treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / mtd / ubi / wl.c
blob837d690a8c60d345c9d53c878658d45236c2f1d7
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) International Business Machines Corp., 2006
5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6 */
8 /*
9 * UBI wear-leveling sub-system.
11 * This sub-system is responsible for wear-leveling. It works in terms of
12 * physical eraseblocks and erase counters and knows nothing about logical
13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
21 * When physical eraseblocks are returned to the WL sub-system by means of the
22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23 * done asynchronously in context of the per-UBI device background thread,
24 * which is also managed by the WL sub-system.
26 * The wear-leveling is ensured by means of moving the contents of used
27 * physical eraseblocks with low erase counter to free physical eraseblocks
28 * with high erase counter.
30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31 * bad.
33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34 * in a physical eraseblock, it has to be moved. Technically this is the same
35 * as moving it for wear-leveling reasons.
37 * As it was said, for the UBI sub-system all physical eraseblocks are either
38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
42 * When the WL sub-system returns a physical eraseblock, the physical
43 * eraseblock is protected from being moved for some "time". For this reason,
44 * the physical eraseblock is not directly moved from the @wl->free tree to the
45 * @wl->used tree. There is a protection queue in between where this
46 * physical eraseblock is temporarily stored (@wl->pq).
48 * All this protection stuff is needed because:
49 * o we don't want to move physical eraseblocks just after we have given them
50 * to the user; instead, we first want to let users fill them up with data;
52 * o there is a chance that the user will put the physical eraseblock very
53 * soon, so it makes sense not to move it for some time, but wait.
55 * Physical eraseblocks stay protected only for limited time. But the "time" is
56 * measured in erase cycles in this case. This is implemented with help of the
57 * protection queue. Eraseblocks are put to the tail of this queue when they
58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59 * head of the queue on each erase operation (for any eraseblock). So the
60 * length of the queue defines how may (global) erase cycles PEBs are protected.
62 * To put it differently, each physical eraseblock has 2 main states: free and
63 * used. The former state corresponds to the @wl->free tree. The latter state
64 * is split up on several sub-states:
65 * o the WL movement is allowed (@wl->used tree);
66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67 * erroneous - e.g., there was a read error;
68 * o the WL movement is temporarily prohibited (@wl->pq queue);
69 * o scrubbing is needed (@wl->scrub tree).
71 * Depending on the sub-state, wear-leveling entries of the used physical
72 * eraseblocks may be kept in one of those structures.
74 * Note, in this implementation, we keep a small in-RAM object for each physical
75 * eraseblock. This is surely not a scalable solution. But it appears to be good
76 * enough for moderately large flashes and it is simple. In future, one may
77 * re-work this sub-system and make it more scalable.
79 * At the moment this sub-system does not utilize the sequence number, which
80 * was introduced relatively recently. But it would be wise to do this because
81 * the sequence number of a logical eraseblock characterizes how old is it. For
82 * example, when we move a PEB with low erase counter, and we need to pick the
83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84 * pick target PEB with an average EC if our PEB is not very "old". This is a
85 * room for future re-works of the WL sub-system.
88 #include <linux/slab.h>
89 #include <linux/crc32.h>
90 #include <linux/freezer.h>
91 #include <linux/kthread.h>
92 #include "ubi.h"
93 #include "wl.h"
95 /* Number of physical eraseblocks reserved for wear-leveling purposes */
96 #define WL_RESERVED_PEBS 1
99 * Maximum difference between two erase counters. If this threshold is
100 * exceeded, the WL sub-system starts moving data from used physical
101 * eraseblocks with low erase counter to free physical eraseblocks with high
102 * erase counter.
104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
107 * When a physical eraseblock is moved, the WL sub-system has to pick the target
108 * physical eraseblock to move to. The simplest way would be just to pick the
109 * one with the highest erase counter. But in certain workloads this could lead
110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111 * situation when the picked physical eraseblock is constantly erased after the
112 * data is written to it. So, we have a constant which limits the highest erase
113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114 * does not pick eraseblocks with erase counter greater than the lowest erase
115 * counter plus %WL_FREE_MAX_DIFF.
117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
120 * Maximum number of consecutive background thread failures which is enough to
121 * switch to read-only mode.
123 #define WL_MAX_FAILURES 32
125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
126 static int self_check_in_wl_tree(const struct ubi_device *ubi,
127 struct ubi_wl_entry *e, struct rb_root *root);
128 static int self_check_in_pq(const struct ubi_device *ubi,
129 struct ubi_wl_entry *e);
132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133 * @e: the wear-leveling entry to add
134 * @root: the root of the tree
136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137 * the @ubi->used and @ubi->free RB-trees.
139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
141 struct rb_node **p, *parent = NULL;
143 p = &root->rb_node;
144 while (*p) {
145 struct ubi_wl_entry *e1;
147 parent = *p;
148 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
150 if (e->ec < e1->ec)
151 p = &(*p)->rb_left;
152 else if (e->ec > e1->ec)
153 p = &(*p)->rb_right;
154 else {
155 ubi_assert(e->pnum != e1->pnum);
156 if (e->pnum < e1->pnum)
157 p = &(*p)->rb_left;
158 else
159 p = &(*p)->rb_right;
163 rb_link_node(&e->u.rb, parent, p);
164 rb_insert_color(&e->u.rb, root);
168 * wl_tree_destroy - destroy a wear-leveling entry.
169 * @ubi: UBI device description object
170 * @e: the wear-leveling entry to add
172 * This function destroys a wear leveling entry and removes
173 * the reference from the lookup table.
175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
177 ubi->lookuptbl[e->pnum] = NULL;
178 kmem_cache_free(ubi_wl_entry_slab, e);
182 * do_work - do one pending work.
183 * @ubi: UBI device description object
185 * This function returns zero in case of success and a negative error code in
186 * case of failure.
188 static int do_work(struct ubi_device *ubi)
190 int err;
191 struct ubi_work *wrk;
193 cond_resched();
196 * @ubi->work_sem is used to synchronize with the workers. Workers take
197 * it in read mode, so many of them may be doing works at a time. But
198 * the queue flush code has to be sure the whole queue of works is
199 * done, and it takes the mutex in write mode.
201 down_read(&ubi->work_sem);
202 spin_lock(&ubi->wl_lock);
203 if (list_empty(&ubi->works)) {
204 spin_unlock(&ubi->wl_lock);
205 up_read(&ubi->work_sem);
206 return 0;
209 wrk = list_entry(ubi->works.next, struct ubi_work, list);
210 list_del(&wrk->list);
211 ubi->works_count -= 1;
212 ubi_assert(ubi->works_count >= 0);
213 spin_unlock(&ubi->wl_lock);
216 * Call the worker function. Do not touch the work structure
217 * after this call as it will have been freed or reused by that
218 * time by the worker function.
220 err = wrk->func(ubi, wrk, 0);
221 if (err)
222 ubi_err(ubi, "work failed with error code %d", err);
223 up_read(&ubi->work_sem);
225 return err;
229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
230 * @e: the wear-leveling entry to check
231 * @root: the root of the tree
233 * This function returns non-zero if @e is in the @root RB-tree and zero if it
234 * is not.
236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
238 struct rb_node *p;
240 p = root->rb_node;
241 while (p) {
242 struct ubi_wl_entry *e1;
244 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
246 if (e->pnum == e1->pnum) {
247 ubi_assert(e == e1);
248 return 1;
251 if (e->ec < e1->ec)
252 p = p->rb_left;
253 else if (e->ec > e1->ec)
254 p = p->rb_right;
255 else {
256 ubi_assert(e->pnum != e1->pnum);
257 if (e->pnum < e1->pnum)
258 p = p->rb_left;
259 else
260 p = p->rb_right;
264 return 0;
268 * in_pq - check if a wear-leveling entry is present in the protection queue.
269 * @ubi: UBI device description object
270 * @e: the wear-leveling entry to check
272 * This function returns non-zero if @e is in the protection queue and zero
273 * if it is not.
275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
277 struct ubi_wl_entry *p;
278 int i;
280 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
281 list_for_each_entry(p, &ubi->pq[i], u.list)
282 if (p == e)
283 return 1;
285 return 0;
289 * prot_queue_add - add physical eraseblock to the protection queue.
290 * @ubi: UBI device description object
291 * @e: the physical eraseblock to add
293 * This function adds @e to the tail of the protection queue @ubi->pq, where
294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
296 * be locked.
298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
300 int pq_tail = ubi->pq_head - 1;
302 if (pq_tail < 0)
303 pq_tail = UBI_PROT_QUEUE_LEN - 1;
304 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
305 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
306 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
310 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
311 * @ubi: UBI device description object
312 * @root: the RB-tree where to look for
313 * @diff: maximum possible difference from the smallest erase counter
315 * This function looks for a wear leveling entry with erase counter closest to
316 * min + @diff, where min is the smallest erase counter.
318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
319 struct rb_root *root, int diff)
321 struct rb_node *p;
322 struct ubi_wl_entry *e;
323 int max;
325 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
326 max = e->ec + diff;
328 p = root->rb_node;
329 while (p) {
330 struct ubi_wl_entry *e1;
332 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
333 if (e1->ec >= max)
334 p = p->rb_left;
335 else {
336 p = p->rb_right;
337 e = e1;
341 return e;
345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346 * @ubi: UBI device description object
347 * @root: the RB-tree where to look for
349 * This function looks for a wear leveling entry with medium erase counter,
350 * but not greater or equivalent than the lowest erase counter plus
351 * %WL_FREE_MAX_DIFF/2.
353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354 struct rb_root *root)
356 struct ubi_wl_entry *e, *first, *last;
358 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
361 if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
364 /* If no fastmap has been written and this WL entry can be used
365 * as anchor PEB, hold it back and return the second best
366 * WL entry such that fastmap can use the anchor PEB later. */
367 e = may_reserve_for_fm(ubi, e, root);
368 } else
369 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
371 return e;
375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376 * refill_wl_user_pool().
377 * @ubi: UBI device description object
379 * This function returns a a wear leveling entry in case of success and
380 * NULL in case of failure.
382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
384 struct ubi_wl_entry *e;
386 e = find_mean_wl_entry(ubi, &ubi->free);
387 if (!e) {
388 ubi_err(ubi, "no free eraseblocks");
389 return NULL;
392 self_check_in_wl_tree(ubi, e, &ubi->free);
395 * Move the physical eraseblock to the protection queue where it will
396 * be protected from being moved for some time.
398 rb_erase(&e->u.rb, &ubi->free);
399 ubi->free_count--;
400 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
402 return e;
406 * prot_queue_del - remove a physical eraseblock from the protection queue.
407 * @ubi: UBI device description object
408 * @pnum: the physical eraseblock to remove
410 * This function deletes PEB @pnum from the protection queue and returns zero
411 * in case of success and %-ENODEV if the PEB was not found.
413 static int prot_queue_del(struct ubi_device *ubi, int pnum)
415 struct ubi_wl_entry *e;
417 e = ubi->lookuptbl[pnum];
418 if (!e)
419 return -ENODEV;
421 if (self_check_in_pq(ubi, e))
422 return -ENODEV;
424 list_del(&e->u.list);
425 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426 return 0;
430 * sync_erase - synchronously erase a physical eraseblock.
431 * @ubi: UBI device description object
432 * @e: the the physical eraseblock to erase
433 * @torture: if the physical eraseblock has to be tortured
435 * This function returns zero in case of success and a negative error code in
436 * case of failure.
438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439 int torture)
441 int err;
442 struct ubi_ec_hdr *ec_hdr;
443 unsigned long long ec = e->ec;
445 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
447 err = self_check_ec(ubi, e->pnum, e->ec);
448 if (err)
449 return -EINVAL;
451 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452 if (!ec_hdr)
453 return -ENOMEM;
455 err = ubi_io_sync_erase(ubi, e->pnum, torture);
456 if (err < 0)
457 goto out_free;
459 ec += err;
460 if (ec > UBI_MAX_ERASECOUNTER) {
462 * Erase counter overflow. Upgrade UBI and use 64-bit
463 * erase counters internally.
465 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466 e->pnum, ec);
467 err = -EINVAL;
468 goto out_free;
471 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
473 ec_hdr->ec = cpu_to_be64(ec);
475 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476 if (err)
477 goto out_free;
479 e->ec = ec;
480 spin_lock(&ubi->wl_lock);
481 if (e->ec > ubi->max_ec)
482 ubi->max_ec = e->ec;
483 spin_unlock(&ubi->wl_lock);
485 out_free:
486 kfree(ec_hdr);
487 return err;
491 * serve_prot_queue - check if it is time to stop protecting PEBs.
492 * @ubi: UBI device description object
494 * This function is called after each erase operation and removes PEBs from the
495 * tail of the protection queue. These PEBs have been protected for long enough
496 * and should be moved to the used tree.
498 static void serve_prot_queue(struct ubi_device *ubi)
500 struct ubi_wl_entry *e, *tmp;
501 int count;
504 * There may be several protected physical eraseblock to remove,
505 * process them all.
507 repeat:
508 count = 0;
509 spin_lock(&ubi->wl_lock);
510 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511 dbg_wl("PEB %d EC %d protection over, move to used tree",
512 e->pnum, e->ec);
514 list_del(&e->u.list);
515 wl_tree_add(e, &ubi->used);
516 if (count++ > 32) {
518 * Let's be nice and avoid holding the spinlock for
519 * too long.
521 spin_unlock(&ubi->wl_lock);
522 cond_resched();
523 goto repeat;
527 ubi->pq_head += 1;
528 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529 ubi->pq_head = 0;
530 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531 spin_unlock(&ubi->wl_lock);
535 * __schedule_ubi_work - schedule a work.
536 * @ubi: UBI device description object
537 * @wrk: the work to schedule
539 * This function adds a work defined by @wrk to the tail of the pending works
540 * list. Can only be used if ubi->work_sem is already held in read mode!
542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
544 spin_lock(&ubi->wl_lock);
545 list_add_tail(&wrk->list, &ubi->works);
546 ubi_assert(ubi->works_count >= 0);
547 ubi->works_count += 1;
548 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549 wake_up_process(ubi->bgt_thread);
550 spin_unlock(&ubi->wl_lock);
554 * schedule_ubi_work - schedule a work.
555 * @ubi: UBI device description object
556 * @wrk: the work to schedule
558 * This function adds a work defined by @wrk to the tail of the pending works
559 * list.
561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
563 down_read(&ubi->work_sem);
564 __schedule_ubi_work(ubi, wrk);
565 up_read(&ubi->work_sem);
568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569 int shutdown);
572 * schedule_erase - schedule an erase work.
573 * @ubi: UBI device description object
574 * @e: the WL entry of the physical eraseblock to erase
575 * @vol_id: the volume ID that last used this PEB
576 * @lnum: the last used logical eraseblock number for the PEB
577 * @torture: if the physical eraseblock has to be tortured
579 * This function returns zero in case of success and a %-ENOMEM in case of
580 * failure.
582 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
583 int vol_id, int lnum, int torture, bool nested)
585 struct ubi_work *wl_wrk;
587 ubi_assert(e);
589 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
590 e->pnum, e->ec, torture);
592 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
593 if (!wl_wrk)
594 return -ENOMEM;
596 wl_wrk->func = &erase_worker;
597 wl_wrk->e = e;
598 wl_wrk->vol_id = vol_id;
599 wl_wrk->lnum = lnum;
600 wl_wrk->torture = torture;
602 if (nested)
603 __schedule_ubi_work(ubi, wl_wrk);
604 else
605 schedule_ubi_work(ubi, wl_wrk);
606 return 0;
609 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
611 * do_sync_erase - run the erase worker synchronously.
612 * @ubi: UBI device description object
613 * @e: the WL entry of the physical eraseblock to erase
614 * @vol_id: the volume ID that last used this PEB
615 * @lnum: the last used logical eraseblock number for the PEB
616 * @torture: if the physical eraseblock has to be tortured
619 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
620 int vol_id, int lnum, int torture)
622 struct ubi_work wl_wrk;
624 dbg_wl("sync erase of PEB %i", e->pnum);
626 wl_wrk.e = e;
627 wl_wrk.vol_id = vol_id;
628 wl_wrk.lnum = lnum;
629 wl_wrk.torture = torture;
631 return __erase_worker(ubi, &wl_wrk);
634 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
636 * wear_leveling_worker - wear-leveling worker function.
637 * @ubi: UBI device description object
638 * @wrk: the work object
639 * @shutdown: non-zero if the worker has to free memory and exit
640 * because the WL-subsystem is shutting down
642 * This function copies a more worn out physical eraseblock to a less worn out
643 * one. Returns zero in case of success and a negative error code in case of
644 * failure.
646 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
647 int shutdown)
649 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
650 int erase = 0, keep = 0, vol_id = -1, lnum = -1;
651 struct ubi_wl_entry *e1, *e2;
652 struct ubi_vid_io_buf *vidb;
653 struct ubi_vid_hdr *vid_hdr;
654 int dst_leb_clean = 0;
656 kfree(wrk);
657 if (shutdown)
658 return 0;
660 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
661 if (!vidb)
662 return -ENOMEM;
664 vid_hdr = ubi_get_vid_hdr(vidb);
666 down_read(&ubi->fm_eba_sem);
667 mutex_lock(&ubi->move_mutex);
668 spin_lock(&ubi->wl_lock);
669 ubi_assert(!ubi->move_from && !ubi->move_to);
670 ubi_assert(!ubi->move_to_put);
672 if (!ubi->free.rb_node ||
673 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
675 * No free physical eraseblocks? Well, they must be waiting in
676 * the queue to be erased. Cancel movement - it will be
677 * triggered again when a free physical eraseblock appears.
679 * No used physical eraseblocks? They must be temporarily
680 * protected from being moved. They will be moved to the
681 * @ubi->used tree later and the wear-leveling will be
682 * triggered again.
684 dbg_wl("cancel WL, a list is empty: free %d, used %d",
685 !ubi->free.rb_node, !ubi->used.rb_node);
686 goto out_cancel;
689 #ifdef CONFIG_MTD_UBI_FASTMAP
690 if (ubi->fm_do_produce_anchor) {
691 e1 = find_anchor_wl_entry(&ubi->used);
692 if (!e1)
693 goto out_cancel;
694 e2 = get_peb_for_wl(ubi);
695 if (!e2)
696 goto out_cancel;
699 * Anchor move within the anchor area is useless.
701 if (e2->pnum < UBI_FM_MAX_START)
702 goto out_cancel;
704 self_check_in_wl_tree(ubi, e1, &ubi->used);
705 rb_erase(&e1->u.rb, &ubi->used);
706 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
707 ubi->fm_do_produce_anchor = 0;
708 } else if (!ubi->scrub.rb_node) {
709 #else
710 if (!ubi->scrub.rb_node) {
711 #endif
713 * Now pick the least worn-out used physical eraseblock and a
714 * highly worn-out free physical eraseblock. If the erase
715 * counters differ much enough, start wear-leveling.
717 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
718 e2 = get_peb_for_wl(ubi);
719 if (!e2)
720 goto out_cancel;
722 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
723 dbg_wl("no WL needed: min used EC %d, max free EC %d",
724 e1->ec, e2->ec);
726 /* Give the unused PEB back */
727 wl_tree_add(e2, &ubi->free);
728 ubi->free_count++;
729 goto out_cancel;
731 self_check_in_wl_tree(ubi, e1, &ubi->used);
732 rb_erase(&e1->u.rb, &ubi->used);
733 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
734 e1->pnum, e1->ec, e2->pnum, e2->ec);
735 } else {
736 /* Perform scrubbing */
737 scrubbing = 1;
738 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
739 e2 = get_peb_for_wl(ubi);
740 if (!e2)
741 goto out_cancel;
743 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
744 rb_erase(&e1->u.rb, &ubi->scrub);
745 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
748 ubi->move_from = e1;
749 ubi->move_to = e2;
750 spin_unlock(&ubi->wl_lock);
753 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
754 * We so far do not know which logical eraseblock our physical
755 * eraseblock (@e1) belongs to. We have to read the volume identifier
756 * header first.
758 * Note, we are protected from this PEB being unmapped and erased. The
759 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
760 * which is being moved was unmapped.
763 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
764 if (err && err != UBI_IO_BITFLIPS) {
765 dst_leb_clean = 1;
766 if (err == UBI_IO_FF) {
768 * We are trying to move PEB without a VID header. UBI
769 * always write VID headers shortly after the PEB was
770 * given, so we have a situation when it has not yet
771 * had a chance to write it, because it was preempted.
772 * So add this PEB to the protection queue so far,
773 * because presumably more data will be written there
774 * (including the missing VID header), and then we'll
775 * move it.
777 dbg_wl("PEB %d has no VID header", e1->pnum);
778 protect = 1;
779 goto out_not_moved;
780 } else if (err == UBI_IO_FF_BITFLIPS) {
782 * The same situation as %UBI_IO_FF, but bit-flips were
783 * detected. It is better to schedule this PEB for
784 * scrubbing.
786 dbg_wl("PEB %d has no VID header but has bit-flips",
787 e1->pnum);
788 scrubbing = 1;
789 goto out_not_moved;
790 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
792 * While a full scan would detect interrupted erasures
793 * at attach time we can face them here when attached from
794 * Fastmap.
796 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
797 e1->pnum);
798 erase = 1;
799 goto out_not_moved;
802 ubi_err(ubi, "error %d while reading VID header from PEB %d",
803 err, e1->pnum);
804 goto out_error;
807 vol_id = be32_to_cpu(vid_hdr->vol_id);
808 lnum = be32_to_cpu(vid_hdr->lnum);
810 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
811 if (err) {
812 if (err == MOVE_CANCEL_RACE) {
814 * The LEB has not been moved because the volume is
815 * being deleted or the PEB has been put meanwhile. We
816 * should prevent this PEB from being selected for
817 * wear-leveling movement again, so put it to the
818 * protection queue.
820 protect = 1;
821 dst_leb_clean = 1;
822 goto out_not_moved;
824 if (err == MOVE_RETRY) {
825 scrubbing = 1;
826 dst_leb_clean = 1;
827 goto out_not_moved;
829 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
830 err == MOVE_TARGET_RD_ERR) {
832 * Target PEB had bit-flips or write error - torture it.
834 torture = 1;
835 keep = 1;
836 goto out_not_moved;
839 if (err == MOVE_SOURCE_RD_ERR) {
841 * An error happened while reading the source PEB. Do
842 * not switch to R/O mode in this case, and give the
843 * upper layers a possibility to recover from this,
844 * e.g. by unmapping corresponding LEB. Instead, just
845 * put this PEB to the @ubi->erroneous list to prevent
846 * UBI from trying to move it over and over again.
848 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
849 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
850 ubi->erroneous_peb_count);
851 goto out_error;
853 dst_leb_clean = 1;
854 erroneous = 1;
855 goto out_not_moved;
858 if (err < 0)
859 goto out_error;
861 ubi_assert(0);
864 /* The PEB has been successfully moved */
865 if (scrubbing)
866 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
867 e1->pnum, vol_id, lnum, e2->pnum);
868 ubi_free_vid_buf(vidb);
870 spin_lock(&ubi->wl_lock);
871 if (!ubi->move_to_put) {
872 wl_tree_add(e2, &ubi->used);
873 e2 = NULL;
875 ubi->move_from = ubi->move_to = NULL;
876 ubi->move_to_put = ubi->wl_scheduled = 0;
877 spin_unlock(&ubi->wl_lock);
879 err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
880 if (err) {
881 if (e2)
882 wl_entry_destroy(ubi, e2);
883 goto out_ro;
886 if (e2) {
888 * Well, the target PEB was put meanwhile, schedule it for
889 * erasure.
891 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
892 e2->pnum, vol_id, lnum);
893 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
894 if (err)
895 goto out_ro;
898 dbg_wl("done");
899 mutex_unlock(&ubi->move_mutex);
900 up_read(&ubi->fm_eba_sem);
901 return 0;
904 * For some reasons the LEB was not moved, might be an error, might be
905 * something else. @e1 was not changed, so return it back. @e2 might
906 * have been changed, schedule it for erasure.
908 out_not_moved:
909 if (vol_id != -1)
910 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
911 e1->pnum, vol_id, lnum, e2->pnum, err);
912 else
913 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
914 e1->pnum, e2->pnum, err);
915 spin_lock(&ubi->wl_lock);
916 if (protect)
917 prot_queue_add(ubi, e1);
918 else if (erroneous) {
919 wl_tree_add(e1, &ubi->erroneous);
920 ubi->erroneous_peb_count += 1;
921 } else if (scrubbing)
922 wl_tree_add(e1, &ubi->scrub);
923 else if (keep)
924 wl_tree_add(e1, &ubi->used);
925 if (dst_leb_clean) {
926 wl_tree_add(e2, &ubi->free);
927 ubi->free_count++;
930 ubi_assert(!ubi->move_to_put);
931 ubi->move_from = ubi->move_to = NULL;
932 ubi->wl_scheduled = 0;
933 spin_unlock(&ubi->wl_lock);
935 ubi_free_vid_buf(vidb);
936 if (dst_leb_clean) {
937 ensure_wear_leveling(ubi, 1);
938 } else {
939 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
940 if (err)
941 goto out_ro;
944 if (erase) {
945 err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
946 if (err)
947 goto out_ro;
950 mutex_unlock(&ubi->move_mutex);
951 up_read(&ubi->fm_eba_sem);
952 return 0;
954 out_error:
955 if (vol_id != -1)
956 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
957 err, e1->pnum, e2->pnum);
958 else
959 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
960 err, e1->pnum, vol_id, lnum, e2->pnum);
961 spin_lock(&ubi->wl_lock);
962 ubi->move_from = ubi->move_to = NULL;
963 ubi->move_to_put = ubi->wl_scheduled = 0;
964 spin_unlock(&ubi->wl_lock);
966 ubi_free_vid_buf(vidb);
967 wl_entry_destroy(ubi, e1);
968 wl_entry_destroy(ubi, e2);
970 out_ro:
971 ubi_ro_mode(ubi);
972 mutex_unlock(&ubi->move_mutex);
973 up_read(&ubi->fm_eba_sem);
974 ubi_assert(err != 0);
975 return err < 0 ? err : -EIO;
977 out_cancel:
978 ubi->wl_scheduled = 0;
979 spin_unlock(&ubi->wl_lock);
980 mutex_unlock(&ubi->move_mutex);
981 up_read(&ubi->fm_eba_sem);
982 ubi_free_vid_buf(vidb);
983 return 0;
987 * ensure_wear_leveling - schedule wear-leveling if it is needed.
988 * @ubi: UBI device description object
989 * @nested: set to non-zero if this function is called from UBI worker
991 * This function checks if it is time to start wear-leveling and schedules it
992 * if yes. This function returns zero in case of success and a negative error
993 * code in case of failure.
995 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
997 int err = 0;
998 struct ubi_wl_entry *e1;
999 struct ubi_wl_entry *e2;
1000 struct ubi_work *wrk;
1002 spin_lock(&ubi->wl_lock);
1003 if (ubi->wl_scheduled)
1004 /* Wear-leveling is already in the work queue */
1005 goto out_unlock;
1008 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1009 * the WL worker has to be scheduled anyway.
1011 if (!ubi->scrub.rb_node) {
1012 if (!ubi->used.rb_node || !ubi->free.rb_node)
1013 /* No physical eraseblocks - no deal */
1014 goto out_unlock;
1017 * We schedule wear-leveling only if the difference between the
1018 * lowest erase counter of used physical eraseblocks and a high
1019 * erase counter of free physical eraseblocks is greater than
1020 * %UBI_WL_THRESHOLD.
1022 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1023 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1025 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1026 goto out_unlock;
1027 dbg_wl("schedule wear-leveling");
1028 } else
1029 dbg_wl("schedule scrubbing");
1031 ubi->wl_scheduled = 1;
1032 spin_unlock(&ubi->wl_lock);
1034 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1035 if (!wrk) {
1036 err = -ENOMEM;
1037 goto out_cancel;
1040 wrk->func = &wear_leveling_worker;
1041 if (nested)
1042 __schedule_ubi_work(ubi, wrk);
1043 else
1044 schedule_ubi_work(ubi, wrk);
1045 return err;
1047 out_cancel:
1048 spin_lock(&ubi->wl_lock);
1049 ubi->wl_scheduled = 0;
1050 out_unlock:
1051 spin_unlock(&ubi->wl_lock);
1052 return err;
1056 * __erase_worker - physical eraseblock erase worker function.
1057 * @ubi: UBI device description object
1058 * @wl_wrk: the work object
1059 * @shutdown: non-zero if the worker has to free memory and exit
1060 * because the WL sub-system is shutting down
1062 * This function erases a physical eraseblock and perform torture testing if
1063 * needed. It also takes care about marking the physical eraseblock bad if
1064 * needed. Returns zero in case of success and a negative error code in case of
1065 * failure.
1067 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1069 struct ubi_wl_entry *e = wl_wrk->e;
1070 int pnum = e->pnum;
1071 int vol_id = wl_wrk->vol_id;
1072 int lnum = wl_wrk->lnum;
1073 int err, available_consumed = 0;
1075 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1076 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1078 err = sync_erase(ubi, e, wl_wrk->torture);
1079 if (!err) {
1080 spin_lock(&ubi->wl_lock);
1082 if (!ubi->fm_anchor && e->pnum < UBI_FM_MAX_START) {
1083 ubi->fm_anchor = e;
1084 ubi->fm_do_produce_anchor = 0;
1085 } else {
1086 wl_tree_add(e, &ubi->free);
1087 ubi->free_count++;
1090 spin_unlock(&ubi->wl_lock);
1093 * One more erase operation has happened, take care about
1094 * protected physical eraseblocks.
1096 serve_prot_queue(ubi);
1098 /* And take care about wear-leveling */
1099 err = ensure_wear_leveling(ubi, 1);
1100 return err;
1103 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1105 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1106 err == -EBUSY) {
1107 int err1;
1109 /* Re-schedule the LEB for erasure */
1110 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false);
1111 if (err1) {
1112 wl_entry_destroy(ubi, e);
1113 err = err1;
1114 goto out_ro;
1116 return err;
1119 wl_entry_destroy(ubi, e);
1120 if (err != -EIO)
1122 * If this is not %-EIO, we have no idea what to do. Scheduling
1123 * this physical eraseblock for erasure again would cause
1124 * errors again and again. Well, lets switch to R/O mode.
1126 goto out_ro;
1128 /* It is %-EIO, the PEB went bad */
1130 if (!ubi->bad_allowed) {
1131 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1132 goto out_ro;
1135 spin_lock(&ubi->volumes_lock);
1136 if (ubi->beb_rsvd_pebs == 0) {
1137 if (ubi->avail_pebs == 0) {
1138 spin_unlock(&ubi->volumes_lock);
1139 ubi_err(ubi, "no reserved/available physical eraseblocks");
1140 goto out_ro;
1142 ubi->avail_pebs -= 1;
1143 available_consumed = 1;
1145 spin_unlock(&ubi->volumes_lock);
1147 ubi_msg(ubi, "mark PEB %d as bad", pnum);
1148 err = ubi_io_mark_bad(ubi, pnum);
1149 if (err)
1150 goto out_ro;
1152 spin_lock(&ubi->volumes_lock);
1153 if (ubi->beb_rsvd_pebs > 0) {
1154 if (available_consumed) {
1156 * The amount of reserved PEBs increased since we last
1157 * checked.
1159 ubi->avail_pebs += 1;
1160 available_consumed = 0;
1162 ubi->beb_rsvd_pebs -= 1;
1164 ubi->bad_peb_count += 1;
1165 ubi->good_peb_count -= 1;
1166 ubi_calculate_reserved(ubi);
1167 if (available_consumed)
1168 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1169 else if (ubi->beb_rsvd_pebs)
1170 ubi_msg(ubi, "%d PEBs left in the reserve",
1171 ubi->beb_rsvd_pebs);
1172 else
1173 ubi_warn(ubi, "last PEB from the reserve was used");
1174 spin_unlock(&ubi->volumes_lock);
1176 return err;
1178 out_ro:
1179 if (available_consumed) {
1180 spin_lock(&ubi->volumes_lock);
1181 ubi->avail_pebs += 1;
1182 spin_unlock(&ubi->volumes_lock);
1184 ubi_ro_mode(ubi);
1185 return err;
1188 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1189 int shutdown)
1191 int ret;
1193 if (shutdown) {
1194 struct ubi_wl_entry *e = wl_wrk->e;
1196 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1197 kfree(wl_wrk);
1198 wl_entry_destroy(ubi, e);
1199 return 0;
1202 ret = __erase_worker(ubi, wl_wrk);
1203 kfree(wl_wrk);
1204 return ret;
1208 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1209 * @ubi: UBI device description object
1210 * @vol_id: the volume ID that last used this PEB
1211 * @lnum: the last used logical eraseblock number for the PEB
1212 * @pnum: physical eraseblock to return
1213 * @torture: if this physical eraseblock has to be tortured
1215 * This function is called to return physical eraseblock @pnum to the pool of
1216 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1217 * occurred to this @pnum and it has to be tested. This function returns zero
1218 * in case of success, and a negative error code in case of failure.
1220 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1221 int pnum, int torture)
1223 int err;
1224 struct ubi_wl_entry *e;
1226 dbg_wl("PEB %d", pnum);
1227 ubi_assert(pnum >= 0);
1228 ubi_assert(pnum < ubi->peb_count);
1230 down_read(&ubi->fm_protect);
1232 retry:
1233 spin_lock(&ubi->wl_lock);
1234 e = ubi->lookuptbl[pnum];
1235 if (e == ubi->move_from) {
1237 * User is putting the physical eraseblock which was selected to
1238 * be moved. It will be scheduled for erasure in the
1239 * wear-leveling worker.
1241 dbg_wl("PEB %d is being moved, wait", pnum);
1242 spin_unlock(&ubi->wl_lock);
1244 /* Wait for the WL worker by taking the @ubi->move_mutex */
1245 mutex_lock(&ubi->move_mutex);
1246 mutex_unlock(&ubi->move_mutex);
1247 goto retry;
1248 } else if (e == ubi->move_to) {
1250 * User is putting the physical eraseblock which was selected
1251 * as the target the data is moved to. It may happen if the EBA
1252 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1253 * but the WL sub-system has not put the PEB to the "used" tree
1254 * yet, but it is about to do this. So we just set a flag which
1255 * will tell the WL worker that the PEB is not needed anymore
1256 * and should be scheduled for erasure.
1258 dbg_wl("PEB %d is the target of data moving", pnum);
1259 ubi_assert(!ubi->move_to_put);
1260 ubi->move_to_put = 1;
1261 spin_unlock(&ubi->wl_lock);
1262 up_read(&ubi->fm_protect);
1263 return 0;
1264 } else {
1265 if (in_wl_tree(e, &ubi->used)) {
1266 self_check_in_wl_tree(ubi, e, &ubi->used);
1267 rb_erase(&e->u.rb, &ubi->used);
1268 } else if (in_wl_tree(e, &ubi->scrub)) {
1269 self_check_in_wl_tree(ubi, e, &ubi->scrub);
1270 rb_erase(&e->u.rb, &ubi->scrub);
1271 } else if (in_wl_tree(e, &ubi->erroneous)) {
1272 self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1273 rb_erase(&e->u.rb, &ubi->erroneous);
1274 ubi->erroneous_peb_count -= 1;
1275 ubi_assert(ubi->erroneous_peb_count >= 0);
1276 /* Erroneous PEBs should be tortured */
1277 torture = 1;
1278 } else {
1279 err = prot_queue_del(ubi, e->pnum);
1280 if (err) {
1281 ubi_err(ubi, "PEB %d not found", pnum);
1282 ubi_ro_mode(ubi);
1283 spin_unlock(&ubi->wl_lock);
1284 up_read(&ubi->fm_protect);
1285 return err;
1289 spin_unlock(&ubi->wl_lock);
1291 err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1292 if (err) {
1293 spin_lock(&ubi->wl_lock);
1294 wl_tree_add(e, &ubi->used);
1295 spin_unlock(&ubi->wl_lock);
1298 up_read(&ubi->fm_protect);
1299 return err;
1303 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1304 * @ubi: UBI device description object
1305 * @pnum: the physical eraseblock to schedule
1307 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1308 * needs scrubbing. This function schedules a physical eraseblock for
1309 * scrubbing which is done in background. This function returns zero in case of
1310 * success and a negative error code in case of failure.
1312 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1314 struct ubi_wl_entry *e;
1316 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1318 retry:
1319 spin_lock(&ubi->wl_lock);
1320 e = ubi->lookuptbl[pnum];
1321 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1322 in_wl_tree(e, &ubi->erroneous)) {
1323 spin_unlock(&ubi->wl_lock);
1324 return 0;
1327 if (e == ubi->move_to) {
1329 * This physical eraseblock was used to move data to. The data
1330 * was moved but the PEB was not yet inserted to the proper
1331 * tree. We should just wait a little and let the WL worker
1332 * proceed.
1334 spin_unlock(&ubi->wl_lock);
1335 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1336 yield();
1337 goto retry;
1340 if (in_wl_tree(e, &ubi->used)) {
1341 self_check_in_wl_tree(ubi, e, &ubi->used);
1342 rb_erase(&e->u.rb, &ubi->used);
1343 } else {
1344 int err;
1346 err = prot_queue_del(ubi, e->pnum);
1347 if (err) {
1348 ubi_err(ubi, "PEB %d not found", pnum);
1349 ubi_ro_mode(ubi);
1350 spin_unlock(&ubi->wl_lock);
1351 return err;
1355 wl_tree_add(e, &ubi->scrub);
1356 spin_unlock(&ubi->wl_lock);
1359 * Technically scrubbing is the same as wear-leveling, so it is done
1360 * by the WL worker.
1362 return ensure_wear_leveling(ubi, 0);
1366 * ubi_wl_flush - flush all pending works.
1367 * @ubi: UBI device description object
1368 * @vol_id: the volume id to flush for
1369 * @lnum: the logical eraseblock number to flush for
1371 * This function executes all pending works for a particular volume id /
1372 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1373 * acts as a wildcard for all of the corresponding volume numbers or logical
1374 * eraseblock numbers. It returns zero in case of success and a negative error
1375 * code in case of failure.
1377 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1379 int err = 0;
1380 int found = 1;
1383 * Erase while the pending works queue is not empty, but not more than
1384 * the number of currently pending works.
1386 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1387 vol_id, lnum, ubi->works_count);
1389 while (found) {
1390 struct ubi_work *wrk, *tmp;
1391 found = 0;
1393 down_read(&ubi->work_sem);
1394 spin_lock(&ubi->wl_lock);
1395 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1396 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1397 (lnum == UBI_ALL || wrk->lnum == lnum)) {
1398 list_del(&wrk->list);
1399 ubi->works_count -= 1;
1400 ubi_assert(ubi->works_count >= 0);
1401 spin_unlock(&ubi->wl_lock);
1403 err = wrk->func(ubi, wrk, 0);
1404 if (err) {
1405 up_read(&ubi->work_sem);
1406 return err;
1409 spin_lock(&ubi->wl_lock);
1410 found = 1;
1411 break;
1414 spin_unlock(&ubi->wl_lock);
1415 up_read(&ubi->work_sem);
1419 * Make sure all the works which have been done in parallel are
1420 * finished.
1422 down_write(&ubi->work_sem);
1423 up_write(&ubi->work_sem);
1425 return err;
1428 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1430 if (in_wl_tree(e, &ubi->scrub))
1431 return false;
1432 else if (in_wl_tree(e, &ubi->erroneous))
1433 return false;
1434 else if (ubi->move_from == e)
1435 return false;
1436 else if (ubi->move_to == e)
1437 return false;
1439 return true;
1443 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1444 * @ubi: UBI device description object
1445 * @pnum: the physical eraseblock to schedule
1446 * @force: dont't read the block, assume bitflips happened and take action.
1448 * This function reads the given eraseblock and checks if bitflips occured.
1449 * In case of bitflips, the eraseblock is scheduled for scrubbing.
1450 * If scrubbing is forced with @force, the eraseblock is not read,
1451 * but scheduled for scrubbing right away.
1453 * Returns:
1454 * %EINVAL, PEB is out of range
1455 * %ENOENT, PEB is no longer used by UBI
1456 * %EBUSY, PEB cannot be checked now or a check is currently running on it
1457 * %EAGAIN, bit flips happened but scrubbing is currently not possible
1458 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1459 * %0, no bit flips detected
1461 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1463 int err = 0;
1464 struct ubi_wl_entry *e;
1466 if (pnum < 0 || pnum >= ubi->peb_count) {
1467 err = -EINVAL;
1468 goto out;
1472 * Pause all parallel work, otherwise it can happen that the
1473 * erase worker frees a wl entry under us.
1475 down_write(&ubi->work_sem);
1478 * Make sure that the wl entry does not change state while
1479 * inspecting it.
1481 spin_lock(&ubi->wl_lock);
1482 e = ubi->lookuptbl[pnum];
1483 if (!e) {
1484 spin_unlock(&ubi->wl_lock);
1485 err = -ENOENT;
1486 goto out_resume;
1490 * Does it make sense to check this PEB?
1492 if (!scrub_possible(ubi, e)) {
1493 spin_unlock(&ubi->wl_lock);
1494 err = -EBUSY;
1495 goto out_resume;
1497 spin_unlock(&ubi->wl_lock);
1499 if (!force) {
1500 mutex_lock(&ubi->buf_mutex);
1501 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1502 mutex_unlock(&ubi->buf_mutex);
1505 if (force || err == UBI_IO_BITFLIPS) {
1507 * Okay, bit flip happened, let's figure out what we can do.
1509 spin_lock(&ubi->wl_lock);
1512 * Recheck. We released wl_lock, UBI might have killed the
1513 * wl entry under us.
1515 e = ubi->lookuptbl[pnum];
1516 if (!e) {
1517 spin_unlock(&ubi->wl_lock);
1518 err = -ENOENT;
1519 goto out_resume;
1523 * Need to re-check state
1525 if (!scrub_possible(ubi, e)) {
1526 spin_unlock(&ubi->wl_lock);
1527 err = -EBUSY;
1528 goto out_resume;
1531 if (in_pq(ubi, e)) {
1532 prot_queue_del(ubi, e->pnum);
1533 wl_tree_add(e, &ubi->scrub);
1534 spin_unlock(&ubi->wl_lock);
1536 err = ensure_wear_leveling(ubi, 1);
1537 } else if (in_wl_tree(e, &ubi->used)) {
1538 rb_erase(&e->u.rb, &ubi->used);
1539 wl_tree_add(e, &ubi->scrub);
1540 spin_unlock(&ubi->wl_lock);
1542 err = ensure_wear_leveling(ubi, 1);
1543 } else if (in_wl_tree(e, &ubi->free)) {
1544 rb_erase(&e->u.rb, &ubi->free);
1545 ubi->free_count--;
1546 spin_unlock(&ubi->wl_lock);
1549 * This PEB is empty we can schedule it for
1550 * erasure right away. No wear leveling needed.
1552 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1553 force ? 0 : 1, true);
1554 } else {
1555 spin_unlock(&ubi->wl_lock);
1556 err = -EAGAIN;
1559 if (!err && !force)
1560 err = -EUCLEAN;
1561 } else {
1562 err = 0;
1565 out_resume:
1566 up_write(&ubi->work_sem);
1567 out:
1569 return err;
1573 * tree_destroy - destroy an RB-tree.
1574 * @ubi: UBI device description object
1575 * @root: the root of the tree to destroy
1577 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1579 struct rb_node *rb;
1580 struct ubi_wl_entry *e;
1582 rb = root->rb_node;
1583 while (rb) {
1584 if (rb->rb_left)
1585 rb = rb->rb_left;
1586 else if (rb->rb_right)
1587 rb = rb->rb_right;
1588 else {
1589 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1591 rb = rb_parent(rb);
1592 if (rb) {
1593 if (rb->rb_left == &e->u.rb)
1594 rb->rb_left = NULL;
1595 else
1596 rb->rb_right = NULL;
1599 wl_entry_destroy(ubi, e);
1605 * ubi_thread - UBI background thread.
1606 * @u: the UBI device description object pointer
1608 int ubi_thread(void *u)
1610 int failures = 0;
1611 struct ubi_device *ubi = u;
1613 ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1614 ubi->bgt_name, task_pid_nr(current));
1616 set_freezable();
1617 for (;;) {
1618 int err;
1620 if (kthread_should_stop())
1621 break;
1623 if (try_to_freeze())
1624 continue;
1626 spin_lock(&ubi->wl_lock);
1627 if (list_empty(&ubi->works) || ubi->ro_mode ||
1628 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1629 set_current_state(TASK_INTERRUPTIBLE);
1630 spin_unlock(&ubi->wl_lock);
1631 schedule();
1632 continue;
1634 spin_unlock(&ubi->wl_lock);
1636 err = do_work(ubi);
1637 if (err) {
1638 ubi_err(ubi, "%s: work failed with error code %d",
1639 ubi->bgt_name, err);
1640 if (failures++ > WL_MAX_FAILURES) {
1642 * Too many failures, disable the thread and
1643 * switch to read-only mode.
1645 ubi_msg(ubi, "%s: %d consecutive failures",
1646 ubi->bgt_name, WL_MAX_FAILURES);
1647 ubi_ro_mode(ubi);
1648 ubi->thread_enabled = 0;
1649 continue;
1651 } else
1652 failures = 0;
1654 cond_resched();
1657 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1658 ubi->thread_enabled = 0;
1659 return 0;
1663 * shutdown_work - shutdown all pending works.
1664 * @ubi: UBI device description object
1666 static void shutdown_work(struct ubi_device *ubi)
1668 while (!list_empty(&ubi->works)) {
1669 struct ubi_work *wrk;
1671 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1672 list_del(&wrk->list);
1673 wrk->func(ubi, wrk, 1);
1674 ubi->works_count -= 1;
1675 ubi_assert(ubi->works_count >= 0);
1680 * erase_aeb - erase a PEB given in UBI attach info PEB
1681 * @ubi: UBI device description object
1682 * @aeb: UBI attach info PEB
1683 * @sync: If true, erase synchronously. Otherwise schedule for erasure
1685 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1687 struct ubi_wl_entry *e;
1688 int err;
1690 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1691 if (!e)
1692 return -ENOMEM;
1694 e->pnum = aeb->pnum;
1695 e->ec = aeb->ec;
1696 ubi->lookuptbl[e->pnum] = e;
1698 if (sync) {
1699 err = sync_erase(ubi, e, false);
1700 if (err)
1701 goto out_free;
1703 wl_tree_add(e, &ubi->free);
1704 ubi->free_count++;
1705 } else {
1706 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1707 if (err)
1708 goto out_free;
1711 return 0;
1713 out_free:
1714 wl_entry_destroy(ubi, e);
1716 return err;
1720 * ubi_wl_init - initialize the WL sub-system using attaching information.
1721 * @ubi: UBI device description object
1722 * @ai: attaching information
1724 * This function returns zero in case of success, and a negative error code in
1725 * case of failure.
1727 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1729 int err, i, reserved_pebs, found_pebs = 0;
1730 struct rb_node *rb1, *rb2;
1731 struct ubi_ainf_volume *av;
1732 struct ubi_ainf_peb *aeb, *tmp;
1733 struct ubi_wl_entry *e;
1735 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1736 spin_lock_init(&ubi->wl_lock);
1737 mutex_init(&ubi->move_mutex);
1738 init_rwsem(&ubi->work_sem);
1739 ubi->max_ec = ai->max_ec;
1740 INIT_LIST_HEAD(&ubi->works);
1742 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1744 err = -ENOMEM;
1745 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1746 if (!ubi->lookuptbl)
1747 return err;
1749 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1750 INIT_LIST_HEAD(&ubi->pq[i]);
1751 ubi->pq_head = 0;
1753 ubi->free_count = 0;
1754 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1755 cond_resched();
1757 err = erase_aeb(ubi, aeb, false);
1758 if (err)
1759 goto out_free;
1761 found_pebs++;
1764 list_for_each_entry(aeb, &ai->free, u.list) {
1765 cond_resched();
1767 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1768 if (!e) {
1769 err = -ENOMEM;
1770 goto out_free;
1773 e->pnum = aeb->pnum;
1774 e->ec = aeb->ec;
1775 ubi_assert(e->ec >= 0);
1777 wl_tree_add(e, &ubi->free);
1778 ubi->free_count++;
1780 ubi->lookuptbl[e->pnum] = e;
1782 found_pebs++;
1785 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1786 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1787 cond_resched();
1789 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1790 if (!e) {
1791 err = -ENOMEM;
1792 goto out_free;
1795 e->pnum = aeb->pnum;
1796 e->ec = aeb->ec;
1797 ubi->lookuptbl[e->pnum] = e;
1799 if (!aeb->scrub) {
1800 dbg_wl("add PEB %d EC %d to the used tree",
1801 e->pnum, e->ec);
1802 wl_tree_add(e, &ubi->used);
1803 } else {
1804 dbg_wl("add PEB %d EC %d to the scrub tree",
1805 e->pnum, e->ec);
1806 wl_tree_add(e, &ubi->scrub);
1809 found_pebs++;
1813 list_for_each_entry(aeb, &ai->fastmap, u.list) {
1814 cond_resched();
1816 e = ubi_find_fm_block(ubi, aeb->pnum);
1818 if (e) {
1819 ubi_assert(!ubi->lookuptbl[e->pnum]);
1820 ubi->lookuptbl[e->pnum] = e;
1821 } else {
1822 bool sync = false;
1825 * Usually old Fastmap PEBs are scheduled for erasure
1826 * and we don't have to care about them but if we face
1827 * an power cut before scheduling them we need to
1828 * take care of them here.
1830 if (ubi->lookuptbl[aeb->pnum])
1831 continue;
1834 * The fastmap update code might not find a free PEB for
1835 * writing the fastmap anchor to and then reuses the
1836 * current fastmap anchor PEB. When this PEB gets erased
1837 * and a power cut happens before it is written again we
1838 * must make sure that the fastmap attach code doesn't
1839 * find any outdated fastmap anchors, hence we erase the
1840 * outdated fastmap anchor PEBs synchronously here.
1842 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1843 sync = true;
1845 err = erase_aeb(ubi, aeb, sync);
1846 if (err)
1847 goto out_free;
1850 found_pebs++;
1853 dbg_wl("found %i PEBs", found_pebs);
1855 ubi_assert(ubi->good_peb_count == found_pebs);
1857 reserved_pebs = WL_RESERVED_PEBS;
1858 ubi_fastmap_init(ubi, &reserved_pebs);
1860 if (ubi->avail_pebs < reserved_pebs) {
1861 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1862 ubi->avail_pebs, reserved_pebs);
1863 if (ubi->corr_peb_count)
1864 ubi_err(ubi, "%d PEBs are corrupted and not used",
1865 ubi->corr_peb_count);
1866 err = -ENOSPC;
1867 goto out_free;
1869 ubi->avail_pebs -= reserved_pebs;
1870 ubi->rsvd_pebs += reserved_pebs;
1872 /* Schedule wear-leveling if needed */
1873 err = ensure_wear_leveling(ubi, 0);
1874 if (err)
1875 goto out_free;
1877 #ifdef CONFIG_MTD_UBI_FASTMAP
1878 ubi_ensure_anchor_pebs(ubi);
1879 #endif
1880 return 0;
1882 out_free:
1883 shutdown_work(ubi);
1884 tree_destroy(ubi, &ubi->used);
1885 tree_destroy(ubi, &ubi->free);
1886 tree_destroy(ubi, &ubi->scrub);
1887 kfree(ubi->lookuptbl);
1888 return err;
1892 * protection_queue_destroy - destroy the protection queue.
1893 * @ubi: UBI device description object
1895 static void protection_queue_destroy(struct ubi_device *ubi)
1897 int i;
1898 struct ubi_wl_entry *e, *tmp;
1900 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1901 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1902 list_del(&e->u.list);
1903 wl_entry_destroy(ubi, e);
1909 * ubi_wl_close - close the wear-leveling sub-system.
1910 * @ubi: UBI device description object
1912 void ubi_wl_close(struct ubi_device *ubi)
1914 dbg_wl("close the WL sub-system");
1915 ubi_fastmap_close(ubi);
1916 shutdown_work(ubi);
1917 protection_queue_destroy(ubi);
1918 tree_destroy(ubi, &ubi->used);
1919 tree_destroy(ubi, &ubi->erroneous);
1920 tree_destroy(ubi, &ubi->free);
1921 tree_destroy(ubi, &ubi->scrub);
1922 kfree(ubi->lookuptbl);
1926 * self_check_ec - make sure that the erase counter of a PEB is correct.
1927 * @ubi: UBI device description object
1928 * @pnum: the physical eraseblock number to check
1929 * @ec: the erase counter to check
1931 * This function returns zero if the erase counter of physical eraseblock @pnum
1932 * is equivalent to @ec, and a negative error code if not or if an error
1933 * occurred.
1935 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1937 int err;
1938 long long read_ec;
1939 struct ubi_ec_hdr *ec_hdr;
1941 if (!ubi_dbg_chk_gen(ubi))
1942 return 0;
1944 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1945 if (!ec_hdr)
1946 return -ENOMEM;
1948 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1949 if (err && err != UBI_IO_BITFLIPS) {
1950 /* The header does not have to exist */
1951 err = 0;
1952 goto out_free;
1955 read_ec = be64_to_cpu(ec_hdr->ec);
1956 if (ec != read_ec && read_ec - ec > 1) {
1957 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1958 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1959 dump_stack();
1960 err = 1;
1961 } else
1962 err = 0;
1964 out_free:
1965 kfree(ec_hdr);
1966 return err;
1970 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1971 * @ubi: UBI device description object
1972 * @e: the wear-leveling entry to check
1973 * @root: the root of the tree
1975 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1976 * is not.
1978 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1979 struct ubi_wl_entry *e, struct rb_root *root)
1981 if (!ubi_dbg_chk_gen(ubi))
1982 return 0;
1984 if (in_wl_tree(e, root))
1985 return 0;
1987 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1988 e->pnum, e->ec, root);
1989 dump_stack();
1990 return -EINVAL;
1994 * self_check_in_pq - check if wear-leveling entry is in the protection
1995 * queue.
1996 * @ubi: UBI device description object
1997 * @e: the wear-leveling entry to check
1999 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2001 static int self_check_in_pq(const struct ubi_device *ubi,
2002 struct ubi_wl_entry *e)
2004 if (!ubi_dbg_chk_gen(ubi))
2005 return 0;
2007 if (in_pq(ubi, e))
2008 return 0;
2010 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2011 e->pnum, e->ec);
2012 dump_stack();
2013 return -EINVAL;
2015 #ifndef CONFIG_MTD_UBI_FASTMAP
2016 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2018 struct ubi_wl_entry *e;
2020 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2021 self_check_in_wl_tree(ubi, e, &ubi->free);
2022 ubi->free_count--;
2023 ubi_assert(ubi->free_count >= 0);
2024 rb_erase(&e->u.rb, &ubi->free);
2026 return e;
2030 * produce_free_peb - produce a free physical eraseblock.
2031 * @ubi: UBI device description object
2033 * This function tries to make a free PEB by means of synchronous execution of
2034 * pending works. This may be needed if, for example the background thread is
2035 * disabled. Returns zero in case of success and a negative error code in case
2036 * of failure.
2038 static int produce_free_peb(struct ubi_device *ubi)
2040 int err;
2042 while (!ubi->free.rb_node && ubi->works_count) {
2043 spin_unlock(&ubi->wl_lock);
2045 dbg_wl("do one work synchronously");
2046 err = do_work(ubi);
2048 spin_lock(&ubi->wl_lock);
2049 if (err)
2050 return err;
2053 return 0;
2057 * ubi_wl_get_peb - get a physical eraseblock.
2058 * @ubi: UBI device description object
2060 * This function returns a physical eraseblock in case of success and a
2061 * negative error code in case of failure.
2062 * Returns with ubi->fm_eba_sem held in read mode!
2064 int ubi_wl_get_peb(struct ubi_device *ubi)
2066 int err;
2067 struct ubi_wl_entry *e;
2069 retry:
2070 down_read(&ubi->fm_eba_sem);
2071 spin_lock(&ubi->wl_lock);
2072 if (!ubi->free.rb_node) {
2073 if (ubi->works_count == 0) {
2074 ubi_err(ubi, "no free eraseblocks");
2075 ubi_assert(list_empty(&ubi->works));
2076 spin_unlock(&ubi->wl_lock);
2077 return -ENOSPC;
2080 err = produce_free_peb(ubi);
2081 if (err < 0) {
2082 spin_unlock(&ubi->wl_lock);
2083 return err;
2085 spin_unlock(&ubi->wl_lock);
2086 up_read(&ubi->fm_eba_sem);
2087 goto retry;
2090 e = wl_get_wle(ubi);
2091 prot_queue_add(ubi, e);
2092 spin_unlock(&ubi->wl_lock);
2094 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2095 ubi->peb_size - ubi->vid_hdr_aloffset);
2096 if (err) {
2097 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2098 return err;
2101 return e->pnum;
2103 #else
2104 #include "fastmap-wl.c"
2105 #endif