treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / ethernet / amd / xgbe / xgbe-dev.c
blobd5fd49dd25f336aedbe166a8c6bdd74ef6296204
1 /*
2 * AMD 10Gb Ethernet driver
4 * This file is available to you under your choice of the following two
5 * licenses:
7 * License 1: GPLv2
9 * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
11 * This file is free software; you may copy, redistribute and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation, either version 2 of the License, or (at
14 * your option) any later version.
16 * This file is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program. If not, see <http://www.gnu.org/licenses/>.
24 * This file incorporates work covered by the following copyright and
25 * permission notice:
26 * The Synopsys DWC ETHER XGMAC Software Driver and documentation
27 * (hereinafter "Software") is an unsupported proprietary work of Synopsys,
28 * Inc. unless otherwise expressly agreed to in writing between Synopsys
29 * and you.
31 * The Software IS NOT an item of Licensed Software or Licensed Product
32 * under any End User Software License Agreement or Agreement for Licensed
33 * Product with Synopsys or any supplement thereto. Permission is hereby
34 * granted, free of charge, to any person obtaining a copy of this software
35 * annotated with this license and the Software, to deal in the Software
36 * without restriction, including without limitation the rights to use,
37 * copy, modify, merge, publish, distribute, sublicense, and/or sell copies
38 * of the Software, and to permit persons to whom the Software is furnished
39 * to do so, subject to the following conditions:
41 * The above copyright notice and this permission notice shall be included
42 * in all copies or substantial portions of the Software.
44 * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
45 * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
46 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
47 * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
48 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
49 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
50 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
51 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
52 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
53 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
54 * THE POSSIBILITY OF SUCH DAMAGE.
57 * License 2: Modified BSD
59 * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
60 * All rights reserved.
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions are met:
64 * * Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 * * Redistributions in binary form must reproduce the above copyright
67 * notice, this list of conditions and the following disclaimer in the
68 * documentation and/or other materials provided with the distribution.
69 * * Neither the name of Advanced Micro Devices, Inc. nor the
70 * names of its contributors may be used to endorse or promote products
71 * derived from this software without specific prior written permission.
73 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
74 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76 * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
77 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
78 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
79 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
80 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
81 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
82 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
84 * This file incorporates work covered by the following copyright and
85 * permission notice:
86 * The Synopsys DWC ETHER XGMAC Software Driver and documentation
87 * (hereinafter "Software") is an unsupported proprietary work of Synopsys,
88 * Inc. unless otherwise expressly agreed to in writing between Synopsys
89 * and you.
91 * The Software IS NOT an item of Licensed Software or Licensed Product
92 * under any End User Software License Agreement or Agreement for Licensed
93 * Product with Synopsys or any supplement thereto. Permission is hereby
94 * granted, free of charge, to any person obtaining a copy of this software
95 * annotated with this license and the Software, to deal in the Software
96 * without restriction, including without limitation the rights to use,
97 * copy, modify, merge, publish, distribute, sublicense, and/or sell copies
98 * of the Software, and to permit persons to whom the Software is furnished
99 * to do so, subject to the following conditions:
101 * The above copyright notice and this permission notice shall be included
102 * in all copies or substantial portions of the Software.
104 * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
105 * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
106 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
107 * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
108 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
109 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
110 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
111 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
112 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
113 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
114 * THE POSSIBILITY OF SUCH DAMAGE.
117 #include <linux/phy.h>
118 #include <linux/mdio.h>
119 #include <linux/clk.h>
120 #include <linux/bitrev.h>
121 #include <linux/crc32.h>
122 #include <linux/crc32poly.h>
124 #include "xgbe.h"
125 #include "xgbe-common.h"
127 static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata)
129 return pdata->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
132 static unsigned int xgbe_usec_to_riwt(struct xgbe_prv_data *pdata,
133 unsigned int usec)
135 unsigned long rate;
136 unsigned int ret;
138 DBGPR("-->xgbe_usec_to_riwt\n");
140 rate = pdata->sysclk_rate;
143 * Convert the input usec value to the watchdog timer value. Each
144 * watchdog timer value is equivalent to 256 clock cycles.
145 * Calculate the required value as:
146 * ( usec * ( system_clock_mhz / 10^6 ) / 256
148 ret = (usec * (rate / 1000000)) / 256;
150 DBGPR("<--xgbe_usec_to_riwt\n");
152 return ret;
155 static unsigned int xgbe_riwt_to_usec(struct xgbe_prv_data *pdata,
156 unsigned int riwt)
158 unsigned long rate;
159 unsigned int ret;
161 DBGPR("-->xgbe_riwt_to_usec\n");
163 rate = pdata->sysclk_rate;
166 * Convert the input watchdog timer value to the usec value. Each
167 * watchdog timer value is equivalent to 256 clock cycles.
168 * Calculate the required value as:
169 * ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
171 ret = (riwt * 256) / (rate / 1000000);
173 DBGPR("<--xgbe_riwt_to_usec\n");
175 return ret;
178 static int xgbe_config_pbl_val(struct xgbe_prv_data *pdata)
180 unsigned int pblx8, pbl;
181 unsigned int i;
183 pblx8 = DMA_PBL_X8_DISABLE;
184 pbl = pdata->pbl;
186 if (pdata->pbl > 32) {
187 pblx8 = DMA_PBL_X8_ENABLE;
188 pbl >>= 3;
191 for (i = 0; i < pdata->channel_count; i++) {
192 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8,
193 pblx8);
195 if (pdata->channel[i]->tx_ring)
196 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR,
197 PBL, pbl);
199 if (pdata->channel[i]->rx_ring)
200 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR,
201 PBL, pbl);
204 return 0;
207 static int xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
209 unsigned int i;
211 for (i = 0; i < pdata->channel_count; i++) {
212 if (!pdata->channel[i]->tx_ring)
213 break;
215 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP,
216 pdata->tx_osp_mode);
219 return 0;
222 static int xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
224 unsigned int i;
226 for (i = 0; i < pdata->rx_q_count; i++)
227 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
229 return 0;
232 static int xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
234 unsigned int i;
236 for (i = 0; i < pdata->tx_q_count; i++)
237 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
239 return 0;
242 static int xgbe_config_rx_threshold(struct xgbe_prv_data *pdata,
243 unsigned int val)
245 unsigned int i;
247 for (i = 0; i < pdata->rx_q_count; i++)
248 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
250 return 0;
253 static int xgbe_config_tx_threshold(struct xgbe_prv_data *pdata,
254 unsigned int val)
256 unsigned int i;
258 for (i = 0; i < pdata->tx_q_count; i++)
259 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
261 return 0;
264 static int xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
266 unsigned int i;
268 for (i = 0; i < pdata->channel_count; i++) {
269 if (!pdata->channel[i]->rx_ring)
270 break;
272 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT,
273 pdata->rx_riwt);
276 return 0;
279 static int xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
281 return 0;
284 static void xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
286 unsigned int i;
288 for (i = 0; i < pdata->channel_count; i++) {
289 if (!pdata->channel[i]->rx_ring)
290 break;
292 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ,
293 pdata->rx_buf_size);
297 static void xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
299 unsigned int i;
301 for (i = 0; i < pdata->channel_count; i++) {
302 if (!pdata->channel[i]->tx_ring)
303 break;
305 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, 1);
309 static void xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
311 unsigned int i;
313 for (i = 0; i < pdata->channel_count; i++) {
314 if (!pdata->channel[i]->rx_ring)
315 break;
317 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1);
320 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
323 static int xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
324 unsigned int index, unsigned int val)
326 unsigned int wait;
327 int ret = 0;
329 mutex_lock(&pdata->rss_mutex);
331 if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
332 ret = -EBUSY;
333 goto unlock;
336 XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
338 XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
339 XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
340 XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
341 XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
343 wait = 1000;
344 while (wait--) {
345 if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
346 goto unlock;
348 usleep_range(1000, 1500);
351 ret = -EBUSY;
353 unlock:
354 mutex_unlock(&pdata->rss_mutex);
356 return ret;
359 static int xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
361 unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(u32);
362 unsigned int *key = (unsigned int *)&pdata->rss_key;
363 int ret;
365 while (key_regs--) {
366 ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
367 key_regs, *key++);
368 if (ret)
369 return ret;
372 return 0;
375 static int xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
377 unsigned int i;
378 int ret;
380 for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
381 ret = xgbe_write_rss_reg(pdata,
382 XGBE_RSS_LOOKUP_TABLE_TYPE, i,
383 pdata->rss_table[i]);
384 if (ret)
385 return ret;
388 return 0;
391 static int xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const u8 *key)
393 memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
395 return xgbe_write_rss_hash_key(pdata);
398 static int xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata,
399 const u32 *table)
401 unsigned int i;
403 for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
404 XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
406 return xgbe_write_rss_lookup_table(pdata);
409 static int xgbe_enable_rss(struct xgbe_prv_data *pdata)
411 int ret;
413 if (!pdata->hw_feat.rss)
414 return -EOPNOTSUPP;
416 /* Program the hash key */
417 ret = xgbe_write_rss_hash_key(pdata);
418 if (ret)
419 return ret;
421 /* Program the lookup table */
422 ret = xgbe_write_rss_lookup_table(pdata);
423 if (ret)
424 return ret;
426 /* Set the RSS options */
427 XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
429 /* Enable RSS */
430 XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
432 return 0;
435 static int xgbe_disable_rss(struct xgbe_prv_data *pdata)
437 if (!pdata->hw_feat.rss)
438 return -EOPNOTSUPP;
440 XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
442 return 0;
445 static void xgbe_config_rss(struct xgbe_prv_data *pdata)
447 int ret;
449 if (!pdata->hw_feat.rss)
450 return;
452 if (pdata->netdev->features & NETIF_F_RXHASH)
453 ret = xgbe_enable_rss(pdata);
454 else
455 ret = xgbe_disable_rss(pdata);
457 if (ret)
458 netdev_err(pdata->netdev,
459 "error configuring RSS, RSS disabled\n");
462 static bool xgbe_is_pfc_queue(struct xgbe_prv_data *pdata,
463 unsigned int queue)
465 unsigned int prio, tc;
467 for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
468 /* Does this queue handle the priority? */
469 if (pdata->prio2q_map[prio] != queue)
470 continue;
472 /* Get the Traffic Class for this priority */
473 tc = pdata->ets->prio_tc[prio];
475 /* Check if PFC is enabled for this traffic class */
476 if (pdata->pfc->pfc_en & (1 << tc))
477 return true;
480 return false;
483 static void xgbe_set_vxlan_id(struct xgbe_prv_data *pdata)
485 /* Program the VXLAN port */
486 XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, pdata->vxlan_port);
488 netif_dbg(pdata, drv, pdata->netdev, "VXLAN tunnel id set to %hx\n",
489 pdata->vxlan_port);
492 static void xgbe_enable_vxlan(struct xgbe_prv_data *pdata)
494 if (!pdata->hw_feat.vxn)
495 return;
497 /* Program the VXLAN port */
498 xgbe_set_vxlan_id(pdata);
500 /* Allow for IPv6/UDP zero-checksum VXLAN packets */
501 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 1);
503 /* Enable VXLAN tunneling mode */
504 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNM, 0);
505 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 1);
507 netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration enabled\n");
510 static void xgbe_disable_vxlan(struct xgbe_prv_data *pdata)
512 if (!pdata->hw_feat.vxn)
513 return;
515 /* Disable tunneling mode */
516 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 0);
518 /* Clear IPv6/UDP zero-checksum VXLAN packets setting */
519 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 0);
521 /* Clear the VXLAN port */
522 XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, 0);
524 netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration disabled\n");
527 static int xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
529 unsigned int max_q_count, q_count;
530 unsigned int reg, reg_val;
531 unsigned int i;
533 /* Clear MTL flow control */
534 for (i = 0; i < pdata->rx_q_count; i++)
535 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
537 /* Clear MAC flow control */
538 max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
539 q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
540 reg = MAC_Q0TFCR;
541 for (i = 0; i < q_count; i++) {
542 reg_val = XGMAC_IOREAD(pdata, reg);
543 XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
544 XGMAC_IOWRITE(pdata, reg, reg_val);
546 reg += MAC_QTFCR_INC;
549 return 0;
552 static int xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
554 struct ieee_pfc *pfc = pdata->pfc;
555 struct ieee_ets *ets = pdata->ets;
556 unsigned int max_q_count, q_count;
557 unsigned int reg, reg_val;
558 unsigned int i;
560 /* Set MTL flow control */
561 for (i = 0; i < pdata->rx_q_count; i++) {
562 unsigned int ehfc = 0;
564 if (pdata->rx_rfd[i]) {
565 /* Flow control thresholds are established */
566 if (pfc && ets) {
567 if (xgbe_is_pfc_queue(pdata, i))
568 ehfc = 1;
569 } else {
570 ehfc = 1;
574 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc);
576 netif_dbg(pdata, drv, pdata->netdev,
577 "flow control %s for RXq%u\n",
578 ehfc ? "enabled" : "disabled", i);
581 /* Set MAC flow control */
582 max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
583 q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
584 reg = MAC_Q0TFCR;
585 for (i = 0; i < q_count; i++) {
586 reg_val = XGMAC_IOREAD(pdata, reg);
588 /* Enable transmit flow control */
589 XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
590 /* Set pause time */
591 XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
593 XGMAC_IOWRITE(pdata, reg, reg_val);
595 reg += MAC_QTFCR_INC;
598 return 0;
601 static int xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
603 XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
605 return 0;
608 static int xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
610 XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
612 return 0;
615 static int xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
617 struct ieee_pfc *pfc = pdata->pfc;
619 if (pdata->tx_pause || (pfc && pfc->pfc_en))
620 xgbe_enable_tx_flow_control(pdata);
621 else
622 xgbe_disable_tx_flow_control(pdata);
624 return 0;
627 static int xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
629 struct ieee_pfc *pfc = pdata->pfc;
631 if (pdata->rx_pause || (pfc && pfc->pfc_en))
632 xgbe_enable_rx_flow_control(pdata);
633 else
634 xgbe_disable_rx_flow_control(pdata);
636 return 0;
639 static void xgbe_config_flow_control(struct xgbe_prv_data *pdata)
641 struct ieee_pfc *pfc = pdata->pfc;
643 xgbe_config_tx_flow_control(pdata);
644 xgbe_config_rx_flow_control(pdata);
646 XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE,
647 (pfc && pfc->pfc_en) ? 1 : 0);
650 static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
652 struct xgbe_channel *channel;
653 unsigned int i, ver;
655 /* Set the interrupt mode if supported */
656 if (pdata->channel_irq_mode)
657 XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM,
658 pdata->channel_irq_mode);
660 ver = XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER);
662 for (i = 0; i < pdata->channel_count; i++) {
663 channel = pdata->channel[i];
665 /* Clear all the interrupts which are set */
666 XGMAC_DMA_IOWRITE(channel, DMA_CH_SR,
667 XGMAC_DMA_IOREAD(channel, DMA_CH_SR));
669 /* Clear all interrupt enable bits */
670 channel->curr_ier = 0;
672 /* Enable following interrupts
673 * NIE - Normal Interrupt Summary Enable
674 * AIE - Abnormal Interrupt Summary Enable
675 * FBEE - Fatal Bus Error Enable
677 if (ver < 0x21) {
678 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE20, 1);
679 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE20, 1);
680 } else {
681 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE, 1);
682 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE, 1);
684 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
686 if (channel->tx_ring) {
687 /* Enable the following Tx interrupts
688 * TIE - Transmit Interrupt Enable (unless using
689 * per channel interrupts in edge triggered
690 * mode)
692 if (!pdata->per_channel_irq || pdata->channel_irq_mode)
693 XGMAC_SET_BITS(channel->curr_ier,
694 DMA_CH_IER, TIE, 1);
696 if (channel->rx_ring) {
697 /* Enable following Rx interrupts
698 * RBUE - Receive Buffer Unavailable Enable
699 * RIE - Receive Interrupt Enable (unless using
700 * per channel interrupts in edge triggered
701 * mode)
703 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
704 if (!pdata->per_channel_irq || pdata->channel_irq_mode)
705 XGMAC_SET_BITS(channel->curr_ier,
706 DMA_CH_IER, RIE, 1);
709 XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
713 static void xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
715 unsigned int mtl_q_isr;
716 unsigned int q_count, i;
718 q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
719 for (i = 0; i < q_count; i++) {
720 /* Clear all the interrupts which are set */
721 mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
722 XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
724 /* No MTL interrupts to be enabled */
725 XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
729 static void xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
731 unsigned int mac_ier = 0;
733 /* Enable Timestamp interrupt */
734 XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
736 XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
738 /* Enable all counter interrupts */
739 XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
740 XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
742 /* Enable MDIO single command completion interrupt */
743 XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1);
746 static void xgbe_enable_ecc_interrupts(struct xgbe_prv_data *pdata)
748 unsigned int ecc_isr, ecc_ier = 0;
750 if (!pdata->vdata->ecc_support)
751 return;
753 /* Clear all the interrupts which are set */
754 ecc_isr = XP_IOREAD(pdata, XP_ECC_ISR);
755 XP_IOWRITE(pdata, XP_ECC_ISR, ecc_isr);
757 /* Enable ECC interrupts */
758 XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 1);
759 XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 1);
760 XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 1);
761 XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 1);
762 XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 1);
763 XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 1);
765 XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
768 static void xgbe_disable_ecc_ded(struct xgbe_prv_data *pdata)
770 unsigned int ecc_ier;
772 ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
774 /* Disable ECC DED interrupts */
775 XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 0);
776 XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 0);
777 XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 0);
779 XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
782 static void xgbe_disable_ecc_sec(struct xgbe_prv_data *pdata,
783 enum xgbe_ecc_sec sec)
785 unsigned int ecc_ier;
787 ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
789 /* Disable ECC SEC interrupt */
790 switch (sec) {
791 case XGBE_ECC_SEC_TX:
792 XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 0);
793 break;
794 case XGBE_ECC_SEC_RX:
795 XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 0);
796 break;
797 case XGBE_ECC_SEC_DESC:
798 XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 0);
799 break;
802 XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
805 static int xgbe_set_speed(struct xgbe_prv_data *pdata, int speed)
807 unsigned int ss;
809 switch (speed) {
810 case SPEED_1000:
811 ss = 0x03;
812 break;
813 case SPEED_2500:
814 ss = 0x02;
815 break;
816 case SPEED_10000:
817 ss = 0x00;
818 break;
819 default:
820 return -EINVAL;
823 if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss)
824 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss);
826 return 0;
829 static int xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
831 /* Put the VLAN tag in the Rx descriptor */
832 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
834 /* Don't check the VLAN type */
835 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
837 /* Check only C-TAG (0x8100) packets */
838 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
840 /* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
841 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
843 /* Enable VLAN tag stripping */
844 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
846 return 0;
849 static int xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
851 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
853 return 0;
856 static int xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
858 /* Enable VLAN filtering */
859 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
861 /* Enable VLAN Hash Table filtering */
862 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
864 /* Disable VLAN tag inverse matching */
865 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
867 /* Only filter on the lower 12-bits of the VLAN tag */
868 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
870 /* In order for the VLAN Hash Table filtering to be effective,
871 * the VLAN tag identifier in the VLAN Tag Register must not
872 * be zero. Set the VLAN tag identifier to "1" to enable the
873 * VLAN Hash Table filtering. This implies that a VLAN tag of
874 * 1 will always pass filtering.
876 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
878 return 0;
881 static int xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
883 /* Disable VLAN filtering */
884 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
886 return 0;
889 static u32 xgbe_vid_crc32_le(__le16 vid_le)
891 u32 crc = ~0;
892 u32 temp = 0;
893 unsigned char *data = (unsigned char *)&vid_le;
894 unsigned char data_byte = 0;
895 int i, bits;
897 bits = get_bitmask_order(VLAN_VID_MASK);
898 for (i = 0; i < bits; i++) {
899 if ((i % 8) == 0)
900 data_byte = data[i / 8];
902 temp = ((crc & 1) ^ data_byte) & 1;
903 crc >>= 1;
904 data_byte >>= 1;
906 if (temp)
907 crc ^= CRC32_POLY_LE;
910 return crc;
913 static int xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
915 u32 crc;
916 u16 vid;
917 __le16 vid_le;
918 u16 vlan_hash_table = 0;
920 /* Generate the VLAN Hash Table value */
921 for_each_set_bit(vid, pdata->active_vlans, VLAN_N_VID) {
922 /* Get the CRC32 value of the VLAN ID */
923 vid_le = cpu_to_le16(vid);
924 crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
926 vlan_hash_table |= (1 << crc);
929 /* Set the VLAN Hash Table filtering register */
930 XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
932 return 0;
935 static int xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata,
936 unsigned int enable)
938 unsigned int val = enable ? 1 : 0;
940 if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
941 return 0;
943 netif_dbg(pdata, drv, pdata->netdev, "%s promiscuous mode\n",
944 enable ? "entering" : "leaving");
945 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
947 /* Hardware will still perform VLAN filtering in promiscuous mode */
948 if (enable) {
949 xgbe_disable_rx_vlan_filtering(pdata);
950 } else {
951 if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
952 xgbe_enable_rx_vlan_filtering(pdata);
955 return 0;
958 static int xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata,
959 unsigned int enable)
961 unsigned int val = enable ? 1 : 0;
963 if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
964 return 0;
966 netif_dbg(pdata, drv, pdata->netdev, "%s allmulti mode\n",
967 enable ? "entering" : "leaving");
968 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
970 return 0;
973 static void xgbe_set_mac_reg(struct xgbe_prv_data *pdata,
974 struct netdev_hw_addr *ha, unsigned int *mac_reg)
976 unsigned int mac_addr_hi, mac_addr_lo;
977 u8 *mac_addr;
979 mac_addr_lo = 0;
980 mac_addr_hi = 0;
982 if (ha) {
983 mac_addr = (u8 *)&mac_addr_lo;
984 mac_addr[0] = ha->addr[0];
985 mac_addr[1] = ha->addr[1];
986 mac_addr[2] = ha->addr[2];
987 mac_addr[3] = ha->addr[3];
988 mac_addr = (u8 *)&mac_addr_hi;
989 mac_addr[0] = ha->addr[4];
990 mac_addr[1] = ha->addr[5];
992 netif_dbg(pdata, drv, pdata->netdev,
993 "adding mac address %pM at %#x\n",
994 ha->addr, *mac_reg);
996 XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
999 XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
1000 *mac_reg += MAC_MACA_INC;
1001 XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
1002 *mac_reg += MAC_MACA_INC;
1005 static void xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
1007 struct net_device *netdev = pdata->netdev;
1008 struct netdev_hw_addr *ha;
1009 unsigned int mac_reg;
1010 unsigned int addn_macs;
1012 mac_reg = MAC_MACA1HR;
1013 addn_macs = pdata->hw_feat.addn_mac;
1015 if (netdev_uc_count(netdev) > addn_macs) {
1016 xgbe_set_promiscuous_mode(pdata, 1);
1017 } else {
1018 netdev_for_each_uc_addr(ha, netdev) {
1019 xgbe_set_mac_reg(pdata, ha, &mac_reg);
1020 addn_macs--;
1023 if (netdev_mc_count(netdev) > addn_macs) {
1024 xgbe_set_all_multicast_mode(pdata, 1);
1025 } else {
1026 netdev_for_each_mc_addr(ha, netdev) {
1027 xgbe_set_mac_reg(pdata, ha, &mac_reg);
1028 addn_macs--;
1033 /* Clear remaining additional MAC address entries */
1034 while (addn_macs--)
1035 xgbe_set_mac_reg(pdata, NULL, &mac_reg);
1038 static void xgbe_set_mac_hash_table(struct xgbe_prv_data *pdata)
1040 struct net_device *netdev = pdata->netdev;
1041 struct netdev_hw_addr *ha;
1042 unsigned int hash_reg;
1043 unsigned int hash_table_shift, hash_table_count;
1044 u32 hash_table[XGBE_MAC_HASH_TABLE_SIZE];
1045 u32 crc;
1046 unsigned int i;
1048 hash_table_shift = 26 - (pdata->hw_feat.hash_table_size >> 7);
1049 hash_table_count = pdata->hw_feat.hash_table_size / 32;
1050 memset(hash_table, 0, sizeof(hash_table));
1052 /* Build the MAC Hash Table register values */
1053 netdev_for_each_uc_addr(ha, netdev) {
1054 crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1055 crc >>= hash_table_shift;
1056 hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1059 netdev_for_each_mc_addr(ha, netdev) {
1060 crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1061 crc >>= hash_table_shift;
1062 hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1065 /* Set the MAC Hash Table registers */
1066 hash_reg = MAC_HTR0;
1067 for (i = 0; i < hash_table_count; i++) {
1068 XGMAC_IOWRITE(pdata, hash_reg, hash_table[i]);
1069 hash_reg += MAC_HTR_INC;
1073 static int xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
1075 if (pdata->hw_feat.hash_table_size)
1076 xgbe_set_mac_hash_table(pdata);
1077 else
1078 xgbe_set_mac_addn_addrs(pdata);
1080 return 0;
1083 static int xgbe_set_mac_address(struct xgbe_prv_data *pdata, u8 *addr)
1085 unsigned int mac_addr_hi, mac_addr_lo;
1087 mac_addr_hi = (addr[5] << 8) | (addr[4] << 0);
1088 mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
1089 (addr[1] << 8) | (addr[0] << 0);
1091 XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
1092 XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
1094 return 0;
1097 static int xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
1099 struct net_device *netdev = pdata->netdev;
1100 unsigned int pr_mode, am_mode;
1102 pr_mode = ((netdev->flags & IFF_PROMISC) != 0);
1103 am_mode = ((netdev->flags & IFF_ALLMULTI) != 0);
1105 xgbe_set_promiscuous_mode(pdata, pr_mode);
1106 xgbe_set_all_multicast_mode(pdata, am_mode);
1108 xgbe_add_mac_addresses(pdata);
1110 return 0;
1113 static int xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1115 unsigned int reg;
1117 if (gpio > 15)
1118 return -EINVAL;
1120 reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1122 reg &= ~(1 << (gpio + 16));
1123 XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1125 return 0;
1128 static int xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1130 unsigned int reg;
1132 if (gpio > 15)
1133 return -EINVAL;
1135 reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1137 reg |= (1 << (gpio + 16));
1138 XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1140 return 0;
1143 static int xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1144 int mmd_reg)
1146 unsigned long flags;
1147 unsigned int mmd_address, index, offset;
1148 int mmd_data;
1150 if (mmd_reg & MII_ADDR_C45)
1151 mmd_address = mmd_reg & ~MII_ADDR_C45;
1152 else
1153 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1155 /* The PCS registers are accessed using mmio. The underlying
1156 * management interface uses indirect addressing to access the MMD
1157 * register sets. This requires accessing of the PCS register in two
1158 * phases, an address phase and a data phase.
1160 * The mmio interface is based on 16-bit offsets and values. All
1161 * register offsets must therefore be adjusted by left shifting the
1162 * offset 1 bit and reading 16 bits of data.
1164 mmd_address <<= 1;
1165 index = mmd_address & ~pdata->xpcs_window_mask;
1166 offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1168 spin_lock_irqsave(&pdata->xpcs_lock, flags);
1169 XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1170 mmd_data = XPCS16_IOREAD(pdata, offset);
1171 spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1173 return mmd_data;
1176 static void xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1177 int mmd_reg, int mmd_data)
1179 unsigned long flags;
1180 unsigned int mmd_address, index, offset;
1182 if (mmd_reg & MII_ADDR_C45)
1183 mmd_address = mmd_reg & ~MII_ADDR_C45;
1184 else
1185 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1187 /* The PCS registers are accessed using mmio. The underlying
1188 * management interface uses indirect addressing to access the MMD
1189 * register sets. This requires accessing of the PCS register in two
1190 * phases, an address phase and a data phase.
1192 * The mmio interface is based on 16-bit offsets and values. All
1193 * register offsets must therefore be adjusted by left shifting the
1194 * offset 1 bit and writing 16 bits of data.
1196 mmd_address <<= 1;
1197 index = mmd_address & ~pdata->xpcs_window_mask;
1198 offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1200 spin_lock_irqsave(&pdata->xpcs_lock, flags);
1201 XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1202 XPCS16_IOWRITE(pdata, offset, mmd_data);
1203 spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1206 static int xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1207 int mmd_reg)
1209 unsigned long flags;
1210 unsigned int mmd_address;
1211 int mmd_data;
1213 if (mmd_reg & MII_ADDR_C45)
1214 mmd_address = mmd_reg & ~MII_ADDR_C45;
1215 else
1216 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1218 /* The PCS registers are accessed using mmio. The underlying APB3
1219 * management interface uses indirect addressing to access the MMD
1220 * register sets. This requires accessing of the PCS register in two
1221 * phases, an address phase and a data phase.
1223 * The mmio interface is based on 32-bit offsets and values. All
1224 * register offsets must therefore be adjusted by left shifting the
1225 * offset 2 bits and reading 32 bits of data.
1227 spin_lock_irqsave(&pdata->xpcs_lock, flags);
1228 XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1229 mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2);
1230 spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1232 return mmd_data;
1235 static void xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1236 int mmd_reg, int mmd_data)
1238 unsigned int mmd_address;
1239 unsigned long flags;
1241 if (mmd_reg & MII_ADDR_C45)
1242 mmd_address = mmd_reg & ~MII_ADDR_C45;
1243 else
1244 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1246 /* The PCS registers are accessed using mmio. The underlying APB3
1247 * management interface uses indirect addressing to access the MMD
1248 * register sets. This requires accessing of the PCS register in two
1249 * phases, an address phase and a data phase.
1251 * The mmio interface is based on 32-bit offsets and values. All
1252 * register offsets must therefore be adjusted by left shifting the
1253 * offset 2 bits and writing 32 bits of data.
1255 spin_lock_irqsave(&pdata->xpcs_lock, flags);
1256 XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1257 XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
1258 spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1261 static int xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1262 int mmd_reg)
1264 switch (pdata->vdata->xpcs_access) {
1265 case XGBE_XPCS_ACCESS_V1:
1266 return xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg);
1268 case XGBE_XPCS_ACCESS_V2:
1269 default:
1270 return xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg);
1274 static void xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1275 int mmd_reg, int mmd_data)
1277 switch (pdata->vdata->xpcs_access) {
1278 case XGBE_XPCS_ACCESS_V1:
1279 return xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data);
1281 case XGBE_XPCS_ACCESS_V2:
1282 default:
1283 return xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data);
1287 static unsigned int xgbe_create_mdio_sca(int port, int reg)
1289 unsigned int mdio_sca, da;
1291 da = (reg & MII_ADDR_C45) ? reg >> 16 : 0;
1293 mdio_sca = 0;
1294 XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
1295 XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
1296 XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, da);
1298 return mdio_sca;
1301 static int xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata, int addr,
1302 int reg, u16 val)
1304 unsigned int mdio_sca, mdio_sccd;
1306 reinit_completion(&pdata->mdio_complete);
1308 mdio_sca = xgbe_create_mdio_sca(addr, reg);
1309 XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1311 mdio_sccd = 0;
1312 XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val);
1313 XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1);
1314 XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1315 XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1317 if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1318 netdev_err(pdata->netdev, "mdio write operation timed out\n");
1319 return -ETIMEDOUT;
1322 return 0;
1325 static int xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata, int addr,
1326 int reg)
1328 unsigned int mdio_sca, mdio_sccd;
1330 reinit_completion(&pdata->mdio_complete);
1332 mdio_sca = xgbe_create_mdio_sca(addr, reg);
1333 XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1335 mdio_sccd = 0;
1336 XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3);
1337 XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1338 XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1340 if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1341 netdev_err(pdata->netdev, "mdio read operation timed out\n");
1342 return -ETIMEDOUT;
1345 return XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA);
1348 static int xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port,
1349 enum xgbe_mdio_mode mode)
1351 unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R);
1353 switch (mode) {
1354 case XGBE_MDIO_MODE_CL22:
1355 if (port > XGMAC_MAX_C22_PORT)
1356 return -EINVAL;
1357 reg_val |= (1 << port);
1358 break;
1359 case XGBE_MDIO_MODE_CL45:
1360 break;
1361 default:
1362 return -EINVAL;
1365 XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val);
1367 return 0;
1370 static int xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
1372 return !XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN);
1375 static int xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
1377 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
1379 return 0;
1382 static int xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
1384 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
1386 return 0;
1389 static void xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
1391 struct xgbe_ring_desc *rdesc = rdata->rdesc;
1393 /* Reset the Tx descriptor
1394 * Set buffer 1 (lo) address to zero
1395 * Set buffer 1 (hi) address to zero
1396 * Reset all other control bits (IC, TTSE, B2L & B1L)
1397 * Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
1399 rdesc->desc0 = 0;
1400 rdesc->desc1 = 0;
1401 rdesc->desc2 = 0;
1402 rdesc->desc3 = 0;
1404 /* Make sure ownership is written to the descriptor */
1405 dma_wmb();
1408 static void xgbe_tx_desc_init(struct xgbe_channel *channel)
1410 struct xgbe_ring *ring = channel->tx_ring;
1411 struct xgbe_ring_data *rdata;
1412 int i;
1413 int start_index = ring->cur;
1415 DBGPR("-->tx_desc_init\n");
1417 /* Initialze all descriptors */
1418 for (i = 0; i < ring->rdesc_count; i++) {
1419 rdata = XGBE_GET_DESC_DATA(ring, i);
1421 /* Initialize Tx descriptor */
1422 xgbe_tx_desc_reset(rdata);
1425 /* Update the total number of Tx descriptors */
1426 XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
1428 /* Update the starting address of descriptor ring */
1429 rdata = XGBE_GET_DESC_DATA(ring, start_index);
1430 XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
1431 upper_32_bits(rdata->rdesc_dma));
1432 XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
1433 lower_32_bits(rdata->rdesc_dma));
1435 DBGPR("<--tx_desc_init\n");
1438 static void xgbe_rx_desc_reset(struct xgbe_prv_data *pdata,
1439 struct xgbe_ring_data *rdata, unsigned int index)
1441 struct xgbe_ring_desc *rdesc = rdata->rdesc;
1442 unsigned int rx_usecs = pdata->rx_usecs;
1443 unsigned int rx_frames = pdata->rx_frames;
1444 unsigned int inte;
1445 dma_addr_t hdr_dma, buf_dma;
1447 if (!rx_usecs && !rx_frames) {
1448 /* No coalescing, interrupt for every descriptor */
1449 inte = 1;
1450 } else {
1451 /* Set interrupt based on Rx frame coalescing setting */
1452 if (rx_frames && !((index + 1) % rx_frames))
1453 inte = 1;
1454 else
1455 inte = 0;
1458 /* Reset the Rx descriptor
1459 * Set buffer 1 (lo) address to header dma address (lo)
1460 * Set buffer 1 (hi) address to header dma address (hi)
1461 * Set buffer 2 (lo) address to buffer dma address (lo)
1462 * Set buffer 2 (hi) address to buffer dma address (hi) and
1463 * set control bits OWN and INTE
1465 hdr_dma = rdata->rx.hdr.dma_base + rdata->rx.hdr.dma_off;
1466 buf_dma = rdata->rx.buf.dma_base + rdata->rx.buf.dma_off;
1467 rdesc->desc0 = cpu_to_le32(lower_32_bits(hdr_dma));
1468 rdesc->desc1 = cpu_to_le32(upper_32_bits(hdr_dma));
1469 rdesc->desc2 = cpu_to_le32(lower_32_bits(buf_dma));
1470 rdesc->desc3 = cpu_to_le32(upper_32_bits(buf_dma));
1472 XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, INTE, inte);
1474 /* Since the Rx DMA engine is likely running, make sure everything
1475 * is written to the descriptor(s) before setting the OWN bit
1476 * for the descriptor
1478 dma_wmb();
1480 XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN, 1);
1482 /* Make sure ownership is written to the descriptor */
1483 dma_wmb();
1486 static void xgbe_rx_desc_init(struct xgbe_channel *channel)
1488 struct xgbe_prv_data *pdata = channel->pdata;
1489 struct xgbe_ring *ring = channel->rx_ring;
1490 struct xgbe_ring_data *rdata;
1491 unsigned int start_index = ring->cur;
1492 unsigned int i;
1494 DBGPR("-->rx_desc_init\n");
1496 /* Initialize all descriptors */
1497 for (i = 0; i < ring->rdesc_count; i++) {
1498 rdata = XGBE_GET_DESC_DATA(ring, i);
1500 /* Initialize Rx descriptor */
1501 xgbe_rx_desc_reset(pdata, rdata, i);
1504 /* Update the total number of Rx descriptors */
1505 XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
1507 /* Update the starting address of descriptor ring */
1508 rdata = XGBE_GET_DESC_DATA(ring, start_index);
1509 XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
1510 upper_32_bits(rdata->rdesc_dma));
1511 XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
1512 lower_32_bits(rdata->rdesc_dma));
1514 /* Update the Rx Descriptor Tail Pointer */
1515 rdata = XGBE_GET_DESC_DATA(ring, start_index + ring->rdesc_count - 1);
1516 XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO,
1517 lower_32_bits(rdata->rdesc_dma));
1519 DBGPR("<--rx_desc_init\n");
1522 static void xgbe_update_tstamp_addend(struct xgbe_prv_data *pdata,
1523 unsigned int addend)
1525 unsigned int count = 10000;
1527 /* Set the addend register value and tell the device */
1528 XGMAC_IOWRITE(pdata, MAC_TSAR, addend);
1529 XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSADDREG, 1);
1531 /* Wait for addend update to complete */
1532 while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSADDREG))
1533 udelay(5);
1535 if (!count)
1536 netdev_err(pdata->netdev,
1537 "timed out updating timestamp addend register\n");
1540 static void xgbe_set_tstamp_time(struct xgbe_prv_data *pdata, unsigned int sec,
1541 unsigned int nsec)
1543 unsigned int count = 10000;
1545 /* Set the time values and tell the device */
1546 XGMAC_IOWRITE(pdata, MAC_STSUR, sec);
1547 XGMAC_IOWRITE(pdata, MAC_STNUR, nsec);
1548 XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSINIT, 1);
1550 /* Wait for time update to complete */
1551 while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSINIT))
1552 udelay(5);
1554 if (!count)
1555 netdev_err(pdata->netdev, "timed out initializing timestamp\n");
1558 static u64 xgbe_get_tstamp_time(struct xgbe_prv_data *pdata)
1560 u64 nsec;
1562 nsec = XGMAC_IOREAD(pdata, MAC_STSR);
1563 nsec *= NSEC_PER_SEC;
1564 nsec += XGMAC_IOREAD(pdata, MAC_STNR);
1566 return nsec;
1569 static u64 xgbe_get_tx_tstamp(struct xgbe_prv_data *pdata)
1571 unsigned int tx_snr, tx_ssr;
1572 u64 nsec;
1574 if (pdata->vdata->tx_tstamp_workaround) {
1575 tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1576 tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1577 } else {
1578 tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1579 tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1582 if (XGMAC_GET_BITS(tx_snr, MAC_TXSNR, TXTSSTSMIS))
1583 return 0;
1585 nsec = tx_ssr;
1586 nsec *= NSEC_PER_SEC;
1587 nsec += tx_snr;
1589 return nsec;
1592 static void xgbe_get_rx_tstamp(struct xgbe_packet_data *packet,
1593 struct xgbe_ring_desc *rdesc)
1595 u64 nsec;
1597 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSA) &&
1598 !XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSD)) {
1599 nsec = le32_to_cpu(rdesc->desc1);
1600 nsec <<= 32;
1601 nsec |= le32_to_cpu(rdesc->desc0);
1602 if (nsec != 0xffffffffffffffffULL) {
1603 packet->rx_tstamp = nsec;
1604 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1605 RX_TSTAMP, 1);
1610 static int xgbe_config_tstamp(struct xgbe_prv_data *pdata,
1611 unsigned int mac_tscr)
1613 /* Set one nano-second accuracy */
1614 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCTRLSSR, 1);
1616 /* Set fine timestamp update */
1617 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCFUPDT, 1);
1619 /* Overwrite earlier timestamps */
1620 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TXTSSTSM, 1);
1622 XGMAC_IOWRITE(pdata, MAC_TSCR, mac_tscr);
1624 /* Exit if timestamping is not enabled */
1625 if (!XGMAC_GET_BITS(mac_tscr, MAC_TSCR, TSENA))
1626 return 0;
1628 /* Initialize time registers */
1629 XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SSINC, XGBE_TSTAMP_SSINC);
1630 XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SNSINC, XGBE_TSTAMP_SNSINC);
1631 xgbe_update_tstamp_addend(pdata, pdata->tstamp_addend);
1632 xgbe_set_tstamp_time(pdata, 0, 0);
1634 /* Initialize the timecounter */
1635 timecounter_init(&pdata->tstamp_tc, &pdata->tstamp_cc,
1636 ktime_to_ns(ktime_get_real()));
1638 return 0;
1641 static void xgbe_tx_start_xmit(struct xgbe_channel *channel,
1642 struct xgbe_ring *ring)
1644 struct xgbe_prv_data *pdata = channel->pdata;
1645 struct xgbe_ring_data *rdata;
1647 /* Make sure everything is written before the register write */
1648 wmb();
1650 /* Issue a poll command to Tx DMA by writing address
1651 * of next immediate free descriptor */
1652 rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1653 XGMAC_DMA_IOWRITE(channel, DMA_CH_TDTR_LO,
1654 lower_32_bits(rdata->rdesc_dma));
1656 /* Start the Tx timer */
1657 if (pdata->tx_usecs && !channel->tx_timer_active) {
1658 channel->tx_timer_active = 1;
1659 mod_timer(&channel->tx_timer,
1660 jiffies + usecs_to_jiffies(pdata->tx_usecs));
1663 ring->tx.xmit_more = 0;
1666 static void xgbe_dev_xmit(struct xgbe_channel *channel)
1668 struct xgbe_prv_data *pdata = channel->pdata;
1669 struct xgbe_ring *ring = channel->tx_ring;
1670 struct xgbe_ring_data *rdata;
1671 struct xgbe_ring_desc *rdesc;
1672 struct xgbe_packet_data *packet = &ring->packet_data;
1673 unsigned int tx_packets, tx_bytes;
1674 unsigned int csum, tso, vlan, vxlan;
1675 unsigned int tso_context, vlan_context;
1676 unsigned int tx_set_ic;
1677 int start_index = ring->cur;
1678 int cur_index = ring->cur;
1679 int i;
1681 DBGPR("-->xgbe_dev_xmit\n");
1683 tx_packets = packet->tx_packets;
1684 tx_bytes = packet->tx_bytes;
1686 csum = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1687 CSUM_ENABLE);
1688 tso = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1689 TSO_ENABLE);
1690 vlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1691 VLAN_CTAG);
1692 vxlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1693 VXLAN);
1695 if (tso && (packet->mss != ring->tx.cur_mss))
1696 tso_context = 1;
1697 else
1698 tso_context = 0;
1700 if (vlan && (packet->vlan_ctag != ring->tx.cur_vlan_ctag))
1701 vlan_context = 1;
1702 else
1703 vlan_context = 0;
1705 /* Determine if an interrupt should be generated for this Tx:
1706 * Interrupt:
1707 * - Tx frame count exceeds the frame count setting
1708 * - Addition of Tx frame count to the frame count since the
1709 * last interrupt was set exceeds the frame count setting
1710 * No interrupt:
1711 * - No frame count setting specified (ethtool -C ethX tx-frames 0)
1712 * - Addition of Tx frame count to the frame count since the
1713 * last interrupt was set does not exceed the frame count setting
1715 ring->coalesce_count += tx_packets;
1716 if (!pdata->tx_frames)
1717 tx_set_ic = 0;
1718 else if (tx_packets > pdata->tx_frames)
1719 tx_set_ic = 1;
1720 else if ((ring->coalesce_count % pdata->tx_frames) < tx_packets)
1721 tx_set_ic = 1;
1722 else
1723 tx_set_ic = 0;
1725 rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1726 rdesc = rdata->rdesc;
1728 /* Create a context descriptor if this is a TSO packet */
1729 if (tso_context || vlan_context) {
1730 if (tso_context) {
1731 netif_dbg(pdata, tx_queued, pdata->netdev,
1732 "TSO context descriptor, mss=%u\n",
1733 packet->mss);
1735 /* Set the MSS size */
1736 XGMAC_SET_BITS_LE(rdesc->desc2, TX_CONTEXT_DESC2,
1737 MSS, packet->mss);
1739 /* Mark it as a CONTEXT descriptor */
1740 XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1741 CTXT, 1);
1743 /* Indicate this descriptor contains the MSS */
1744 XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1745 TCMSSV, 1);
1747 ring->tx.cur_mss = packet->mss;
1750 if (vlan_context) {
1751 netif_dbg(pdata, tx_queued, pdata->netdev,
1752 "VLAN context descriptor, ctag=%u\n",
1753 packet->vlan_ctag);
1755 /* Mark it as a CONTEXT descriptor */
1756 XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1757 CTXT, 1);
1759 /* Set the VLAN tag */
1760 XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1761 VT, packet->vlan_ctag);
1763 /* Indicate this descriptor contains the VLAN tag */
1764 XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1765 VLTV, 1);
1767 ring->tx.cur_vlan_ctag = packet->vlan_ctag;
1770 cur_index++;
1771 rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1772 rdesc = rdata->rdesc;
1775 /* Update buffer address (for TSO this is the header) */
1776 rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma));
1777 rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma));
1779 /* Update the buffer length */
1780 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1781 rdata->skb_dma_len);
1783 /* VLAN tag insertion check */
1784 if (vlan)
1785 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, VTIR,
1786 TX_NORMAL_DESC2_VLAN_INSERT);
1788 /* Timestamp enablement check */
1789 if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP))
1790 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, TTSE, 1);
1792 /* Mark it as First Descriptor */
1793 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FD, 1);
1795 /* Mark it as a NORMAL descriptor */
1796 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1798 /* Set OWN bit if not the first descriptor */
1799 if (cur_index != start_index)
1800 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1802 if (tso) {
1803 /* Enable TSO */
1804 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TSE, 1);
1805 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPPL,
1806 packet->tcp_payload_len);
1807 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPHDRLEN,
1808 packet->tcp_header_len / 4);
1810 pdata->ext_stats.tx_tso_packets += tx_packets;
1811 } else {
1812 /* Enable CRC and Pad Insertion */
1813 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CPC, 0);
1815 /* Enable HW CSUM */
1816 if (csum)
1817 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1818 CIC, 0x3);
1820 /* Set the total length to be transmitted */
1821 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FL,
1822 packet->length);
1825 if (vxlan) {
1826 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, VNP,
1827 TX_NORMAL_DESC3_VXLAN_PACKET);
1829 pdata->ext_stats.tx_vxlan_packets += packet->tx_packets;
1832 for (i = cur_index - start_index + 1; i < packet->rdesc_count; i++) {
1833 cur_index++;
1834 rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1835 rdesc = rdata->rdesc;
1837 /* Update buffer address */
1838 rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma));
1839 rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma));
1841 /* Update the buffer length */
1842 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1843 rdata->skb_dma_len);
1845 /* Set OWN bit */
1846 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1848 /* Mark it as NORMAL descriptor */
1849 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1851 /* Enable HW CSUM */
1852 if (csum)
1853 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1854 CIC, 0x3);
1857 /* Set LAST bit for the last descriptor */
1858 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD, 1);
1860 /* Set IC bit based on Tx coalescing settings */
1861 if (tx_set_ic)
1862 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, IC, 1);
1864 /* Save the Tx info to report back during cleanup */
1865 rdata->tx.packets = tx_packets;
1866 rdata->tx.bytes = tx_bytes;
1868 pdata->ext_stats.txq_packets[channel->queue_index] += tx_packets;
1869 pdata->ext_stats.txq_bytes[channel->queue_index] += tx_bytes;
1871 /* In case the Tx DMA engine is running, make sure everything
1872 * is written to the descriptor(s) before setting the OWN bit
1873 * for the first descriptor
1875 dma_wmb();
1877 /* Set OWN bit for the first descriptor */
1878 rdata = XGBE_GET_DESC_DATA(ring, start_index);
1879 rdesc = rdata->rdesc;
1880 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1882 if (netif_msg_tx_queued(pdata))
1883 xgbe_dump_tx_desc(pdata, ring, start_index,
1884 packet->rdesc_count, 1);
1886 /* Make sure ownership is written to the descriptor */
1887 smp_wmb();
1889 ring->cur = cur_index + 1;
1890 if (!netdev_xmit_more() ||
1891 netif_xmit_stopped(netdev_get_tx_queue(pdata->netdev,
1892 channel->queue_index)))
1893 xgbe_tx_start_xmit(channel, ring);
1894 else
1895 ring->tx.xmit_more = 1;
1897 DBGPR(" %s: descriptors %u to %u written\n",
1898 channel->name, start_index & (ring->rdesc_count - 1),
1899 (ring->cur - 1) & (ring->rdesc_count - 1));
1901 DBGPR("<--xgbe_dev_xmit\n");
1904 static int xgbe_dev_read(struct xgbe_channel *channel)
1906 struct xgbe_prv_data *pdata = channel->pdata;
1907 struct xgbe_ring *ring = channel->rx_ring;
1908 struct xgbe_ring_data *rdata;
1909 struct xgbe_ring_desc *rdesc;
1910 struct xgbe_packet_data *packet = &ring->packet_data;
1911 struct net_device *netdev = pdata->netdev;
1912 unsigned int err, etlt, l34t;
1914 DBGPR("-->xgbe_dev_read: cur = %d\n", ring->cur);
1916 rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1917 rdesc = rdata->rdesc;
1919 /* Check for data availability */
1920 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
1921 return 1;
1923 /* Make sure descriptor fields are read after reading the OWN bit */
1924 dma_rmb();
1926 if (netif_msg_rx_status(pdata))
1927 xgbe_dump_rx_desc(pdata, ring, ring->cur);
1929 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
1930 /* Timestamp Context Descriptor */
1931 xgbe_get_rx_tstamp(packet, rdesc);
1933 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1934 CONTEXT, 1);
1935 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1936 CONTEXT_NEXT, 0);
1937 return 0;
1940 /* Normal Descriptor, be sure Context Descriptor bit is off */
1941 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
1943 /* Indicate if a Context Descriptor is next */
1944 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
1945 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1946 CONTEXT_NEXT, 1);
1948 /* Get the header length */
1949 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
1950 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1951 FIRST, 1);
1952 rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
1953 RX_NORMAL_DESC2, HL);
1954 if (rdata->rx.hdr_len)
1955 pdata->ext_stats.rx_split_header_packets++;
1956 } else {
1957 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1958 FIRST, 0);
1961 /* Get the RSS hash */
1962 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
1963 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1964 RSS_HASH, 1);
1966 packet->rss_hash = le32_to_cpu(rdesc->desc1);
1968 l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
1969 switch (l34t) {
1970 case RX_DESC3_L34T_IPV4_TCP:
1971 case RX_DESC3_L34T_IPV4_UDP:
1972 case RX_DESC3_L34T_IPV6_TCP:
1973 case RX_DESC3_L34T_IPV6_UDP:
1974 packet->rss_hash_type = PKT_HASH_TYPE_L4;
1975 break;
1976 default:
1977 packet->rss_hash_type = PKT_HASH_TYPE_L3;
1981 /* Not all the data has been transferred for this packet */
1982 if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD))
1983 return 0;
1985 /* This is the last of the data for this packet */
1986 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1987 LAST, 1);
1989 /* Get the packet length */
1990 rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
1992 /* Set checksum done indicator as appropriate */
1993 if (netdev->features & NETIF_F_RXCSUM) {
1994 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1995 CSUM_DONE, 1);
1996 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1997 TNPCSUM_DONE, 1);
2000 /* Set the tunneled packet indicator */
2001 if (XGMAC_GET_BITS_LE(rdesc->desc2, RX_NORMAL_DESC2, TNP)) {
2002 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2003 TNP, 1);
2004 pdata->ext_stats.rx_vxlan_packets++;
2006 l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
2007 switch (l34t) {
2008 case RX_DESC3_L34T_IPV4_UNKNOWN:
2009 case RX_DESC3_L34T_IPV6_UNKNOWN:
2010 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2011 TNPCSUM_DONE, 0);
2012 break;
2016 /* Check for errors (only valid in last descriptor) */
2017 err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
2018 etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
2019 netif_dbg(pdata, rx_status, netdev, "err=%u, etlt=%#x\n", err, etlt);
2021 if (!err || !etlt) {
2022 /* No error if err is 0 or etlt is 0 */
2023 if ((etlt == 0x09) &&
2024 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
2025 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2026 VLAN_CTAG, 1);
2027 packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
2028 RX_NORMAL_DESC0,
2029 OVT);
2030 netif_dbg(pdata, rx_status, netdev, "vlan-ctag=%#06x\n",
2031 packet->vlan_ctag);
2033 } else {
2034 unsigned int tnp = XGMAC_GET_BITS(packet->attributes,
2035 RX_PACKET_ATTRIBUTES, TNP);
2037 if ((etlt == 0x05) || (etlt == 0x06)) {
2038 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2039 CSUM_DONE, 0);
2040 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2041 TNPCSUM_DONE, 0);
2042 pdata->ext_stats.rx_csum_errors++;
2043 } else if (tnp && ((etlt == 0x09) || (etlt == 0x0a))) {
2044 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2045 CSUM_DONE, 0);
2046 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2047 TNPCSUM_DONE, 0);
2048 pdata->ext_stats.rx_vxlan_csum_errors++;
2049 } else {
2050 XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
2051 FRAME, 1);
2055 pdata->ext_stats.rxq_packets[channel->queue_index]++;
2056 pdata->ext_stats.rxq_bytes[channel->queue_index] += rdata->rx.len;
2058 DBGPR("<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n", channel->name,
2059 ring->cur & (ring->rdesc_count - 1), ring->cur);
2061 return 0;
2064 static int xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
2066 /* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
2067 return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT);
2070 static int xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
2072 /* Rx and Tx share LD bit, so check TDES3.LD bit */
2073 return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD);
2076 static int xgbe_enable_int(struct xgbe_channel *channel,
2077 enum xgbe_int int_id)
2079 switch (int_id) {
2080 case XGMAC_INT_DMA_CH_SR_TI:
2081 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
2082 break;
2083 case XGMAC_INT_DMA_CH_SR_TPS:
2084 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 1);
2085 break;
2086 case XGMAC_INT_DMA_CH_SR_TBU:
2087 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 1);
2088 break;
2089 case XGMAC_INT_DMA_CH_SR_RI:
2090 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
2091 break;
2092 case XGMAC_INT_DMA_CH_SR_RBU:
2093 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
2094 break;
2095 case XGMAC_INT_DMA_CH_SR_RPS:
2096 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 1);
2097 break;
2098 case XGMAC_INT_DMA_CH_SR_TI_RI:
2099 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
2100 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
2101 break;
2102 case XGMAC_INT_DMA_CH_SR_FBE:
2103 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
2104 break;
2105 case XGMAC_INT_DMA_ALL:
2106 channel->curr_ier |= channel->saved_ier;
2107 break;
2108 default:
2109 return -1;
2112 XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
2114 return 0;
2117 static int xgbe_disable_int(struct xgbe_channel *channel,
2118 enum xgbe_int int_id)
2120 switch (int_id) {
2121 case XGMAC_INT_DMA_CH_SR_TI:
2122 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
2123 break;
2124 case XGMAC_INT_DMA_CH_SR_TPS:
2125 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 0);
2126 break;
2127 case XGMAC_INT_DMA_CH_SR_TBU:
2128 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 0);
2129 break;
2130 case XGMAC_INT_DMA_CH_SR_RI:
2131 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
2132 break;
2133 case XGMAC_INT_DMA_CH_SR_RBU:
2134 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 0);
2135 break;
2136 case XGMAC_INT_DMA_CH_SR_RPS:
2137 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 0);
2138 break;
2139 case XGMAC_INT_DMA_CH_SR_TI_RI:
2140 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
2141 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
2142 break;
2143 case XGMAC_INT_DMA_CH_SR_FBE:
2144 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 0);
2145 break;
2146 case XGMAC_INT_DMA_ALL:
2147 channel->saved_ier = channel->curr_ier;
2148 channel->curr_ier = 0;
2149 break;
2150 default:
2151 return -1;
2154 XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
2156 return 0;
2159 static int __xgbe_exit(struct xgbe_prv_data *pdata)
2161 unsigned int count = 2000;
2163 DBGPR("-->xgbe_exit\n");
2165 /* Issue a software reset */
2166 XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
2167 usleep_range(10, 15);
2169 /* Poll Until Poll Condition */
2170 while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
2171 usleep_range(500, 600);
2173 if (!count)
2174 return -EBUSY;
2176 DBGPR("<--xgbe_exit\n");
2178 return 0;
2181 static int xgbe_exit(struct xgbe_prv_data *pdata)
2183 int ret;
2185 /* To guard against possible incorrectly generated interrupts,
2186 * issue the software reset twice.
2188 ret = __xgbe_exit(pdata);
2189 if (ret)
2190 return ret;
2192 return __xgbe_exit(pdata);
2195 static int xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
2197 unsigned int i, count;
2199 if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
2200 return 0;
2202 for (i = 0; i < pdata->tx_q_count; i++)
2203 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
2205 /* Poll Until Poll Condition */
2206 for (i = 0; i < pdata->tx_q_count; i++) {
2207 count = 2000;
2208 while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
2209 MTL_Q_TQOMR, FTQ))
2210 usleep_range(500, 600);
2212 if (!count)
2213 return -EBUSY;
2216 return 0;
2219 static void xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
2221 unsigned int sbmr;
2223 sbmr = XGMAC_IOREAD(pdata, DMA_SBMR);
2225 /* Set enhanced addressing mode */
2226 XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1);
2228 /* Set the System Bus mode */
2229 XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1);
2230 XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2);
2231 XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal);
2232 XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1);
2233 XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1);
2235 XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr);
2237 /* Set descriptor fetching threshold */
2238 if (pdata->vdata->tx_desc_prefetch)
2239 XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS,
2240 pdata->vdata->tx_desc_prefetch);
2242 if (pdata->vdata->rx_desc_prefetch)
2243 XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS,
2244 pdata->vdata->rx_desc_prefetch);
2247 static void xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
2249 XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr);
2250 XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr);
2251 if (pdata->awarcr)
2252 XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr);
2255 static void xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
2257 unsigned int i;
2259 /* Set Tx to weighted round robin scheduling algorithm */
2260 XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
2262 /* Set Tx traffic classes to use WRR algorithm with equal weights */
2263 for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2264 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2265 MTL_TSA_ETS);
2266 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
2269 /* Set Rx to strict priority algorithm */
2270 XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
2273 static void xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata,
2274 unsigned int queue,
2275 unsigned int q_fifo_size)
2277 unsigned int frame_fifo_size;
2278 unsigned int rfa, rfd;
2280 frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata));
2282 if (pdata->pfcq[queue] && (q_fifo_size > pdata->pfc_rfa)) {
2283 /* PFC is active for this queue */
2284 rfa = pdata->pfc_rfa;
2285 rfd = rfa + frame_fifo_size;
2286 if (rfd > XGMAC_FLOW_CONTROL_MAX)
2287 rfd = XGMAC_FLOW_CONTROL_MAX;
2288 if (rfa >= XGMAC_FLOW_CONTROL_MAX)
2289 rfa = XGMAC_FLOW_CONTROL_MAX - XGMAC_FLOW_CONTROL_UNIT;
2290 } else {
2291 /* This path deals with just maximum frame sizes which are
2292 * limited to a jumbo frame of 9,000 (plus headers, etc.)
2293 * so we can never exceed the maximum allowable RFA/RFD
2294 * values.
2296 if (q_fifo_size <= 2048) {
2297 /* rx_rfd to zero to signal no flow control */
2298 pdata->rx_rfa[queue] = 0;
2299 pdata->rx_rfd[queue] = 0;
2300 return;
2303 if (q_fifo_size <= 4096) {
2304 /* Between 2048 and 4096 */
2305 pdata->rx_rfa[queue] = 0; /* Full - 1024 bytes */
2306 pdata->rx_rfd[queue] = 1; /* Full - 1536 bytes */
2307 return;
2310 if (q_fifo_size <= frame_fifo_size) {
2311 /* Between 4096 and max-frame */
2312 pdata->rx_rfa[queue] = 2; /* Full - 2048 bytes */
2313 pdata->rx_rfd[queue] = 5; /* Full - 3584 bytes */
2314 return;
2317 if (q_fifo_size <= (frame_fifo_size * 3)) {
2318 /* Between max-frame and 3 max-frames,
2319 * trigger if we get just over a frame of data and
2320 * resume when we have just under half a frame left.
2322 rfa = q_fifo_size - frame_fifo_size;
2323 rfd = rfa + (frame_fifo_size / 2);
2324 } else {
2325 /* Above 3 max-frames - trigger when just over
2326 * 2 frames of space available
2328 rfa = frame_fifo_size * 2;
2329 rfa += XGMAC_FLOW_CONTROL_UNIT;
2330 rfd = rfa + frame_fifo_size;
2334 pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa);
2335 pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd);
2338 static void xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata,
2339 unsigned int *fifo)
2341 unsigned int q_fifo_size;
2342 unsigned int i;
2344 for (i = 0; i < pdata->rx_q_count; i++) {
2345 q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT;
2347 xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size);
2351 static void xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
2353 unsigned int i;
2355 for (i = 0; i < pdata->rx_q_count; i++) {
2356 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA,
2357 pdata->rx_rfa[i]);
2358 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD,
2359 pdata->rx_rfd[i]);
2363 static unsigned int xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata)
2365 /* The configured value may not be the actual amount of fifo RAM */
2366 return min_t(unsigned int, pdata->tx_max_fifo_size,
2367 pdata->hw_feat.tx_fifo_size);
2370 static unsigned int xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata)
2372 /* The configured value may not be the actual amount of fifo RAM */
2373 return min_t(unsigned int, pdata->rx_max_fifo_size,
2374 pdata->hw_feat.rx_fifo_size);
2377 static void xgbe_calculate_equal_fifo(unsigned int fifo_size,
2378 unsigned int queue_count,
2379 unsigned int *fifo)
2381 unsigned int q_fifo_size;
2382 unsigned int p_fifo;
2383 unsigned int i;
2385 q_fifo_size = fifo_size / queue_count;
2387 /* Calculate the fifo setting by dividing the queue's fifo size
2388 * by the fifo allocation increment (with 0 representing the
2389 * base allocation increment so decrement the result by 1).
2391 p_fifo = q_fifo_size / XGMAC_FIFO_UNIT;
2392 if (p_fifo)
2393 p_fifo--;
2395 /* Distribute the fifo equally amongst the queues */
2396 for (i = 0; i < queue_count; i++)
2397 fifo[i] = p_fifo;
2400 static unsigned int xgbe_set_nonprio_fifos(unsigned int fifo_size,
2401 unsigned int queue_count,
2402 unsigned int *fifo)
2404 unsigned int i;
2406 BUILD_BUG_ON_NOT_POWER_OF_2(XGMAC_FIFO_MIN_ALLOC);
2408 if (queue_count <= IEEE_8021QAZ_MAX_TCS)
2409 return fifo_size;
2411 /* Rx queues 9 and up are for specialized packets,
2412 * such as PTP or DCB control packets, etc. and
2413 * don't require a large fifo
2415 for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) {
2416 fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1;
2417 fifo_size -= XGMAC_FIFO_MIN_ALLOC;
2420 return fifo_size;
2423 static unsigned int xgbe_get_pfc_delay(struct xgbe_prv_data *pdata)
2425 unsigned int delay;
2427 /* If a delay has been provided, use that */
2428 if (pdata->pfc->delay)
2429 return pdata->pfc->delay / 8;
2431 /* Allow for two maximum size frames */
2432 delay = xgbe_get_max_frame(pdata);
2433 delay += XGMAC_ETH_PREAMBLE;
2434 delay *= 2;
2436 /* Allow for PFC frame */
2437 delay += XGMAC_PFC_DATA_LEN;
2438 delay += ETH_HLEN + ETH_FCS_LEN;
2439 delay += XGMAC_ETH_PREAMBLE;
2441 /* Allow for miscellaneous delays (LPI exit, cable, etc.) */
2442 delay += XGMAC_PFC_DELAYS;
2444 return delay;
2447 static unsigned int xgbe_get_pfc_queues(struct xgbe_prv_data *pdata)
2449 unsigned int count, prio_queues;
2450 unsigned int i;
2452 if (!pdata->pfc->pfc_en)
2453 return 0;
2455 count = 0;
2456 prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2457 for (i = 0; i < prio_queues; i++) {
2458 if (!xgbe_is_pfc_queue(pdata, i))
2459 continue;
2461 pdata->pfcq[i] = 1;
2462 count++;
2465 return count;
2468 static void xgbe_calculate_dcb_fifo(struct xgbe_prv_data *pdata,
2469 unsigned int fifo_size,
2470 unsigned int *fifo)
2472 unsigned int q_fifo_size, rem_fifo, addn_fifo;
2473 unsigned int prio_queues;
2474 unsigned int pfc_count;
2475 unsigned int i;
2477 q_fifo_size = XGMAC_FIFO_ALIGN(xgbe_get_max_frame(pdata));
2478 prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2479 pfc_count = xgbe_get_pfc_queues(pdata);
2481 if (!pfc_count || ((q_fifo_size * prio_queues) > fifo_size)) {
2482 /* No traffic classes with PFC enabled or can't do lossless */
2483 xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2484 return;
2487 /* Calculate how much fifo we have to play with */
2488 rem_fifo = fifo_size - (q_fifo_size * prio_queues);
2490 /* Calculate how much more than base fifo PFC needs, which also
2491 * becomes the threshold activation point (RFA)
2493 pdata->pfc_rfa = xgbe_get_pfc_delay(pdata);
2494 pdata->pfc_rfa = XGMAC_FLOW_CONTROL_ALIGN(pdata->pfc_rfa);
2496 if (pdata->pfc_rfa > q_fifo_size) {
2497 addn_fifo = pdata->pfc_rfa - q_fifo_size;
2498 addn_fifo = XGMAC_FIFO_ALIGN(addn_fifo);
2499 } else {
2500 addn_fifo = 0;
2503 /* Calculate DCB fifo settings:
2504 * - distribute remaining fifo between the VLAN priority
2505 * queues based on traffic class PFC enablement and overall
2506 * priority (0 is lowest priority, so start at highest)
2508 i = prio_queues;
2509 while (i > 0) {
2510 i--;
2512 fifo[i] = (q_fifo_size / XGMAC_FIFO_UNIT) - 1;
2514 if (!pdata->pfcq[i] || !addn_fifo)
2515 continue;
2517 if (addn_fifo > rem_fifo) {
2518 netdev_warn(pdata->netdev,
2519 "RXq%u cannot set needed fifo size\n", i);
2520 if (!rem_fifo)
2521 continue;
2523 addn_fifo = rem_fifo;
2526 fifo[i] += (addn_fifo / XGMAC_FIFO_UNIT);
2527 rem_fifo -= addn_fifo;
2530 if (rem_fifo) {
2531 unsigned int inc_fifo = rem_fifo / prio_queues;
2533 /* Distribute remaining fifo across queues */
2534 for (i = 0; i < prio_queues; i++)
2535 fifo[i] += (inc_fifo / XGMAC_FIFO_UNIT);
2539 static void xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
2541 unsigned int fifo_size;
2542 unsigned int fifo[XGBE_MAX_QUEUES];
2543 unsigned int i;
2545 fifo_size = xgbe_get_tx_fifo_size(pdata);
2547 xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo);
2549 for (i = 0; i < pdata->tx_q_count; i++)
2550 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]);
2552 netif_info(pdata, drv, pdata->netdev,
2553 "%d Tx hardware queues, %d byte fifo per queue\n",
2554 pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2557 static void xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
2559 unsigned int fifo_size;
2560 unsigned int fifo[XGBE_MAX_QUEUES];
2561 unsigned int prio_queues;
2562 unsigned int i;
2564 /* Clear any DCB related fifo/queue information */
2565 memset(pdata->pfcq, 0, sizeof(pdata->pfcq));
2566 pdata->pfc_rfa = 0;
2568 fifo_size = xgbe_get_rx_fifo_size(pdata);
2569 prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2571 /* Assign a minimum fifo to the non-VLAN priority queues */
2572 fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo);
2574 if (pdata->pfc && pdata->ets)
2575 xgbe_calculate_dcb_fifo(pdata, fifo_size, fifo);
2576 else
2577 xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2579 for (i = 0; i < pdata->rx_q_count; i++)
2580 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]);
2582 xgbe_calculate_flow_control_threshold(pdata, fifo);
2583 xgbe_config_flow_control_threshold(pdata);
2585 if (pdata->pfc && pdata->ets && pdata->pfc->pfc_en) {
2586 netif_info(pdata, drv, pdata->netdev,
2587 "%u Rx hardware queues\n", pdata->rx_q_count);
2588 for (i = 0; i < pdata->rx_q_count; i++)
2589 netif_info(pdata, drv, pdata->netdev,
2590 "RxQ%u, %u byte fifo queue\n", i,
2591 ((fifo[i] + 1) * XGMAC_FIFO_UNIT));
2592 } else {
2593 netif_info(pdata, drv, pdata->netdev,
2594 "%u Rx hardware queues, %u byte fifo per queue\n",
2595 pdata->rx_q_count,
2596 ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2600 static void xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
2602 unsigned int qptc, qptc_extra, queue;
2603 unsigned int prio_queues;
2604 unsigned int ppq, ppq_extra, prio;
2605 unsigned int mask;
2606 unsigned int i, j, reg, reg_val;
2608 /* Map the MTL Tx Queues to Traffic Classes
2609 * Note: Tx Queues >= Traffic Classes
2611 qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
2612 qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
2614 for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
2615 for (j = 0; j < qptc; j++) {
2616 netif_dbg(pdata, drv, pdata->netdev,
2617 "TXq%u mapped to TC%u\n", queue, i);
2618 XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2619 Q2TCMAP, i);
2620 pdata->q2tc_map[queue++] = i;
2623 if (i < qptc_extra) {
2624 netif_dbg(pdata, drv, pdata->netdev,
2625 "TXq%u mapped to TC%u\n", queue, i);
2626 XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2627 Q2TCMAP, i);
2628 pdata->q2tc_map[queue++] = i;
2632 /* Map the 8 VLAN priority values to available MTL Rx queues */
2633 prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2634 ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
2635 ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
2637 reg = MAC_RQC2R;
2638 reg_val = 0;
2639 for (i = 0, prio = 0; i < prio_queues;) {
2640 mask = 0;
2641 for (j = 0; j < ppq; j++) {
2642 netif_dbg(pdata, drv, pdata->netdev,
2643 "PRIO%u mapped to RXq%u\n", prio, i);
2644 mask |= (1 << prio);
2645 pdata->prio2q_map[prio++] = i;
2648 if (i < ppq_extra) {
2649 netif_dbg(pdata, drv, pdata->netdev,
2650 "PRIO%u mapped to RXq%u\n", prio, i);
2651 mask |= (1 << prio);
2652 pdata->prio2q_map[prio++] = i;
2655 reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
2657 if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
2658 continue;
2660 XGMAC_IOWRITE(pdata, reg, reg_val);
2661 reg += MAC_RQC2_INC;
2662 reg_val = 0;
2665 /* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
2666 reg = MTL_RQDCM0R;
2667 reg_val = 0;
2668 for (i = 0; i < pdata->rx_q_count;) {
2669 reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
2671 if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
2672 continue;
2674 XGMAC_IOWRITE(pdata, reg, reg_val);
2676 reg += MTL_RQDCM_INC;
2677 reg_val = 0;
2681 static void xgbe_config_tc(struct xgbe_prv_data *pdata)
2683 unsigned int offset, queue, prio;
2684 u8 i;
2686 netdev_reset_tc(pdata->netdev);
2687 if (!pdata->num_tcs)
2688 return;
2690 netdev_set_num_tc(pdata->netdev, pdata->num_tcs);
2692 for (i = 0, queue = 0, offset = 0; i < pdata->num_tcs; i++) {
2693 while ((queue < pdata->tx_q_count) &&
2694 (pdata->q2tc_map[queue] == i))
2695 queue++;
2697 netif_dbg(pdata, drv, pdata->netdev, "TC%u using TXq%u-%u\n",
2698 i, offset, queue - 1);
2699 netdev_set_tc_queue(pdata->netdev, i, queue - offset, offset);
2700 offset = queue;
2703 if (!pdata->ets)
2704 return;
2706 for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++)
2707 netdev_set_prio_tc_map(pdata->netdev, prio,
2708 pdata->ets->prio_tc[prio]);
2711 static void xgbe_config_dcb_tc(struct xgbe_prv_data *pdata)
2713 struct ieee_ets *ets = pdata->ets;
2714 unsigned int total_weight, min_weight, weight;
2715 unsigned int mask, reg, reg_val;
2716 unsigned int i, prio;
2718 if (!ets)
2719 return;
2721 /* Set Tx to deficit weighted round robin scheduling algorithm (when
2722 * traffic class is using ETS algorithm)
2724 XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_DWRR);
2726 /* Set Traffic Class algorithms */
2727 total_weight = pdata->netdev->mtu * pdata->hw_feat.tc_cnt;
2728 min_weight = total_weight / 100;
2729 if (!min_weight)
2730 min_weight = 1;
2732 for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2733 /* Map the priorities to the traffic class */
2734 mask = 0;
2735 for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
2736 if (ets->prio_tc[prio] == i)
2737 mask |= (1 << prio);
2739 mask &= 0xff;
2741 netif_dbg(pdata, drv, pdata->netdev, "TC%u PRIO mask=%#x\n",
2742 i, mask);
2743 reg = MTL_TCPM0R + (MTL_TCPM_INC * (i / MTL_TCPM_TC_PER_REG));
2744 reg_val = XGMAC_IOREAD(pdata, reg);
2746 reg_val &= ~(0xff << ((i % MTL_TCPM_TC_PER_REG) << 3));
2747 reg_val |= (mask << ((i % MTL_TCPM_TC_PER_REG) << 3));
2749 XGMAC_IOWRITE(pdata, reg, reg_val);
2751 /* Set the traffic class algorithm */
2752 switch (ets->tc_tsa[i]) {
2753 case IEEE_8021QAZ_TSA_STRICT:
2754 netif_dbg(pdata, drv, pdata->netdev,
2755 "TC%u using SP\n", i);
2756 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2757 MTL_TSA_SP);
2758 break;
2759 case IEEE_8021QAZ_TSA_ETS:
2760 weight = total_weight * ets->tc_tx_bw[i] / 100;
2761 weight = clamp(weight, min_weight, total_weight);
2763 netif_dbg(pdata, drv, pdata->netdev,
2764 "TC%u using DWRR (weight %u)\n", i, weight);
2765 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2766 MTL_TSA_ETS);
2767 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW,
2768 weight);
2769 break;
2773 xgbe_config_tc(pdata);
2776 static void xgbe_config_dcb_pfc(struct xgbe_prv_data *pdata)
2778 if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2779 /* Just stop the Tx queues while Rx fifo is changed */
2780 netif_tx_stop_all_queues(pdata->netdev);
2782 /* Suspend Rx so that fifo's can be adjusted */
2783 pdata->hw_if.disable_rx(pdata);
2786 xgbe_config_rx_fifo_size(pdata);
2787 xgbe_config_flow_control(pdata);
2789 if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2790 /* Resume Rx */
2791 pdata->hw_if.enable_rx(pdata);
2793 /* Resume Tx queues */
2794 netif_tx_start_all_queues(pdata->netdev);
2798 static void xgbe_config_mac_address(struct xgbe_prv_data *pdata)
2800 xgbe_set_mac_address(pdata, pdata->netdev->dev_addr);
2802 /* Filtering is done using perfect filtering and hash filtering */
2803 if (pdata->hw_feat.hash_table_size) {
2804 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
2805 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
2806 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
2810 static void xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
2812 unsigned int val;
2814 val = (pdata->netdev->mtu > XGMAC_STD_PACKET_MTU) ? 1 : 0;
2816 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
2819 static void xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
2821 xgbe_set_speed(pdata, pdata->phy_speed);
2824 static void xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
2826 if (pdata->netdev->features & NETIF_F_RXCSUM)
2827 xgbe_enable_rx_csum(pdata);
2828 else
2829 xgbe_disable_rx_csum(pdata);
2832 static void xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
2834 /* Indicate that VLAN Tx CTAGs come from context descriptors */
2835 XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
2836 XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
2838 /* Set the current VLAN Hash Table register value */
2839 xgbe_update_vlan_hash_table(pdata);
2841 if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
2842 xgbe_enable_rx_vlan_filtering(pdata);
2843 else
2844 xgbe_disable_rx_vlan_filtering(pdata);
2846 if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
2847 xgbe_enable_rx_vlan_stripping(pdata);
2848 else
2849 xgbe_disable_rx_vlan_stripping(pdata);
2852 static u64 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
2854 bool read_hi;
2855 u64 val;
2857 if (pdata->vdata->mmc_64bit) {
2858 switch (reg_lo) {
2859 /* These registers are always 32 bit */
2860 case MMC_RXRUNTERROR:
2861 case MMC_RXJABBERERROR:
2862 case MMC_RXUNDERSIZE_G:
2863 case MMC_RXOVERSIZE_G:
2864 case MMC_RXWATCHDOGERROR:
2865 read_hi = false;
2866 break;
2868 default:
2869 read_hi = true;
2871 } else {
2872 switch (reg_lo) {
2873 /* These registers are always 64 bit */
2874 case MMC_TXOCTETCOUNT_GB_LO:
2875 case MMC_TXOCTETCOUNT_G_LO:
2876 case MMC_RXOCTETCOUNT_GB_LO:
2877 case MMC_RXOCTETCOUNT_G_LO:
2878 read_hi = true;
2879 break;
2881 default:
2882 read_hi = false;
2886 val = XGMAC_IOREAD(pdata, reg_lo);
2888 if (read_hi)
2889 val |= ((u64)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
2891 return val;
2894 static void xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
2896 struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2897 unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
2899 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
2900 stats->txoctetcount_gb +=
2901 xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2903 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
2904 stats->txframecount_gb +=
2905 xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2907 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
2908 stats->txbroadcastframes_g +=
2909 xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2911 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
2912 stats->txmulticastframes_g +=
2913 xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2915 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
2916 stats->tx64octets_gb +=
2917 xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2919 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
2920 stats->tx65to127octets_gb +=
2921 xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2923 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
2924 stats->tx128to255octets_gb +=
2925 xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2927 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
2928 stats->tx256to511octets_gb +=
2929 xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2931 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
2932 stats->tx512to1023octets_gb +=
2933 xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2935 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
2936 stats->tx1024tomaxoctets_gb +=
2937 xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2939 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
2940 stats->txunicastframes_gb +=
2941 xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2943 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
2944 stats->txmulticastframes_gb +=
2945 xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2947 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
2948 stats->txbroadcastframes_g +=
2949 xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2951 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
2952 stats->txunderflowerror +=
2953 xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2955 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
2956 stats->txoctetcount_g +=
2957 xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2959 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
2960 stats->txframecount_g +=
2961 xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2963 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
2964 stats->txpauseframes +=
2965 xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2967 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
2968 stats->txvlanframes_g +=
2969 xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2972 static void xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
2974 struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2975 unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
2977 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
2978 stats->rxframecount_gb +=
2979 xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2981 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
2982 stats->rxoctetcount_gb +=
2983 xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2985 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
2986 stats->rxoctetcount_g +=
2987 xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2989 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
2990 stats->rxbroadcastframes_g +=
2991 xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2993 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
2994 stats->rxmulticastframes_g +=
2995 xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2997 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
2998 stats->rxcrcerror +=
2999 xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
3001 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
3002 stats->rxrunterror +=
3003 xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
3005 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
3006 stats->rxjabbererror +=
3007 xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
3009 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
3010 stats->rxundersize_g +=
3011 xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
3013 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
3014 stats->rxoversize_g +=
3015 xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
3017 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
3018 stats->rx64octets_gb +=
3019 xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
3021 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
3022 stats->rx65to127octets_gb +=
3023 xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
3025 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
3026 stats->rx128to255octets_gb +=
3027 xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
3029 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
3030 stats->rx256to511octets_gb +=
3031 xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
3033 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
3034 stats->rx512to1023octets_gb +=
3035 xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
3037 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
3038 stats->rx1024tomaxoctets_gb +=
3039 xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
3041 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
3042 stats->rxunicastframes_g +=
3043 xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
3045 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
3046 stats->rxlengtherror +=
3047 xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
3049 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
3050 stats->rxoutofrangetype +=
3051 xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
3053 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
3054 stats->rxpauseframes +=
3055 xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
3057 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
3058 stats->rxfifooverflow +=
3059 xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
3061 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
3062 stats->rxvlanframes_gb +=
3063 xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
3065 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
3066 stats->rxwatchdogerror +=
3067 xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
3070 static void xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
3072 struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
3074 /* Freeze counters */
3075 XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
3077 stats->txoctetcount_gb +=
3078 xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
3080 stats->txframecount_gb +=
3081 xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
3083 stats->txbroadcastframes_g +=
3084 xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
3086 stats->txmulticastframes_g +=
3087 xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
3089 stats->tx64octets_gb +=
3090 xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
3092 stats->tx65to127octets_gb +=
3093 xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
3095 stats->tx128to255octets_gb +=
3096 xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
3098 stats->tx256to511octets_gb +=
3099 xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
3101 stats->tx512to1023octets_gb +=
3102 xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
3104 stats->tx1024tomaxoctets_gb +=
3105 xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
3107 stats->txunicastframes_gb +=
3108 xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
3110 stats->txmulticastframes_gb +=
3111 xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
3113 stats->txbroadcastframes_g +=
3114 xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
3116 stats->txunderflowerror +=
3117 xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
3119 stats->txoctetcount_g +=
3120 xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
3122 stats->txframecount_g +=
3123 xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
3125 stats->txpauseframes +=
3126 xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
3128 stats->txvlanframes_g +=
3129 xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
3131 stats->rxframecount_gb +=
3132 xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
3134 stats->rxoctetcount_gb +=
3135 xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
3137 stats->rxoctetcount_g +=
3138 xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
3140 stats->rxbroadcastframes_g +=
3141 xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
3143 stats->rxmulticastframes_g +=
3144 xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
3146 stats->rxcrcerror +=
3147 xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
3149 stats->rxrunterror +=
3150 xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
3152 stats->rxjabbererror +=
3153 xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
3155 stats->rxundersize_g +=
3156 xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
3158 stats->rxoversize_g +=
3159 xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
3161 stats->rx64octets_gb +=
3162 xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
3164 stats->rx65to127octets_gb +=
3165 xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
3167 stats->rx128to255octets_gb +=
3168 xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
3170 stats->rx256to511octets_gb +=
3171 xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
3173 stats->rx512to1023octets_gb +=
3174 xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
3176 stats->rx1024tomaxoctets_gb +=
3177 xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
3179 stats->rxunicastframes_g +=
3180 xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
3182 stats->rxlengtherror +=
3183 xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
3185 stats->rxoutofrangetype +=
3186 xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
3188 stats->rxpauseframes +=
3189 xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
3191 stats->rxfifooverflow +=
3192 xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
3194 stats->rxvlanframes_gb +=
3195 xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
3197 stats->rxwatchdogerror +=
3198 xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
3200 /* Un-freeze counters */
3201 XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
3204 static void xgbe_config_mmc(struct xgbe_prv_data *pdata)
3206 /* Set counters to reset on read */
3207 XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
3209 /* Reset the counters */
3210 XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
3213 static void xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata,
3214 unsigned int queue)
3216 unsigned int tx_status;
3217 unsigned long tx_timeout;
3219 /* The Tx engine cannot be stopped if it is actively processing
3220 * packets. Wait for the Tx queue to empty the Tx fifo. Don't
3221 * wait forever though...
3223 tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3224 while (time_before(jiffies, tx_timeout)) {
3225 tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR);
3226 if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) &&
3227 (XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0))
3228 break;
3230 usleep_range(500, 1000);
3233 if (!time_before(jiffies, tx_timeout))
3234 netdev_info(pdata->netdev,
3235 "timed out waiting for Tx queue %u to empty\n",
3236 queue);
3239 static void xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata,
3240 unsigned int queue)
3242 unsigned int tx_dsr, tx_pos, tx_qidx;
3243 unsigned int tx_status;
3244 unsigned long tx_timeout;
3246 if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20)
3247 return xgbe_txq_prepare_tx_stop(pdata, queue);
3249 /* Calculate the status register to read and the position within */
3250 if (queue < DMA_DSRX_FIRST_QUEUE) {
3251 tx_dsr = DMA_DSR0;
3252 tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START;
3253 } else {
3254 tx_qidx = queue - DMA_DSRX_FIRST_QUEUE;
3256 tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
3257 tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
3258 DMA_DSRX_TPS_START;
3261 /* The Tx engine cannot be stopped if it is actively processing
3262 * descriptors. Wait for the Tx engine to enter the stopped or
3263 * suspended state. Don't wait forever though...
3265 tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3266 while (time_before(jiffies, tx_timeout)) {
3267 tx_status = XGMAC_IOREAD(pdata, tx_dsr);
3268 tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
3269 if ((tx_status == DMA_TPS_STOPPED) ||
3270 (tx_status == DMA_TPS_SUSPENDED))
3271 break;
3273 usleep_range(500, 1000);
3276 if (!time_before(jiffies, tx_timeout))
3277 netdev_info(pdata->netdev,
3278 "timed out waiting for Tx DMA channel %u to stop\n",
3279 queue);
3282 static void xgbe_enable_tx(struct xgbe_prv_data *pdata)
3284 unsigned int i;
3286 /* Enable each Tx DMA channel */
3287 for (i = 0; i < pdata->channel_count; i++) {
3288 if (!pdata->channel[i]->tx_ring)
3289 break;
3291 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
3294 /* Enable each Tx queue */
3295 for (i = 0; i < pdata->tx_q_count; i++)
3296 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
3297 MTL_Q_ENABLED);
3299 /* Enable MAC Tx */
3300 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3303 static void xgbe_disable_tx(struct xgbe_prv_data *pdata)
3305 unsigned int i;
3307 /* Prepare for Tx DMA channel stop */
3308 for (i = 0; i < pdata->tx_q_count; i++)
3309 xgbe_prepare_tx_stop(pdata, i);
3311 /* Disable MAC Tx */
3312 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3314 /* Disable each Tx queue */
3315 for (i = 0; i < pdata->tx_q_count; i++)
3316 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
3318 /* Disable each Tx DMA channel */
3319 for (i = 0; i < pdata->channel_count; i++) {
3320 if (!pdata->channel[i]->tx_ring)
3321 break;
3323 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
3327 static void xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata,
3328 unsigned int queue)
3330 unsigned int rx_status;
3331 unsigned long rx_timeout;
3333 /* The Rx engine cannot be stopped if it is actively processing
3334 * packets. Wait for the Rx queue to empty the Rx fifo. Don't
3335 * wait forever though...
3337 rx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3338 while (time_before(jiffies, rx_timeout)) {
3339 rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR);
3340 if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) &&
3341 (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0))
3342 break;
3344 usleep_range(500, 1000);
3347 if (!time_before(jiffies, rx_timeout))
3348 netdev_info(pdata->netdev,
3349 "timed out waiting for Rx queue %u to empty\n",
3350 queue);
3353 static void xgbe_enable_rx(struct xgbe_prv_data *pdata)
3355 unsigned int reg_val, i;
3357 /* Enable each Rx DMA channel */
3358 for (i = 0; i < pdata->channel_count; i++) {
3359 if (!pdata->channel[i]->rx_ring)
3360 break;
3362 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
3365 /* Enable each Rx queue */
3366 reg_val = 0;
3367 for (i = 0; i < pdata->rx_q_count; i++)
3368 reg_val |= (0x02 << (i << 1));
3369 XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
3371 /* Enable MAC Rx */
3372 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
3373 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
3374 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
3375 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
3378 static void xgbe_disable_rx(struct xgbe_prv_data *pdata)
3380 unsigned int i;
3382 /* Disable MAC Rx */
3383 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
3384 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
3385 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
3386 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
3388 /* Prepare for Rx DMA channel stop */
3389 for (i = 0; i < pdata->rx_q_count; i++)
3390 xgbe_prepare_rx_stop(pdata, i);
3392 /* Disable each Rx queue */
3393 XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
3395 /* Disable each Rx DMA channel */
3396 for (i = 0; i < pdata->channel_count; i++) {
3397 if (!pdata->channel[i]->rx_ring)
3398 break;
3400 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
3404 static void xgbe_powerup_tx(struct xgbe_prv_data *pdata)
3406 unsigned int i;
3408 /* Enable each Tx DMA channel */
3409 for (i = 0; i < pdata->channel_count; i++) {
3410 if (!pdata->channel[i]->tx_ring)
3411 break;
3413 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
3416 /* Enable MAC Tx */
3417 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3420 static void xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
3422 unsigned int i;
3424 /* Prepare for Tx DMA channel stop */
3425 for (i = 0; i < pdata->tx_q_count; i++)
3426 xgbe_prepare_tx_stop(pdata, i);
3428 /* Disable MAC Tx */
3429 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3431 /* Disable each Tx DMA channel */
3432 for (i = 0; i < pdata->channel_count; i++) {
3433 if (!pdata->channel[i]->tx_ring)
3434 break;
3436 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
3440 static void xgbe_powerup_rx(struct xgbe_prv_data *pdata)
3442 unsigned int i;
3444 /* Enable each Rx DMA channel */
3445 for (i = 0; i < pdata->channel_count; i++) {
3446 if (!pdata->channel[i]->rx_ring)
3447 break;
3449 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
3453 static void xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
3455 unsigned int i;
3457 /* Disable each Rx DMA channel */
3458 for (i = 0; i < pdata->channel_count; i++) {
3459 if (!pdata->channel[i]->rx_ring)
3460 break;
3462 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
3466 static int xgbe_init(struct xgbe_prv_data *pdata)
3468 struct xgbe_desc_if *desc_if = &pdata->desc_if;
3469 int ret;
3471 DBGPR("-->xgbe_init\n");
3473 /* Flush Tx queues */
3474 ret = xgbe_flush_tx_queues(pdata);
3475 if (ret) {
3476 netdev_err(pdata->netdev, "error flushing TX queues\n");
3477 return ret;
3481 * Initialize DMA related features
3483 xgbe_config_dma_bus(pdata);
3484 xgbe_config_dma_cache(pdata);
3485 xgbe_config_osp_mode(pdata);
3486 xgbe_config_pbl_val(pdata);
3487 xgbe_config_rx_coalesce(pdata);
3488 xgbe_config_tx_coalesce(pdata);
3489 xgbe_config_rx_buffer_size(pdata);
3490 xgbe_config_tso_mode(pdata);
3491 xgbe_config_sph_mode(pdata);
3492 xgbe_config_rss(pdata);
3493 desc_if->wrapper_tx_desc_init(pdata);
3494 desc_if->wrapper_rx_desc_init(pdata);
3495 xgbe_enable_dma_interrupts(pdata);
3498 * Initialize MTL related features
3500 xgbe_config_mtl_mode(pdata);
3501 xgbe_config_queue_mapping(pdata);
3502 xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
3503 xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
3504 xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
3505 xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
3506 xgbe_config_tx_fifo_size(pdata);
3507 xgbe_config_rx_fifo_size(pdata);
3508 /*TODO: Error Packet and undersized good Packet forwarding enable
3509 (FEP and FUP)
3511 xgbe_config_dcb_tc(pdata);
3512 xgbe_enable_mtl_interrupts(pdata);
3515 * Initialize MAC related features
3517 xgbe_config_mac_address(pdata);
3518 xgbe_config_rx_mode(pdata);
3519 xgbe_config_jumbo_enable(pdata);
3520 xgbe_config_flow_control(pdata);
3521 xgbe_config_mac_speed(pdata);
3522 xgbe_config_checksum_offload(pdata);
3523 xgbe_config_vlan_support(pdata);
3524 xgbe_config_mmc(pdata);
3525 xgbe_enable_mac_interrupts(pdata);
3528 * Initialize ECC related features
3530 xgbe_enable_ecc_interrupts(pdata);
3532 DBGPR("<--xgbe_init\n");
3534 return 0;
3537 void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
3539 DBGPR("-->xgbe_init_function_ptrs\n");
3541 hw_if->tx_complete = xgbe_tx_complete;
3543 hw_if->set_mac_address = xgbe_set_mac_address;
3544 hw_if->config_rx_mode = xgbe_config_rx_mode;
3546 hw_if->enable_rx_csum = xgbe_enable_rx_csum;
3547 hw_if->disable_rx_csum = xgbe_disable_rx_csum;
3549 hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
3550 hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
3551 hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
3552 hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
3553 hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
3555 hw_if->read_mmd_regs = xgbe_read_mmd_regs;
3556 hw_if->write_mmd_regs = xgbe_write_mmd_regs;
3558 hw_if->set_speed = xgbe_set_speed;
3560 hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode;
3561 hw_if->read_ext_mii_regs = xgbe_read_ext_mii_regs;
3562 hw_if->write_ext_mii_regs = xgbe_write_ext_mii_regs;
3564 hw_if->set_gpio = xgbe_set_gpio;
3565 hw_if->clr_gpio = xgbe_clr_gpio;
3567 hw_if->enable_tx = xgbe_enable_tx;
3568 hw_if->disable_tx = xgbe_disable_tx;
3569 hw_if->enable_rx = xgbe_enable_rx;
3570 hw_if->disable_rx = xgbe_disable_rx;
3572 hw_if->powerup_tx = xgbe_powerup_tx;
3573 hw_if->powerdown_tx = xgbe_powerdown_tx;
3574 hw_if->powerup_rx = xgbe_powerup_rx;
3575 hw_if->powerdown_rx = xgbe_powerdown_rx;
3577 hw_if->dev_xmit = xgbe_dev_xmit;
3578 hw_if->dev_read = xgbe_dev_read;
3579 hw_if->enable_int = xgbe_enable_int;
3580 hw_if->disable_int = xgbe_disable_int;
3581 hw_if->init = xgbe_init;
3582 hw_if->exit = xgbe_exit;
3584 /* Descriptor related Sequences have to be initialized here */
3585 hw_if->tx_desc_init = xgbe_tx_desc_init;
3586 hw_if->rx_desc_init = xgbe_rx_desc_init;
3587 hw_if->tx_desc_reset = xgbe_tx_desc_reset;
3588 hw_if->rx_desc_reset = xgbe_rx_desc_reset;
3589 hw_if->is_last_desc = xgbe_is_last_desc;
3590 hw_if->is_context_desc = xgbe_is_context_desc;
3591 hw_if->tx_start_xmit = xgbe_tx_start_xmit;
3593 /* For FLOW ctrl */
3594 hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
3595 hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
3597 /* For RX coalescing */
3598 hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
3599 hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
3600 hw_if->usec_to_riwt = xgbe_usec_to_riwt;
3601 hw_if->riwt_to_usec = xgbe_riwt_to_usec;
3603 /* For RX and TX threshold config */
3604 hw_if->config_rx_threshold = xgbe_config_rx_threshold;
3605 hw_if->config_tx_threshold = xgbe_config_tx_threshold;
3607 /* For RX and TX Store and Forward Mode config */
3608 hw_if->config_rsf_mode = xgbe_config_rsf_mode;
3609 hw_if->config_tsf_mode = xgbe_config_tsf_mode;
3611 /* For TX DMA Operating on Second Frame config */
3612 hw_if->config_osp_mode = xgbe_config_osp_mode;
3614 /* For MMC statistics support */
3615 hw_if->tx_mmc_int = xgbe_tx_mmc_int;
3616 hw_if->rx_mmc_int = xgbe_rx_mmc_int;
3617 hw_if->read_mmc_stats = xgbe_read_mmc_stats;
3619 /* For PTP config */
3620 hw_if->config_tstamp = xgbe_config_tstamp;
3621 hw_if->update_tstamp_addend = xgbe_update_tstamp_addend;
3622 hw_if->set_tstamp_time = xgbe_set_tstamp_time;
3623 hw_if->get_tstamp_time = xgbe_get_tstamp_time;
3624 hw_if->get_tx_tstamp = xgbe_get_tx_tstamp;
3626 /* For Data Center Bridging config */
3627 hw_if->config_tc = xgbe_config_tc;
3628 hw_if->config_dcb_tc = xgbe_config_dcb_tc;
3629 hw_if->config_dcb_pfc = xgbe_config_dcb_pfc;
3631 /* For Receive Side Scaling */
3632 hw_if->enable_rss = xgbe_enable_rss;
3633 hw_if->disable_rss = xgbe_disable_rss;
3634 hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
3635 hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
3637 /* For ECC */
3638 hw_if->disable_ecc_ded = xgbe_disable_ecc_ded;
3639 hw_if->disable_ecc_sec = xgbe_disable_ecc_sec;
3641 /* For VXLAN */
3642 hw_if->enable_vxlan = xgbe_enable_vxlan;
3643 hw_if->disable_vxlan = xgbe_disable_vxlan;
3644 hw_if->set_vxlan_id = xgbe_set_vxlan_id;
3646 DBGPR("<--xgbe_init_function_ptrs\n");