treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / dsa / microchip / ksz9477.c
blob9a51b8a4de5d1432a58537dcda4654932e7cc2dc
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Microchip KSZ9477 switch driver main logic
5 * Copyright (C) 2017-2019 Microchip Technology Inc.
6 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/iopoll.h>
11 #include <linux/platform_data/microchip-ksz.h>
12 #include <linux/phy.h>
13 #include <linux/if_bridge.h>
14 #include <net/dsa.h>
15 #include <net/switchdev.h>
17 #include "ksz9477_reg.h"
18 #include "ksz_common.h"
20 /* Used with variable features to indicate capabilities. */
21 #define GBIT_SUPPORT BIT(0)
22 #define NEW_XMII BIT(1)
23 #define IS_9893 BIT(2)
25 static const struct {
26 int index;
27 char string[ETH_GSTRING_LEN];
28 } ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
29 { 0x00, "rx_hi" },
30 { 0x01, "rx_undersize" },
31 { 0x02, "rx_fragments" },
32 { 0x03, "rx_oversize" },
33 { 0x04, "rx_jabbers" },
34 { 0x05, "rx_symbol_err" },
35 { 0x06, "rx_crc_err" },
36 { 0x07, "rx_align_err" },
37 { 0x08, "rx_mac_ctrl" },
38 { 0x09, "rx_pause" },
39 { 0x0A, "rx_bcast" },
40 { 0x0B, "rx_mcast" },
41 { 0x0C, "rx_ucast" },
42 { 0x0D, "rx_64_or_less" },
43 { 0x0E, "rx_65_127" },
44 { 0x0F, "rx_128_255" },
45 { 0x10, "rx_256_511" },
46 { 0x11, "rx_512_1023" },
47 { 0x12, "rx_1024_1522" },
48 { 0x13, "rx_1523_2000" },
49 { 0x14, "rx_2001" },
50 { 0x15, "tx_hi" },
51 { 0x16, "tx_late_col" },
52 { 0x17, "tx_pause" },
53 { 0x18, "tx_bcast" },
54 { 0x19, "tx_mcast" },
55 { 0x1A, "tx_ucast" },
56 { 0x1B, "tx_deferred" },
57 { 0x1C, "tx_total_col" },
58 { 0x1D, "tx_exc_col" },
59 { 0x1E, "tx_single_col" },
60 { 0x1F, "tx_mult_col" },
61 { 0x80, "rx_total" },
62 { 0x81, "tx_total" },
63 { 0x82, "rx_discards" },
64 { 0x83, "tx_discards" },
67 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
69 regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
72 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
73 bool set)
75 regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
76 bits, set ? bits : 0);
79 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
81 regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
84 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
85 u32 bits, bool set)
87 regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
88 bits, set ? bits : 0);
91 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
93 unsigned int val;
95 return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
96 val, !(val & VLAN_START), 10, 1000);
99 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
100 u32 *vlan_table)
102 int ret;
104 mutex_lock(&dev->vlan_mutex);
106 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
107 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
109 /* wait to be cleared */
110 ret = ksz9477_wait_vlan_ctrl_ready(dev);
111 if (ret) {
112 dev_dbg(dev->dev, "Failed to read vlan table\n");
113 goto exit;
116 ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
117 ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
118 ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
120 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
122 exit:
123 mutex_unlock(&dev->vlan_mutex);
125 return ret;
128 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
129 u32 *vlan_table)
131 int ret;
133 mutex_lock(&dev->vlan_mutex);
135 ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
136 ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
137 ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
139 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
140 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
142 /* wait to be cleared */
143 ret = ksz9477_wait_vlan_ctrl_ready(dev);
144 if (ret) {
145 dev_dbg(dev->dev, "Failed to write vlan table\n");
146 goto exit;
149 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
151 /* update vlan cache table */
152 dev->vlan_cache[vid].table[0] = vlan_table[0];
153 dev->vlan_cache[vid].table[1] = vlan_table[1];
154 dev->vlan_cache[vid].table[2] = vlan_table[2];
156 exit:
157 mutex_unlock(&dev->vlan_mutex);
159 return ret;
162 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
164 ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
165 ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
166 ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
167 ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
170 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
172 ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
173 ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
174 ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
175 ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
178 static int ksz9477_wait_alu_ready(struct ksz_device *dev)
180 unsigned int val;
182 return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
183 val, !(val & ALU_START), 10, 1000);
186 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
188 unsigned int val;
190 return regmap_read_poll_timeout(dev->regmap[2],
191 REG_SW_ALU_STAT_CTRL__4,
192 val, !(val & ALU_STAT_START),
193 10, 1000);
196 static int ksz9477_reset_switch(struct ksz_device *dev)
198 u8 data8;
199 u32 data32;
201 /* reset switch */
202 ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
204 /* turn off SPI DO Edge select */
205 regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
206 SPI_AUTO_EDGE_DETECTION, 0);
208 /* default configuration */
209 ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
210 data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
211 SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
212 ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
214 /* disable interrupts */
215 ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
216 ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
217 ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
219 /* set broadcast storm protection 10% rate */
220 regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
221 BROADCAST_STORM_RATE,
222 (BROADCAST_STORM_VALUE *
223 BROADCAST_STORM_PROT_RATE) / 100);
225 if (dev->synclko_125)
226 ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
227 SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ);
229 return 0;
232 static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
233 u64 *cnt)
235 struct ksz_port *p = &dev->ports[port];
236 unsigned int val;
237 u32 data;
238 int ret;
240 /* retain the flush/freeze bit */
241 data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
242 data |= MIB_COUNTER_READ;
243 data |= (addr << MIB_COUNTER_INDEX_S);
244 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
246 ret = regmap_read_poll_timeout(dev->regmap[2],
247 PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
248 val, !(val & MIB_COUNTER_READ), 10, 1000);
249 /* failed to read MIB. get out of loop */
250 if (ret) {
251 dev_dbg(dev->dev, "Failed to get MIB\n");
252 return;
255 /* count resets upon read */
256 ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
257 *cnt += data;
260 static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
261 u64 *dropped, u64 *cnt)
263 addr = ksz9477_mib_names[addr].index;
264 ksz9477_r_mib_cnt(dev, port, addr, cnt);
267 static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
269 u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
270 struct ksz_port *p = &dev->ports[port];
272 /* enable/disable the port for flush/freeze function */
273 mutex_lock(&p->mib.cnt_mutex);
274 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
276 /* used by MIB counter reading code to know freeze is enabled */
277 p->freeze = freeze;
278 mutex_unlock(&p->mib.cnt_mutex);
281 static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
283 struct ksz_port_mib *mib = &dev->ports[port].mib;
285 /* flush all enabled port MIB counters */
286 mutex_lock(&mib->cnt_mutex);
287 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
288 MIB_COUNTER_FLUSH_FREEZE);
289 ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
290 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
291 mutex_unlock(&mib->cnt_mutex);
293 mib->cnt_ptr = 0;
294 memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
297 static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
298 int port,
299 enum dsa_tag_protocol mp)
301 enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
302 struct ksz_device *dev = ds->priv;
304 if (dev->features & IS_9893)
305 proto = DSA_TAG_PROTO_KSZ9893;
306 return proto;
309 static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
311 struct ksz_device *dev = ds->priv;
312 u16 val = 0xffff;
314 /* No real PHY after this. Simulate the PHY.
315 * A fixed PHY can be setup in the device tree, but this function is
316 * still called for that port during initialization.
317 * For RGMII PHY there is no way to access it so the fixed PHY should
318 * be used. For SGMII PHY the supporting code will be added later.
320 if (addr >= dev->phy_port_cnt) {
321 struct ksz_port *p = &dev->ports[addr];
323 switch (reg) {
324 case MII_BMCR:
325 val = 0x1140;
326 break;
327 case MII_BMSR:
328 val = 0x796d;
329 break;
330 case MII_PHYSID1:
331 val = 0x0022;
332 break;
333 case MII_PHYSID2:
334 val = 0x1631;
335 break;
336 case MII_ADVERTISE:
337 val = 0x05e1;
338 break;
339 case MII_LPA:
340 val = 0xc5e1;
341 break;
342 case MII_CTRL1000:
343 val = 0x0700;
344 break;
345 case MII_STAT1000:
346 if (p->phydev.speed == SPEED_1000)
347 val = 0x3800;
348 else
349 val = 0;
350 break;
352 } else {
353 ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
356 return val;
359 static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
360 u16 val)
362 struct ksz_device *dev = ds->priv;
364 /* No real PHY after this. */
365 if (addr >= dev->phy_port_cnt)
366 return 0;
368 /* No gigabit support. Do not write to this register. */
369 if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
370 return 0;
371 ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
373 return 0;
376 static void ksz9477_get_strings(struct dsa_switch *ds, int port,
377 u32 stringset, uint8_t *buf)
379 int i;
381 if (stringset != ETH_SS_STATS)
382 return;
384 for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
385 memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
386 ETH_GSTRING_LEN);
390 static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
391 u8 member)
393 ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
394 dev->ports[port].member = member;
397 static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
398 u8 state)
400 struct ksz_device *dev = ds->priv;
401 struct ksz_port *p = &dev->ports[port];
402 u8 data;
403 int member = -1;
404 int forward = dev->member;
406 ksz_pread8(dev, port, P_STP_CTRL, &data);
407 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
409 switch (state) {
410 case BR_STATE_DISABLED:
411 data |= PORT_LEARN_DISABLE;
412 if (port != dev->cpu_port)
413 member = 0;
414 break;
415 case BR_STATE_LISTENING:
416 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
417 if (port != dev->cpu_port &&
418 p->stp_state == BR_STATE_DISABLED)
419 member = dev->host_mask | p->vid_member;
420 break;
421 case BR_STATE_LEARNING:
422 data |= PORT_RX_ENABLE;
423 break;
424 case BR_STATE_FORWARDING:
425 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
427 /* This function is also used internally. */
428 if (port == dev->cpu_port)
429 break;
431 member = dev->host_mask | p->vid_member;
432 mutex_lock(&dev->dev_mutex);
434 /* Port is a member of a bridge. */
435 if (dev->br_member & (1 << port)) {
436 dev->member |= (1 << port);
437 member = dev->member;
439 mutex_unlock(&dev->dev_mutex);
440 break;
441 case BR_STATE_BLOCKING:
442 data |= PORT_LEARN_DISABLE;
443 if (port != dev->cpu_port &&
444 p->stp_state == BR_STATE_DISABLED)
445 member = dev->host_mask | p->vid_member;
446 break;
447 default:
448 dev_err(ds->dev, "invalid STP state: %d\n", state);
449 return;
452 ksz_pwrite8(dev, port, P_STP_CTRL, data);
453 p->stp_state = state;
454 mutex_lock(&dev->dev_mutex);
455 if (data & PORT_RX_ENABLE)
456 dev->rx_ports |= (1 << port);
457 else
458 dev->rx_ports &= ~(1 << port);
459 if (data & PORT_TX_ENABLE)
460 dev->tx_ports |= (1 << port);
461 else
462 dev->tx_ports &= ~(1 << port);
464 /* Port membership may share register with STP state. */
465 if (member >= 0 && member != p->member)
466 ksz9477_cfg_port_member(dev, port, (u8)member);
468 /* Check if forwarding needs to be updated. */
469 if (state != BR_STATE_FORWARDING) {
470 if (dev->br_member & (1 << port))
471 dev->member &= ~(1 << port);
474 /* When topology has changed the function ksz_update_port_member
475 * should be called to modify port forwarding behavior.
477 if (forward != dev->member)
478 ksz_update_port_member(dev, port);
479 mutex_unlock(&dev->dev_mutex);
482 static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
484 u8 data;
486 regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
487 SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
488 SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
490 if (port < dev->mib_port_cnt) {
491 /* flush individual port */
492 ksz_pread8(dev, port, P_STP_CTRL, &data);
493 if (!(data & PORT_LEARN_DISABLE))
494 ksz_pwrite8(dev, port, P_STP_CTRL,
495 data | PORT_LEARN_DISABLE);
496 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
497 ksz_pwrite8(dev, port, P_STP_CTRL, data);
498 } else {
499 /* flush all */
500 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
504 static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
505 bool flag)
507 struct ksz_device *dev = ds->priv;
509 if (flag) {
510 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
511 PORT_VLAN_LOOKUP_VID_0, true);
512 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
513 } else {
514 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
515 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
516 PORT_VLAN_LOOKUP_VID_0, false);
519 return 0;
522 static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
523 const struct switchdev_obj_port_vlan *vlan)
525 struct ksz_device *dev = ds->priv;
526 u32 vlan_table[3];
527 u16 vid;
528 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
530 for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
531 if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
532 dev_dbg(dev->dev, "Failed to get vlan table\n");
533 return;
536 vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
537 if (untagged)
538 vlan_table[1] |= BIT(port);
539 else
540 vlan_table[1] &= ~BIT(port);
541 vlan_table[1] &= ~(BIT(dev->cpu_port));
543 vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
545 if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
546 dev_dbg(dev->dev, "Failed to set vlan table\n");
547 return;
550 /* change PVID */
551 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
552 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
556 static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
557 const struct switchdev_obj_port_vlan *vlan)
559 struct ksz_device *dev = ds->priv;
560 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
561 u32 vlan_table[3];
562 u16 vid;
563 u16 pvid;
565 ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
566 pvid = pvid & 0xFFF;
568 for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
569 if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
570 dev_dbg(dev->dev, "Failed to get vlan table\n");
571 return -ETIMEDOUT;
574 vlan_table[2] &= ~BIT(port);
576 if (pvid == vid)
577 pvid = 1;
579 if (untagged)
580 vlan_table[1] &= ~BIT(port);
582 if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
583 dev_dbg(dev->dev, "Failed to set vlan table\n");
584 return -ETIMEDOUT;
588 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
590 return 0;
593 static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
594 const unsigned char *addr, u16 vid)
596 struct ksz_device *dev = ds->priv;
597 u32 alu_table[4];
598 u32 data;
599 int ret = 0;
601 mutex_lock(&dev->alu_mutex);
603 /* find any entry with mac & vid */
604 data = vid << ALU_FID_INDEX_S;
605 data |= ((addr[0] << 8) | addr[1]);
606 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
608 data = ((addr[2] << 24) | (addr[3] << 16));
609 data |= ((addr[4] << 8) | addr[5]);
610 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
612 /* start read operation */
613 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
615 /* wait to be finished */
616 ret = ksz9477_wait_alu_ready(dev);
617 if (ret) {
618 dev_dbg(dev->dev, "Failed to read ALU\n");
619 goto exit;
622 /* read ALU entry */
623 ksz9477_read_table(dev, alu_table);
625 /* update ALU entry */
626 alu_table[0] = ALU_V_STATIC_VALID;
627 alu_table[1] |= BIT(port);
628 if (vid)
629 alu_table[1] |= ALU_V_USE_FID;
630 alu_table[2] = (vid << ALU_V_FID_S);
631 alu_table[2] |= ((addr[0] << 8) | addr[1]);
632 alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
633 alu_table[3] |= ((addr[4] << 8) | addr[5]);
635 ksz9477_write_table(dev, alu_table);
637 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
639 /* wait to be finished */
640 ret = ksz9477_wait_alu_ready(dev);
641 if (ret)
642 dev_dbg(dev->dev, "Failed to write ALU\n");
644 exit:
645 mutex_unlock(&dev->alu_mutex);
647 return ret;
650 static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
651 const unsigned char *addr, u16 vid)
653 struct ksz_device *dev = ds->priv;
654 u32 alu_table[4];
655 u32 data;
656 int ret = 0;
658 mutex_lock(&dev->alu_mutex);
660 /* read any entry with mac & vid */
661 data = vid << ALU_FID_INDEX_S;
662 data |= ((addr[0] << 8) | addr[1]);
663 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
665 data = ((addr[2] << 24) | (addr[3] << 16));
666 data |= ((addr[4] << 8) | addr[5]);
667 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
669 /* start read operation */
670 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
672 /* wait to be finished */
673 ret = ksz9477_wait_alu_ready(dev);
674 if (ret) {
675 dev_dbg(dev->dev, "Failed to read ALU\n");
676 goto exit;
679 ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
680 if (alu_table[0] & ALU_V_STATIC_VALID) {
681 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
682 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
683 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
685 /* clear forwarding port */
686 alu_table[2] &= ~BIT(port);
688 /* if there is no port to forward, clear table */
689 if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
690 alu_table[0] = 0;
691 alu_table[1] = 0;
692 alu_table[2] = 0;
693 alu_table[3] = 0;
695 } else {
696 alu_table[0] = 0;
697 alu_table[1] = 0;
698 alu_table[2] = 0;
699 alu_table[3] = 0;
702 ksz9477_write_table(dev, alu_table);
704 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
706 /* wait to be finished */
707 ret = ksz9477_wait_alu_ready(dev);
708 if (ret)
709 dev_dbg(dev->dev, "Failed to write ALU\n");
711 exit:
712 mutex_unlock(&dev->alu_mutex);
714 return ret;
717 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
719 alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
720 alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
721 alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
722 alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
723 ALU_V_PRIO_AGE_CNT_M;
724 alu->mstp = alu_table[0] & ALU_V_MSTP_M;
726 alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
727 alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
728 alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
730 alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
732 alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
733 alu->mac[1] = alu_table[2] & 0xFF;
734 alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
735 alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
736 alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
737 alu->mac[5] = alu_table[3] & 0xFF;
740 static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
741 dsa_fdb_dump_cb_t *cb, void *data)
743 struct ksz_device *dev = ds->priv;
744 int ret = 0;
745 u32 ksz_data;
746 u32 alu_table[4];
747 struct alu_struct alu;
748 int timeout;
750 mutex_lock(&dev->alu_mutex);
752 /* start ALU search */
753 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
755 do {
756 timeout = 1000;
757 do {
758 ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
759 if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
760 break;
761 usleep_range(1, 10);
762 } while (timeout-- > 0);
764 if (!timeout) {
765 dev_dbg(dev->dev, "Failed to search ALU\n");
766 ret = -ETIMEDOUT;
767 goto exit;
770 /* read ALU table */
771 ksz9477_read_table(dev, alu_table);
773 ksz9477_convert_alu(&alu, alu_table);
775 if (alu.port_forward & BIT(port)) {
776 ret = cb(alu.mac, alu.fid, alu.is_static, data);
777 if (ret)
778 goto exit;
780 } while (ksz_data & ALU_START);
782 exit:
784 /* stop ALU search */
785 ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
787 mutex_unlock(&dev->alu_mutex);
789 return ret;
792 static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
793 const struct switchdev_obj_port_mdb *mdb)
795 struct ksz_device *dev = ds->priv;
796 u32 static_table[4];
797 u32 data;
798 int index;
799 u32 mac_hi, mac_lo;
801 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
802 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
803 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
805 mutex_lock(&dev->alu_mutex);
807 for (index = 0; index < dev->num_statics; index++) {
808 /* find empty slot first */
809 data = (index << ALU_STAT_INDEX_S) |
810 ALU_STAT_READ | ALU_STAT_START;
811 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
813 /* wait to be finished */
814 if (ksz9477_wait_alu_sta_ready(dev)) {
815 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
816 goto exit;
819 /* read ALU static table */
820 ksz9477_read_table(dev, static_table);
822 if (static_table[0] & ALU_V_STATIC_VALID) {
823 /* check this has same vid & mac address */
824 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
825 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
826 static_table[3] == mac_lo) {
827 /* found matching one */
828 break;
830 } else {
831 /* found empty one */
832 break;
836 /* no available entry */
837 if (index == dev->num_statics)
838 goto exit;
840 /* add entry */
841 static_table[0] = ALU_V_STATIC_VALID;
842 static_table[1] |= BIT(port);
843 if (mdb->vid)
844 static_table[1] |= ALU_V_USE_FID;
845 static_table[2] = (mdb->vid << ALU_V_FID_S);
846 static_table[2] |= mac_hi;
847 static_table[3] = mac_lo;
849 ksz9477_write_table(dev, static_table);
851 data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
852 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
854 /* wait to be finished */
855 if (ksz9477_wait_alu_sta_ready(dev))
856 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
858 exit:
859 mutex_unlock(&dev->alu_mutex);
862 static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
863 const struct switchdev_obj_port_mdb *mdb)
865 struct ksz_device *dev = ds->priv;
866 u32 static_table[4];
867 u32 data;
868 int index;
869 int ret = 0;
870 u32 mac_hi, mac_lo;
872 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
873 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
874 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
876 mutex_lock(&dev->alu_mutex);
878 for (index = 0; index < dev->num_statics; index++) {
879 /* find empty slot first */
880 data = (index << ALU_STAT_INDEX_S) |
881 ALU_STAT_READ | ALU_STAT_START;
882 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
884 /* wait to be finished */
885 ret = ksz9477_wait_alu_sta_ready(dev);
886 if (ret) {
887 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
888 goto exit;
891 /* read ALU static table */
892 ksz9477_read_table(dev, static_table);
894 if (static_table[0] & ALU_V_STATIC_VALID) {
895 /* check this has same vid & mac address */
897 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
898 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
899 static_table[3] == mac_lo) {
900 /* found matching one */
901 break;
906 /* no available entry */
907 if (index == dev->num_statics)
908 goto exit;
910 /* clear port */
911 static_table[1] &= ~BIT(port);
913 if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
914 /* delete entry */
915 static_table[0] = 0;
916 static_table[1] = 0;
917 static_table[2] = 0;
918 static_table[3] = 0;
921 ksz9477_write_table(dev, static_table);
923 data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
924 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
926 /* wait to be finished */
927 ret = ksz9477_wait_alu_sta_ready(dev);
928 if (ret)
929 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
931 exit:
932 mutex_unlock(&dev->alu_mutex);
934 return ret;
937 static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
938 struct dsa_mall_mirror_tc_entry *mirror,
939 bool ingress)
941 struct ksz_device *dev = ds->priv;
943 if (ingress)
944 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
945 else
946 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
948 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
950 /* configure mirror port */
951 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
952 PORT_MIRROR_SNIFFER, true);
954 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
956 return 0;
959 static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
960 struct dsa_mall_mirror_tc_entry *mirror)
962 struct ksz_device *dev = ds->priv;
963 u8 data;
965 if (mirror->ingress)
966 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
967 else
968 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
970 ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
972 if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
973 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
974 PORT_MIRROR_SNIFFER, false);
977 static void ksz9477_phy_setup(struct ksz_device *dev, int port,
978 struct phy_device *phy)
980 /* Only apply to port with PHY. */
981 if (port >= dev->phy_port_cnt)
982 return;
984 /* The MAC actually cannot run in 1000 half-duplex mode. */
985 phy_remove_link_mode(phy,
986 ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
988 /* PHY does not support gigabit. */
989 if (!(dev->features & GBIT_SUPPORT))
990 phy_remove_link_mode(phy,
991 ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
994 static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
996 bool gbit;
998 if (dev->features & NEW_XMII)
999 gbit = !(data & PORT_MII_NOT_1GBIT);
1000 else
1001 gbit = !!(data & PORT_MII_1000MBIT_S1);
1002 return gbit;
1005 static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
1007 if (dev->features & NEW_XMII) {
1008 if (gbit)
1009 *data &= ~PORT_MII_NOT_1GBIT;
1010 else
1011 *data |= PORT_MII_NOT_1GBIT;
1012 } else {
1013 if (gbit)
1014 *data |= PORT_MII_1000MBIT_S1;
1015 else
1016 *data &= ~PORT_MII_1000MBIT_S1;
1020 static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
1022 int mode;
1024 if (dev->features & NEW_XMII) {
1025 switch (data & PORT_MII_SEL_M) {
1026 case PORT_MII_SEL:
1027 mode = 0;
1028 break;
1029 case PORT_RMII_SEL:
1030 mode = 1;
1031 break;
1032 case PORT_GMII_SEL:
1033 mode = 2;
1034 break;
1035 default:
1036 mode = 3;
1038 } else {
1039 switch (data & PORT_MII_SEL_M) {
1040 case PORT_MII_SEL_S1:
1041 mode = 0;
1042 break;
1043 case PORT_RMII_SEL_S1:
1044 mode = 1;
1045 break;
1046 case PORT_GMII_SEL_S1:
1047 mode = 2;
1048 break;
1049 default:
1050 mode = 3;
1053 return mode;
1056 static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1058 u8 xmii;
1060 if (dev->features & NEW_XMII) {
1061 switch (mode) {
1062 case 0:
1063 xmii = PORT_MII_SEL;
1064 break;
1065 case 1:
1066 xmii = PORT_RMII_SEL;
1067 break;
1068 case 2:
1069 xmii = PORT_GMII_SEL;
1070 break;
1071 default:
1072 xmii = PORT_RGMII_SEL;
1073 break;
1075 } else {
1076 switch (mode) {
1077 case 0:
1078 xmii = PORT_MII_SEL_S1;
1079 break;
1080 case 1:
1081 xmii = PORT_RMII_SEL_S1;
1082 break;
1083 case 2:
1084 xmii = PORT_GMII_SEL_S1;
1085 break;
1086 default:
1087 xmii = PORT_RGMII_SEL_S1;
1088 break;
1091 *data &= ~PORT_MII_SEL_M;
1092 *data |= xmii;
1095 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1097 phy_interface_t interface;
1098 bool gbit;
1099 int mode;
1100 u8 data8;
1102 if (port < dev->phy_port_cnt)
1103 return PHY_INTERFACE_MODE_NA;
1104 ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1105 gbit = ksz9477_get_gbit(dev, data8);
1106 mode = ksz9477_get_xmii(dev, data8);
1107 switch (mode) {
1108 case 2:
1109 interface = PHY_INTERFACE_MODE_GMII;
1110 if (gbit)
1111 break;
1112 /* fall through */
1113 case 0:
1114 interface = PHY_INTERFACE_MODE_MII;
1115 break;
1116 case 1:
1117 interface = PHY_INTERFACE_MODE_RMII;
1118 break;
1119 default:
1120 interface = PHY_INTERFACE_MODE_RGMII;
1121 if (data8 & PORT_RGMII_ID_EG_ENABLE)
1122 interface = PHY_INTERFACE_MODE_RGMII_TXID;
1123 if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1124 interface = PHY_INTERFACE_MODE_RGMII_RXID;
1125 if (data8 & PORT_RGMII_ID_EG_ENABLE)
1126 interface = PHY_INTERFACE_MODE_RGMII_ID;
1128 break;
1130 return interface;
1133 static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1134 u8 dev_addr, u16 reg_addr, u16 val)
1136 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1137 MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1138 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1139 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1140 MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1141 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1144 static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1146 /* Apply PHY settings to address errata listed in
1147 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1148 * Silicon Errata and Data Sheet Clarification documents:
1150 * Register settings are needed to improve PHY receive performance
1152 ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1153 ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1154 ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1155 ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1156 ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1157 ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1158 ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1160 /* Transmit waveform amplitude can be improved
1161 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1163 ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1165 /* Energy Efficient Ethernet (EEE) feature select must
1166 * be manually disabled (except on KSZ8565 which is 100Mbit)
1168 if (dev->features & GBIT_SUPPORT)
1169 ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1171 /* Register settings are required to meet data sheet
1172 * supply current specifications
1174 ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1175 ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1176 ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1177 ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1178 ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1179 ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1180 ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1181 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1182 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1183 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1184 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1185 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1186 ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1189 static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1191 u8 data8;
1192 u8 member;
1193 u16 data16;
1194 struct ksz_port *p = &dev->ports[port];
1196 /* enable tag tail for host port */
1197 if (cpu_port)
1198 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1199 true);
1201 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1203 /* set back pressure */
1204 ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1206 /* enable broadcast storm limit */
1207 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1209 /* disable DiffServ priority */
1210 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1212 /* replace priority */
1213 ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1214 false);
1215 ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1216 MTI_PVID_REPLACE, false);
1218 /* enable 802.1p priority */
1219 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1221 if (port < dev->phy_port_cnt) {
1222 /* do not force flow control */
1223 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1224 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1225 false);
1227 if (dev->phy_errata_9477)
1228 ksz9477_phy_errata_setup(dev, port);
1229 } else {
1230 /* force flow control */
1231 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1232 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1233 true);
1235 /* configure MAC to 1G & RGMII mode */
1236 ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1237 switch (dev->interface) {
1238 case PHY_INTERFACE_MODE_MII:
1239 ksz9477_set_xmii(dev, 0, &data8);
1240 ksz9477_set_gbit(dev, false, &data8);
1241 p->phydev.speed = SPEED_100;
1242 break;
1243 case PHY_INTERFACE_MODE_RMII:
1244 ksz9477_set_xmii(dev, 1, &data8);
1245 ksz9477_set_gbit(dev, false, &data8);
1246 p->phydev.speed = SPEED_100;
1247 break;
1248 case PHY_INTERFACE_MODE_GMII:
1249 ksz9477_set_xmii(dev, 2, &data8);
1250 ksz9477_set_gbit(dev, true, &data8);
1251 p->phydev.speed = SPEED_1000;
1252 break;
1253 default:
1254 ksz9477_set_xmii(dev, 3, &data8);
1255 ksz9477_set_gbit(dev, true, &data8);
1256 data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1257 data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1258 if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1259 dev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1260 data8 |= PORT_RGMII_ID_IG_ENABLE;
1261 if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1262 dev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1263 data8 |= PORT_RGMII_ID_EG_ENABLE;
1264 p->phydev.speed = SPEED_1000;
1265 break;
1267 ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1268 p->phydev.duplex = 1;
1270 mutex_lock(&dev->dev_mutex);
1271 if (cpu_port) {
1272 member = dev->port_mask;
1273 dev->on_ports = dev->host_mask;
1274 dev->live_ports = dev->host_mask;
1275 } else {
1276 member = dev->host_mask | p->vid_member;
1277 dev->on_ports |= (1 << port);
1279 /* Link was detected before port is enabled. */
1280 if (p->phydev.link)
1281 dev->live_ports |= (1 << port);
1283 mutex_unlock(&dev->dev_mutex);
1284 ksz9477_cfg_port_member(dev, port, member);
1286 /* clear pending interrupts */
1287 if (port < dev->phy_port_cnt)
1288 ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1291 static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1293 struct ksz_device *dev = ds->priv;
1294 struct ksz_port *p;
1295 int i;
1297 ds->num_ports = dev->port_cnt;
1299 for (i = 0; i < dev->port_cnt; i++) {
1300 if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1301 phy_interface_t interface;
1303 dev->cpu_port = i;
1304 dev->host_mask = (1 << dev->cpu_port);
1305 dev->port_mask |= dev->host_mask;
1307 /* Read from XMII register to determine host port
1308 * interface. If set specifically in device tree
1309 * note the difference to help debugging.
1311 interface = ksz9477_get_interface(dev, i);
1312 if (!dev->interface)
1313 dev->interface = interface;
1314 if (interface && interface != dev->interface)
1315 dev_info(dev->dev,
1316 "use %s instead of %s\n",
1317 phy_modes(dev->interface),
1318 phy_modes(interface));
1320 /* enable cpu port */
1321 ksz9477_port_setup(dev, i, true);
1322 p = &dev->ports[dev->cpu_port];
1323 p->vid_member = dev->port_mask;
1324 p->on = 1;
1328 dev->member = dev->host_mask;
1330 for (i = 0; i < dev->mib_port_cnt; i++) {
1331 if (i == dev->cpu_port)
1332 continue;
1333 p = &dev->ports[i];
1335 /* Initialize to non-zero so that ksz_cfg_port_member() will
1336 * be called.
1338 p->vid_member = (1 << i);
1339 p->member = dev->port_mask;
1340 ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1341 p->on = 1;
1342 if (i < dev->phy_port_cnt)
1343 p->phy = 1;
1344 if (dev->chip_id == 0x00947700 && i == 6) {
1345 p->sgmii = 1;
1347 /* SGMII PHY detection code is not implemented yet. */
1348 p->phy = 0;
1353 static int ksz9477_setup(struct dsa_switch *ds)
1355 struct ksz_device *dev = ds->priv;
1356 int ret = 0;
1358 dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1359 dev->num_vlans, GFP_KERNEL);
1360 if (!dev->vlan_cache)
1361 return -ENOMEM;
1363 ret = ksz9477_reset_switch(dev);
1364 if (ret) {
1365 dev_err(ds->dev, "failed to reset switch\n");
1366 return ret;
1369 /* Required for port partitioning. */
1370 ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1371 true);
1373 /* Do not work correctly with tail tagging. */
1374 ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1376 /* accept packet up to 2000bytes */
1377 ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1379 ksz9477_config_cpu_port(ds);
1381 ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1383 /* queue based egress rate limit */
1384 ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1386 /* enable global MIB counter freeze function */
1387 ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1389 /* start switch */
1390 ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1392 ksz_init_mib_timer(dev);
1394 return 0;
1397 static const struct dsa_switch_ops ksz9477_switch_ops = {
1398 .get_tag_protocol = ksz9477_get_tag_protocol,
1399 .setup = ksz9477_setup,
1400 .phy_read = ksz9477_phy_read16,
1401 .phy_write = ksz9477_phy_write16,
1402 .adjust_link = ksz_adjust_link,
1403 .port_enable = ksz_enable_port,
1404 .port_disable = ksz_disable_port,
1405 .get_strings = ksz9477_get_strings,
1406 .get_ethtool_stats = ksz_get_ethtool_stats,
1407 .get_sset_count = ksz_sset_count,
1408 .port_bridge_join = ksz_port_bridge_join,
1409 .port_bridge_leave = ksz_port_bridge_leave,
1410 .port_stp_state_set = ksz9477_port_stp_state_set,
1411 .port_fast_age = ksz_port_fast_age,
1412 .port_vlan_filtering = ksz9477_port_vlan_filtering,
1413 .port_vlan_prepare = ksz_port_vlan_prepare,
1414 .port_vlan_add = ksz9477_port_vlan_add,
1415 .port_vlan_del = ksz9477_port_vlan_del,
1416 .port_fdb_dump = ksz9477_port_fdb_dump,
1417 .port_fdb_add = ksz9477_port_fdb_add,
1418 .port_fdb_del = ksz9477_port_fdb_del,
1419 .port_mdb_prepare = ksz_port_mdb_prepare,
1420 .port_mdb_add = ksz9477_port_mdb_add,
1421 .port_mdb_del = ksz9477_port_mdb_del,
1422 .port_mirror_add = ksz9477_port_mirror_add,
1423 .port_mirror_del = ksz9477_port_mirror_del,
1426 static u32 ksz9477_get_port_addr(int port, int offset)
1428 return PORT_CTRL_ADDR(port, offset);
1431 static int ksz9477_switch_detect(struct ksz_device *dev)
1433 u8 data8;
1434 u8 id_hi;
1435 u8 id_lo;
1436 u32 id32;
1437 int ret;
1439 /* turn off SPI DO Edge select */
1440 ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1441 if (ret)
1442 return ret;
1444 data8 &= ~SPI_AUTO_EDGE_DETECTION;
1445 ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1446 if (ret)
1447 return ret;
1449 /* read chip id */
1450 ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1451 if (ret)
1452 return ret;
1453 ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1454 if (ret)
1455 return ret;
1457 /* Number of ports can be reduced depending on chip. */
1458 dev->mib_port_cnt = TOTAL_PORT_NUM;
1459 dev->phy_port_cnt = 5;
1461 /* Default capability is gigabit capable. */
1462 dev->features = GBIT_SUPPORT;
1464 id_hi = (u8)(id32 >> 16);
1465 id_lo = (u8)(id32 >> 8);
1466 if ((id_lo & 0xf) == 3) {
1467 /* Chip is from KSZ9893 design. */
1468 dev->features |= IS_9893;
1470 /* Chip does not support gigabit. */
1471 if (data8 & SW_QW_ABLE)
1472 dev->features &= ~GBIT_SUPPORT;
1473 dev->mib_port_cnt = 3;
1474 dev->phy_port_cnt = 2;
1475 } else {
1476 /* Chip uses new XMII register definitions. */
1477 dev->features |= NEW_XMII;
1479 /* Chip does not support gigabit. */
1480 if (!(data8 & SW_GIGABIT_ABLE))
1481 dev->features &= ~GBIT_SUPPORT;
1484 /* Change chip id to known ones so it can be matched against them. */
1485 id32 = (id_hi << 16) | (id_lo << 8);
1487 dev->chip_id = id32;
1489 return 0;
1492 struct ksz_chip_data {
1493 u32 chip_id;
1494 const char *dev_name;
1495 int num_vlans;
1496 int num_alus;
1497 int num_statics;
1498 int cpu_ports;
1499 int port_cnt;
1500 bool phy_errata_9477;
1503 static const struct ksz_chip_data ksz9477_switch_chips[] = {
1505 .chip_id = 0x00947700,
1506 .dev_name = "KSZ9477",
1507 .num_vlans = 4096,
1508 .num_alus = 4096,
1509 .num_statics = 16,
1510 .cpu_ports = 0x7F, /* can be configured as cpu port */
1511 .port_cnt = 7, /* total physical port count */
1512 .phy_errata_9477 = true,
1515 .chip_id = 0x00989700,
1516 .dev_name = "KSZ9897",
1517 .num_vlans = 4096,
1518 .num_alus = 4096,
1519 .num_statics = 16,
1520 .cpu_ports = 0x7F, /* can be configured as cpu port */
1521 .port_cnt = 7, /* total physical port count */
1522 .phy_errata_9477 = true,
1525 .chip_id = 0x00989300,
1526 .dev_name = "KSZ9893",
1527 .num_vlans = 4096,
1528 .num_alus = 4096,
1529 .num_statics = 16,
1530 .cpu_ports = 0x07, /* can be configured as cpu port */
1531 .port_cnt = 3, /* total port count */
1534 .chip_id = 0x00956700,
1535 .dev_name = "KSZ9567",
1536 .num_vlans = 4096,
1537 .num_alus = 4096,
1538 .num_statics = 16,
1539 .cpu_ports = 0x7F, /* can be configured as cpu port */
1540 .port_cnt = 7, /* total physical port count */
1544 static int ksz9477_switch_init(struct ksz_device *dev)
1546 int i;
1548 dev->ds->ops = &ksz9477_switch_ops;
1550 for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1551 const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1553 if (dev->chip_id == chip->chip_id) {
1554 dev->name = chip->dev_name;
1555 dev->num_vlans = chip->num_vlans;
1556 dev->num_alus = chip->num_alus;
1557 dev->num_statics = chip->num_statics;
1558 dev->port_cnt = chip->port_cnt;
1559 dev->cpu_ports = chip->cpu_ports;
1560 dev->phy_errata_9477 = chip->phy_errata_9477;
1562 break;
1566 /* no switch found */
1567 if (!dev->port_cnt)
1568 return -ENODEV;
1570 dev->port_mask = (1 << dev->port_cnt) - 1;
1572 dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1573 dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1575 i = dev->mib_port_cnt;
1576 dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
1577 GFP_KERNEL);
1578 if (!dev->ports)
1579 return -ENOMEM;
1580 for (i = 0; i < dev->mib_port_cnt; i++) {
1581 mutex_init(&dev->ports[i].mib.cnt_mutex);
1582 dev->ports[i].mib.counters =
1583 devm_kzalloc(dev->dev,
1584 sizeof(u64) *
1585 (TOTAL_SWITCH_COUNTER_NUM + 1),
1586 GFP_KERNEL);
1587 if (!dev->ports[i].mib.counters)
1588 return -ENOMEM;
1591 return 0;
1594 static void ksz9477_switch_exit(struct ksz_device *dev)
1596 ksz9477_reset_switch(dev);
1599 static const struct ksz_dev_ops ksz9477_dev_ops = {
1600 .get_port_addr = ksz9477_get_port_addr,
1601 .cfg_port_member = ksz9477_cfg_port_member,
1602 .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1603 .phy_setup = ksz9477_phy_setup,
1604 .port_setup = ksz9477_port_setup,
1605 .r_mib_cnt = ksz9477_r_mib_cnt,
1606 .r_mib_pkt = ksz9477_r_mib_pkt,
1607 .freeze_mib = ksz9477_freeze_mib,
1608 .port_init_cnt = ksz9477_port_init_cnt,
1609 .shutdown = ksz9477_reset_switch,
1610 .detect = ksz9477_switch_detect,
1611 .init = ksz9477_switch_init,
1612 .exit = ksz9477_switch_exit,
1615 int ksz9477_switch_register(struct ksz_device *dev)
1617 return ksz_switch_register(dev, &ksz9477_dev_ops);
1619 EXPORT_SYMBOL(ksz9477_switch_register);
1621 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1622 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1623 MODULE_LICENSE("GPL");