s3c2410_platform_nand *platform;
156 /* device info */
157 struct device *device;
158 struct clk *clk;
159 void __iomem *regs;
160 void __iomem *sel_reg;
161 int sel_bit;
162 int mtd_count;
163 unsigned long save_sel;
164 unsigned long clk_rate;
165 enum s3c_nand_clk_state clk_state;
167 enum s3c_cpu_type cpu_type;
169 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
170 struct notifier_block freq_transition;
171 #endif
174 struct s3c24XX_nand_devtype_data {
175 enum s3c_cpu_type type;
178 static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
179 .type = TYPE_S3C2410,
182 static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
183 .type = TYPE_S3C2412,
186 static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
187 .type = TYPE_S3C2440,
190 /* conversion functions */
192 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
194 return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
195 chip);
198 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
200 return s3c2410_nand_mtd_toours(mtd)->info;
203 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
205 return platform_get_drvdata(dev);
208 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
210 return dev_get_platdata(&dev->dev);
213 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
215 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
216 return 1;
217 #else
218 return 0;
219 #endif
223 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
224 * @info: The controller instance.
225 * @new_state: State to which clock should be set.
227 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
228 enum s3c_nand_clk_state new_state)
230 if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
231 return;
233 if (info->clk_state == CLOCK_ENABLE) {
234 if (new_state != CLOCK_ENABLE)
235 clk_disable_unprepare(info->clk);
236 } else {
237 if (new_state == CLOCK_ENABLE)
238 clk_prepare_enable(info->clk);
241 info->clk_state = new_state;
244 /* timing calculations */
246 #define NS_IN_KHZ 1000000
249 * s3c_nand_calc_rate - calculate timing data.
250 * @wanted: The cycle time in nanoseconds.
251 * @clk: The clock rate in kHz.
252 * @max: The maximum divider value.
254 * Calculate the timing value from the given parameters.
256 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
258 int result;
260 result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
262 pr_debug("result %d from %ld, %d\n", result, clk, wanted);
264 if (result > max) {
265 pr_err("%d ns is too big for current clock rate %ld\n",
266 wanted, clk);
267 return -1;
270 if (result < 1)
271 result = 1;
273 return result;
276 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
278 /* controller setup */
281 * s3c2410_nand_setrate - setup controller timing information.
282 * @info: The controller instance.
284 * Given the information supplied by the platform, calculate and set
285 * the necessary timing registers in the hardware to generate the
286 * necessary timing cycles to the hardware.
288 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
290 struct s3c2410_platform_nand *plat = info->platform;
291 int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
292 int tacls, twrph0, twrph1;
293 unsigned long clkrate = clk_get_rate(info->clk);
294 unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
295 unsigned long flags;
297 /* calculate the timing information for the controller */
299 info->clk_rate = clkrate;
300 clkrate /= 1000; /* turn clock into kHz for ease of use */
302 if (plat != NULL) {
303 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
304 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
305 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
306 } else {
307 /* default timings */
308 tacls = tacls_max;
309 twrph0 = 8;
310 twrph1 = 8;
313 if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
314 dev_err(info->device, "cannot get suitable timings\n");
315 return -EINVAL;
318 dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
319 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
320 twrph1, to_ns(twrph1, clkrate));
322 switch (info->cpu_type) {
323 case TYPE_S3C2410:
324 mask = (S3C2410_NFCONF_TACLS(3) |
325 S3C2410_NFCONF_TWRPH0(7) |
326 S3C2410_NFCONF_TWRPH1(7));
327 set = S3C2410_NFCONF_EN;
328 set |= S3C2410_NFCONF_TACLS(tacls - 1);
329 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
330 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
331 break;
333 case TYPE_S3C2440:
334 case TYPE_S3C2412:
335 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
336 S3C2440_NFCONF_TWRPH0(7) |
337 S3C2440_NFCONF_TWRPH1(7));
339 set = S3C2440_NFCONF_TACLS(tacls - 1);
340 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
341 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
342 break;
344 default:
345 BUG();
348 local_irq_save(flags);
350 cfg = readl(info->regs + S3C2410_NFCONF);
351 cfg &= ~mask;
352 cfg |= set;
353 writel(cfg, info->regs + S3C2410_NFCONF);
355 local_irq_restore(flags);
357 dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
359 return 0;
363 * s3c2410_nand_inithw - basic hardware initialisation
364 * @info: The hardware state.
366 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
367 * to setup the hardware access speeds and set the controller to be enabled.
369 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
371 int ret;
373 ret = s3c2410_nand_setrate(info);
374 if (ret < 0)
375 return ret;
377 switch (info->cpu_type) {
378 case TYPE_S3C2410:
379 default:
380 break;
382 case TYPE_S3C2440:
383 case TYPE_S3C2412:
384 /* enable the controller and de-assert nFCE */
386 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
389 return 0;
393 * s3c2410_nand_select_chip - select the given nand chip
394 * @this: NAND chip object.
395 * @chip: The chip number.
397 * This is called by the MTD layer to either select a given chip for the
398 * @mtd instance, or to indicate that the access has finished and the
399 * chip can be de-selected.
401 * The routine ensures that the nFCE line is correctly setup, and any
402 * platform specific selection code is called to route nFCE to the specific
403 * chip.
405 static void s3c2410_nand_select_chip(struct nand_chip *this, int chip)
407 struct s3c2410_nand_info *info;
408 struct s3c2410_nand_mtd *nmtd;
409 unsigned long cur;
411 nmtd = nand_get_controller_data(this);
412 info = nmtd->info;
414 if (chip != -1)
415 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
417 cur = readl(info->sel_reg);
419 if (chip == -1) {
420 cur |= info->sel_bit;
421 } else {
422 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
423 dev_err(info->device, "invalid chip %d\n", chip);
424 return;
427 if (info->platform != NULL) {
428 if (info->platform->select_chip != NULL)
429 (info->platform->select_chip) (nmtd->set, chip);
432 cur &= ~info->sel_bit;
435 writel(cur, info->sel_reg);
437 if (chip == -1)
438 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
441 /* s3c2410_nand_hwcontrol
443 * Issue command and address cycles to the chip
446 static void s3c2410_nand_hwcontrol(struct nand_chip *chip, int cmd,
447 unsigned int ctrl)
449 struct mtd_info *mtd = nand_to_mtd(chip);
450 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
452 if (cmd == NAND_CMD_NONE)
453 return;
455 if (ctrl & NAND_CLE)
456 writeb(cmd, info->regs + S3C2410_NFCMD);
457 else
458 writeb(cmd, info->regs + S3C2410_NFADDR);
461 /* command and control functions */
463 static void s3c2440_nand_hwcontrol(struct nand_chip *chip, int cmd,
464 unsigned int ctrl)
466 struct mtd_info *mtd = nand_to_mtd(chip);
467 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
469 if (cmd == NAND_CMD_NONE)
470 return;
472 if (ctrl & NAND_CLE)
473 writeb(cmd, info->regs + S3C2440_NFCMD);
474 else
475 writeb(cmd, info->regs + S3C2440_NFADDR);
478 /* s3c2410_nand_devready()
480 * returns 0 if the nand is busy, 1 if it is ready
483 static int s3c2410_nand_devready(struct nand_chip *chip)
485 struct mtd_info *mtd = nand_to_mtd(chip);
486 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
487 return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
490 static int s3c2440_nand_devready(struct nand_chip *chip)
492 struct mtd_info *mtd = nand_to_mtd(chip);
493 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
494 return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
497 static int s3c2412_nand_devready(struct nand_chip *chip)
499 struct mtd_info *mtd = nand_to_mtd(chip);
500 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
501 return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
504 /* ECC handling functions */
506 static int s3c2410_nand_correct_data(struct nand_chip *chip, u_char *dat,
507 u_char *read_ecc, u_char *calc_ecc)
509 struct mtd_info *mtd = nand_to_mtd(chip);
510 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
511 unsigned int diff0, diff1, diff2;
512 unsigned int bit, byte;
514 pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
516 diff0 = read_ecc[0] ^ calc_ecc[0];
517 diff1 = read_ecc[1] ^ calc_ecc[1];
518 diff2 = read_ecc[2] ^ calc_ecc[2];
520 pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
521 __func__, 3, read_ecc, 3, calc_ecc,
522 diff0, diff1, diff2);
524 if (diff0 == 0 && diff1 == 0 && diff2 == 0)
525 return 0; /* ECC is ok */
527 /* sometimes people do not think about using the ECC, so check
528 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
529 * the error, on the assumption that this is an un-eccd page.
531 if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
532 && info->platform->ignore_unset_ecc)
533 return 0;
535 /* Can we correct this ECC (ie, one row and column change).
536 * Note, this is similar to the 256 error code on smartmedia */
538 if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
539 ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
540 ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
541 /* calculate the bit position of the error */
543 bit = ((diff2 >> 3) & 1) |
544 ((diff2 >> 4) & 2) |
545 ((diff2 >> 5) & 4);
547 /* calculate the byte position of the error */
549 byte = ((diff2 << 7) & 0x100) |
550 ((diff1 << 0) & 0x80) |
551 ((diff1 << 1) & 0x40) |
552 ((diff1 << 2) & 0x20) |
553 ((diff1 << 3) & 0x10) |
554 ((diff0 >> 4) & 0x08) |
555 ((diff0 >> 3) & 0x04) |
556 ((diff0 >> 2) & 0x02) |
557 ((diff0 >> 1) & 0x01);
559 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
560 bit, byte);
562 dat[byte] ^= (1 << bit);
563 return 1;
566 /* if there is only one bit difference in the ECC, then
567 * one of only a row or column parity has changed, which
568 * means the error is most probably in the ECC itself */
570 diff0 |= (diff1 << 8);
571 diff0 |= (diff2 << 16);
573 /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
574 if ((diff0 & (diff0 - 1)) == 0)
575 return 1;
577 return -1;
580 /* ECC functions
582 * These allow the s3c2410 and s3c2440 to use the controller's ECC
583 * generator block to ECC the data as it passes through]
586 static void s3c2410_nand_enable_hwecc(struct nand_chip *chip, int mode)
588 struct s3c2410_nand_info *info;
589 unsigned long ctrl;
591 info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
592 ctrl = readl(info->regs + S3C2410_NFCONF);
593 ctrl |= S3C2410_NFCONF_INITECC;
594 writel(ctrl, info->regs + S3C2410_NFCONF);
597 static void s3c2412_nand_enable_hwecc(struct nand_chip *chip, int mode)
599 struct s3c2410_nand_info *info;
600 unsigned long ctrl;
602 info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
603 ctrl = readl(info->regs + S3C2440_NFCONT);
604 writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
605 info->regs + S3C2440_NFCONT);
608 static void s3c2440_nand_enable_hwecc(struct nand_chip *chip, int mode)
610 struct s3c2410_nand_info *info;
611 unsigned long ctrl;
613 info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
614 ctrl = readl(info->regs + S3C2440_NFCONT);
615 writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
618 static int s3c2410_nand_calculate_ecc(struct nand_chip *chip,
619 const u_char *dat, u_char *ecc_code)
621 struct mtd_info *mtd = nand_to_mtd(chip);
622 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
624 ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
625 ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
626 ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
628 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
630 return 0;
633 static int s3c2412_nand_calculate_ecc(struct nand_chip *chip,
634 const u_char *dat, u_char *ecc_code)
636 struct mtd_info *mtd = nand_to_mtd(chip);
637 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
638 unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
640 ecc_code[0] = ecc;
641 ecc_code[1] = ecc >> 8;
642 ecc_code[2] = ecc >> 16;
644 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
646 return 0;
649 static int s3c2440_nand_calculate_ecc(struct nand_chip *chip,
650 const u_char *dat, u_char *ecc_code)
652 struct mtd_info *mtd = nand_to_mtd(chip);
653 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
654 unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
656 ecc_code[0] = ecc;
657 ecc_code[1] = ecc >> 8;
658 ecc_code[2] = ecc >> 16;
660 pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
662 return 0;
665 /* over-ride the standard functions for a little more speed. We can
666 * use read/write block to move the data buffers to/from the controller
669 static void s3c2410_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
671 readsb(this->legacy.IO_ADDR_R, buf, len);
674 static void s3c2440_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
676 struct mtd_info *mtd = nand_to_mtd(this);
677 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
679 readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
681 /* cleanup if we've got less than a word to do */
682 if (len & 3) {
683 buf += len & ~3;
685 for (; len & 3; len--)
686 *buf++ = readb(info->regs + S3C2440_NFDATA);
690 static void s3c2410_nand_write_buf(struct nand_chip *this, const u_char *buf,
691 int len)
693 writesb(this->legacy.IO_ADDR_W, buf, len);
696 static void s3c2440_nand_write_buf(struct nand_chip *this, const u_char *buf,
697 int len)
699 struct mtd_info *mtd = nand_to_mtd(this);
700 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
702 writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
704 /* cleanup any fractional write */
705 if (len & 3) {
706 buf += len & ~3;
708 for (; len & 3; len--, buf++)
709 writeb(*buf, info->regs + S3C2440_NFDATA);
713 /* cpufreq driver support */
715 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
717 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
718 unsigned long val, void *data)
720 struct s3c2410_nand_info *info;
721 unsigned long newclk;
723 info = container_of(nb, struct s3c2410_nand_info, freq_transition);
724 newclk = clk_get_rate(info->clk);
726 if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
727 (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
728 s3c2410_nand_setrate(info);
731 return 0;
734 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
736 info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
738 return cpufreq_register_notifier(&info->freq_transition,
739 CPUFREQ_TRANSITION_NOTIFIER);
742 static inline void
743 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
745 cpufreq_unregister_notifier(&info->freq_transition,
746 CPUFREQ_TRANSITION_NOTIFIER);
749 #else
750 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
752 return 0;
755 static inline void
756 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
759 #endif
761 /* device management functions */
763 static int s3c24xx_nand_remove(struct platform_device *pdev)
765 struct s3c2410_nand_info *info = to_nand_info(pdev);
767 if (info == NULL)
768 return 0;
770 s3c2410_nand_cpufreq_deregister(info);
772 /* Release all our mtds and their partitions, then go through
773 * freeing the resources used
776 if (info->mtds != NULL) {
777 struct s3c2410_nand_mtd *ptr = info->mtds;
778 int mtdno;
780 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
781 pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
782 nand_release(&ptr->chip);
786 /* free the common resources */
788 if (!IS_ERR(info->clk))
789 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
791 return 0;
794 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
795 struct s3c2410_nand_mtd *mtd,
796 struct s3c2410_nand_set *set)
798 if (set) {
799 struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
801 mtdinfo->name = set->name;
803 return mtd_device_register(mtdinfo, set->partitions,
804 set->nr_partitions);
807 return -ENODEV;
810 static int s3c2410_nand_setup_data_interface(struct nand_chip *chip, int csline,
811 const struct nand_data_interface *conf)
813 struct mtd_info *mtd = nand_to_mtd(chip);
814 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
815 struct s3c2410_platform_nand *pdata = info->platform;
816 const struct nand_sdr_timings *timings;
817 int tacls;
819 timings = nand_get_sdr_timings(conf);
820 if (IS_ERR(timings))
821 return -ENOTSUPP;
823 tacls = timings->tCLS_min - timings->tWP_min;
824 if (tacls < 0)
825 tacls = 0;
827 pdata->tacls = DIV_ROUND_UP(tacls, 1000);
828 pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
829 pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
831 return s3c2410_nand_setrate(info);
835 * s3c2410_nand_init_chip - initialise a single instance of an chip
836 * @info: The base NAND controller the chip is on.
837 * @nmtd: The new controller MTD instance to fill in.
838 * @set: The information passed from the board specific platform data.
840 * Initialise the given @nmtd from the information in @info and @set. This
841 * readies the structure for use with the MTD layer functions by ensuring
842 * all pointers are setup and the necessary control routines selected.
844 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
845 struct s3c2410_nand_mtd *nmtd,
846 struct s3c2410_nand_set *set)
848 struct device_node *np = info->device->of_node;
849 struct nand_chip *chip = &nmtd->chip;
850 void __iomem *regs = info->regs;
852 nand_set_flash_node(chip, set->of_node);
854 chip->legacy.write_buf = s3c2410_nand_write_buf;
855 chip->legacy.read_buf = s3c2410_nand_read_buf;
856 chip->legacy.select_chip = s3c2410_nand_select_chip;
857 chip->legacy.chip_delay = 50;
858 nand_set_controller_data(chip, nmtd);
859 chip->options = set->options;
860 chip->controller = &info->controller;
863 * let's keep behavior unchanged for legacy boards booting via pdata and
864 * auto-detect timings only when booting with a device tree.
866 if (!np)
867 chip->options |= NAND_KEEP_TIMINGS;
869 switch (info->cpu_type) {
870 case TYPE_S3C2410:
871 chip->legacy.IO_ADDR_W = regs + S3C2410_NFDATA;
872 info->sel_reg = regs + S3C2410_NFCONF;
873 info->sel_bit = S3C2410_NFCONF_nFCE;
874 chip->legacy.cmd_ctrl = s3c2410_nand_hwcontrol;
875 chip->legacy.dev_ready = s3c2410_nand_devready;
876 break;
878 case TYPE_S3C2440:
879 chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
880 info->sel_reg = regs + S3C2440_NFCONT;
881 info->sel_bit = S3C2440_NFCONT_nFCE;
882 chip->legacy.cmd_ctrl = s3c2440_nand_hwcontrol;
883 chip->legacy.dev_ready = s3c2440_nand_devready;
884 chip->legacy.read_buf = s3c2440_nand_read_buf;
885 chip->legacy.write_buf = s3c2440_nand_write_buf;
886 break;
888 case TYPE_S3C2412:
889 chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
890 info->sel_reg = regs + S3C2440_NFCONT;
891 info->sel_bit = S3C2412_NFCONT_nFCE0;
892 chip->legacy.cmd_ctrl = s3c2440_nand_hwcontrol;
893 chip->legacy.dev_ready = s3c2412_nand_devready;
895 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
896 dev_info(info->device, "System booted from NAND\n");
898 break;
901 chip->legacy.IO_ADDR_R = chip->legacy.IO_ADDR_W;
903 nmtd->info = info;
904 nmtd->set = set;
906 chip->ecc.mode = info->platform->ecc_mode;
909 * If you use u-boot BBT creation code, specifying this flag will
910 * let the kernel fish out the BBT from the NAND.
912 if (set->flash_bbt)
913 chip->bbt_options |= NAND_BBT_USE_FLASH;
917 * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan
918 * @chip: The NAND chip
920 * This hook is called by the core after the identification of the NAND chip,
921 * once the relevant per-chip information is up to date.. This call ensure that
922 * we update the internal state accordingly.
924 * The internal state is currently limited to the ECC state information.
926 static int s3c2410_nand_attach_chip(struct nand_chip *chip)
928 struct mtd_info *mtd = nand_to_mtd(chip);
929 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
931 switch (chip->ecc.mode) {
933 case NAND_ECC_NONE:
934 dev_info(info->device, "ECC disabled\n");
935 break;
937 case NAND_ECC_SOFT:
939 * This driver expects Hamming based ECC when ecc_mode is set
940 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
941 * avoid adding an extra ecc_algo field to
942 * s3c2410_platform_nand.
944 chip->ecc.algo = NAND_ECC_HAMMING;
945 dev_info(info->device, "soft ECC\n");
946 break;
948 case NAND_ECC_HW:
949 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
950 chip->ecc.correct = s3c2410_nand_correct_data;
951 chip->ecc.strength = 1;
953 switch (info->cpu_type) {
954 case TYPE_S3C2410:
955 chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
956 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
957 break;
959 case TYPE_S3C2412:
960 chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
961 chip->ecc.calculate = s3c2412_nand_calculate_ecc;
962 break;
964 case TYPE_S3C2440:
965 chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
966 chip->ecc.calculate = s3c2440_nand_calculate_ecc;
967 break;
970 dev_dbg(info->device, "chip %p => page shift %d\n",
971 chip, chip->page_shift);
973 /* change the behaviour depending on whether we are using
974 * the large or small page nand device */
975 if (chip->page_shift > 10) {
976 chip->ecc.size = 256;
977 chip->ecc.bytes = 3;
978 } else {
979 chip->ecc.size = 512;
980 chip->ecc.bytes = 3;
981 mtd_set_ooblayout(nand_to_mtd(chip),
982 &s3c2410_ooblayout_ops);
985 dev_info(info->device, "hardware ECC\n");
986 break;
988 default:
989 dev_err(info->device, "invalid ECC mode!\n");
990 return -EINVAL;
993 if (chip->bbt_options & NAND_BBT_USE_FLASH)
994 chip->options |= NAND_SKIP_BBTSCAN;
996 return 0;
999 static const struct nand_controller_ops s3c24xx_nand_controller_ops = {
1000 .attach_chip = s3c2410_nand_attach_chip,
1001 .setup_data_interface = s3c2410_nand_setup_data_interface,
1004 static const struct of_device_id s3c24xx_nand_dt_ids[] = {
1006 .compatible = "samsung,s3c2410-nand",
1007 .data = &s3c2410_nand_devtype_data,
1008 }, {
1009 /* also compatible with s3c6400 */
1010 .compatible = "samsung,s3c2412-nand",
1011 .data = &s3c2412_nand_devtype_data,
1012 }, {
1013 .compatible = "samsung,s3c2440-nand",
1014 .data = &s3c2440_nand_devtype_data,
1016 { /* sentinel */ }
1018 MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
1020 static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
1022 const struct s3c24XX_nand_devtype_data *devtype_data;
1023 struct s3c2410_platform_nand *pdata;
1024 struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1025 struct device_node *np = pdev->dev.of_node, *child;
1026 struct s3c2410_nand_set *sets;
1028 devtype_data = of_device_get_match_data(&pdev->dev);
1029 if (!devtype_data)
1030 return -ENODEV;
1032 info->cpu_type = devtype_data->type;
1034 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1035 if (!pdata)
1036 return -ENOMEM;
1038 pdev->dev.platform_data = pdata;
1040 pdata->nr_sets = of_get_child_count(np);
1041 if (!pdata->nr_sets)
1042 return 0;
1044 sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets),
1045 GFP_KERNEL);
1046 if (!sets)
1047 return -ENOMEM;
1049 pdata->sets = sets;
1051 for_each_available_child_of_node(np, child) {
1052 sets->name = (char *)child->name;
1053 sets->of_node = child;
1054 sets->nr_chips = 1;
1056 of_node_get(child);
1058 sets++;
1061 return 0;
1064 static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
1066 struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1068 info->cpu_type = platform_get_device_id(pdev)->driver_data;
1070 return 0;
1073 /* s3c24xx_nand_probe
1075 * called by device layer when it finds a device matching
1076 * one our driver can handled. This code checks to see if
1077 * it can allocate all necessary resources then calls the
1078 * nand layer to look for devices
1080 static int s3c24xx_nand_probe(struct platform_device *pdev)
1082 struct s3c2410_platform_nand *plat;
1083 struct s3c2410_nand_info *info;
1084 struct s3c2410_nand_mtd *nmtd;
1085 struct s3c2410_nand_set *sets;
1086 struct resource *res;
1087 int err = 0;
1088 int size;
1089 int nr_sets;
1090 int setno;
1092 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
1093 if (info == NULL) {
1094 err = -ENOMEM;
1095 goto exit_error;
1098 platform_set_drvdata(pdev, info);
1100 nand_controller_init(&info->controller);
1101 info->controller.ops = &s3c24xx_nand_controller_ops;
1103 /* get the clock source and enable it */
1105 info->clk = devm_clk_get(&pdev->dev, "nand");
1106 if (IS_ERR(info->clk)) {
1107 dev_err(&pdev->dev, "failed to get clock\n");
1108 err = -ENOENT;
1109 goto exit_error;
1112 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1114 if (pdev->dev.of_node)
1115 err = s3c24xx_nand_probe_dt(pdev);
1116 else
1117 err = s3c24xx_nand_probe_pdata(pdev);
1119 if (err)
1120 goto exit_error;
1122 plat = to_nand_plat(pdev);
1124 /* allocate and map the resource */
1126 /* currently we assume we have the one resource */
1127 res = pdev->resource;
1128 size = resource_size(res);
1130 info->device = &pdev->dev;
1131 info->platform = plat;
1133 info->regs = devm_ioremap_resource(&pdev->dev, res);
1134 if (IS_ERR(info->regs)) {
1135 err = PTR_ERR(info->regs);
1136 goto exit_error;
1139 dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1141 if (!plat->sets || plat->nr_sets < 1) {
1142 err = -EINVAL;
1143 goto exit_error;
1146 sets = plat->sets;
1147 nr_sets = plat->nr_sets;
1149 info->mtd_count = nr_sets;
1151 /* allocate our information */
1153 size = nr_sets * sizeof(*info->mtds);
1154 info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1155 if (info->mtds == NULL) {
1156 err = -ENOMEM;
1157 goto exit_error;
1160 /* initialise all possible chips */
1162 nmtd = info->mtds;
1164 for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) {
1165 struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
1167 pr_debug("initialising set %d (%p, info %p)\n",
1168 setno, nmtd, info);
1170 mtd->dev.parent = &pdev->dev;
1171 s3c2410_nand_init_chip(info, nmtd, sets);
1173 err = nand_scan(&nmtd->chip, sets ? sets->nr_chips : 1);
1174 if (err)
1175 goto exit_error;
1177 s3c2410_nand_add_partition(info, nmtd, sets);
1180 /* initialise the hardware */
1181 err = s3c2410_nand_inithw(info);
1182 if (err != 0)
1183 goto exit_error;
1185 err = s3c2410_nand_cpufreq_register(info);
1186 if (err < 0) {
1187 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1188 goto exit_error;
1191 if (allow_clk_suspend(info)) {
1192 dev_info(&pdev->dev, "clock idle support enabled\n");
1193 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1196 return 0;
1198 exit_error:
1199 s3c24xx_nand_remove(pdev);
1201 if (err == 0)
1202 err = -EINVAL;
1203 return err;
1206 /* PM Support */
1207 #ifdef CONFIG_PM
1209 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1211 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1213 if (info) {
1214 info->save_sel = readl(info->sel_reg);
1216 /* For the moment, we must ensure nFCE is high during
1217 * the time we are suspended. This really should be
1218 * handled by suspending the MTDs we are using, but
1219 * that is currently not the case. */
1221 writel(info->save_sel | info->sel_bit, info->sel_reg);
1223 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1226 return 0;
1229 static int s3c24xx_nand_resume(struct platform_device *dev)
1231 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1232 unsigned long sel;
1234 if (info) {
1235 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1236 s3c2410_nand_inithw(info);
1238 /* Restore the state of the nFCE line. */
1240 sel = readl(info->sel_reg);
1241 sel &= ~info->sel_bit;
1242 sel |= info->save_sel & info->sel_bit;
1243 writel(sel, info->sel_reg);
1245 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1248 return 0;
1251 #else
1252 #define s3c24xx_nand_suspend NULL
1253 #define s3c24xx_nand_resume NULL
1254 #endif
1256 /* driver device registration */
1258 static const struct platform_device_id s3c24xx_driver_ids[] = {
1260 .name = "s3c2410-nand",
1261 .driver_data = TYPE_S3C2410,
1262 }, {
1263 .name = "s3c2440-nand",
1264 .driver_data = TYPE_S3C2440,
1265 }, {
1266 .name = "s3c2412-nand",
1267 .driver_data = TYPE_S3C2412,
1268 }, {
1269 .name = "s3c6400-nand",
1270 .driver_data = TYPE_S3C2412, /* compatible with 2412 */
1275 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1277 static struct platform_driver s3c24xx_nand_driver = {
1278 .probe = s3c24xx_nand_probe,
1279 .remove = s3c24xx_nand_remove,
1280 .suspend = s3c24xx_nand_suspend,
1281 .resume = s3c24xx_nand_resume,
1282 .id_table = s3c24xx_driver_ids,
1283 .driver = {
1284 .name = "s3c24xx-nand",
1285 .of_match_table = s3c24xx_nand_dt_ids,
1289 module_platform_driver(s3c24xx_nand_driver);
1291 MODULE_LICENSE("GPL");
1292 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1293 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");