1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (c) International Business Machines Corp., 2006
5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
9 * UBI wear-leveling sub-system.
11 * This sub-system is responsible for wear-leveling. It works in terms of
12 * physical eraseblocks and erase counters and knows nothing about logical
13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
21 * When physical eraseblocks are returned to the WL sub-system by means of the
22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23 * done asynchronously in context of the per-UBI device background thread,
24 * which is also managed by the WL sub-system.
26 * The wear-leveling is ensured by means of moving the contents of used
27 * physical eraseblocks with low erase counter to free physical eraseblocks
28 * with high erase counter.
30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34 * in a physical eraseblock, it has to be moved. Technically this is the same
35 * as moving it for wear-leveling reasons.
37 * As it was said, for the UBI sub-system all physical eraseblocks are either
38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
42 * When the WL sub-system returns a physical eraseblock, the physical
43 * eraseblock is protected from being moved for some "time". For this reason,
44 * the physical eraseblock is not directly moved from the @wl->free tree to the
45 * @wl->used tree. There is a protection queue in between where this
46 * physical eraseblock is temporarily stored (@wl->pq).
48 * All this protection stuff is needed because:
49 * o we don't want to move physical eraseblocks just after we have given them
50 * to the user; instead, we first want to let users fill them up with data;
52 * o there is a chance that the user will put the physical eraseblock very
53 * soon, so it makes sense not to move it for some time, but wait.
55 * Physical eraseblocks stay protected only for limited time. But the "time" is
56 * measured in erase cycles in this case. This is implemented with help of the
57 * protection queue. Eraseblocks are put to the tail of this queue when they
58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59 * head of the queue on each erase operation (for any eraseblock). So the
60 * length of the queue defines how may (global) erase cycles PEBs are protected.
62 * To put it differently, each physical eraseblock has 2 main states: free and
63 * used. The former state corresponds to the @wl->free tree. The latter state
64 * is split up on several sub-states:
65 * o the WL movement is allowed (@wl->used tree);
66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67 * erroneous - e.g., there was a read error;
68 * o the WL movement is temporarily prohibited (@wl->pq queue);
69 * o scrubbing is needed (@wl->scrub tree).
71 * Depending on the sub-state, wear-leveling entries of the used physical
72 * eraseblocks may be kept in one of those structures.
74 * Note, in this implementation, we keep a small in-RAM object for each physical
75 * eraseblock. This is surely not a scalable solution. But it appears to be good
76 * enough for moderately large flashes and it is simple. In future, one may
77 * re-work this sub-system and make it more scalable.
79 * At the moment this sub-system does not utilize the sequence number, which
80 * was introduced relatively recently. But it would be wise to do this because
81 * the sequence number of a logical eraseblock characterizes how old is it. For
82 * example, when we move a PEB with low erase counter, and we need to pick the
83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84 * pick target PEB with an average EC if our PEB is not very "old". This is a
85 * room for future re-works of the WL sub-system.
88 #include <linux/slab.h>
89 #include <linux/crc32.h>
90 #include <linux/freezer.h>
91 #include <linux/kthread.h>
95 /* Number of physical eraseblocks reserved for wear-leveling purposes */
96 #define WL_RESERVED_PEBS 1
99 * Maximum difference between two erase counters. If this threshold is
100 * exceeded, the WL sub-system starts moving data from used physical
101 * eraseblocks with low erase counter to free physical eraseblocks with high
104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
107 * When a physical eraseblock is moved, the WL sub-system has to pick the target
108 * physical eraseblock to move to. The simplest way would be just to pick the
109 * one with the highest erase counter. But in certain workloads this could lead
110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111 * situation when the picked physical eraseblock is constantly erased after the
112 * data is written to it. So, we have a constant which limits the highest erase
113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114 * does not pick eraseblocks with erase counter greater than the lowest erase
115 * counter plus %WL_FREE_MAX_DIFF.
117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
120 * Maximum number of consecutive background thread failures which is enough to
121 * switch to read-only mode.
123 #define WL_MAX_FAILURES 32
125 static int self_check_ec(struct ubi_device
*ubi
, int pnum
, int ec
);
126 static int self_check_in_wl_tree(const struct ubi_device
*ubi
,
127 struct ubi_wl_entry
*e
, struct rb_root
*root
);
128 static int self_check_in_pq(const struct ubi_device
*ubi
,
129 struct ubi_wl_entry
*e
);
132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133 * @e: the wear-leveling entry to add
134 * @root: the root of the tree
136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137 * the @ubi->used and @ubi->free RB-trees.
139 static void wl_tree_add(struct ubi_wl_entry
*e
, struct rb_root
*root
)
141 struct rb_node
**p
, *parent
= NULL
;
145 struct ubi_wl_entry
*e1
;
148 e1
= rb_entry(parent
, struct ubi_wl_entry
, u
.rb
);
152 else if (e
->ec
> e1
->ec
)
155 ubi_assert(e
->pnum
!= e1
->pnum
);
156 if (e
->pnum
< e1
->pnum
)
163 rb_link_node(&e
->u
.rb
, parent
, p
);
164 rb_insert_color(&e
->u
.rb
, root
);
168 * wl_tree_destroy - destroy a wear-leveling entry.
169 * @ubi: UBI device description object
170 * @e: the wear-leveling entry to add
172 * This function destroys a wear leveling entry and removes
173 * the reference from the lookup table.
175 static void wl_entry_destroy(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
177 ubi
->lookuptbl
[e
->pnum
] = NULL
;
178 kmem_cache_free(ubi_wl_entry_slab
, e
);
182 * do_work - do one pending work.
183 * @ubi: UBI device description object
185 * This function returns zero in case of success and a negative error code in
188 static int do_work(struct ubi_device
*ubi
)
191 struct ubi_work
*wrk
;
196 * @ubi->work_sem is used to synchronize with the workers. Workers take
197 * it in read mode, so many of them may be doing works at a time. But
198 * the queue flush code has to be sure the whole queue of works is
199 * done, and it takes the mutex in write mode.
201 down_read(&ubi
->work_sem
);
202 spin_lock(&ubi
->wl_lock
);
203 if (list_empty(&ubi
->works
)) {
204 spin_unlock(&ubi
->wl_lock
);
205 up_read(&ubi
->work_sem
);
209 wrk
= list_entry(ubi
->works
.next
, struct ubi_work
, list
);
210 list_del(&wrk
->list
);
211 ubi
->works_count
-= 1;
212 ubi_assert(ubi
->works_count
>= 0);
213 spin_unlock(&ubi
->wl_lock
);
216 * Call the worker function. Do not touch the work structure
217 * after this call as it will have been freed or reused by that
218 * time by the worker function.
220 err
= wrk
->func(ubi
, wrk
, 0);
222 ubi_err(ubi
, "work failed with error code %d", err
);
223 up_read(&ubi
->work_sem
);
229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
230 * @e: the wear-leveling entry to check
231 * @root: the root of the tree
233 * This function returns non-zero if @e is in the @root RB-tree and zero if it
236 static int in_wl_tree(struct ubi_wl_entry
*e
, struct rb_root
*root
)
242 struct ubi_wl_entry
*e1
;
244 e1
= rb_entry(p
, struct ubi_wl_entry
, u
.rb
);
246 if (e
->pnum
== e1
->pnum
) {
253 else if (e
->ec
> e1
->ec
)
256 ubi_assert(e
->pnum
!= e1
->pnum
);
257 if (e
->pnum
< e1
->pnum
)
268 * in_pq - check if a wear-leveling entry is present in the protection queue.
269 * @ubi: UBI device description object
270 * @e: the wear-leveling entry to check
272 * This function returns non-zero if @e is in the protection queue and zero
275 static inline int in_pq(const struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
277 struct ubi_wl_entry
*p
;
280 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; ++i
)
281 list_for_each_entry(p
, &ubi
->pq
[i
], u
.list
)
289 * prot_queue_add - add physical eraseblock to the protection queue.
290 * @ubi: UBI device description object
291 * @e: the physical eraseblock to add
293 * This function adds @e to the tail of the protection queue @ubi->pq, where
294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
298 static void prot_queue_add(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
300 int pq_tail
= ubi
->pq_head
- 1;
303 pq_tail
= UBI_PROT_QUEUE_LEN
- 1;
304 ubi_assert(pq_tail
>= 0 && pq_tail
< UBI_PROT_QUEUE_LEN
);
305 list_add_tail(&e
->u
.list
, &ubi
->pq
[pq_tail
]);
306 dbg_wl("added PEB %d EC %d to the protection queue", e
->pnum
, e
->ec
);
310 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
311 * @ubi: UBI device description object
312 * @root: the RB-tree where to look for
313 * @diff: maximum possible difference from the smallest erase counter
315 * This function looks for a wear leveling entry with erase counter closest to
316 * min + @diff, where min is the smallest erase counter.
318 static struct ubi_wl_entry
*find_wl_entry(struct ubi_device
*ubi
,
319 struct rb_root
*root
, int diff
)
322 struct ubi_wl_entry
*e
;
325 e
= rb_entry(rb_first(root
), struct ubi_wl_entry
, u
.rb
);
330 struct ubi_wl_entry
*e1
;
332 e1
= rb_entry(p
, struct ubi_wl_entry
, u
.rb
);
345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346 * @ubi: UBI device description object
347 * @root: the RB-tree where to look for
349 * This function looks for a wear leveling entry with medium erase counter,
350 * but not greater or equivalent than the lowest erase counter plus
351 * %WL_FREE_MAX_DIFF/2.
353 static struct ubi_wl_entry
*find_mean_wl_entry(struct ubi_device
*ubi
,
354 struct rb_root
*root
)
356 struct ubi_wl_entry
*e
, *first
, *last
;
358 first
= rb_entry(rb_first(root
), struct ubi_wl_entry
, u
.rb
);
359 last
= rb_entry(rb_last(root
), struct ubi_wl_entry
, u
.rb
);
361 if (last
->ec
- first
->ec
< WL_FREE_MAX_DIFF
) {
362 e
= rb_entry(root
->rb_node
, struct ubi_wl_entry
, u
.rb
);
364 /* If no fastmap has been written and this WL entry can be used
365 * as anchor PEB, hold it back and return the second best
366 * WL entry such that fastmap can use the anchor PEB later. */
367 e
= may_reserve_for_fm(ubi
, e
, root
);
369 e
= find_wl_entry(ubi
, root
, WL_FREE_MAX_DIFF
/2);
375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376 * refill_wl_user_pool().
377 * @ubi: UBI device description object
379 * This function returns a a wear leveling entry in case of success and
380 * NULL in case of failure.
382 static struct ubi_wl_entry
*wl_get_wle(struct ubi_device
*ubi
)
384 struct ubi_wl_entry
*e
;
386 e
= find_mean_wl_entry(ubi
, &ubi
->free
);
388 ubi_err(ubi
, "no free eraseblocks");
392 self_check_in_wl_tree(ubi
, e
, &ubi
->free
);
395 * Move the physical eraseblock to the protection queue where it will
396 * be protected from being moved for some time.
398 rb_erase(&e
->u
.rb
, &ubi
->free
);
400 dbg_wl("PEB %d EC %d", e
->pnum
, e
->ec
);
406 * prot_queue_del - remove a physical eraseblock from the protection queue.
407 * @ubi: UBI device description object
408 * @pnum: the physical eraseblock to remove
410 * This function deletes PEB @pnum from the protection queue and returns zero
411 * in case of success and %-ENODEV if the PEB was not found.
413 static int prot_queue_del(struct ubi_device
*ubi
, int pnum
)
415 struct ubi_wl_entry
*e
;
417 e
= ubi
->lookuptbl
[pnum
];
421 if (self_check_in_pq(ubi
, e
))
424 list_del(&e
->u
.list
);
425 dbg_wl("deleted PEB %d from the protection queue", e
->pnum
);
430 * sync_erase - synchronously erase a physical eraseblock.
431 * @ubi: UBI device description object
432 * @e: the the physical eraseblock to erase
433 * @torture: if the physical eraseblock has to be tortured
435 * This function returns zero in case of success and a negative error code in
438 static int sync_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
442 struct ubi_ec_hdr
*ec_hdr
;
443 unsigned long long ec
= e
->ec
;
445 dbg_wl("erase PEB %d, old EC %llu", e
->pnum
, ec
);
447 err
= self_check_ec(ubi
, e
->pnum
, e
->ec
);
451 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
455 err
= ubi_io_sync_erase(ubi
, e
->pnum
, torture
);
460 if (ec
> UBI_MAX_ERASECOUNTER
) {
462 * Erase counter overflow. Upgrade UBI and use 64-bit
463 * erase counters internally.
465 ubi_err(ubi
, "erase counter overflow at PEB %d, EC %llu",
471 dbg_wl("erased PEB %d, new EC %llu", e
->pnum
, ec
);
473 ec_hdr
->ec
= cpu_to_be64(ec
);
475 err
= ubi_io_write_ec_hdr(ubi
, e
->pnum
, ec_hdr
);
480 spin_lock(&ubi
->wl_lock
);
481 if (e
->ec
> ubi
->max_ec
)
483 spin_unlock(&ubi
->wl_lock
);
491 * serve_prot_queue - check if it is time to stop protecting PEBs.
492 * @ubi: UBI device description object
494 * This function is called after each erase operation and removes PEBs from the
495 * tail of the protection queue. These PEBs have been protected for long enough
496 * and should be moved to the used tree.
498 static void serve_prot_queue(struct ubi_device
*ubi
)
500 struct ubi_wl_entry
*e
, *tmp
;
504 * There may be several protected physical eraseblock to remove,
509 spin_lock(&ubi
->wl_lock
);
510 list_for_each_entry_safe(e
, tmp
, &ubi
->pq
[ubi
->pq_head
], u
.list
) {
511 dbg_wl("PEB %d EC %d protection over, move to used tree",
514 list_del(&e
->u
.list
);
515 wl_tree_add(e
, &ubi
->used
);
518 * Let's be nice and avoid holding the spinlock for
521 spin_unlock(&ubi
->wl_lock
);
528 if (ubi
->pq_head
== UBI_PROT_QUEUE_LEN
)
530 ubi_assert(ubi
->pq_head
>= 0 && ubi
->pq_head
< UBI_PROT_QUEUE_LEN
);
531 spin_unlock(&ubi
->wl_lock
);
535 * __schedule_ubi_work - schedule a work.
536 * @ubi: UBI device description object
537 * @wrk: the work to schedule
539 * This function adds a work defined by @wrk to the tail of the pending works
540 * list. Can only be used if ubi->work_sem is already held in read mode!
542 static void __schedule_ubi_work(struct ubi_device
*ubi
, struct ubi_work
*wrk
)
544 spin_lock(&ubi
->wl_lock
);
545 list_add_tail(&wrk
->list
, &ubi
->works
);
546 ubi_assert(ubi
->works_count
>= 0);
547 ubi
->works_count
+= 1;
548 if (ubi
->thread_enabled
&& !ubi_dbg_is_bgt_disabled(ubi
))
549 wake_up_process(ubi
->bgt_thread
);
550 spin_unlock(&ubi
->wl_lock
);
554 * schedule_ubi_work - schedule a work.
555 * @ubi: UBI device description object
556 * @wrk: the work to schedule
558 * This function adds a work defined by @wrk to the tail of the pending works
561 static void schedule_ubi_work(struct ubi_device
*ubi
, struct ubi_work
*wrk
)
563 down_read(&ubi
->work_sem
);
564 __schedule_ubi_work(ubi
, wrk
);
565 up_read(&ubi
->work_sem
);
568 static int erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
,
572 * schedule_erase - schedule an erase work.
573 * @ubi: UBI device description object
574 * @e: the WL entry of the physical eraseblock to erase
575 * @vol_id: the volume ID that last used this PEB
576 * @lnum: the last used logical eraseblock number for the PEB
577 * @torture: if the physical eraseblock has to be tortured
579 * This function returns zero in case of success and a %-ENOMEM in case of
582 static int schedule_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
583 int vol_id
, int lnum
, int torture
, bool nested
)
585 struct ubi_work
*wl_wrk
;
589 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
590 e
->pnum
, e
->ec
, torture
);
592 wl_wrk
= kmalloc(sizeof(struct ubi_work
), GFP_NOFS
);
596 wl_wrk
->func
= &erase_worker
;
598 wl_wrk
->vol_id
= vol_id
;
600 wl_wrk
->torture
= torture
;
603 __schedule_ubi_work(ubi
, wl_wrk
);
605 schedule_ubi_work(ubi
, wl_wrk
);
609 static int __erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
);
611 * do_sync_erase - run the erase worker synchronously.
612 * @ubi: UBI device description object
613 * @e: the WL entry of the physical eraseblock to erase
614 * @vol_id: the volume ID that last used this PEB
615 * @lnum: the last used logical eraseblock number for the PEB
616 * @torture: if the physical eraseblock has to be tortured
619 static int do_sync_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
620 int vol_id
, int lnum
, int torture
)
622 struct ubi_work wl_wrk
;
624 dbg_wl("sync erase of PEB %i", e
->pnum
);
627 wl_wrk
.vol_id
= vol_id
;
629 wl_wrk
.torture
= torture
;
631 return __erase_worker(ubi
, &wl_wrk
);
634 static int ensure_wear_leveling(struct ubi_device
*ubi
, int nested
);
636 * wear_leveling_worker - wear-leveling worker function.
637 * @ubi: UBI device description object
638 * @wrk: the work object
639 * @shutdown: non-zero if the worker has to free memory and exit
640 * because the WL-subsystem is shutting down
642 * This function copies a more worn out physical eraseblock to a less worn out
643 * one. Returns zero in case of success and a negative error code in case of
646 static int wear_leveling_worker(struct ubi_device
*ubi
, struct ubi_work
*wrk
,
649 int err
, scrubbing
= 0, torture
= 0, protect
= 0, erroneous
= 0;
650 int erase
= 0, keep
= 0, vol_id
= -1, lnum
= -1;
651 struct ubi_wl_entry
*e1
, *e2
;
652 struct ubi_vid_io_buf
*vidb
;
653 struct ubi_vid_hdr
*vid_hdr
;
654 int dst_leb_clean
= 0;
660 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
664 vid_hdr
= ubi_get_vid_hdr(vidb
);
666 down_read(&ubi
->fm_eba_sem
);
667 mutex_lock(&ubi
->move_mutex
);
668 spin_lock(&ubi
->wl_lock
);
669 ubi_assert(!ubi
->move_from
&& !ubi
->move_to
);
670 ubi_assert(!ubi
->move_to_put
);
672 if (!ubi
->free
.rb_node
||
673 (!ubi
->used
.rb_node
&& !ubi
->scrub
.rb_node
)) {
675 * No free physical eraseblocks? Well, they must be waiting in
676 * the queue to be erased. Cancel movement - it will be
677 * triggered again when a free physical eraseblock appears.
679 * No used physical eraseblocks? They must be temporarily
680 * protected from being moved. They will be moved to the
681 * @ubi->used tree later and the wear-leveling will be
684 dbg_wl("cancel WL, a list is empty: free %d, used %d",
685 !ubi
->free
.rb_node
, !ubi
->used
.rb_node
);
689 #ifdef CONFIG_MTD_UBI_FASTMAP
690 if (ubi
->fm_do_produce_anchor
) {
691 e1
= find_anchor_wl_entry(&ubi
->used
);
694 e2
= get_peb_for_wl(ubi
);
699 * Anchor move within the anchor area is useless.
701 if (e2
->pnum
< UBI_FM_MAX_START
)
704 self_check_in_wl_tree(ubi
, e1
, &ubi
->used
);
705 rb_erase(&e1
->u
.rb
, &ubi
->used
);
706 dbg_wl("anchor-move PEB %d to PEB %d", e1
->pnum
, e2
->pnum
);
707 ubi
->fm_do_produce_anchor
= 0;
708 } else if (!ubi
->scrub
.rb_node
) {
710 if (!ubi
->scrub
.rb_node
) {
713 * Now pick the least worn-out used physical eraseblock and a
714 * highly worn-out free physical eraseblock. If the erase
715 * counters differ much enough, start wear-leveling.
717 e1
= rb_entry(rb_first(&ubi
->used
), struct ubi_wl_entry
, u
.rb
);
718 e2
= get_peb_for_wl(ubi
);
722 if (!(e2
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
)) {
723 dbg_wl("no WL needed: min used EC %d, max free EC %d",
726 /* Give the unused PEB back */
727 wl_tree_add(e2
, &ubi
->free
);
731 self_check_in_wl_tree(ubi
, e1
, &ubi
->used
);
732 rb_erase(&e1
->u
.rb
, &ubi
->used
);
733 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
734 e1
->pnum
, e1
->ec
, e2
->pnum
, e2
->ec
);
736 /* Perform scrubbing */
738 e1
= rb_entry(rb_first(&ubi
->scrub
), struct ubi_wl_entry
, u
.rb
);
739 e2
= get_peb_for_wl(ubi
);
743 self_check_in_wl_tree(ubi
, e1
, &ubi
->scrub
);
744 rb_erase(&e1
->u
.rb
, &ubi
->scrub
);
745 dbg_wl("scrub PEB %d to PEB %d", e1
->pnum
, e2
->pnum
);
750 spin_unlock(&ubi
->wl_lock
);
753 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
754 * We so far do not know which logical eraseblock our physical
755 * eraseblock (@e1) belongs to. We have to read the volume identifier
758 * Note, we are protected from this PEB being unmapped and erased. The
759 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
760 * which is being moved was unmapped.
763 err
= ubi_io_read_vid_hdr(ubi
, e1
->pnum
, vidb
, 0);
764 if (err
&& err
!= UBI_IO_BITFLIPS
) {
766 if (err
== UBI_IO_FF
) {
768 * We are trying to move PEB without a VID header. UBI
769 * always write VID headers shortly after the PEB was
770 * given, so we have a situation when it has not yet
771 * had a chance to write it, because it was preempted.
772 * So add this PEB to the protection queue so far,
773 * because presumably more data will be written there
774 * (including the missing VID header), and then we'll
777 dbg_wl("PEB %d has no VID header", e1
->pnum
);
780 } else if (err
== UBI_IO_FF_BITFLIPS
) {
782 * The same situation as %UBI_IO_FF, but bit-flips were
783 * detected. It is better to schedule this PEB for
786 dbg_wl("PEB %d has no VID header but has bit-flips",
790 } else if (ubi
->fast_attach
&& err
== UBI_IO_BAD_HDR_EBADMSG
) {
792 * While a full scan would detect interrupted erasures
793 * at attach time we can face them here when attached from
796 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
802 ubi_err(ubi
, "error %d while reading VID header from PEB %d",
807 vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
808 lnum
= be32_to_cpu(vid_hdr
->lnum
);
810 err
= ubi_eba_copy_leb(ubi
, e1
->pnum
, e2
->pnum
, vidb
);
812 if (err
== MOVE_CANCEL_RACE
) {
814 * The LEB has not been moved because the volume is
815 * being deleted or the PEB has been put meanwhile. We
816 * should prevent this PEB from being selected for
817 * wear-leveling movement again, so put it to the
824 if (err
== MOVE_RETRY
) {
829 if (err
== MOVE_TARGET_BITFLIPS
|| err
== MOVE_TARGET_WR_ERR
||
830 err
== MOVE_TARGET_RD_ERR
) {
832 * Target PEB had bit-flips or write error - torture it.
839 if (err
== MOVE_SOURCE_RD_ERR
) {
841 * An error happened while reading the source PEB. Do
842 * not switch to R/O mode in this case, and give the
843 * upper layers a possibility to recover from this,
844 * e.g. by unmapping corresponding LEB. Instead, just
845 * put this PEB to the @ubi->erroneous list to prevent
846 * UBI from trying to move it over and over again.
848 if (ubi
->erroneous_peb_count
> ubi
->max_erroneous
) {
849 ubi_err(ubi
, "too many erroneous eraseblocks (%d)",
850 ubi
->erroneous_peb_count
);
864 /* The PEB has been successfully moved */
866 ubi_msg(ubi
, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
867 e1
->pnum
, vol_id
, lnum
, e2
->pnum
);
868 ubi_free_vid_buf(vidb
);
870 spin_lock(&ubi
->wl_lock
);
871 if (!ubi
->move_to_put
) {
872 wl_tree_add(e2
, &ubi
->used
);
875 ubi
->move_from
= ubi
->move_to
= NULL
;
876 ubi
->move_to_put
= ubi
->wl_scheduled
= 0;
877 spin_unlock(&ubi
->wl_lock
);
879 err
= do_sync_erase(ubi
, e1
, vol_id
, lnum
, 0);
882 wl_entry_destroy(ubi
, e2
);
888 * Well, the target PEB was put meanwhile, schedule it for
891 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
892 e2
->pnum
, vol_id
, lnum
);
893 err
= do_sync_erase(ubi
, e2
, vol_id
, lnum
, 0);
899 mutex_unlock(&ubi
->move_mutex
);
900 up_read(&ubi
->fm_eba_sem
);
904 * For some reasons the LEB was not moved, might be an error, might be
905 * something else. @e1 was not changed, so return it back. @e2 might
906 * have been changed, schedule it for erasure.
910 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
911 e1
->pnum
, vol_id
, lnum
, e2
->pnum
, err
);
913 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
914 e1
->pnum
, e2
->pnum
, err
);
915 spin_lock(&ubi
->wl_lock
);
917 prot_queue_add(ubi
, e1
);
918 else if (erroneous
) {
919 wl_tree_add(e1
, &ubi
->erroneous
);
920 ubi
->erroneous_peb_count
+= 1;
921 } else if (scrubbing
)
922 wl_tree_add(e1
, &ubi
->scrub
);
924 wl_tree_add(e1
, &ubi
->used
);
926 wl_tree_add(e2
, &ubi
->free
);
930 ubi_assert(!ubi
->move_to_put
);
931 ubi
->move_from
= ubi
->move_to
= NULL
;
932 ubi
->wl_scheduled
= 0;
933 spin_unlock(&ubi
->wl_lock
);
935 ubi_free_vid_buf(vidb
);
937 ensure_wear_leveling(ubi
, 1);
939 err
= do_sync_erase(ubi
, e2
, vol_id
, lnum
, torture
);
945 err
= do_sync_erase(ubi
, e1
, vol_id
, lnum
, 1);
950 mutex_unlock(&ubi
->move_mutex
);
951 up_read(&ubi
->fm_eba_sem
);
956 ubi_err(ubi
, "error %d while moving PEB %d to PEB %d",
957 err
, e1
->pnum
, e2
->pnum
);
959 ubi_err(ubi
, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
960 err
, e1
->pnum
, vol_id
, lnum
, e2
->pnum
);
961 spin_lock(&ubi
->wl_lock
);
962 ubi
->move_from
= ubi
->move_to
= NULL
;
963 ubi
->move_to_put
= ubi
->wl_scheduled
= 0;
964 spin_unlock(&ubi
->wl_lock
);
966 ubi_free_vid_buf(vidb
);
967 wl_entry_destroy(ubi
, e1
);
968 wl_entry_destroy(ubi
, e2
);
972 mutex_unlock(&ubi
->move_mutex
);
973 up_read(&ubi
->fm_eba_sem
);
974 ubi_assert(err
!= 0);
975 return err
< 0 ? err
: -EIO
;
978 ubi
->wl_scheduled
= 0;
979 spin_unlock(&ubi
->wl_lock
);
980 mutex_unlock(&ubi
->move_mutex
);
981 up_read(&ubi
->fm_eba_sem
);
982 ubi_free_vid_buf(vidb
);
987 * ensure_wear_leveling - schedule wear-leveling if it is needed.
988 * @ubi: UBI device description object
989 * @nested: set to non-zero if this function is called from UBI worker
991 * This function checks if it is time to start wear-leveling and schedules it
992 * if yes. This function returns zero in case of success and a negative error
993 * code in case of failure.
995 static int ensure_wear_leveling(struct ubi_device
*ubi
, int nested
)
998 struct ubi_wl_entry
*e1
;
999 struct ubi_wl_entry
*e2
;
1000 struct ubi_work
*wrk
;
1002 spin_lock(&ubi
->wl_lock
);
1003 if (ubi
->wl_scheduled
)
1004 /* Wear-leveling is already in the work queue */
1008 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1009 * the WL worker has to be scheduled anyway.
1011 if (!ubi
->scrub
.rb_node
) {
1012 if (!ubi
->used
.rb_node
|| !ubi
->free
.rb_node
)
1013 /* No physical eraseblocks - no deal */
1017 * We schedule wear-leveling only if the difference between the
1018 * lowest erase counter of used physical eraseblocks and a high
1019 * erase counter of free physical eraseblocks is greater than
1020 * %UBI_WL_THRESHOLD.
1022 e1
= rb_entry(rb_first(&ubi
->used
), struct ubi_wl_entry
, u
.rb
);
1023 e2
= find_wl_entry(ubi
, &ubi
->free
, WL_FREE_MAX_DIFF
);
1025 if (!(e2
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
))
1027 dbg_wl("schedule wear-leveling");
1029 dbg_wl("schedule scrubbing");
1031 ubi
->wl_scheduled
= 1;
1032 spin_unlock(&ubi
->wl_lock
);
1034 wrk
= kmalloc(sizeof(struct ubi_work
), GFP_NOFS
);
1040 wrk
->func
= &wear_leveling_worker
;
1042 __schedule_ubi_work(ubi
, wrk
);
1044 schedule_ubi_work(ubi
, wrk
);
1048 spin_lock(&ubi
->wl_lock
);
1049 ubi
->wl_scheduled
= 0;
1051 spin_unlock(&ubi
->wl_lock
);
1056 * __erase_worker - physical eraseblock erase worker function.
1057 * @ubi: UBI device description object
1058 * @wl_wrk: the work object
1059 * @shutdown: non-zero if the worker has to free memory and exit
1060 * because the WL sub-system is shutting down
1062 * This function erases a physical eraseblock and perform torture testing if
1063 * needed. It also takes care about marking the physical eraseblock bad if
1064 * needed. Returns zero in case of success and a negative error code in case of
1067 static int __erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
)
1069 struct ubi_wl_entry
*e
= wl_wrk
->e
;
1071 int vol_id
= wl_wrk
->vol_id
;
1072 int lnum
= wl_wrk
->lnum
;
1073 int err
, available_consumed
= 0;
1075 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1076 pnum
, e
->ec
, wl_wrk
->vol_id
, wl_wrk
->lnum
);
1078 err
= sync_erase(ubi
, e
, wl_wrk
->torture
);
1080 spin_lock(&ubi
->wl_lock
);
1082 if (!ubi
->fm_anchor
&& e
->pnum
< UBI_FM_MAX_START
) {
1084 ubi
->fm_do_produce_anchor
= 0;
1086 wl_tree_add(e
, &ubi
->free
);
1090 spin_unlock(&ubi
->wl_lock
);
1093 * One more erase operation has happened, take care about
1094 * protected physical eraseblocks.
1096 serve_prot_queue(ubi
);
1098 /* And take care about wear-leveling */
1099 err
= ensure_wear_leveling(ubi
, 1);
1103 ubi_err(ubi
, "failed to erase PEB %d, error %d", pnum
, err
);
1105 if (err
== -EINTR
|| err
== -ENOMEM
|| err
== -EAGAIN
||
1109 /* Re-schedule the LEB for erasure */
1110 err1
= schedule_erase(ubi
, e
, vol_id
, lnum
, 0, false);
1112 wl_entry_destroy(ubi
, e
);
1119 wl_entry_destroy(ubi
, e
);
1122 * If this is not %-EIO, we have no idea what to do. Scheduling
1123 * this physical eraseblock for erasure again would cause
1124 * errors again and again. Well, lets switch to R/O mode.
1128 /* It is %-EIO, the PEB went bad */
1130 if (!ubi
->bad_allowed
) {
1131 ubi_err(ubi
, "bad physical eraseblock %d detected", pnum
);
1135 spin_lock(&ubi
->volumes_lock
);
1136 if (ubi
->beb_rsvd_pebs
== 0) {
1137 if (ubi
->avail_pebs
== 0) {
1138 spin_unlock(&ubi
->volumes_lock
);
1139 ubi_err(ubi
, "no reserved/available physical eraseblocks");
1142 ubi
->avail_pebs
-= 1;
1143 available_consumed
= 1;
1145 spin_unlock(&ubi
->volumes_lock
);
1147 ubi_msg(ubi
, "mark PEB %d as bad", pnum
);
1148 err
= ubi_io_mark_bad(ubi
, pnum
);
1152 spin_lock(&ubi
->volumes_lock
);
1153 if (ubi
->beb_rsvd_pebs
> 0) {
1154 if (available_consumed
) {
1156 * The amount of reserved PEBs increased since we last
1159 ubi
->avail_pebs
+= 1;
1160 available_consumed
= 0;
1162 ubi
->beb_rsvd_pebs
-= 1;
1164 ubi
->bad_peb_count
+= 1;
1165 ubi
->good_peb_count
-= 1;
1166 ubi_calculate_reserved(ubi
);
1167 if (available_consumed
)
1168 ubi_warn(ubi
, "no PEBs in the reserved pool, used an available PEB");
1169 else if (ubi
->beb_rsvd_pebs
)
1170 ubi_msg(ubi
, "%d PEBs left in the reserve",
1171 ubi
->beb_rsvd_pebs
);
1173 ubi_warn(ubi
, "last PEB from the reserve was used");
1174 spin_unlock(&ubi
->volumes_lock
);
1179 if (available_consumed
) {
1180 spin_lock(&ubi
->volumes_lock
);
1181 ubi
->avail_pebs
+= 1;
1182 spin_unlock(&ubi
->volumes_lock
);
1188 static int erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
,
1194 struct ubi_wl_entry
*e
= wl_wrk
->e
;
1196 dbg_wl("cancel erasure of PEB %d EC %d", e
->pnum
, e
->ec
);
1198 wl_entry_destroy(ubi
, e
);
1202 ret
= __erase_worker(ubi
, wl_wrk
);
1208 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1209 * @ubi: UBI device description object
1210 * @vol_id: the volume ID that last used this PEB
1211 * @lnum: the last used logical eraseblock number for the PEB
1212 * @pnum: physical eraseblock to return
1213 * @torture: if this physical eraseblock has to be tortured
1215 * This function is called to return physical eraseblock @pnum to the pool of
1216 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1217 * occurred to this @pnum and it has to be tested. This function returns zero
1218 * in case of success, and a negative error code in case of failure.
1220 int ubi_wl_put_peb(struct ubi_device
*ubi
, int vol_id
, int lnum
,
1221 int pnum
, int torture
)
1224 struct ubi_wl_entry
*e
;
1226 dbg_wl("PEB %d", pnum
);
1227 ubi_assert(pnum
>= 0);
1228 ubi_assert(pnum
< ubi
->peb_count
);
1230 down_read(&ubi
->fm_protect
);
1233 spin_lock(&ubi
->wl_lock
);
1234 e
= ubi
->lookuptbl
[pnum
];
1235 if (e
== ubi
->move_from
) {
1237 * User is putting the physical eraseblock which was selected to
1238 * be moved. It will be scheduled for erasure in the
1239 * wear-leveling worker.
1241 dbg_wl("PEB %d is being moved, wait", pnum
);
1242 spin_unlock(&ubi
->wl_lock
);
1244 /* Wait for the WL worker by taking the @ubi->move_mutex */
1245 mutex_lock(&ubi
->move_mutex
);
1246 mutex_unlock(&ubi
->move_mutex
);
1248 } else if (e
== ubi
->move_to
) {
1250 * User is putting the physical eraseblock which was selected
1251 * as the target the data is moved to. It may happen if the EBA
1252 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1253 * but the WL sub-system has not put the PEB to the "used" tree
1254 * yet, but it is about to do this. So we just set a flag which
1255 * will tell the WL worker that the PEB is not needed anymore
1256 * and should be scheduled for erasure.
1258 dbg_wl("PEB %d is the target of data moving", pnum
);
1259 ubi_assert(!ubi
->move_to_put
);
1260 ubi
->move_to_put
= 1;
1261 spin_unlock(&ubi
->wl_lock
);
1262 up_read(&ubi
->fm_protect
);
1265 if (in_wl_tree(e
, &ubi
->used
)) {
1266 self_check_in_wl_tree(ubi
, e
, &ubi
->used
);
1267 rb_erase(&e
->u
.rb
, &ubi
->used
);
1268 } else if (in_wl_tree(e
, &ubi
->scrub
)) {
1269 self_check_in_wl_tree(ubi
, e
, &ubi
->scrub
);
1270 rb_erase(&e
->u
.rb
, &ubi
->scrub
);
1271 } else if (in_wl_tree(e
, &ubi
->erroneous
)) {
1272 self_check_in_wl_tree(ubi
, e
, &ubi
->erroneous
);
1273 rb_erase(&e
->u
.rb
, &ubi
->erroneous
);
1274 ubi
->erroneous_peb_count
-= 1;
1275 ubi_assert(ubi
->erroneous_peb_count
>= 0);
1276 /* Erroneous PEBs should be tortured */
1279 err
= prot_queue_del(ubi
, e
->pnum
);
1281 ubi_err(ubi
, "PEB %d not found", pnum
);
1283 spin_unlock(&ubi
->wl_lock
);
1284 up_read(&ubi
->fm_protect
);
1289 spin_unlock(&ubi
->wl_lock
);
1291 err
= schedule_erase(ubi
, e
, vol_id
, lnum
, torture
, false);
1293 spin_lock(&ubi
->wl_lock
);
1294 wl_tree_add(e
, &ubi
->used
);
1295 spin_unlock(&ubi
->wl_lock
);
1298 up_read(&ubi
->fm_protect
);
1303 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1304 * @ubi: UBI device description object
1305 * @pnum: the physical eraseblock to schedule
1307 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1308 * needs scrubbing. This function schedules a physical eraseblock for
1309 * scrubbing which is done in background. This function returns zero in case of
1310 * success and a negative error code in case of failure.
1312 int ubi_wl_scrub_peb(struct ubi_device
*ubi
, int pnum
)
1314 struct ubi_wl_entry
*e
;
1316 ubi_msg(ubi
, "schedule PEB %d for scrubbing", pnum
);
1319 spin_lock(&ubi
->wl_lock
);
1320 e
= ubi
->lookuptbl
[pnum
];
1321 if (e
== ubi
->move_from
|| in_wl_tree(e
, &ubi
->scrub
) ||
1322 in_wl_tree(e
, &ubi
->erroneous
)) {
1323 spin_unlock(&ubi
->wl_lock
);
1327 if (e
== ubi
->move_to
) {
1329 * This physical eraseblock was used to move data to. The data
1330 * was moved but the PEB was not yet inserted to the proper
1331 * tree. We should just wait a little and let the WL worker
1334 spin_unlock(&ubi
->wl_lock
);
1335 dbg_wl("the PEB %d is not in proper tree, retry", pnum
);
1340 if (in_wl_tree(e
, &ubi
->used
)) {
1341 self_check_in_wl_tree(ubi
, e
, &ubi
->used
);
1342 rb_erase(&e
->u
.rb
, &ubi
->used
);
1346 err
= prot_queue_del(ubi
, e
->pnum
);
1348 ubi_err(ubi
, "PEB %d not found", pnum
);
1350 spin_unlock(&ubi
->wl_lock
);
1355 wl_tree_add(e
, &ubi
->scrub
);
1356 spin_unlock(&ubi
->wl_lock
);
1359 * Technically scrubbing is the same as wear-leveling, so it is done
1362 return ensure_wear_leveling(ubi
, 0);
1366 * ubi_wl_flush - flush all pending works.
1367 * @ubi: UBI device description object
1368 * @vol_id: the volume id to flush for
1369 * @lnum: the logical eraseblock number to flush for
1371 * This function executes all pending works for a particular volume id /
1372 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1373 * acts as a wildcard for all of the corresponding volume numbers or logical
1374 * eraseblock numbers. It returns zero in case of success and a negative error
1375 * code in case of failure.
1377 int ubi_wl_flush(struct ubi_device
*ubi
, int vol_id
, int lnum
)
1383 * Erase while the pending works queue is not empty, but not more than
1384 * the number of currently pending works.
1386 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1387 vol_id
, lnum
, ubi
->works_count
);
1390 struct ubi_work
*wrk
, *tmp
;
1393 down_read(&ubi
->work_sem
);
1394 spin_lock(&ubi
->wl_lock
);
1395 list_for_each_entry_safe(wrk
, tmp
, &ubi
->works
, list
) {
1396 if ((vol_id
== UBI_ALL
|| wrk
->vol_id
== vol_id
) &&
1397 (lnum
== UBI_ALL
|| wrk
->lnum
== lnum
)) {
1398 list_del(&wrk
->list
);
1399 ubi
->works_count
-= 1;
1400 ubi_assert(ubi
->works_count
>= 0);
1401 spin_unlock(&ubi
->wl_lock
);
1403 err
= wrk
->func(ubi
, wrk
, 0);
1405 up_read(&ubi
->work_sem
);
1409 spin_lock(&ubi
->wl_lock
);
1414 spin_unlock(&ubi
->wl_lock
);
1415 up_read(&ubi
->work_sem
);
1419 * Make sure all the works which have been done in parallel are
1422 down_write(&ubi
->work_sem
);
1423 up_write(&ubi
->work_sem
);
1428 static bool scrub_possible(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
1430 if (in_wl_tree(e
, &ubi
->scrub
))
1432 else if (in_wl_tree(e
, &ubi
->erroneous
))
1434 else if (ubi
->move_from
== e
)
1436 else if (ubi
->move_to
== e
)
1443 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1444 * @ubi: UBI device description object
1445 * @pnum: the physical eraseblock to schedule
1446 * @force: dont't read the block, assume bitflips happened and take action.
1448 * This function reads the given eraseblock and checks if bitflips occured.
1449 * In case of bitflips, the eraseblock is scheduled for scrubbing.
1450 * If scrubbing is forced with @force, the eraseblock is not read,
1451 * but scheduled for scrubbing right away.
1454 * %EINVAL, PEB is out of range
1455 * %ENOENT, PEB is no longer used by UBI
1456 * %EBUSY, PEB cannot be checked now or a check is currently running on it
1457 * %EAGAIN, bit flips happened but scrubbing is currently not possible
1458 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1459 * %0, no bit flips detected
1461 int ubi_bitflip_check(struct ubi_device
*ubi
, int pnum
, int force
)
1464 struct ubi_wl_entry
*e
;
1466 if (pnum
< 0 || pnum
>= ubi
->peb_count
) {
1472 * Pause all parallel work, otherwise it can happen that the
1473 * erase worker frees a wl entry under us.
1475 down_write(&ubi
->work_sem
);
1478 * Make sure that the wl entry does not change state while
1481 spin_lock(&ubi
->wl_lock
);
1482 e
= ubi
->lookuptbl
[pnum
];
1484 spin_unlock(&ubi
->wl_lock
);
1490 * Does it make sense to check this PEB?
1492 if (!scrub_possible(ubi
, e
)) {
1493 spin_unlock(&ubi
->wl_lock
);
1497 spin_unlock(&ubi
->wl_lock
);
1500 mutex_lock(&ubi
->buf_mutex
);
1501 err
= ubi_io_read(ubi
, ubi
->peb_buf
, pnum
, 0, ubi
->peb_size
);
1502 mutex_unlock(&ubi
->buf_mutex
);
1505 if (force
|| err
== UBI_IO_BITFLIPS
) {
1507 * Okay, bit flip happened, let's figure out what we can do.
1509 spin_lock(&ubi
->wl_lock
);
1512 * Recheck. We released wl_lock, UBI might have killed the
1513 * wl entry under us.
1515 e
= ubi
->lookuptbl
[pnum
];
1517 spin_unlock(&ubi
->wl_lock
);
1523 * Need to re-check state
1525 if (!scrub_possible(ubi
, e
)) {
1526 spin_unlock(&ubi
->wl_lock
);
1531 if (in_pq(ubi
, e
)) {
1532 prot_queue_del(ubi
, e
->pnum
);
1533 wl_tree_add(e
, &ubi
->scrub
);
1534 spin_unlock(&ubi
->wl_lock
);
1536 err
= ensure_wear_leveling(ubi
, 1);
1537 } else if (in_wl_tree(e
, &ubi
->used
)) {
1538 rb_erase(&e
->u
.rb
, &ubi
->used
);
1539 wl_tree_add(e
, &ubi
->scrub
);
1540 spin_unlock(&ubi
->wl_lock
);
1542 err
= ensure_wear_leveling(ubi
, 1);
1543 } else if (in_wl_tree(e
, &ubi
->free
)) {
1544 rb_erase(&e
->u
.rb
, &ubi
->free
);
1546 spin_unlock(&ubi
->wl_lock
);
1549 * This PEB is empty we can schedule it for
1550 * erasure right away. No wear leveling needed.
1552 err
= schedule_erase(ubi
, e
, UBI_UNKNOWN
, UBI_UNKNOWN
,
1553 force
? 0 : 1, true);
1555 spin_unlock(&ubi
->wl_lock
);
1566 up_write(&ubi
->work_sem
);
1573 * tree_destroy - destroy an RB-tree.
1574 * @ubi: UBI device description object
1575 * @root: the root of the tree to destroy
1577 static void tree_destroy(struct ubi_device
*ubi
, struct rb_root
*root
)
1580 struct ubi_wl_entry
*e
;
1586 else if (rb
->rb_right
)
1589 e
= rb_entry(rb
, struct ubi_wl_entry
, u
.rb
);
1593 if (rb
->rb_left
== &e
->u
.rb
)
1596 rb
->rb_right
= NULL
;
1599 wl_entry_destroy(ubi
, e
);
1605 * ubi_thread - UBI background thread.
1606 * @u: the UBI device description object pointer
1608 int ubi_thread(void *u
)
1611 struct ubi_device
*ubi
= u
;
1613 ubi_msg(ubi
, "background thread \"%s\" started, PID %d",
1614 ubi
->bgt_name
, task_pid_nr(current
));
1620 if (kthread_should_stop())
1623 if (try_to_freeze())
1626 spin_lock(&ubi
->wl_lock
);
1627 if (list_empty(&ubi
->works
) || ubi
->ro_mode
||
1628 !ubi
->thread_enabled
|| ubi_dbg_is_bgt_disabled(ubi
)) {
1629 set_current_state(TASK_INTERRUPTIBLE
);
1630 spin_unlock(&ubi
->wl_lock
);
1634 spin_unlock(&ubi
->wl_lock
);
1638 ubi_err(ubi
, "%s: work failed with error code %d",
1639 ubi
->bgt_name
, err
);
1640 if (failures
++ > WL_MAX_FAILURES
) {
1642 * Too many failures, disable the thread and
1643 * switch to read-only mode.
1645 ubi_msg(ubi
, "%s: %d consecutive failures",
1646 ubi
->bgt_name
, WL_MAX_FAILURES
);
1648 ubi
->thread_enabled
= 0;
1657 dbg_wl("background thread \"%s\" is killed", ubi
->bgt_name
);
1658 ubi
->thread_enabled
= 0;
1663 * shutdown_work - shutdown all pending works.
1664 * @ubi: UBI device description object
1666 static void shutdown_work(struct ubi_device
*ubi
)
1668 while (!list_empty(&ubi
->works
)) {
1669 struct ubi_work
*wrk
;
1671 wrk
= list_entry(ubi
->works
.next
, struct ubi_work
, list
);
1672 list_del(&wrk
->list
);
1673 wrk
->func(ubi
, wrk
, 1);
1674 ubi
->works_count
-= 1;
1675 ubi_assert(ubi
->works_count
>= 0);
1680 * erase_aeb - erase a PEB given in UBI attach info PEB
1681 * @ubi: UBI device description object
1682 * @aeb: UBI attach info PEB
1683 * @sync: If true, erase synchronously. Otherwise schedule for erasure
1685 static int erase_aeb(struct ubi_device
*ubi
, struct ubi_ainf_peb
*aeb
, bool sync
)
1687 struct ubi_wl_entry
*e
;
1690 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1694 e
->pnum
= aeb
->pnum
;
1696 ubi
->lookuptbl
[e
->pnum
] = e
;
1699 err
= sync_erase(ubi
, e
, false);
1703 wl_tree_add(e
, &ubi
->free
);
1706 err
= schedule_erase(ubi
, e
, aeb
->vol_id
, aeb
->lnum
, 0, false);
1714 wl_entry_destroy(ubi
, e
);
1720 * ubi_wl_init - initialize the WL sub-system using attaching information.
1721 * @ubi: UBI device description object
1722 * @ai: attaching information
1724 * This function returns zero in case of success, and a negative error code in
1727 int ubi_wl_init(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
)
1729 int err
, i
, reserved_pebs
, found_pebs
= 0;
1730 struct rb_node
*rb1
, *rb2
;
1731 struct ubi_ainf_volume
*av
;
1732 struct ubi_ainf_peb
*aeb
, *tmp
;
1733 struct ubi_wl_entry
*e
;
1735 ubi
->used
= ubi
->erroneous
= ubi
->free
= ubi
->scrub
= RB_ROOT
;
1736 spin_lock_init(&ubi
->wl_lock
);
1737 mutex_init(&ubi
->move_mutex
);
1738 init_rwsem(&ubi
->work_sem
);
1739 ubi
->max_ec
= ai
->max_ec
;
1740 INIT_LIST_HEAD(&ubi
->works
);
1742 sprintf(ubi
->bgt_name
, UBI_BGT_NAME_PATTERN
, ubi
->ubi_num
);
1745 ubi
->lookuptbl
= kcalloc(ubi
->peb_count
, sizeof(void *), GFP_KERNEL
);
1746 if (!ubi
->lookuptbl
)
1749 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; i
++)
1750 INIT_LIST_HEAD(&ubi
->pq
[i
]);
1753 ubi
->free_count
= 0;
1754 list_for_each_entry_safe(aeb
, tmp
, &ai
->erase
, u
.list
) {
1757 err
= erase_aeb(ubi
, aeb
, false);
1764 list_for_each_entry(aeb
, &ai
->free
, u
.list
) {
1767 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1773 e
->pnum
= aeb
->pnum
;
1775 ubi_assert(e
->ec
>= 0);
1777 wl_tree_add(e
, &ubi
->free
);
1780 ubi
->lookuptbl
[e
->pnum
] = e
;
1785 ubi_rb_for_each_entry(rb1
, av
, &ai
->volumes
, rb
) {
1786 ubi_rb_for_each_entry(rb2
, aeb
, &av
->root
, u
.rb
) {
1789 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1795 e
->pnum
= aeb
->pnum
;
1797 ubi
->lookuptbl
[e
->pnum
] = e
;
1800 dbg_wl("add PEB %d EC %d to the used tree",
1802 wl_tree_add(e
, &ubi
->used
);
1804 dbg_wl("add PEB %d EC %d to the scrub tree",
1806 wl_tree_add(e
, &ubi
->scrub
);
1813 list_for_each_entry(aeb
, &ai
->fastmap
, u
.list
) {
1816 e
= ubi_find_fm_block(ubi
, aeb
->pnum
);
1819 ubi_assert(!ubi
->lookuptbl
[e
->pnum
]);
1820 ubi
->lookuptbl
[e
->pnum
] = e
;
1825 * Usually old Fastmap PEBs are scheduled for erasure
1826 * and we don't have to care about them but if we face
1827 * an power cut before scheduling them we need to
1828 * take care of them here.
1830 if (ubi
->lookuptbl
[aeb
->pnum
])
1834 * The fastmap update code might not find a free PEB for
1835 * writing the fastmap anchor to and then reuses the
1836 * current fastmap anchor PEB. When this PEB gets erased
1837 * and a power cut happens before it is written again we
1838 * must make sure that the fastmap attach code doesn't
1839 * find any outdated fastmap anchors, hence we erase the
1840 * outdated fastmap anchor PEBs synchronously here.
1842 if (aeb
->vol_id
== UBI_FM_SB_VOLUME_ID
)
1845 err
= erase_aeb(ubi
, aeb
, sync
);
1853 dbg_wl("found %i PEBs", found_pebs
);
1855 ubi_assert(ubi
->good_peb_count
== found_pebs
);
1857 reserved_pebs
= WL_RESERVED_PEBS
;
1858 ubi_fastmap_init(ubi
, &reserved_pebs
);
1860 if (ubi
->avail_pebs
< reserved_pebs
) {
1861 ubi_err(ubi
, "no enough physical eraseblocks (%d, need %d)",
1862 ubi
->avail_pebs
, reserved_pebs
);
1863 if (ubi
->corr_peb_count
)
1864 ubi_err(ubi
, "%d PEBs are corrupted and not used",
1865 ubi
->corr_peb_count
);
1869 ubi
->avail_pebs
-= reserved_pebs
;
1870 ubi
->rsvd_pebs
+= reserved_pebs
;
1872 /* Schedule wear-leveling if needed */
1873 err
= ensure_wear_leveling(ubi
, 0);
1877 #ifdef CONFIG_MTD_UBI_FASTMAP
1878 ubi_ensure_anchor_pebs(ubi
);
1884 tree_destroy(ubi
, &ubi
->used
);
1885 tree_destroy(ubi
, &ubi
->free
);
1886 tree_destroy(ubi
, &ubi
->scrub
);
1887 kfree(ubi
->lookuptbl
);
1892 * protection_queue_destroy - destroy the protection queue.
1893 * @ubi: UBI device description object
1895 static void protection_queue_destroy(struct ubi_device
*ubi
)
1898 struct ubi_wl_entry
*e
, *tmp
;
1900 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; ++i
) {
1901 list_for_each_entry_safe(e
, tmp
, &ubi
->pq
[i
], u
.list
) {
1902 list_del(&e
->u
.list
);
1903 wl_entry_destroy(ubi
, e
);
1909 * ubi_wl_close - close the wear-leveling sub-system.
1910 * @ubi: UBI device description object
1912 void ubi_wl_close(struct ubi_device
*ubi
)
1914 dbg_wl("close the WL sub-system");
1915 ubi_fastmap_close(ubi
);
1917 protection_queue_destroy(ubi
);
1918 tree_destroy(ubi
, &ubi
->used
);
1919 tree_destroy(ubi
, &ubi
->erroneous
);
1920 tree_destroy(ubi
, &ubi
->free
);
1921 tree_destroy(ubi
, &ubi
->scrub
);
1922 kfree(ubi
->lookuptbl
);
1926 * self_check_ec - make sure that the erase counter of a PEB is correct.
1927 * @ubi: UBI device description object
1928 * @pnum: the physical eraseblock number to check
1929 * @ec: the erase counter to check
1931 * This function returns zero if the erase counter of physical eraseblock @pnum
1932 * is equivalent to @ec, and a negative error code if not or if an error
1935 static int self_check_ec(struct ubi_device
*ubi
, int pnum
, int ec
)
1939 struct ubi_ec_hdr
*ec_hdr
;
1941 if (!ubi_dbg_chk_gen(ubi
))
1944 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
1948 err
= ubi_io_read_ec_hdr(ubi
, pnum
, ec_hdr
, 0);
1949 if (err
&& err
!= UBI_IO_BITFLIPS
) {
1950 /* The header does not have to exist */
1955 read_ec
= be64_to_cpu(ec_hdr
->ec
);
1956 if (ec
!= read_ec
&& read_ec
- ec
> 1) {
1957 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1958 ubi_err(ubi
, "read EC is %lld, should be %d", read_ec
, ec
);
1970 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1971 * @ubi: UBI device description object
1972 * @e: the wear-leveling entry to check
1973 * @root: the root of the tree
1975 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1978 static int self_check_in_wl_tree(const struct ubi_device
*ubi
,
1979 struct ubi_wl_entry
*e
, struct rb_root
*root
)
1981 if (!ubi_dbg_chk_gen(ubi
))
1984 if (in_wl_tree(e
, root
))
1987 ubi_err(ubi
, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1988 e
->pnum
, e
->ec
, root
);
1994 * self_check_in_pq - check if wear-leveling entry is in the protection
1996 * @ubi: UBI device description object
1997 * @e: the wear-leveling entry to check
1999 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2001 static int self_check_in_pq(const struct ubi_device
*ubi
,
2002 struct ubi_wl_entry
*e
)
2004 if (!ubi_dbg_chk_gen(ubi
))
2010 ubi_err(ubi
, "self-check failed for PEB %d, EC %d, Protect queue",
2015 #ifndef CONFIG_MTD_UBI_FASTMAP
2016 static struct ubi_wl_entry
*get_peb_for_wl(struct ubi_device
*ubi
)
2018 struct ubi_wl_entry
*e
;
2020 e
= find_wl_entry(ubi
, &ubi
->free
, WL_FREE_MAX_DIFF
);
2021 self_check_in_wl_tree(ubi
, e
, &ubi
->free
);
2023 ubi_assert(ubi
->free_count
>= 0);
2024 rb_erase(&e
->u
.rb
, &ubi
->free
);
2030 * produce_free_peb - produce a free physical eraseblock.
2031 * @ubi: UBI device description object
2033 * This function tries to make a free PEB by means of synchronous execution of
2034 * pending works. This may be needed if, for example the background thread is
2035 * disabled. Returns zero in case of success and a negative error code in case
2038 static int produce_free_peb(struct ubi_device
*ubi
)
2042 while (!ubi
->free
.rb_node
&& ubi
->works_count
) {
2043 spin_unlock(&ubi
->wl_lock
);
2045 dbg_wl("do one work synchronously");
2048 spin_lock(&ubi
->wl_lock
);
2057 * ubi_wl_get_peb - get a physical eraseblock.
2058 * @ubi: UBI device description object
2060 * This function returns a physical eraseblock in case of success and a
2061 * negative error code in case of failure.
2062 * Returns with ubi->fm_eba_sem held in read mode!
2064 int ubi_wl_get_peb(struct ubi_device
*ubi
)
2067 struct ubi_wl_entry
*e
;
2070 down_read(&ubi
->fm_eba_sem
);
2071 spin_lock(&ubi
->wl_lock
);
2072 if (!ubi
->free
.rb_node
) {
2073 if (ubi
->works_count
== 0) {
2074 ubi_err(ubi
, "no free eraseblocks");
2075 ubi_assert(list_empty(&ubi
->works
));
2076 spin_unlock(&ubi
->wl_lock
);
2080 err
= produce_free_peb(ubi
);
2082 spin_unlock(&ubi
->wl_lock
);
2085 spin_unlock(&ubi
->wl_lock
);
2086 up_read(&ubi
->fm_eba_sem
);
2090 e
= wl_get_wle(ubi
);
2091 prot_queue_add(ubi
, e
);
2092 spin_unlock(&ubi
->wl_lock
);
2094 err
= ubi_self_check_all_ff(ubi
, e
->pnum
, ubi
->vid_hdr_aloffset
,
2095 ubi
->peb_size
- ubi
->vid_hdr_aloffset
);
2097 ubi_err(ubi
, "new PEB %d does not contain all 0xFF bytes", e
->pnum
);
2104 #include "fastmap-wl.c"