1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
4 * and other Tigon based cards.
6 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
8 * Thanks to Alteon and 3Com for providing hardware and documentation
9 * enabling me to write this driver.
11 * A mailing list for discussing the use of this driver has been
12 * setup, please subscribe to the lists if you have any questions
13 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
14 * see how to subscribe.
17 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
18 * dump support. The trace dump support has not been
19 * integrated yet however.
20 * Troy Benjegerdes: Big Endian (PPC) patches.
21 * Nate Stahl: Better out of memory handling and stats support.
22 * Aman Singla: Nasty race between interrupt handler and tx code dealing
23 * with 'testing the tx_ret_csm and setting tx_full'
24 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
25 * infrastructure and Sparc support
26 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
27 * driver under Linux/Sparc64
28 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
29 * ETHTOOL_GDRVINFO support
30 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
31 * handler and close() cleanup.
32 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
33 * memory mapped IO is enabled to
34 * make the driver work on RS/6000.
35 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
36 * where the driver would disable
37 * bus master mode if it had to disable
38 * write and invalidate.
39 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
41 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
42 * rx producer index when
43 * flushing the Jumbo ring.
44 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
46 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/types.h>
52 #include <linux/errno.h>
53 #include <linux/ioport.h>
54 #include <linux/pci.h>
55 #include <linux/dma-mapping.h>
56 #include <linux/kernel.h>
57 #include <linux/netdevice.h>
58 #include <linux/etherdevice.h>
59 #include <linux/skbuff.h>
60 #include <linux/delay.h>
62 #include <linux/highmem.h>
63 #include <linux/sockios.h>
64 #include <linux/firmware.h>
65 #include <linux/slab.h>
66 #include <linux/prefetch.h>
67 #include <linux/if_vlan.h>
70 #include <linux/ethtool.h>
78 #include <asm/byteorder.h>
79 #include <linux/uaccess.h>
82 #define DRV_NAME "acenic"
86 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
87 #define ACE_IS_TIGON_I(ap) 0
88 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
90 #define ACE_IS_TIGON_I(ap) (ap->version == 1)
91 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
94 #ifndef PCI_VENDOR_ID_ALTEON
95 #define PCI_VENDOR_ID_ALTEON 0x12ae
97 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
98 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
99 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
101 #ifndef PCI_DEVICE_ID_3COM_3C985
102 #define PCI_DEVICE_ID_3COM_3C985 0x0001
104 #ifndef PCI_VENDOR_ID_NETGEAR
105 #define PCI_VENDOR_ID_NETGEAR 0x1385
106 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
108 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
109 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
114 * Farallon used the DEC vendor ID by mistake and they seem not
117 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
118 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
120 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
121 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
123 #ifndef PCI_VENDOR_ID_SGI
124 #define PCI_VENDOR_ID_SGI 0x10a9
126 #ifndef PCI_DEVICE_ID_SGI_ACENIC
127 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
130 static const struct pci_device_id acenic_pci_tbl
[] = {
131 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
,
132 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
133 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER
,
134 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
135 { PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C985
,
136 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
137 { PCI_VENDOR_ID_NETGEAR
, PCI_DEVICE_ID_NETGEAR_GA620
,
138 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
139 { PCI_VENDOR_ID_NETGEAR
, PCI_DEVICE_ID_NETGEAR_GA620T
,
140 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
142 * Farallon used the DEC vendor ID on their cards incorrectly,
143 * then later Alteon's ID.
145 { PCI_VENDOR_ID_DEC
, PCI_DEVICE_ID_FARALLON_PN9000SX
,
146 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
147 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_FARALLON_PN9100T
,
148 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
149 { PCI_VENDOR_ID_SGI
, PCI_DEVICE_ID_SGI_ACENIC
,
150 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
153 MODULE_DEVICE_TABLE(pci
, acenic_pci_tbl
);
155 #define ace_sync_irq(irq) synchronize_irq(irq)
157 #ifndef offset_in_page
158 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
161 #define ACE_MAX_MOD_PARMS 8
162 #define BOARD_IDX_STATIC 0
163 #define BOARD_IDX_OVERFLOW -1
168 * These must be defined before the firmware is included.
170 #define MAX_TEXT_LEN 96*1024
171 #define MAX_RODATA_LEN 8*1024
172 #define MAX_DATA_LEN 2*1024
174 #ifndef tigon2FwReleaseLocal
175 #define tigon2FwReleaseLocal 0
179 * This driver currently supports Tigon I and Tigon II based cards
180 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
181 * GA620. The driver should also work on the SGI, DEC and Farallon
182 * versions of the card, however I have not been able to test that
185 * This card is really neat, it supports receive hardware checksumming
186 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
187 * firmware. Also the programming interface is quite neat, except for
188 * the parts dealing with the i2c eeprom on the card ;-)
190 * Using jumbo frames:
192 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
193 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
194 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
195 * interface number and <MTU> being the MTU value.
199 * When compiled as a loadable module, the driver allows for a number
200 * of module parameters to be specified. The driver supports the
201 * following module parameters:
203 * trace=<val> - Firmware trace level. This requires special traced
204 * firmware to replace the firmware supplied with
205 * the driver - for debugging purposes only.
207 * link=<val> - Link state. Normally you want to use the default link
208 * parameters set by the driver. This can be used to
209 * override these in case your switch doesn't negotiate
210 * the link properly. Valid values are:
211 * 0x0001 - Force half duplex link.
212 * 0x0002 - Do not negotiate line speed with the other end.
213 * 0x0010 - 10Mbit/sec link.
214 * 0x0020 - 100Mbit/sec link.
215 * 0x0040 - 1000Mbit/sec link.
216 * 0x0100 - Do not negotiate flow control.
217 * 0x0200 - Enable RX flow control Y
218 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
219 * Default value is 0x0270, ie. enable link+flow
220 * control negotiation. Negotiating the highest
221 * possible link speed with RX flow control enabled.
223 * When disabling link speed negotiation, only one link
224 * speed is allowed to be specified!
226 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
227 * to wait for more packets to arive before
228 * interrupting the host, from the time the first
231 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
232 * to wait for more packets to arive in the transmit ring,
233 * before interrupting the host, after transmitting the
234 * first packet in the ring.
236 * max_tx_desc=<val> - maximum number of transmit descriptors
237 * (packets) transmitted before interrupting the host.
239 * max_rx_desc=<val> - maximum number of receive descriptors
240 * (packets) received before interrupting the host.
242 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
243 * increments of the NIC's on board memory to be used for
244 * transmit and receive buffers. For the 1MB NIC app. 800KB
245 * is available, on the 1/2MB NIC app. 300KB is available.
246 * 68KB will always be available as a minimum for both
247 * directions. The default value is a 50/50 split.
248 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
249 * operations, default (1) is to always disable this as
250 * that is what Alteon does on NT. I have not been able
251 * to measure any real performance differences with
252 * this on my systems. Set <val>=0 if you want to
253 * enable these operations.
255 * If you use more than one NIC, specify the parameters for the
256 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
257 * run tracing on NIC #2 but not on NIC #1 and #3.
261 * - Proper multicast support.
262 * - NIC dump support.
263 * - More tuning parameters.
265 * The mini ring is not used under Linux and I am not sure it makes sense
266 * to actually use it.
268 * New interrupt handler strategy:
270 * The old interrupt handler worked using the traditional method of
271 * replacing an skbuff with a new one when a packet arrives. However
272 * the rx rings do not need to contain a static number of buffer
273 * descriptors, thus it makes sense to move the memory allocation out
274 * of the main interrupt handler and do it in a bottom half handler
275 * and only allocate new buffers when the number of buffers in the
276 * ring is below a certain threshold. In order to avoid starving the
277 * NIC under heavy load it is however necessary to force allocation
278 * when hitting a minimum threshold. The strategy for alloction is as
281 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
282 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
283 * the buffers in the interrupt handler
284 * RX_RING_THRES - maximum number of buffers in the rx ring
285 * RX_MINI_THRES - maximum number of buffers in the mini ring
286 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
288 * One advantagous side effect of this allocation approach is that the
289 * entire rx processing can be done without holding any spin lock
290 * since the rx rings and registers are totally independent of the tx
291 * ring and its registers. This of course includes the kmalloc's of
292 * new skb's. Thus start_xmit can run in parallel with rx processing
293 * and the memory allocation on SMP systems.
295 * Note that running the skb reallocation in a bottom half opens up
296 * another can of races which needs to be handled properly. In
297 * particular it can happen that the interrupt handler tries to run
298 * the reallocation while the bottom half is either running on another
299 * CPU or was interrupted on the same CPU. To get around this the
300 * driver uses bitops to prevent the reallocation routines from being
303 * TX handling can also be done without holding any spin lock, wheee
304 * this is fun! since tx_ret_csm is only written to by the interrupt
305 * handler. The case to be aware of is when shutting down the device
306 * and cleaning up where it is necessary to make sure that
307 * start_xmit() is not running while this is happening. Well DaveM
308 * informs me that this case is already protected against ... bye bye
309 * Mr. Spin Lock, it was nice to know you.
311 * TX interrupts are now partly disabled so the NIC will only generate
312 * TX interrupts for the number of coal ticks, not for the number of
313 * TX packets in the queue. This should reduce the number of TX only,
314 * ie. when no RX processing is done, interrupts seen.
318 * Threshold values for RX buffer allocation - the low water marks for
319 * when to start refilling the rings are set to 75% of the ring
320 * sizes. It seems to make sense to refill the rings entirely from the
321 * intrrupt handler once it gets below the panic threshold, that way
322 * we don't risk that the refilling is moved to another CPU when the
323 * one running the interrupt handler just got the slab code hot in its
326 #define RX_RING_SIZE 72
327 #define RX_MINI_SIZE 64
328 #define RX_JUMBO_SIZE 48
330 #define RX_PANIC_STD_THRES 16
331 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
332 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
333 #define RX_PANIC_MINI_THRES 12
334 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
335 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
336 #define RX_PANIC_JUMBO_THRES 6
337 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
338 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
342 * Size of the mini ring entries, basically these just should be big
343 * enough to take TCP ACKs
345 #define ACE_MINI_SIZE 100
347 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
348 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
349 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
352 * There seems to be a magic difference in the effect between 995 and 996
353 * but little difference between 900 and 995 ... no idea why.
355 * There is now a default set of tuning parameters which is set, depending
356 * on whether or not the user enables Jumbo frames. It's assumed that if
357 * Jumbo frames are enabled, the user wants optimal tuning for that case.
359 #define DEF_TX_COAL 400 /* 996 */
360 #define DEF_TX_MAX_DESC 60 /* was 40 */
361 #define DEF_RX_COAL 120 /* 1000 */
362 #define DEF_RX_MAX_DESC 25
363 #define DEF_TX_RATIO 21 /* 24 */
365 #define DEF_JUMBO_TX_COAL 20
366 #define DEF_JUMBO_TX_MAX_DESC 60
367 #define DEF_JUMBO_RX_COAL 30
368 #define DEF_JUMBO_RX_MAX_DESC 6
369 #define DEF_JUMBO_TX_RATIO 21
371 #if tigon2FwReleaseLocal < 20001118
373 * Standard firmware and early modifications duplicate
374 * IRQ load without this flag (coal timer is never reset).
375 * Note that with this flag tx_coal should be less than
376 * time to xmit full tx ring.
377 * 400usec is not so bad for tx ring size of 128.
379 #define TX_COAL_INTS_ONLY 1 /* worth it */
382 * With modified firmware, this is not necessary, but still useful.
384 #define TX_COAL_INTS_ONLY 1
388 #define DEF_STAT (2 * TICKS_PER_SEC)
391 static int link_state
[ACE_MAX_MOD_PARMS
];
392 static int trace
[ACE_MAX_MOD_PARMS
];
393 static int tx_coal_tick
[ACE_MAX_MOD_PARMS
];
394 static int rx_coal_tick
[ACE_MAX_MOD_PARMS
];
395 static int max_tx_desc
[ACE_MAX_MOD_PARMS
];
396 static int max_rx_desc
[ACE_MAX_MOD_PARMS
];
397 static int tx_ratio
[ACE_MAX_MOD_PARMS
];
398 static int dis_pci_mem_inval
[ACE_MAX_MOD_PARMS
] = {1, 1, 1, 1, 1, 1, 1, 1};
400 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
401 MODULE_LICENSE("GPL");
402 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
403 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
404 MODULE_FIRMWARE("acenic/tg1.bin");
406 MODULE_FIRMWARE("acenic/tg2.bin");
408 module_param_array_named(link
, link_state
, int, NULL
, 0);
409 module_param_array(trace
, int, NULL
, 0);
410 module_param_array(tx_coal_tick
, int, NULL
, 0);
411 module_param_array(max_tx_desc
, int, NULL
, 0);
412 module_param_array(rx_coal_tick
, int, NULL
, 0);
413 module_param_array(max_rx_desc
, int, NULL
, 0);
414 module_param_array(tx_ratio
, int, NULL
, 0);
415 MODULE_PARM_DESC(link
, "AceNIC/3C985/NetGear link state");
416 MODULE_PARM_DESC(trace
, "AceNIC/3C985/NetGear firmware trace level");
417 MODULE_PARM_DESC(tx_coal_tick
, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
418 MODULE_PARM_DESC(max_tx_desc
, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
419 MODULE_PARM_DESC(rx_coal_tick
, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
420 MODULE_PARM_DESC(max_rx_desc
, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
421 MODULE_PARM_DESC(tx_ratio
, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
424 static const char version
[] =
425 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
426 " http://home.cern.ch/~jes/gige/acenic.html\n";
428 static int ace_get_link_ksettings(struct net_device
*,
429 struct ethtool_link_ksettings
*);
430 static int ace_set_link_ksettings(struct net_device
*,
431 const struct ethtool_link_ksettings
*);
432 static void ace_get_drvinfo(struct net_device
*, struct ethtool_drvinfo
*);
434 static const struct ethtool_ops ace_ethtool_ops
= {
435 .get_drvinfo
= ace_get_drvinfo
,
436 .get_link_ksettings
= ace_get_link_ksettings
,
437 .set_link_ksettings
= ace_set_link_ksettings
,
440 static void ace_watchdog(struct net_device
*dev
, unsigned int txqueue
);
442 static const struct net_device_ops ace_netdev_ops
= {
443 .ndo_open
= ace_open
,
444 .ndo_stop
= ace_close
,
445 .ndo_tx_timeout
= ace_watchdog
,
446 .ndo_get_stats
= ace_get_stats
,
447 .ndo_start_xmit
= ace_start_xmit
,
448 .ndo_set_rx_mode
= ace_set_multicast_list
,
449 .ndo_validate_addr
= eth_validate_addr
,
450 .ndo_set_mac_address
= ace_set_mac_addr
,
451 .ndo_change_mtu
= ace_change_mtu
,
454 static int acenic_probe_one(struct pci_dev
*pdev
,
455 const struct pci_device_id
*id
)
457 struct net_device
*dev
;
458 struct ace_private
*ap
;
459 static int boards_found
;
461 dev
= alloc_etherdev(sizeof(struct ace_private
));
465 SET_NETDEV_DEV(dev
, &pdev
->dev
);
467 ap
= netdev_priv(dev
);
469 ap
->name
= pci_name(pdev
);
471 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
472 dev
->features
|= NETIF_F_HW_VLAN_CTAG_TX
| NETIF_F_HW_VLAN_CTAG_RX
;
474 dev
->watchdog_timeo
= 5*HZ
;
476 dev
->max_mtu
= ACE_JUMBO_MTU
;
478 dev
->netdev_ops
= &ace_netdev_ops
;
479 dev
->ethtool_ops
= &ace_ethtool_ops
;
481 /* we only display this string ONCE */
485 if (pci_enable_device(pdev
))
486 goto fail_free_netdev
;
489 * Enable master mode before we start playing with the
490 * pci_command word since pci_set_master() will modify
493 pci_set_master(pdev
);
495 pci_read_config_word(pdev
, PCI_COMMAND
, &ap
->pci_command
);
497 /* OpenFirmware on Mac's does not set this - DOH.. */
498 if (!(ap
->pci_command
& PCI_COMMAND_MEMORY
)) {
499 printk(KERN_INFO
"%s: Enabling PCI Memory Mapped "
500 "access - was not enabled by BIOS/Firmware\n",
502 ap
->pci_command
= ap
->pci_command
| PCI_COMMAND_MEMORY
;
503 pci_write_config_word(ap
->pdev
, PCI_COMMAND
,
508 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &ap
->pci_latency
);
509 if (ap
->pci_latency
<= 0x40) {
510 ap
->pci_latency
= 0x40;
511 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, ap
->pci_latency
);
515 * Remap the regs into kernel space - this is abuse of
516 * dev->base_addr since it was means for I/O port
517 * addresses but who gives a damn.
519 dev
->base_addr
= pci_resource_start(pdev
, 0);
520 ap
->regs
= ioremap(dev
->base_addr
, 0x4000);
522 printk(KERN_ERR
"%s: Unable to map I/O register, "
523 "AceNIC %i will be disabled.\n",
524 ap
->name
, boards_found
);
525 goto fail_free_netdev
;
528 switch(pdev
->vendor
) {
529 case PCI_VENDOR_ID_ALTEON
:
530 if (pdev
->device
== PCI_DEVICE_ID_FARALLON_PN9100T
) {
531 printk(KERN_INFO
"%s: Farallon PN9100-T ",
534 printk(KERN_INFO
"%s: Alteon AceNIC ",
538 case PCI_VENDOR_ID_3COM
:
539 printk(KERN_INFO
"%s: 3Com 3C985 ", ap
->name
);
541 case PCI_VENDOR_ID_NETGEAR
:
542 printk(KERN_INFO
"%s: NetGear GA620 ", ap
->name
);
544 case PCI_VENDOR_ID_DEC
:
545 if (pdev
->device
== PCI_DEVICE_ID_FARALLON_PN9000SX
) {
546 printk(KERN_INFO
"%s: Farallon PN9000-SX ",
551 case PCI_VENDOR_ID_SGI
:
552 printk(KERN_INFO
"%s: SGI AceNIC ", ap
->name
);
555 printk(KERN_INFO
"%s: Unknown AceNIC ", ap
->name
);
559 printk("Gigabit Ethernet at 0x%08lx, ", dev
->base_addr
);
560 printk("irq %d\n", pdev
->irq
);
562 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
563 if ((readl(&ap
->regs
->HostCtrl
) >> 28) == 4) {
564 printk(KERN_ERR
"%s: Driver compiled without Tigon I"
565 " support - NIC disabled\n", dev
->name
);
570 if (ace_allocate_descriptors(dev
))
571 goto fail_free_netdev
;
574 if (boards_found
>= ACE_MAX_MOD_PARMS
)
575 ap
->board_idx
= BOARD_IDX_OVERFLOW
;
577 ap
->board_idx
= boards_found
;
579 ap
->board_idx
= BOARD_IDX_STATIC
;
583 goto fail_free_netdev
;
585 if (register_netdev(dev
)) {
586 printk(KERN_ERR
"acenic: device registration failed\n");
589 ap
->name
= dev
->name
;
591 if (ap
->pci_using_dac
)
592 dev
->features
|= NETIF_F_HIGHDMA
;
594 pci_set_drvdata(pdev
, dev
);
600 ace_init_cleanup(dev
);
606 static void acenic_remove_one(struct pci_dev
*pdev
)
608 struct net_device
*dev
= pci_get_drvdata(pdev
);
609 struct ace_private
*ap
= netdev_priv(dev
);
610 struct ace_regs __iomem
*regs
= ap
->regs
;
613 unregister_netdev(dev
);
615 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
616 if (ap
->version
>= 2)
617 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
, ®s
->CpuBCtrl
);
620 * This clears any pending interrupts
622 writel(1, ®s
->Mb0Lo
);
623 readl(®s
->CpuCtrl
); /* flush */
626 * Make sure no other CPUs are processing interrupts
627 * on the card before the buffers are being released.
628 * Otherwise one might experience some `interesting'
631 * Then release the RX buffers - jumbo buffers were
632 * already released in ace_close().
634 ace_sync_irq(dev
->irq
);
636 for (i
= 0; i
< RX_STD_RING_ENTRIES
; i
++) {
637 struct sk_buff
*skb
= ap
->skb
->rx_std_skbuff
[i
].skb
;
640 struct ring_info
*ringp
;
643 ringp
= &ap
->skb
->rx_std_skbuff
[i
];
644 mapping
= dma_unmap_addr(ringp
, mapping
);
645 pci_unmap_page(ap
->pdev
, mapping
,
649 ap
->rx_std_ring
[i
].size
= 0;
650 ap
->skb
->rx_std_skbuff
[i
].skb
= NULL
;
655 if (ap
->version
>= 2) {
656 for (i
= 0; i
< RX_MINI_RING_ENTRIES
; i
++) {
657 struct sk_buff
*skb
= ap
->skb
->rx_mini_skbuff
[i
].skb
;
660 struct ring_info
*ringp
;
663 ringp
= &ap
->skb
->rx_mini_skbuff
[i
];
664 mapping
= dma_unmap_addr(ringp
,mapping
);
665 pci_unmap_page(ap
->pdev
, mapping
,
669 ap
->rx_mini_ring
[i
].size
= 0;
670 ap
->skb
->rx_mini_skbuff
[i
].skb
= NULL
;
676 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++) {
677 struct sk_buff
*skb
= ap
->skb
->rx_jumbo_skbuff
[i
].skb
;
679 struct ring_info
*ringp
;
682 ringp
= &ap
->skb
->rx_jumbo_skbuff
[i
];
683 mapping
= dma_unmap_addr(ringp
, mapping
);
684 pci_unmap_page(ap
->pdev
, mapping
,
688 ap
->rx_jumbo_ring
[i
].size
= 0;
689 ap
->skb
->rx_jumbo_skbuff
[i
].skb
= NULL
;
694 ace_init_cleanup(dev
);
698 static struct pci_driver acenic_pci_driver
= {
700 .id_table
= acenic_pci_tbl
,
701 .probe
= acenic_probe_one
,
702 .remove
= acenic_remove_one
,
705 static void ace_free_descriptors(struct net_device
*dev
)
707 struct ace_private
*ap
= netdev_priv(dev
);
710 if (ap
->rx_std_ring
!= NULL
) {
711 size
= (sizeof(struct rx_desc
) *
712 (RX_STD_RING_ENTRIES
+
713 RX_JUMBO_RING_ENTRIES
+
714 RX_MINI_RING_ENTRIES
+
715 RX_RETURN_RING_ENTRIES
));
716 pci_free_consistent(ap
->pdev
, size
, ap
->rx_std_ring
,
717 ap
->rx_ring_base_dma
);
718 ap
->rx_std_ring
= NULL
;
719 ap
->rx_jumbo_ring
= NULL
;
720 ap
->rx_mini_ring
= NULL
;
721 ap
->rx_return_ring
= NULL
;
723 if (ap
->evt_ring
!= NULL
) {
724 size
= (sizeof(struct event
) * EVT_RING_ENTRIES
);
725 pci_free_consistent(ap
->pdev
, size
, ap
->evt_ring
,
729 if (ap
->tx_ring
!= NULL
&& !ACE_IS_TIGON_I(ap
)) {
730 size
= (sizeof(struct tx_desc
) * MAX_TX_RING_ENTRIES
);
731 pci_free_consistent(ap
->pdev
, size
, ap
->tx_ring
,
736 if (ap
->evt_prd
!= NULL
) {
737 pci_free_consistent(ap
->pdev
, sizeof(u32
),
738 (void *)ap
->evt_prd
, ap
->evt_prd_dma
);
741 if (ap
->rx_ret_prd
!= NULL
) {
742 pci_free_consistent(ap
->pdev
, sizeof(u32
),
743 (void *)ap
->rx_ret_prd
,
745 ap
->rx_ret_prd
= NULL
;
747 if (ap
->tx_csm
!= NULL
) {
748 pci_free_consistent(ap
->pdev
, sizeof(u32
),
749 (void *)ap
->tx_csm
, ap
->tx_csm_dma
);
755 static int ace_allocate_descriptors(struct net_device
*dev
)
757 struct ace_private
*ap
= netdev_priv(dev
);
760 size
= (sizeof(struct rx_desc
) *
761 (RX_STD_RING_ENTRIES
+
762 RX_JUMBO_RING_ENTRIES
+
763 RX_MINI_RING_ENTRIES
+
764 RX_RETURN_RING_ENTRIES
));
766 ap
->rx_std_ring
= pci_alloc_consistent(ap
->pdev
, size
,
767 &ap
->rx_ring_base_dma
);
768 if (ap
->rx_std_ring
== NULL
)
771 ap
->rx_jumbo_ring
= ap
->rx_std_ring
+ RX_STD_RING_ENTRIES
;
772 ap
->rx_mini_ring
= ap
->rx_jumbo_ring
+ RX_JUMBO_RING_ENTRIES
;
773 ap
->rx_return_ring
= ap
->rx_mini_ring
+ RX_MINI_RING_ENTRIES
;
775 size
= (sizeof(struct event
) * EVT_RING_ENTRIES
);
777 ap
->evt_ring
= pci_alloc_consistent(ap
->pdev
, size
, &ap
->evt_ring_dma
);
779 if (ap
->evt_ring
== NULL
)
783 * Only allocate a host TX ring for the Tigon II, the Tigon I
784 * has to use PCI registers for this ;-(
786 if (!ACE_IS_TIGON_I(ap
)) {
787 size
= (sizeof(struct tx_desc
) * MAX_TX_RING_ENTRIES
);
789 ap
->tx_ring
= pci_alloc_consistent(ap
->pdev
, size
,
792 if (ap
->tx_ring
== NULL
)
796 ap
->evt_prd
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
798 if (ap
->evt_prd
== NULL
)
801 ap
->rx_ret_prd
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
802 &ap
->rx_ret_prd_dma
);
803 if (ap
->rx_ret_prd
== NULL
)
806 ap
->tx_csm
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
808 if (ap
->tx_csm
== NULL
)
815 ace_init_cleanup(dev
);
821 * Generic cleanup handling data allocated during init. Used when the
822 * module is unloaded or if an error occurs during initialization
824 static void ace_init_cleanup(struct net_device
*dev
)
826 struct ace_private
*ap
;
828 ap
= netdev_priv(dev
);
830 ace_free_descriptors(dev
);
833 pci_free_consistent(ap
->pdev
, sizeof(struct ace_info
),
834 ap
->info
, ap
->info_dma
);
836 kfree(ap
->trace_buf
);
839 free_irq(dev
->irq
, dev
);
846 * Commands are considered to be slow.
848 static inline void ace_issue_cmd(struct ace_regs __iomem
*regs
, struct cmd
*cmd
)
852 idx
= readl(®s
->CmdPrd
);
854 writel(*(u32
*)(cmd
), ®s
->CmdRng
[idx
]);
855 idx
= (idx
+ 1) % CMD_RING_ENTRIES
;
857 writel(idx
, ®s
->CmdPrd
);
861 static int ace_init(struct net_device
*dev
)
863 struct ace_private
*ap
;
864 struct ace_regs __iomem
*regs
;
865 struct ace_info
*info
= NULL
;
866 struct pci_dev
*pdev
;
869 u32 tig_ver
, mac1
, mac2
, tmp
, pci_state
;
870 int board_idx
, ecode
= 0;
872 unsigned char cache_size
;
874 ap
= netdev_priv(dev
);
877 board_idx
= ap
->board_idx
;
880 * aman@sgi.com - its useful to do a NIC reset here to
881 * address the `Firmware not running' problem subsequent
882 * to any crashes involving the NIC
884 writel(HW_RESET
| (HW_RESET
<< 24), ®s
->HostCtrl
);
885 readl(®s
->HostCtrl
); /* PCI write posting */
889 * Don't access any other registers before this point!
893 * This will most likely need BYTE_SWAP once we switch
894 * to using __raw_writel()
896 writel((WORD_SWAP
| CLR_INT
| ((WORD_SWAP
| CLR_INT
) << 24)),
899 writel((CLR_INT
| WORD_SWAP
| ((CLR_INT
| WORD_SWAP
) << 24)),
902 readl(®s
->HostCtrl
); /* PCI write posting */
905 * Stop the NIC CPU and clear pending interrupts
907 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
908 readl(®s
->CpuCtrl
); /* PCI write posting */
909 writel(0, ®s
->Mb0Lo
);
911 tig_ver
= readl(®s
->HostCtrl
) >> 28;
914 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
917 printk(KERN_INFO
" Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
918 tig_ver
, ap
->firmware_major
, ap
->firmware_minor
,
920 writel(0, ®s
->LocalCtrl
);
922 ap
->tx_ring_entries
= TIGON_I_TX_RING_ENTRIES
;
926 printk(KERN_INFO
" Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
927 tig_ver
, ap
->firmware_major
, ap
->firmware_minor
,
929 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
, ®s
->CpuBCtrl
);
930 readl(®s
->CpuBCtrl
); /* PCI write posting */
932 * The SRAM bank size does _not_ indicate the amount
933 * of memory on the card, it controls the _bank_ size!
934 * Ie. a 1MB AceNIC will have two banks of 512KB.
936 writel(SRAM_BANK_512K
, ®s
->LocalCtrl
);
937 writel(SYNC_SRAM_TIMING
, ®s
->MiscCfg
);
939 ap
->tx_ring_entries
= MAX_TX_RING_ENTRIES
;
942 printk(KERN_WARNING
" Unsupported Tigon version detected "
949 * ModeStat _must_ be set after the SRAM settings as this change
950 * seems to corrupt the ModeStat and possible other registers.
951 * The SRAM settings survive resets and setting it to the same
952 * value a second time works as well. This is what caused the
953 * `Firmware not running' problem on the Tigon II.
956 writel(ACE_BYTE_SWAP_DMA
| ACE_WARN
| ACE_FATAL
| ACE_BYTE_SWAP_BD
|
957 ACE_WORD_SWAP_BD
| ACE_NO_JUMBO_FRAG
, ®s
->ModeStat
);
959 writel(ACE_BYTE_SWAP_DMA
| ACE_WARN
| ACE_FATAL
|
960 ACE_WORD_SWAP_BD
| ACE_NO_JUMBO_FRAG
, ®s
->ModeStat
);
962 readl(®s
->ModeStat
); /* PCI write posting */
965 for(i
= 0; i
< 4; i
++) {
969 t
= read_eeprom_byte(dev
, 0x8c+i
);
977 for(i
= 4; i
< 8; i
++) {
981 t
= read_eeprom_byte(dev
, 0x8c+i
);
989 writel(mac1
, ®s
->MacAddrHi
);
990 writel(mac2
, ®s
->MacAddrLo
);
992 dev
->dev_addr
[0] = (mac1
>> 8) & 0xff;
993 dev
->dev_addr
[1] = mac1
& 0xff;
994 dev
->dev_addr
[2] = (mac2
>> 24) & 0xff;
995 dev
->dev_addr
[3] = (mac2
>> 16) & 0xff;
996 dev
->dev_addr
[4] = (mac2
>> 8) & 0xff;
997 dev
->dev_addr
[5] = mac2
& 0xff;
999 printk("MAC: %pM\n", dev
->dev_addr
);
1002 * Looks like this is necessary to deal with on all architectures,
1003 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1004 * Ie. having two NICs in the machine, one will have the cache
1005 * line set at boot time, the other will not.
1008 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, &cache_size
);
1010 if (cache_size
!= SMP_CACHE_BYTES
) {
1011 printk(KERN_INFO
" PCI cache line size set incorrectly "
1012 "(%i bytes) by BIOS/FW, ", cache_size
);
1013 if (cache_size
> SMP_CACHE_BYTES
)
1014 printk("expecting %i\n", SMP_CACHE_BYTES
);
1016 printk("correcting to %i\n", SMP_CACHE_BYTES
);
1017 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
1018 SMP_CACHE_BYTES
>> 2);
1022 pci_state
= readl(®s
->PciState
);
1023 printk(KERN_INFO
" PCI bus width: %i bits, speed: %iMHz, "
1024 "latency: %i clks\n",
1025 (pci_state
& PCI_32BIT
) ? 32 : 64,
1026 (pci_state
& PCI_66MHZ
) ? 66 : 33,
1030 * Set the max DMA transfer size. Seems that for most systems
1031 * the performance is better when no MAX parameter is
1032 * set. However for systems enabling PCI write and invalidate,
1033 * DMA writes must be set to the L1 cache line size to get
1034 * optimal performance.
1036 * The default is now to turn the PCI write and invalidate off
1037 * - that is what Alteon does for NT.
1039 tmp
= READ_CMD_MEM
| WRITE_CMD_MEM
;
1040 if (ap
->version
>= 2) {
1041 tmp
|= (MEM_READ_MULTIPLE
| (pci_state
& PCI_66MHZ
));
1043 * Tuning parameters only supported for 8 cards
1045 if (board_idx
== BOARD_IDX_OVERFLOW
||
1046 dis_pci_mem_inval
[board_idx
]) {
1047 if (ap
->pci_command
& PCI_COMMAND_INVALIDATE
) {
1048 ap
->pci_command
&= ~PCI_COMMAND_INVALIDATE
;
1049 pci_write_config_word(pdev
, PCI_COMMAND
,
1051 printk(KERN_INFO
" Disabling PCI memory "
1052 "write and invalidate\n");
1054 } else if (ap
->pci_command
& PCI_COMMAND_INVALIDATE
) {
1055 printk(KERN_INFO
" PCI memory write & invalidate "
1056 "enabled by BIOS, enabling counter measures\n");
1058 switch(SMP_CACHE_BYTES
) {
1060 tmp
|= DMA_WRITE_MAX_16
;
1063 tmp
|= DMA_WRITE_MAX_32
;
1066 tmp
|= DMA_WRITE_MAX_64
;
1069 tmp
|= DMA_WRITE_MAX_128
;
1072 printk(KERN_INFO
" Cache line size %i not "
1073 "supported, PCI write and invalidate "
1074 "disabled\n", SMP_CACHE_BYTES
);
1075 ap
->pci_command
&= ~PCI_COMMAND_INVALIDATE
;
1076 pci_write_config_word(pdev
, PCI_COMMAND
,
1084 * On this platform, we know what the best dma settings
1085 * are. We use 64-byte maximum bursts, because if we
1086 * burst larger than the cache line size (or even cross
1087 * a 64byte boundary in a single burst) the UltraSparc
1088 * PCI controller will disconnect at 64-byte multiples.
1090 * Read-multiple will be properly enabled above, and when
1091 * set will give the PCI controller proper hints about
1094 tmp
&= ~DMA_READ_WRITE_MASK
;
1095 tmp
|= DMA_READ_MAX_64
;
1096 tmp
|= DMA_WRITE_MAX_64
;
1099 tmp
&= ~DMA_READ_WRITE_MASK
;
1100 tmp
|= DMA_READ_MAX_128
;
1102 * All the docs say MUST NOT. Well, I did.
1103 * Nothing terrible happens, if we load wrong size.
1104 * Bit w&i still works better!
1106 tmp
|= DMA_WRITE_MAX_128
;
1108 writel(tmp
, ®s
->PciState
);
1112 * The Host PCI bus controller driver has to set FBB.
1113 * If all devices on that PCI bus support FBB, then the controller
1114 * can enable FBB support in the Host PCI Bus controller (or on
1115 * the PCI-PCI bridge if that applies).
1119 * I have received reports from people having problems when this
1122 if (!(ap
->pci_command
& PCI_COMMAND_FAST_BACK
)) {
1123 printk(KERN_INFO
" Enabling PCI Fast Back to Back\n");
1124 ap
->pci_command
|= PCI_COMMAND_FAST_BACK
;
1125 pci_write_config_word(pdev
, PCI_COMMAND
, ap
->pci_command
);
1130 * Configure DMA attributes.
1132 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
1133 ap
->pci_using_dac
= 1;
1134 } else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) {
1135 ap
->pci_using_dac
= 0;
1142 * Initialize the generic info block and the command+event rings
1143 * and the control blocks for the transmit and receive rings
1144 * as they need to be setup once and for all.
1146 if (!(info
= pci_alloc_consistent(ap
->pdev
, sizeof(struct ace_info
),
1154 * Get the memory for the skb rings.
1156 if (!(ap
->skb
= kmalloc(sizeof(struct ace_skb
), GFP_KERNEL
))) {
1161 ecode
= request_irq(pdev
->irq
, ace_interrupt
, IRQF_SHARED
,
1164 printk(KERN_WARNING
"%s: Requested IRQ %d is busy\n",
1165 DRV_NAME
, pdev
->irq
);
1168 dev
->irq
= pdev
->irq
;
1171 spin_lock_init(&ap
->debug_lock
);
1172 ap
->last_tx
= ACE_TX_RING_ENTRIES(ap
) - 1;
1173 ap
->last_std_rx
= 0;
1174 ap
->last_mini_rx
= 0;
1177 memset(ap
->info
, 0, sizeof(struct ace_info
));
1178 memset(ap
->skb
, 0, sizeof(struct ace_skb
));
1180 ecode
= ace_load_firmware(dev
);
1186 tmp_ptr
= ap
->info_dma
;
1187 writel(tmp_ptr
>> 32, ®s
->InfoPtrHi
);
1188 writel(tmp_ptr
& 0xffffffff, ®s
->InfoPtrLo
);
1190 memset(ap
->evt_ring
, 0, EVT_RING_ENTRIES
* sizeof(struct event
));
1192 set_aceaddr(&info
->evt_ctrl
.rngptr
, ap
->evt_ring_dma
);
1193 info
->evt_ctrl
.flags
= 0;
1197 set_aceaddr(&info
->evt_prd_ptr
, ap
->evt_prd_dma
);
1198 writel(0, ®s
->EvtCsm
);
1200 set_aceaddr(&info
->cmd_ctrl
.rngptr
, 0x100);
1201 info
->cmd_ctrl
.flags
= 0;
1202 info
->cmd_ctrl
.max_len
= 0;
1204 for (i
= 0; i
< CMD_RING_ENTRIES
; i
++)
1205 writel(0, ®s
->CmdRng
[i
]);
1207 writel(0, ®s
->CmdPrd
);
1208 writel(0, ®s
->CmdCsm
);
1210 tmp_ptr
= ap
->info_dma
;
1211 tmp_ptr
+= (unsigned long) &(((struct ace_info
*)0)->s
.stats
);
1212 set_aceaddr(&info
->stats2_ptr
, (dma_addr_t
) tmp_ptr
);
1214 set_aceaddr(&info
->rx_std_ctrl
.rngptr
, ap
->rx_ring_base_dma
);
1215 info
->rx_std_ctrl
.max_len
= ACE_STD_BUFSIZE
;
1216 info
->rx_std_ctrl
.flags
=
1217 RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| RCB_FLG_VLAN_ASSIST
;
1219 memset(ap
->rx_std_ring
, 0,
1220 RX_STD_RING_ENTRIES
* sizeof(struct rx_desc
));
1222 for (i
= 0; i
< RX_STD_RING_ENTRIES
; i
++)
1223 ap
->rx_std_ring
[i
].flags
= BD_FLG_TCP_UDP_SUM
;
1225 ap
->rx_std_skbprd
= 0;
1226 atomic_set(&ap
->cur_rx_bufs
, 0);
1228 set_aceaddr(&info
->rx_jumbo_ctrl
.rngptr
,
1229 (ap
->rx_ring_base_dma
+
1230 (sizeof(struct rx_desc
) * RX_STD_RING_ENTRIES
)));
1231 info
->rx_jumbo_ctrl
.max_len
= 0;
1232 info
->rx_jumbo_ctrl
.flags
=
1233 RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| RCB_FLG_VLAN_ASSIST
;
1235 memset(ap
->rx_jumbo_ring
, 0,
1236 RX_JUMBO_RING_ENTRIES
* sizeof(struct rx_desc
));
1238 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++)
1239 ap
->rx_jumbo_ring
[i
].flags
= BD_FLG_TCP_UDP_SUM
| BD_FLG_JUMBO
;
1241 ap
->rx_jumbo_skbprd
= 0;
1242 atomic_set(&ap
->cur_jumbo_bufs
, 0);
1244 memset(ap
->rx_mini_ring
, 0,
1245 RX_MINI_RING_ENTRIES
* sizeof(struct rx_desc
));
1247 if (ap
->version
>= 2) {
1248 set_aceaddr(&info
->rx_mini_ctrl
.rngptr
,
1249 (ap
->rx_ring_base_dma
+
1250 (sizeof(struct rx_desc
) *
1251 (RX_STD_RING_ENTRIES
+
1252 RX_JUMBO_RING_ENTRIES
))));
1253 info
->rx_mini_ctrl
.max_len
= ACE_MINI_SIZE
;
1254 info
->rx_mini_ctrl
.flags
=
1255 RCB_FLG_TCP_UDP_SUM
|RCB_FLG_NO_PSEUDO_HDR
|RCB_FLG_VLAN_ASSIST
;
1257 for (i
= 0; i
< RX_MINI_RING_ENTRIES
; i
++)
1258 ap
->rx_mini_ring
[i
].flags
=
1259 BD_FLG_TCP_UDP_SUM
| BD_FLG_MINI
;
1261 set_aceaddr(&info
->rx_mini_ctrl
.rngptr
, 0);
1262 info
->rx_mini_ctrl
.flags
= RCB_FLG_RNG_DISABLE
;
1263 info
->rx_mini_ctrl
.max_len
= 0;
1266 ap
->rx_mini_skbprd
= 0;
1267 atomic_set(&ap
->cur_mini_bufs
, 0);
1269 set_aceaddr(&info
->rx_return_ctrl
.rngptr
,
1270 (ap
->rx_ring_base_dma
+
1271 (sizeof(struct rx_desc
) *
1272 (RX_STD_RING_ENTRIES
+
1273 RX_JUMBO_RING_ENTRIES
+
1274 RX_MINI_RING_ENTRIES
))));
1275 info
->rx_return_ctrl
.flags
= 0;
1276 info
->rx_return_ctrl
.max_len
= RX_RETURN_RING_ENTRIES
;
1278 memset(ap
->rx_return_ring
, 0,
1279 RX_RETURN_RING_ENTRIES
* sizeof(struct rx_desc
));
1281 set_aceaddr(&info
->rx_ret_prd_ptr
, ap
->rx_ret_prd_dma
);
1282 *(ap
->rx_ret_prd
) = 0;
1284 writel(TX_RING_BASE
, ®s
->WinBase
);
1286 if (ACE_IS_TIGON_I(ap
)) {
1287 ap
->tx_ring
= (__force
struct tx_desc
*) regs
->Window
;
1288 for (i
= 0; i
< (TIGON_I_TX_RING_ENTRIES
1289 * sizeof(struct tx_desc
)) / sizeof(u32
); i
++)
1290 writel(0, (__force
void __iomem
*)ap
->tx_ring
+ i
* 4);
1292 set_aceaddr(&info
->tx_ctrl
.rngptr
, TX_RING_BASE
);
1294 memset(ap
->tx_ring
, 0,
1295 MAX_TX_RING_ENTRIES
* sizeof(struct tx_desc
));
1297 set_aceaddr(&info
->tx_ctrl
.rngptr
, ap
->tx_ring_dma
);
1300 info
->tx_ctrl
.max_len
= ACE_TX_RING_ENTRIES(ap
);
1301 tmp
= RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| RCB_FLG_VLAN_ASSIST
;
1304 * The Tigon I does not like having the TX ring in host memory ;-(
1306 if (!ACE_IS_TIGON_I(ap
))
1307 tmp
|= RCB_FLG_TX_HOST_RING
;
1308 #if TX_COAL_INTS_ONLY
1309 tmp
|= RCB_FLG_COAL_INT_ONLY
;
1311 info
->tx_ctrl
.flags
= tmp
;
1313 set_aceaddr(&info
->tx_csm_ptr
, ap
->tx_csm_dma
);
1316 * Potential item for tuning parameter
1319 writel(DMA_THRESH_16W
, ®s
->DmaReadCfg
);
1320 writel(DMA_THRESH_16W
, ®s
->DmaWriteCfg
);
1322 writel(DMA_THRESH_8W
, ®s
->DmaReadCfg
);
1323 writel(DMA_THRESH_8W
, ®s
->DmaWriteCfg
);
1326 writel(0, ®s
->MaskInt
);
1327 writel(1, ®s
->IfIdx
);
1330 * McKinley boxes do not like us fiddling with AssistState
1333 writel(1, ®s
->AssistState
);
1336 writel(DEF_STAT
, ®s
->TuneStatTicks
);
1337 writel(DEF_TRACE
, ®s
->TuneTrace
);
1339 ace_set_rxtx_parms(dev
, 0);
1341 if (board_idx
== BOARD_IDX_OVERFLOW
) {
1342 printk(KERN_WARNING
"%s: more than %i NICs detected, "
1343 "ignoring module parameters!\n",
1344 ap
->name
, ACE_MAX_MOD_PARMS
);
1345 } else if (board_idx
>= 0) {
1346 if (tx_coal_tick
[board_idx
])
1347 writel(tx_coal_tick
[board_idx
],
1348 ®s
->TuneTxCoalTicks
);
1349 if (max_tx_desc
[board_idx
])
1350 writel(max_tx_desc
[board_idx
], ®s
->TuneMaxTxDesc
);
1352 if (rx_coal_tick
[board_idx
])
1353 writel(rx_coal_tick
[board_idx
],
1354 ®s
->TuneRxCoalTicks
);
1355 if (max_rx_desc
[board_idx
])
1356 writel(max_rx_desc
[board_idx
], ®s
->TuneMaxRxDesc
);
1358 if (trace
[board_idx
])
1359 writel(trace
[board_idx
], ®s
->TuneTrace
);
1361 if ((tx_ratio
[board_idx
] > 0) && (tx_ratio
[board_idx
] < 64))
1362 writel(tx_ratio
[board_idx
], ®s
->TxBufRat
);
1366 * Default link parameters
1368 tmp
= LNK_ENABLE
| LNK_FULL_DUPLEX
| LNK_1000MB
| LNK_100MB
|
1369 LNK_10MB
| LNK_RX_FLOW_CTL_Y
| LNK_NEG_FCTL
| LNK_NEGOTIATE
;
1370 if(ap
->version
>= 2)
1371 tmp
|= LNK_TX_FLOW_CTL_Y
;
1374 * Override link default parameters
1376 if ((board_idx
>= 0) && link_state
[board_idx
]) {
1377 int option
= link_state
[board_idx
];
1381 if (option
& 0x01) {
1382 printk(KERN_INFO
"%s: Setting half duplex link\n",
1384 tmp
&= ~LNK_FULL_DUPLEX
;
1387 tmp
&= ~LNK_NEGOTIATE
;
1394 if ((option
& 0x70) == 0) {
1395 printk(KERN_WARNING
"%s: No media speed specified, "
1396 "forcing auto negotiation\n", ap
->name
);
1397 tmp
|= LNK_NEGOTIATE
| LNK_1000MB
|
1398 LNK_100MB
| LNK_10MB
;
1400 if ((option
& 0x100) == 0)
1401 tmp
|= LNK_NEG_FCTL
;
1403 printk(KERN_INFO
"%s: Disabling flow control "
1404 "negotiation\n", ap
->name
);
1406 tmp
|= LNK_RX_FLOW_CTL_Y
;
1407 if ((option
& 0x400) && (ap
->version
>= 2)) {
1408 printk(KERN_INFO
"%s: Enabling TX flow control\n",
1410 tmp
|= LNK_TX_FLOW_CTL_Y
;
1415 writel(tmp
, ®s
->TuneLink
);
1416 if (ap
->version
>= 2)
1417 writel(tmp
, ®s
->TuneFastLink
);
1419 writel(ap
->firmware_start
, ®s
->Pc
);
1421 writel(0, ®s
->Mb0Lo
);
1424 * Set tx_csm before we start receiving interrupts, otherwise
1425 * the interrupt handler might think it is supposed to process
1426 * tx ints before we are up and running, which may cause a null
1427 * pointer access in the int handler.
1430 ap
->tx_prd
= *(ap
->tx_csm
) = ap
->tx_ret_csm
= 0;
1433 ace_set_txprd(regs
, ap
, 0);
1434 writel(0, ®s
->RxRetCsm
);
1437 * Enable DMA engine now.
1438 * If we do this sooner, Mckinley box pukes.
1439 * I assume it's because Tigon II DMA engine wants to check
1440 * *something* even before the CPU is started.
1442 writel(1, ®s
->AssistState
); /* enable DMA */
1447 writel(readl(®s
->CpuCtrl
) & ~(CPU_HALT
|CPU_TRACE
), ®s
->CpuCtrl
);
1448 readl(®s
->CpuCtrl
);
1451 * Wait for the firmware to spin up - max 3 seconds.
1453 myjif
= jiffies
+ 3 * HZ
;
1454 while (time_before(jiffies
, myjif
) && !ap
->fw_running
)
1457 if (!ap
->fw_running
) {
1458 printk(KERN_ERR
"%s: Firmware NOT running!\n", ap
->name
);
1461 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
1462 readl(®s
->CpuCtrl
);
1464 /* aman@sgi.com - account for badly behaving firmware/NIC:
1465 * - have observed that the NIC may continue to generate
1466 * interrupts for some reason; attempt to stop it - halt
1467 * second CPU for Tigon II cards, and also clear Mb0
1468 * - if we're a module, we'll fail to load if this was
1469 * the only GbE card in the system => if the kernel does
1470 * see an interrupt from the NIC, code to handle it is
1471 * gone and OOps! - so free_irq also
1473 if (ap
->version
>= 2)
1474 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
,
1476 writel(0, ®s
->Mb0Lo
);
1477 readl(®s
->Mb0Lo
);
1484 * We load the ring here as there seem to be no way to tell the
1485 * firmware to wipe the ring without re-initializing it.
1487 if (!test_and_set_bit(0, &ap
->std_refill_busy
))
1488 ace_load_std_rx_ring(dev
, RX_RING_SIZE
);
1490 printk(KERN_ERR
"%s: Someone is busy refilling the RX ring\n",
1492 if (ap
->version
>= 2) {
1493 if (!test_and_set_bit(0, &ap
->mini_refill_busy
))
1494 ace_load_mini_rx_ring(dev
, RX_MINI_SIZE
);
1496 printk(KERN_ERR
"%s: Someone is busy refilling "
1497 "the RX mini ring\n", ap
->name
);
1502 ace_init_cleanup(dev
);
1507 static void ace_set_rxtx_parms(struct net_device
*dev
, int jumbo
)
1509 struct ace_private
*ap
= netdev_priv(dev
);
1510 struct ace_regs __iomem
*regs
= ap
->regs
;
1511 int board_idx
= ap
->board_idx
;
1513 if (board_idx
>= 0) {
1515 if (!tx_coal_tick
[board_idx
])
1516 writel(DEF_TX_COAL
, ®s
->TuneTxCoalTicks
);
1517 if (!max_tx_desc
[board_idx
])
1518 writel(DEF_TX_MAX_DESC
, ®s
->TuneMaxTxDesc
);
1519 if (!rx_coal_tick
[board_idx
])
1520 writel(DEF_RX_COAL
, ®s
->TuneRxCoalTicks
);
1521 if (!max_rx_desc
[board_idx
])
1522 writel(DEF_RX_MAX_DESC
, ®s
->TuneMaxRxDesc
);
1523 if (!tx_ratio
[board_idx
])
1524 writel(DEF_TX_RATIO
, ®s
->TxBufRat
);
1526 if (!tx_coal_tick
[board_idx
])
1527 writel(DEF_JUMBO_TX_COAL
,
1528 ®s
->TuneTxCoalTicks
);
1529 if (!max_tx_desc
[board_idx
])
1530 writel(DEF_JUMBO_TX_MAX_DESC
,
1531 ®s
->TuneMaxTxDesc
);
1532 if (!rx_coal_tick
[board_idx
])
1533 writel(DEF_JUMBO_RX_COAL
,
1534 ®s
->TuneRxCoalTicks
);
1535 if (!max_rx_desc
[board_idx
])
1536 writel(DEF_JUMBO_RX_MAX_DESC
,
1537 ®s
->TuneMaxRxDesc
);
1538 if (!tx_ratio
[board_idx
])
1539 writel(DEF_JUMBO_TX_RATIO
, ®s
->TxBufRat
);
1545 static void ace_watchdog(struct net_device
*data
, unsigned int txqueue
)
1547 struct net_device
*dev
= data
;
1548 struct ace_private
*ap
= netdev_priv(dev
);
1549 struct ace_regs __iomem
*regs
= ap
->regs
;
1552 * We haven't received a stats update event for more than 2.5
1553 * seconds and there is data in the transmit queue, thus we
1554 * assume the card is stuck.
1556 if (*ap
->tx_csm
!= ap
->tx_ret_csm
) {
1557 printk(KERN_WARNING
"%s: Transmitter is stuck, %08x\n",
1558 dev
->name
, (unsigned int)readl(®s
->HostCtrl
));
1559 /* This can happen due to ieee flow control. */
1561 printk(KERN_DEBUG
"%s: BUG... transmitter died. Kicking it.\n",
1564 netif_wake_queue(dev
);
1570 static void ace_tasklet(unsigned long arg
)
1572 struct net_device
*dev
= (struct net_device
*) arg
;
1573 struct ace_private
*ap
= netdev_priv(dev
);
1576 cur_size
= atomic_read(&ap
->cur_rx_bufs
);
1577 if ((cur_size
< RX_LOW_STD_THRES
) &&
1578 !test_and_set_bit(0, &ap
->std_refill_busy
)) {
1580 printk("refilling buffers (current %i)\n", cur_size
);
1582 ace_load_std_rx_ring(dev
, RX_RING_SIZE
- cur_size
);
1585 if (ap
->version
>= 2) {
1586 cur_size
= atomic_read(&ap
->cur_mini_bufs
);
1587 if ((cur_size
< RX_LOW_MINI_THRES
) &&
1588 !test_and_set_bit(0, &ap
->mini_refill_busy
)) {
1590 printk("refilling mini buffers (current %i)\n",
1593 ace_load_mini_rx_ring(dev
, RX_MINI_SIZE
- cur_size
);
1597 cur_size
= atomic_read(&ap
->cur_jumbo_bufs
);
1598 if (ap
->jumbo
&& (cur_size
< RX_LOW_JUMBO_THRES
) &&
1599 !test_and_set_bit(0, &ap
->jumbo_refill_busy
)) {
1601 printk("refilling jumbo buffers (current %i)\n", cur_size
);
1603 ace_load_jumbo_rx_ring(dev
, RX_JUMBO_SIZE
- cur_size
);
1605 ap
->tasklet_pending
= 0;
1610 * Copy the contents of the NIC's trace buffer to kernel memory.
1612 static void ace_dump_trace(struct ace_private
*ap
)
1616 if (!(ap
->trace_buf
= kmalloc(ACE_TRACE_SIZE
, GFP_KERNEL
)))
1623 * Load the standard rx ring.
1625 * Loading rings is safe without holding the spin lock since this is
1626 * done only before the device is enabled, thus no interrupts are
1627 * generated and by the interrupt handler/tasklet handler.
1629 static void ace_load_std_rx_ring(struct net_device
*dev
, int nr_bufs
)
1631 struct ace_private
*ap
= netdev_priv(dev
);
1632 struct ace_regs __iomem
*regs
= ap
->regs
;
1636 prefetchw(&ap
->cur_rx_bufs
);
1638 idx
= ap
->rx_std_skbprd
;
1640 for (i
= 0; i
< nr_bufs
; i
++) {
1641 struct sk_buff
*skb
;
1645 skb
= netdev_alloc_skb_ip_align(dev
, ACE_STD_BUFSIZE
);
1649 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1650 offset_in_page(skb
->data
),
1652 PCI_DMA_FROMDEVICE
);
1653 ap
->skb
->rx_std_skbuff
[idx
].skb
= skb
;
1654 dma_unmap_addr_set(&ap
->skb
->rx_std_skbuff
[idx
],
1657 rd
= &ap
->rx_std_ring
[idx
];
1658 set_aceaddr(&rd
->addr
, mapping
);
1659 rd
->size
= ACE_STD_BUFSIZE
;
1661 idx
= (idx
+ 1) % RX_STD_RING_ENTRIES
;
1667 atomic_add(i
, &ap
->cur_rx_bufs
);
1668 ap
->rx_std_skbprd
= idx
;
1670 if (ACE_IS_TIGON_I(ap
)) {
1672 cmd
.evt
= C_SET_RX_PRD_IDX
;
1674 cmd
.idx
= ap
->rx_std_skbprd
;
1675 ace_issue_cmd(regs
, &cmd
);
1677 writel(idx
, ®s
->RxStdPrd
);
1682 clear_bit(0, &ap
->std_refill_busy
);
1686 printk(KERN_INFO
"Out of memory when allocating "
1687 "standard receive buffers\n");
1692 static void ace_load_mini_rx_ring(struct net_device
*dev
, int nr_bufs
)
1694 struct ace_private
*ap
= netdev_priv(dev
);
1695 struct ace_regs __iomem
*regs
= ap
->regs
;
1698 prefetchw(&ap
->cur_mini_bufs
);
1700 idx
= ap
->rx_mini_skbprd
;
1701 for (i
= 0; i
< nr_bufs
; i
++) {
1702 struct sk_buff
*skb
;
1706 skb
= netdev_alloc_skb_ip_align(dev
, ACE_MINI_BUFSIZE
);
1710 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1711 offset_in_page(skb
->data
),
1713 PCI_DMA_FROMDEVICE
);
1714 ap
->skb
->rx_mini_skbuff
[idx
].skb
= skb
;
1715 dma_unmap_addr_set(&ap
->skb
->rx_mini_skbuff
[idx
],
1718 rd
= &ap
->rx_mini_ring
[idx
];
1719 set_aceaddr(&rd
->addr
, mapping
);
1720 rd
->size
= ACE_MINI_BUFSIZE
;
1722 idx
= (idx
+ 1) % RX_MINI_RING_ENTRIES
;
1728 atomic_add(i
, &ap
->cur_mini_bufs
);
1730 ap
->rx_mini_skbprd
= idx
;
1732 writel(idx
, ®s
->RxMiniPrd
);
1736 clear_bit(0, &ap
->mini_refill_busy
);
1739 printk(KERN_INFO
"Out of memory when allocating "
1740 "mini receive buffers\n");
1746 * Load the jumbo rx ring, this may happen at any time if the MTU
1747 * is changed to a value > 1500.
1749 static void ace_load_jumbo_rx_ring(struct net_device
*dev
, int nr_bufs
)
1751 struct ace_private
*ap
= netdev_priv(dev
);
1752 struct ace_regs __iomem
*regs
= ap
->regs
;
1755 idx
= ap
->rx_jumbo_skbprd
;
1757 for (i
= 0; i
< nr_bufs
; i
++) {
1758 struct sk_buff
*skb
;
1762 skb
= netdev_alloc_skb_ip_align(dev
, ACE_JUMBO_BUFSIZE
);
1766 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1767 offset_in_page(skb
->data
),
1769 PCI_DMA_FROMDEVICE
);
1770 ap
->skb
->rx_jumbo_skbuff
[idx
].skb
= skb
;
1771 dma_unmap_addr_set(&ap
->skb
->rx_jumbo_skbuff
[idx
],
1774 rd
= &ap
->rx_jumbo_ring
[idx
];
1775 set_aceaddr(&rd
->addr
, mapping
);
1776 rd
->size
= ACE_JUMBO_BUFSIZE
;
1778 idx
= (idx
+ 1) % RX_JUMBO_RING_ENTRIES
;
1784 atomic_add(i
, &ap
->cur_jumbo_bufs
);
1785 ap
->rx_jumbo_skbprd
= idx
;
1787 if (ACE_IS_TIGON_I(ap
)) {
1789 cmd
.evt
= C_SET_RX_JUMBO_PRD_IDX
;
1791 cmd
.idx
= ap
->rx_jumbo_skbprd
;
1792 ace_issue_cmd(regs
, &cmd
);
1794 writel(idx
, ®s
->RxJumboPrd
);
1799 clear_bit(0, &ap
->jumbo_refill_busy
);
1802 if (net_ratelimit())
1803 printk(KERN_INFO
"Out of memory when allocating "
1804 "jumbo receive buffers\n");
1810 * All events are considered to be slow (RX/TX ints do not generate
1811 * events) and are handled here, outside the main interrupt handler,
1812 * to reduce the size of the handler.
1814 static u32
ace_handle_event(struct net_device
*dev
, u32 evtcsm
, u32 evtprd
)
1816 struct ace_private
*ap
;
1818 ap
= netdev_priv(dev
);
1820 while (evtcsm
!= evtprd
) {
1821 switch (ap
->evt_ring
[evtcsm
].evt
) {
1823 printk(KERN_INFO
"%s: Firmware up and running\n",
1828 case E_STATS_UPDATED
:
1832 u16 code
= ap
->evt_ring
[evtcsm
].code
;
1836 u32 state
= readl(&ap
->regs
->GigLnkState
);
1837 printk(KERN_WARNING
"%s: Optical link UP "
1838 "(%s Duplex, Flow Control: %s%s)\n",
1840 state
& LNK_FULL_DUPLEX
? "Full":"Half",
1841 state
& LNK_TX_FLOW_CTL_Y
? "TX " : "",
1842 state
& LNK_RX_FLOW_CTL_Y
? "RX" : "");
1846 printk(KERN_WARNING
"%s: Optical link DOWN\n",
1849 case E_C_LINK_10_100
:
1850 printk(KERN_WARNING
"%s: 10/100BaseT link "
1854 printk(KERN_ERR
"%s: Unknown optical link "
1855 "state %02x\n", ap
->name
, code
);
1860 switch(ap
->evt_ring
[evtcsm
].code
) {
1861 case E_C_ERR_INVAL_CMD
:
1862 printk(KERN_ERR
"%s: invalid command error\n",
1865 case E_C_ERR_UNIMP_CMD
:
1866 printk(KERN_ERR
"%s: unimplemented command "
1867 "error\n", ap
->name
);
1869 case E_C_ERR_BAD_CFG
:
1870 printk(KERN_ERR
"%s: bad config error\n",
1874 printk(KERN_ERR
"%s: unknown error %02x\n",
1875 ap
->name
, ap
->evt_ring
[evtcsm
].code
);
1878 case E_RESET_JUMBO_RNG
:
1881 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++) {
1882 if (ap
->skb
->rx_jumbo_skbuff
[i
].skb
) {
1883 ap
->rx_jumbo_ring
[i
].size
= 0;
1884 set_aceaddr(&ap
->rx_jumbo_ring
[i
].addr
, 0);
1885 dev_kfree_skb(ap
->skb
->rx_jumbo_skbuff
[i
].skb
);
1886 ap
->skb
->rx_jumbo_skbuff
[i
].skb
= NULL
;
1890 if (ACE_IS_TIGON_I(ap
)) {
1892 cmd
.evt
= C_SET_RX_JUMBO_PRD_IDX
;
1895 ace_issue_cmd(ap
->regs
, &cmd
);
1897 writel(0, &((ap
->regs
)->RxJumboPrd
));
1902 ap
->rx_jumbo_skbprd
= 0;
1903 printk(KERN_INFO
"%s: Jumbo ring flushed\n",
1905 clear_bit(0, &ap
->jumbo_refill_busy
);
1909 printk(KERN_ERR
"%s: Unhandled event 0x%02x\n",
1910 ap
->name
, ap
->evt_ring
[evtcsm
].evt
);
1912 evtcsm
= (evtcsm
+ 1) % EVT_RING_ENTRIES
;
1919 static void ace_rx_int(struct net_device
*dev
, u32 rxretprd
, u32 rxretcsm
)
1921 struct ace_private
*ap
= netdev_priv(dev
);
1923 int mini_count
= 0, std_count
= 0;
1927 prefetchw(&ap
->cur_rx_bufs
);
1928 prefetchw(&ap
->cur_mini_bufs
);
1930 while (idx
!= rxretprd
) {
1931 struct ring_info
*rip
;
1932 struct sk_buff
*skb
;
1933 struct rx_desc
*retdesc
;
1935 int bd_flags
, desc_type
, mapsize
;
1939 /* make sure the rx descriptor isn't read before rxretprd */
1940 if (idx
== rxretcsm
)
1943 retdesc
= &ap
->rx_return_ring
[idx
];
1944 skbidx
= retdesc
->idx
;
1945 bd_flags
= retdesc
->flags
;
1946 desc_type
= bd_flags
& (BD_FLG_JUMBO
| BD_FLG_MINI
);
1950 * Normal frames do not have any flags set
1952 * Mini and normal frames arrive frequently,
1953 * so use a local counter to avoid doing
1954 * atomic operations for each packet arriving.
1957 rip
= &ap
->skb
->rx_std_skbuff
[skbidx
];
1958 mapsize
= ACE_STD_BUFSIZE
;
1962 rip
= &ap
->skb
->rx_jumbo_skbuff
[skbidx
];
1963 mapsize
= ACE_JUMBO_BUFSIZE
;
1964 atomic_dec(&ap
->cur_jumbo_bufs
);
1967 rip
= &ap
->skb
->rx_mini_skbuff
[skbidx
];
1968 mapsize
= ACE_MINI_BUFSIZE
;
1972 printk(KERN_INFO
"%s: unknown frame type (0x%02x) "
1973 "returned by NIC\n", dev
->name
,
1980 pci_unmap_page(ap
->pdev
,
1981 dma_unmap_addr(rip
, mapping
),
1983 PCI_DMA_FROMDEVICE
);
1984 skb_put(skb
, retdesc
->size
);
1989 csum
= retdesc
->tcp_udp_csum
;
1991 skb
->protocol
= eth_type_trans(skb
, dev
);
1994 * Instead of forcing the poor tigon mips cpu to calculate
1995 * pseudo hdr checksum, we do this ourselves.
1997 if (bd_flags
& BD_FLG_TCP_UDP_SUM
) {
1998 skb
->csum
= htons(csum
);
1999 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2001 skb_checksum_none_assert(skb
);
2005 if ((bd_flags
& BD_FLG_VLAN_TAG
))
2006 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), retdesc
->vlan
);
2009 dev
->stats
.rx_packets
++;
2010 dev
->stats
.rx_bytes
+= retdesc
->size
;
2012 idx
= (idx
+ 1) % RX_RETURN_RING_ENTRIES
;
2015 atomic_sub(std_count
, &ap
->cur_rx_bufs
);
2016 if (!ACE_IS_TIGON_I(ap
))
2017 atomic_sub(mini_count
, &ap
->cur_mini_bufs
);
2021 * According to the documentation RxRetCsm is obsolete with
2022 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2024 if (ACE_IS_TIGON_I(ap
)) {
2025 writel(idx
, &ap
->regs
->RxRetCsm
);
2036 static inline void ace_tx_int(struct net_device
*dev
,
2039 struct ace_private
*ap
= netdev_priv(dev
);
2042 struct sk_buff
*skb
;
2043 struct tx_ring_info
*info
;
2045 info
= ap
->skb
->tx_skbuff
+ idx
;
2048 if (dma_unmap_len(info
, maplen
)) {
2049 pci_unmap_page(ap
->pdev
, dma_unmap_addr(info
, mapping
),
2050 dma_unmap_len(info
, maplen
),
2052 dma_unmap_len_set(info
, maplen
, 0);
2056 dev
->stats
.tx_packets
++;
2057 dev
->stats
.tx_bytes
+= skb
->len
;
2058 dev_consume_skb_irq(skb
);
2062 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2063 } while (idx
!= txcsm
);
2065 if (netif_queue_stopped(dev
))
2066 netif_wake_queue(dev
);
2069 ap
->tx_ret_csm
= txcsm
;
2071 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2073 * We could try to make it before. In this case we would get
2074 * the following race condition: hard_start_xmit on other cpu
2075 * enters after we advanced tx_ret_csm and fills space,
2076 * which we have just freed, so that we make illegal device wakeup.
2077 * There is no good way to workaround this (at entry
2078 * to ace_start_xmit detects this condition and prevents
2079 * ring corruption, but it is not a good workaround.)
2081 * When tx_ret_csm is advanced after, we wake up device _only_
2082 * if we really have some space in ring (though the core doing
2083 * hard_start_xmit can see full ring for some period and has to
2084 * synchronize.) Superb.
2085 * BUT! We get another subtle race condition. hard_start_xmit
2086 * may think that ring is full between wakeup and advancing
2087 * tx_ret_csm and will stop device instantly! It is not so bad.
2088 * We are guaranteed that there is something in ring, so that
2089 * the next irq will resume transmission. To speedup this we could
2090 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2091 * (see ace_start_xmit).
2093 * Well, this dilemma exists in all lock-free devices.
2094 * We, following scheme used in drivers by Donald Becker,
2095 * select the least dangerous.
2101 static irqreturn_t
ace_interrupt(int irq
, void *dev_id
)
2103 struct net_device
*dev
= (struct net_device
*)dev_id
;
2104 struct ace_private
*ap
= netdev_priv(dev
);
2105 struct ace_regs __iomem
*regs
= ap
->regs
;
2107 u32 txcsm
, rxretcsm
, rxretprd
;
2111 * In case of PCI shared interrupts or spurious interrupts,
2112 * we want to make sure it is actually our interrupt before
2113 * spending any time in here.
2115 if (!(readl(®s
->HostCtrl
) & IN_INT
))
2119 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2120 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2121 * writel(0, ®s->Mb0Lo).
2123 * "IRQ avoidance" recommended in docs applies to IRQs served
2124 * threads and it is wrong even for that case.
2126 writel(0, ®s
->Mb0Lo
);
2127 readl(®s
->Mb0Lo
);
2130 * There is no conflict between transmit handling in
2131 * start_xmit and receive processing, thus there is no reason
2132 * to take a spin lock for RX handling. Wait until we start
2133 * working on the other stuff - hey we don't need a spin lock
2136 rxretprd
= *ap
->rx_ret_prd
;
2137 rxretcsm
= ap
->cur_rx
;
2139 if (rxretprd
!= rxretcsm
)
2140 ace_rx_int(dev
, rxretprd
, rxretcsm
);
2142 txcsm
= *ap
->tx_csm
;
2143 idx
= ap
->tx_ret_csm
;
2147 * If each skb takes only one descriptor this check degenerates
2148 * to identity, because new space has just been opened.
2149 * But if skbs are fragmented we must check that this index
2150 * update releases enough of space, otherwise we just
2151 * wait for device to make more work.
2153 if (!tx_ring_full(ap
, txcsm
, ap
->tx_prd
))
2154 ace_tx_int(dev
, txcsm
, idx
);
2157 evtcsm
= readl(®s
->EvtCsm
);
2158 evtprd
= *ap
->evt_prd
;
2160 if (evtcsm
!= evtprd
) {
2161 evtcsm
= ace_handle_event(dev
, evtcsm
, evtprd
);
2162 writel(evtcsm
, ®s
->EvtCsm
);
2166 * This has to go last in the interrupt handler and run with
2167 * the spin lock released ... what lock?
2169 if (netif_running(dev
)) {
2171 int run_tasklet
= 0;
2173 cur_size
= atomic_read(&ap
->cur_rx_bufs
);
2174 if (cur_size
< RX_LOW_STD_THRES
) {
2175 if ((cur_size
< RX_PANIC_STD_THRES
) &&
2176 !test_and_set_bit(0, &ap
->std_refill_busy
)) {
2178 printk("low on std buffers %i\n", cur_size
);
2180 ace_load_std_rx_ring(dev
,
2181 RX_RING_SIZE
- cur_size
);
2186 if (!ACE_IS_TIGON_I(ap
)) {
2187 cur_size
= atomic_read(&ap
->cur_mini_bufs
);
2188 if (cur_size
< RX_LOW_MINI_THRES
) {
2189 if ((cur_size
< RX_PANIC_MINI_THRES
) &&
2190 !test_and_set_bit(0,
2191 &ap
->mini_refill_busy
)) {
2193 printk("low on mini buffers %i\n",
2196 ace_load_mini_rx_ring(dev
,
2197 RX_MINI_SIZE
- cur_size
);
2204 cur_size
= atomic_read(&ap
->cur_jumbo_bufs
);
2205 if (cur_size
< RX_LOW_JUMBO_THRES
) {
2206 if ((cur_size
< RX_PANIC_JUMBO_THRES
) &&
2207 !test_and_set_bit(0,
2208 &ap
->jumbo_refill_busy
)){
2210 printk("low on jumbo buffers %i\n",
2213 ace_load_jumbo_rx_ring(dev
,
2214 RX_JUMBO_SIZE
- cur_size
);
2219 if (run_tasklet
&& !ap
->tasklet_pending
) {
2220 ap
->tasklet_pending
= 1;
2221 tasklet_schedule(&ap
->ace_tasklet
);
2228 static int ace_open(struct net_device
*dev
)
2230 struct ace_private
*ap
= netdev_priv(dev
);
2231 struct ace_regs __iomem
*regs
= ap
->regs
;
2234 if (!(ap
->fw_running
)) {
2235 printk(KERN_WARNING
"%s: Firmware not running!\n", dev
->name
);
2239 writel(dev
->mtu
+ ETH_HLEN
+ 4, ®s
->IfMtu
);
2241 cmd
.evt
= C_CLEAR_STATS
;
2244 ace_issue_cmd(regs
, &cmd
);
2246 cmd
.evt
= C_HOST_STATE
;
2247 cmd
.code
= C_C_STACK_UP
;
2249 ace_issue_cmd(regs
, &cmd
);
2252 !test_and_set_bit(0, &ap
->jumbo_refill_busy
))
2253 ace_load_jumbo_rx_ring(dev
, RX_JUMBO_SIZE
);
2255 if (dev
->flags
& IFF_PROMISC
) {
2256 cmd
.evt
= C_SET_PROMISC_MODE
;
2257 cmd
.code
= C_C_PROMISC_ENABLE
;
2259 ace_issue_cmd(regs
, &cmd
);
2267 cmd
.evt
= C_LNK_NEGOTIATION
;
2270 ace_issue_cmd(regs
, &cmd
);
2273 netif_start_queue(dev
);
2276 * Setup the bottom half rx ring refill handler
2278 tasklet_init(&ap
->ace_tasklet
, ace_tasklet
, (unsigned long)dev
);
2283 static int ace_close(struct net_device
*dev
)
2285 struct ace_private
*ap
= netdev_priv(dev
);
2286 struct ace_regs __iomem
*regs
= ap
->regs
;
2288 unsigned long flags
;
2292 * Without (or before) releasing irq and stopping hardware, this
2293 * is an absolute non-sense, by the way. It will be reset instantly
2296 netif_stop_queue(dev
);
2300 cmd
.evt
= C_SET_PROMISC_MODE
;
2301 cmd
.code
= C_C_PROMISC_DISABLE
;
2303 ace_issue_cmd(regs
, &cmd
);
2307 cmd
.evt
= C_HOST_STATE
;
2308 cmd
.code
= C_C_STACK_DOWN
;
2310 ace_issue_cmd(regs
, &cmd
);
2312 tasklet_kill(&ap
->ace_tasklet
);
2315 * Make sure one CPU is not processing packets while
2316 * buffers are being released by another.
2319 local_irq_save(flags
);
2322 for (i
= 0; i
< ACE_TX_RING_ENTRIES(ap
); i
++) {
2323 struct sk_buff
*skb
;
2324 struct tx_ring_info
*info
;
2326 info
= ap
->skb
->tx_skbuff
+ i
;
2329 if (dma_unmap_len(info
, maplen
)) {
2330 if (ACE_IS_TIGON_I(ap
)) {
2331 /* NB: TIGON_1 is special, tx_ring is in io space */
2332 struct tx_desc __iomem
*tx
;
2333 tx
= (__force
struct tx_desc __iomem
*) &ap
->tx_ring
[i
];
2334 writel(0, &tx
->addr
.addrhi
);
2335 writel(0, &tx
->addr
.addrlo
);
2336 writel(0, &tx
->flagsize
);
2338 memset(ap
->tx_ring
+ i
, 0,
2339 sizeof(struct tx_desc
));
2340 pci_unmap_page(ap
->pdev
, dma_unmap_addr(info
, mapping
),
2341 dma_unmap_len(info
, maplen
),
2343 dma_unmap_len_set(info
, maplen
, 0);
2352 cmd
.evt
= C_RESET_JUMBO_RNG
;
2355 ace_issue_cmd(regs
, &cmd
);
2358 ace_unmask_irq(dev
);
2359 local_irq_restore(flags
);
2365 static inline dma_addr_t
2366 ace_map_tx_skb(struct ace_private
*ap
, struct sk_buff
*skb
,
2367 struct sk_buff
*tail
, u32 idx
)
2370 struct tx_ring_info
*info
;
2372 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
2373 offset_in_page(skb
->data
),
2374 skb
->len
, PCI_DMA_TODEVICE
);
2376 info
= ap
->skb
->tx_skbuff
+ idx
;
2378 dma_unmap_addr_set(info
, mapping
, mapping
);
2379 dma_unmap_len_set(info
, maplen
, skb
->len
);
2385 ace_load_tx_bd(struct ace_private
*ap
, struct tx_desc
*desc
, u64 addr
,
2386 u32 flagsize
, u32 vlan_tag
)
2388 #if !USE_TX_COAL_NOW
2389 flagsize
&= ~BD_FLG_COAL_NOW
;
2392 if (ACE_IS_TIGON_I(ap
)) {
2393 struct tx_desc __iomem
*io
= (__force
struct tx_desc __iomem
*) desc
;
2394 writel(addr
>> 32, &io
->addr
.addrhi
);
2395 writel(addr
& 0xffffffff, &io
->addr
.addrlo
);
2396 writel(flagsize
, &io
->flagsize
);
2397 writel(vlan_tag
, &io
->vlanres
);
2399 desc
->addr
.addrhi
= addr
>> 32;
2400 desc
->addr
.addrlo
= addr
;
2401 desc
->flagsize
= flagsize
;
2402 desc
->vlanres
= vlan_tag
;
2407 static netdev_tx_t
ace_start_xmit(struct sk_buff
*skb
,
2408 struct net_device
*dev
)
2410 struct ace_private
*ap
= netdev_priv(dev
);
2411 struct ace_regs __iomem
*regs
= ap
->regs
;
2412 struct tx_desc
*desc
;
2414 unsigned long maxjiff
= jiffies
+ 3*HZ
;
2419 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2422 if (!skb_shinfo(skb
)->nr_frags
) {
2426 mapping
= ace_map_tx_skb(ap
, skb
, skb
, idx
);
2427 flagsize
= (skb
->len
<< 16) | (BD_FLG_END
);
2428 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2429 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2430 if (skb_vlan_tag_present(skb
)) {
2431 flagsize
|= BD_FLG_VLAN_TAG
;
2432 vlan_tag
= skb_vlan_tag_get(skb
);
2434 desc
= ap
->tx_ring
+ idx
;
2435 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2437 /* Look at ace_tx_int for explanations. */
2438 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2439 flagsize
|= BD_FLG_COAL_NOW
;
2441 ace_load_tx_bd(ap
, desc
, mapping
, flagsize
, vlan_tag
);
2447 mapping
= ace_map_tx_skb(ap
, skb
, NULL
, idx
);
2448 flagsize
= (skb_headlen(skb
) << 16);
2449 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2450 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2451 if (skb_vlan_tag_present(skb
)) {
2452 flagsize
|= BD_FLG_VLAN_TAG
;
2453 vlan_tag
= skb_vlan_tag_get(skb
);
2456 ace_load_tx_bd(ap
, ap
->tx_ring
+ idx
, mapping
, flagsize
, vlan_tag
);
2458 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2460 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2461 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2462 struct tx_ring_info
*info
;
2464 len
+= skb_frag_size(frag
);
2465 info
= ap
->skb
->tx_skbuff
+ idx
;
2466 desc
= ap
->tx_ring
+ idx
;
2468 mapping
= skb_frag_dma_map(&ap
->pdev
->dev
, frag
, 0,
2469 skb_frag_size(frag
),
2472 flagsize
= skb_frag_size(frag
) << 16;
2473 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2474 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2475 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2477 if (i
== skb_shinfo(skb
)->nr_frags
- 1) {
2478 flagsize
|= BD_FLG_END
;
2479 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2480 flagsize
|= BD_FLG_COAL_NOW
;
2483 * Only the last fragment frees
2490 dma_unmap_addr_set(info
, mapping
, mapping
);
2491 dma_unmap_len_set(info
, maplen
, skb_frag_size(frag
));
2492 ace_load_tx_bd(ap
, desc
, mapping
, flagsize
, vlan_tag
);
2498 ace_set_txprd(regs
, ap
, idx
);
2500 if (flagsize
& BD_FLG_COAL_NOW
) {
2501 netif_stop_queue(dev
);
2504 * A TX-descriptor producer (an IRQ) might have gotten
2505 * between, making the ring free again. Since xmit is
2506 * serialized, this is the only situation we have to
2509 if (!tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2510 netif_wake_queue(dev
);
2513 return NETDEV_TX_OK
;
2517 * This race condition is unavoidable with lock-free drivers.
2518 * We wake up the queue _before_ tx_prd is advanced, so that we can
2519 * enter hard_start_xmit too early, while tx ring still looks closed.
2520 * This happens ~1-4 times per 100000 packets, so that we can allow
2521 * to loop syncing to other CPU. Probably, we need an additional
2522 * wmb() in ace_tx_intr as well.
2524 * Note that this race is relieved by reserving one more entry
2525 * in tx ring than it is necessary (see original non-SG driver).
2526 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2527 * is already overkill.
2529 * Alternative is to return with 1 not throttling queue. In this
2530 * case loop becomes longer, no more useful effects.
2532 if (time_before(jiffies
, maxjiff
)) {
2538 /* The ring is stuck full. */
2539 printk(KERN_WARNING
"%s: Transmit ring stuck full\n", dev
->name
);
2540 return NETDEV_TX_BUSY
;
2544 static int ace_change_mtu(struct net_device
*dev
, int new_mtu
)
2546 struct ace_private
*ap
= netdev_priv(dev
);
2547 struct ace_regs __iomem
*regs
= ap
->regs
;
2549 writel(new_mtu
+ ETH_HLEN
+ 4, ®s
->IfMtu
);
2552 if (new_mtu
> ACE_STD_MTU
) {
2554 printk(KERN_INFO
"%s: Enabling Jumbo frame "
2555 "support\n", dev
->name
);
2557 if (!test_and_set_bit(0, &ap
->jumbo_refill_busy
))
2558 ace_load_jumbo_rx_ring(dev
, RX_JUMBO_SIZE
);
2559 ace_set_rxtx_parms(dev
, 1);
2562 while (test_and_set_bit(0, &ap
->jumbo_refill_busy
));
2563 ace_sync_irq(dev
->irq
);
2564 ace_set_rxtx_parms(dev
, 0);
2568 cmd
.evt
= C_RESET_JUMBO_RNG
;
2571 ace_issue_cmd(regs
, &cmd
);
2578 static int ace_get_link_ksettings(struct net_device
*dev
,
2579 struct ethtool_link_ksettings
*cmd
)
2581 struct ace_private
*ap
= netdev_priv(dev
);
2582 struct ace_regs __iomem
*regs
= ap
->regs
;
2586 memset(cmd
, 0, sizeof(struct ethtool_link_ksettings
));
2588 supported
= (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2589 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2590 SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
|
2591 SUPPORTED_Autoneg
| SUPPORTED_FIBRE
);
2593 cmd
->base
.port
= PORT_FIBRE
;
2595 link
= readl(®s
->GigLnkState
);
2596 if (link
& LNK_1000MB
) {
2597 cmd
->base
.speed
= SPEED_1000
;
2599 link
= readl(®s
->FastLnkState
);
2600 if (link
& LNK_100MB
)
2601 cmd
->base
.speed
= SPEED_100
;
2602 else if (link
& LNK_10MB
)
2603 cmd
->base
.speed
= SPEED_10
;
2605 cmd
->base
.speed
= 0;
2607 if (link
& LNK_FULL_DUPLEX
)
2608 cmd
->base
.duplex
= DUPLEX_FULL
;
2610 cmd
->base
.duplex
= DUPLEX_HALF
;
2612 if (link
& LNK_NEGOTIATE
)
2613 cmd
->base
.autoneg
= AUTONEG_ENABLE
;
2615 cmd
->base
.autoneg
= AUTONEG_DISABLE
;
2619 * Current struct ethtool_cmd is insufficient
2621 ecmd
->trace
= readl(®s
->TuneTrace
);
2623 ecmd
->txcoal
= readl(®s
->TuneTxCoalTicks
);
2624 ecmd
->rxcoal
= readl(®s
->TuneRxCoalTicks
);
2627 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.supported
,
2633 static int ace_set_link_ksettings(struct net_device
*dev
,
2634 const struct ethtool_link_ksettings
*cmd
)
2636 struct ace_private
*ap
= netdev_priv(dev
);
2637 struct ace_regs __iomem
*regs
= ap
->regs
;
2640 link
= readl(®s
->GigLnkState
);
2641 if (link
& LNK_1000MB
)
2644 link
= readl(®s
->FastLnkState
);
2645 if (link
& LNK_100MB
)
2647 else if (link
& LNK_10MB
)
2653 link
= LNK_ENABLE
| LNK_1000MB
| LNK_100MB
| LNK_10MB
|
2654 LNK_RX_FLOW_CTL_Y
| LNK_NEG_FCTL
;
2655 if (!ACE_IS_TIGON_I(ap
))
2656 link
|= LNK_TX_FLOW_CTL_Y
;
2657 if (cmd
->base
.autoneg
== AUTONEG_ENABLE
)
2658 link
|= LNK_NEGOTIATE
;
2659 if (cmd
->base
.speed
!= speed
) {
2660 link
&= ~(LNK_1000MB
| LNK_100MB
| LNK_10MB
);
2661 switch (cmd
->base
.speed
) {
2674 if (cmd
->base
.duplex
== DUPLEX_FULL
)
2675 link
|= LNK_FULL_DUPLEX
;
2677 if (link
!= ap
->link
) {
2679 printk(KERN_INFO
"%s: Renegotiating link state\n",
2683 writel(link
, ®s
->TuneLink
);
2684 if (!ACE_IS_TIGON_I(ap
))
2685 writel(link
, ®s
->TuneFastLink
);
2688 cmd
.evt
= C_LNK_NEGOTIATION
;
2691 ace_issue_cmd(regs
, &cmd
);
2696 static void ace_get_drvinfo(struct net_device
*dev
,
2697 struct ethtool_drvinfo
*info
)
2699 struct ace_private
*ap
= netdev_priv(dev
);
2701 strlcpy(info
->driver
, "acenic", sizeof(info
->driver
));
2702 snprintf(info
->version
, sizeof(info
->version
), "%i.%i.%i",
2703 ap
->firmware_major
, ap
->firmware_minor
,
2707 strlcpy(info
->bus_info
, pci_name(ap
->pdev
),
2708 sizeof(info
->bus_info
));
2713 * Set the hardware MAC address.
2715 static int ace_set_mac_addr(struct net_device
*dev
, void *p
)
2717 struct ace_private
*ap
= netdev_priv(dev
);
2718 struct ace_regs __iomem
*regs
= ap
->regs
;
2719 struct sockaddr
*addr
=p
;
2723 if(netif_running(dev
))
2726 memcpy(dev
->dev_addr
, addr
->sa_data
,dev
->addr_len
);
2728 da
= (u8
*)dev
->dev_addr
;
2730 writel(da
[0] << 8 | da
[1], ®s
->MacAddrHi
);
2731 writel((da
[2] << 24) | (da
[3] << 16) | (da
[4] << 8) | da
[5],
2734 cmd
.evt
= C_SET_MAC_ADDR
;
2737 ace_issue_cmd(regs
, &cmd
);
2743 static void ace_set_multicast_list(struct net_device
*dev
)
2745 struct ace_private
*ap
= netdev_priv(dev
);
2746 struct ace_regs __iomem
*regs
= ap
->regs
;
2749 if ((dev
->flags
& IFF_ALLMULTI
) && !(ap
->mcast_all
)) {
2750 cmd
.evt
= C_SET_MULTICAST_MODE
;
2751 cmd
.code
= C_C_MCAST_ENABLE
;
2753 ace_issue_cmd(regs
, &cmd
);
2755 } else if (ap
->mcast_all
) {
2756 cmd
.evt
= C_SET_MULTICAST_MODE
;
2757 cmd
.code
= C_C_MCAST_DISABLE
;
2759 ace_issue_cmd(regs
, &cmd
);
2763 if ((dev
->flags
& IFF_PROMISC
) && !(ap
->promisc
)) {
2764 cmd
.evt
= C_SET_PROMISC_MODE
;
2765 cmd
.code
= C_C_PROMISC_ENABLE
;
2767 ace_issue_cmd(regs
, &cmd
);
2769 }else if (!(dev
->flags
& IFF_PROMISC
) && (ap
->promisc
)) {
2770 cmd
.evt
= C_SET_PROMISC_MODE
;
2771 cmd
.code
= C_C_PROMISC_DISABLE
;
2773 ace_issue_cmd(regs
, &cmd
);
2778 * For the time being multicast relies on the upper layers
2779 * filtering it properly. The Firmware does not allow one to
2780 * set the entire multicast list at a time and keeping track of
2781 * it here is going to be messy.
2783 if (!netdev_mc_empty(dev
) && !ap
->mcast_all
) {
2784 cmd
.evt
= C_SET_MULTICAST_MODE
;
2785 cmd
.code
= C_C_MCAST_ENABLE
;
2787 ace_issue_cmd(regs
, &cmd
);
2788 }else if (!ap
->mcast_all
) {
2789 cmd
.evt
= C_SET_MULTICAST_MODE
;
2790 cmd
.code
= C_C_MCAST_DISABLE
;
2792 ace_issue_cmd(regs
, &cmd
);
2797 static struct net_device_stats
*ace_get_stats(struct net_device
*dev
)
2799 struct ace_private
*ap
= netdev_priv(dev
);
2800 struct ace_mac_stats __iomem
*mac_stats
=
2801 (struct ace_mac_stats __iomem
*)ap
->regs
->Stats
;
2803 dev
->stats
.rx_missed_errors
= readl(&mac_stats
->drop_space
);
2804 dev
->stats
.multicast
= readl(&mac_stats
->kept_mc
);
2805 dev
->stats
.collisions
= readl(&mac_stats
->coll
);
2811 static void ace_copy(struct ace_regs __iomem
*regs
, const __be32
*src
,
2814 void __iomem
*tdest
;
2821 tsize
= min_t(u32
, ((~dest
& (ACE_WINDOW_SIZE
- 1)) + 1),
2822 min_t(u32
, size
, ACE_WINDOW_SIZE
));
2823 tdest
= (void __iomem
*) ®s
->Window
+
2824 (dest
& (ACE_WINDOW_SIZE
- 1));
2825 writel(dest
& ~(ACE_WINDOW_SIZE
- 1), ®s
->WinBase
);
2826 for (i
= 0; i
< (tsize
/ 4); i
++) {
2827 /* Firmware is big-endian */
2828 writel(be32_to_cpup(src
), tdest
);
2838 static void ace_clear(struct ace_regs __iomem
*regs
, u32 dest
, int size
)
2840 void __iomem
*tdest
;
2847 tsize
= min_t(u32
, ((~dest
& (ACE_WINDOW_SIZE
- 1)) + 1),
2848 min_t(u32
, size
, ACE_WINDOW_SIZE
));
2849 tdest
= (void __iomem
*) ®s
->Window
+
2850 (dest
& (ACE_WINDOW_SIZE
- 1));
2851 writel(dest
& ~(ACE_WINDOW_SIZE
- 1), ®s
->WinBase
);
2853 for (i
= 0; i
< (tsize
/ 4); i
++) {
2854 writel(0, tdest
+ i
*4);
2864 * Download the firmware into the SRAM on the NIC
2866 * This operation requires the NIC to be halted and is performed with
2867 * interrupts disabled and with the spinlock hold.
2869 static int ace_load_firmware(struct net_device
*dev
)
2871 const struct firmware
*fw
;
2872 const char *fw_name
= "acenic/tg2.bin";
2873 struct ace_private
*ap
= netdev_priv(dev
);
2874 struct ace_regs __iomem
*regs
= ap
->regs
;
2875 const __be32
*fw_data
;
2879 if (!(readl(®s
->CpuCtrl
) & CPU_HALTED
)) {
2880 printk(KERN_ERR
"%s: trying to download firmware while the "
2881 "CPU is running!\n", ap
->name
);
2885 if (ACE_IS_TIGON_I(ap
))
2886 fw_name
= "acenic/tg1.bin";
2888 ret
= request_firmware(&fw
, fw_name
, &ap
->pdev
->dev
);
2890 printk(KERN_ERR
"%s: Failed to load firmware \"%s\"\n",
2895 fw_data
= (void *)fw
->data
;
2897 /* Firmware blob starts with version numbers, followed by
2898 load and start address. Remainder is the blob to be loaded
2899 contiguously from load address. We don't bother to represent
2900 the BSS/SBSS sections any more, since we were clearing the
2901 whole thing anyway. */
2902 ap
->firmware_major
= fw
->data
[0];
2903 ap
->firmware_minor
= fw
->data
[1];
2904 ap
->firmware_fix
= fw
->data
[2];
2906 ap
->firmware_start
= be32_to_cpu(fw_data
[1]);
2907 if (ap
->firmware_start
< 0x4000 || ap
->firmware_start
>= 0x80000) {
2908 printk(KERN_ERR
"%s: bogus load address %08x in \"%s\"\n",
2909 ap
->name
, ap
->firmware_start
, fw_name
);
2914 load_addr
= be32_to_cpu(fw_data
[2]);
2915 if (load_addr
< 0x4000 || load_addr
>= 0x80000) {
2916 printk(KERN_ERR
"%s: bogus load address %08x in \"%s\"\n",
2917 ap
->name
, load_addr
, fw_name
);
2923 * Do not try to clear more than 512KiB or we end up seeing
2924 * funny things on NICs with only 512KiB SRAM
2926 ace_clear(regs
, 0x2000, 0x80000-0x2000);
2927 ace_copy(regs
, &fw_data
[3], load_addr
, fw
->size
-12);
2929 release_firmware(fw
);
2935 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
2937 * Accessing the EEPROM is `interesting' to say the least - don't read
2938 * this code right after dinner.
2940 * This is all about black magic and bit-banging the device .... I
2941 * wonder in what hospital they have put the guy who designed the i2c
2944 * Oh yes, this is only the beginning!
2946 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
2947 * code i2c readout code by beta testing all my hacks.
2949 static void eeprom_start(struct ace_regs __iomem
*regs
)
2953 readl(®s
->LocalCtrl
);
2954 udelay(ACE_SHORT_DELAY
);
2955 local
= readl(®s
->LocalCtrl
);
2956 local
|= EEPROM_DATA_OUT
| EEPROM_WRITE_ENABLE
;
2957 writel(local
, ®s
->LocalCtrl
);
2958 readl(®s
->LocalCtrl
);
2960 udelay(ACE_SHORT_DELAY
);
2961 local
|= EEPROM_CLK_OUT
;
2962 writel(local
, ®s
->LocalCtrl
);
2963 readl(®s
->LocalCtrl
);
2965 udelay(ACE_SHORT_DELAY
);
2966 local
&= ~EEPROM_DATA_OUT
;
2967 writel(local
, ®s
->LocalCtrl
);
2968 readl(®s
->LocalCtrl
);
2970 udelay(ACE_SHORT_DELAY
);
2971 local
&= ~EEPROM_CLK_OUT
;
2972 writel(local
, ®s
->LocalCtrl
);
2973 readl(®s
->LocalCtrl
);
2978 static void eeprom_prep(struct ace_regs __iomem
*regs
, u8 magic
)
2983 udelay(ACE_SHORT_DELAY
);
2984 local
= readl(®s
->LocalCtrl
);
2985 local
&= ~EEPROM_DATA_OUT
;
2986 local
|= EEPROM_WRITE_ENABLE
;
2987 writel(local
, ®s
->LocalCtrl
);
2988 readl(®s
->LocalCtrl
);
2991 for (i
= 0; i
< 8; i
++, magic
<<= 1) {
2992 udelay(ACE_SHORT_DELAY
);
2994 local
|= EEPROM_DATA_OUT
;
2996 local
&= ~EEPROM_DATA_OUT
;
2997 writel(local
, ®s
->LocalCtrl
);
2998 readl(®s
->LocalCtrl
);
3001 udelay(ACE_SHORT_DELAY
);
3002 local
|= EEPROM_CLK_OUT
;
3003 writel(local
, ®s
->LocalCtrl
);
3004 readl(®s
->LocalCtrl
);
3006 udelay(ACE_SHORT_DELAY
);
3007 local
&= ~(EEPROM_CLK_OUT
| EEPROM_DATA_OUT
);
3008 writel(local
, ®s
->LocalCtrl
);
3009 readl(®s
->LocalCtrl
);
3015 static int eeprom_check_ack(struct ace_regs __iomem
*regs
)
3020 local
= readl(®s
->LocalCtrl
);
3021 local
&= ~EEPROM_WRITE_ENABLE
;
3022 writel(local
, ®s
->LocalCtrl
);
3023 readl(®s
->LocalCtrl
);
3025 udelay(ACE_LONG_DELAY
);
3026 local
|= EEPROM_CLK_OUT
;
3027 writel(local
, ®s
->LocalCtrl
);
3028 readl(®s
->LocalCtrl
);
3030 udelay(ACE_SHORT_DELAY
);
3031 /* sample data in middle of high clk */
3032 state
= (readl(®s
->LocalCtrl
) & EEPROM_DATA_IN
) != 0;
3033 udelay(ACE_SHORT_DELAY
);
3035 writel(readl(®s
->LocalCtrl
) & ~EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3036 readl(®s
->LocalCtrl
);
3043 static void eeprom_stop(struct ace_regs __iomem
*regs
)
3047 udelay(ACE_SHORT_DELAY
);
3048 local
= readl(®s
->LocalCtrl
);
3049 local
|= EEPROM_WRITE_ENABLE
;
3050 writel(local
, ®s
->LocalCtrl
);
3051 readl(®s
->LocalCtrl
);
3053 udelay(ACE_SHORT_DELAY
);
3054 local
&= ~EEPROM_DATA_OUT
;
3055 writel(local
, ®s
->LocalCtrl
);
3056 readl(®s
->LocalCtrl
);
3058 udelay(ACE_SHORT_DELAY
);
3059 local
|= EEPROM_CLK_OUT
;
3060 writel(local
, ®s
->LocalCtrl
);
3061 readl(®s
->LocalCtrl
);
3063 udelay(ACE_SHORT_DELAY
);
3064 local
|= EEPROM_DATA_OUT
;
3065 writel(local
, ®s
->LocalCtrl
);
3066 readl(®s
->LocalCtrl
);
3068 udelay(ACE_LONG_DELAY
);
3069 local
&= ~EEPROM_CLK_OUT
;
3070 writel(local
, ®s
->LocalCtrl
);
3076 * Read a whole byte from the EEPROM.
3078 static int read_eeprom_byte(struct net_device
*dev
, unsigned long offset
)
3080 struct ace_private
*ap
= netdev_priv(dev
);
3081 struct ace_regs __iomem
*regs
= ap
->regs
;
3082 unsigned long flags
;
3088 * Don't take interrupts on this CPU will bit banging
3089 * the %#%#@$ I2C device
3091 local_irq_save(flags
);
3095 eeprom_prep(regs
, EEPROM_WRITE_SELECT
);
3096 if (eeprom_check_ack(regs
)) {
3097 local_irq_restore(flags
);
3098 printk(KERN_ERR
"%s: Unable to sync eeprom\n", ap
->name
);
3100 goto eeprom_read_error
;
3103 eeprom_prep(regs
, (offset
>> 8) & 0xff);
3104 if (eeprom_check_ack(regs
)) {
3105 local_irq_restore(flags
);
3106 printk(KERN_ERR
"%s: Unable to set address byte 0\n",
3109 goto eeprom_read_error
;
3112 eeprom_prep(regs
, offset
& 0xff);
3113 if (eeprom_check_ack(regs
)) {
3114 local_irq_restore(flags
);
3115 printk(KERN_ERR
"%s: Unable to set address byte 1\n",
3118 goto eeprom_read_error
;
3122 eeprom_prep(regs
, EEPROM_READ_SELECT
);
3123 if (eeprom_check_ack(regs
)) {
3124 local_irq_restore(flags
);
3125 printk(KERN_ERR
"%s: Unable to set READ_SELECT\n",
3128 goto eeprom_read_error
;
3131 for (i
= 0; i
< 8; i
++) {
3132 local
= readl(®s
->LocalCtrl
);
3133 local
&= ~EEPROM_WRITE_ENABLE
;
3134 writel(local
, ®s
->LocalCtrl
);
3135 readl(®s
->LocalCtrl
);
3136 udelay(ACE_LONG_DELAY
);
3138 local
|= EEPROM_CLK_OUT
;
3139 writel(local
, ®s
->LocalCtrl
);
3140 readl(®s
->LocalCtrl
);
3142 udelay(ACE_SHORT_DELAY
);
3143 /* sample data mid high clk */
3144 result
= (result
<< 1) |
3145 ((readl(®s
->LocalCtrl
) & EEPROM_DATA_IN
) != 0);
3146 udelay(ACE_SHORT_DELAY
);
3148 local
= readl(®s
->LocalCtrl
);
3149 local
&= ~EEPROM_CLK_OUT
;
3150 writel(local
, ®s
->LocalCtrl
);
3151 readl(®s
->LocalCtrl
);
3152 udelay(ACE_SHORT_DELAY
);
3155 local
|= EEPROM_WRITE_ENABLE
;
3156 writel(local
, ®s
->LocalCtrl
);
3157 readl(®s
->LocalCtrl
);
3159 udelay(ACE_SHORT_DELAY
);
3163 local
|= EEPROM_DATA_OUT
;
3164 writel(local
, ®s
->LocalCtrl
);
3165 readl(®s
->LocalCtrl
);
3167 udelay(ACE_SHORT_DELAY
);
3168 writel(readl(®s
->LocalCtrl
) | EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3169 readl(®s
->LocalCtrl
);
3170 udelay(ACE_LONG_DELAY
);
3171 writel(readl(®s
->LocalCtrl
) & ~EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3172 readl(®s
->LocalCtrl
);
3174 udelay(ACE_SHORT_DELAY
);
3177 local_irq_restore(flags
);
3182 printk(KERN_ERR
"%s: Unable to read eeprom byte 0x%02lx\n",
3187 module_pci_driver(acenic_pci_driver
);