1 /* bnx2x_init_ops.h: Qlogic Everest network driver.
2 * Static functions needed during the initialization.
3 * This file is "included" in bnx2x_main.c.
5 * Copyright (c) 2007-2013 Broadcom Corporation
6 * Copyright (c) 2014 QLogic Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation.
13 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
14 * Written by: Vladislav Zolotarov
17 #ifndef BNX2X_INIT_OPS_H
18 #define BNX2X_INIT_OPS_H
22 #define BP_ILT(bp) NULL
33 #ifndef BNX2X_ILT_FREE
34 #define BNX2X_ILT_FREE(x, y, sz)
37 #ifndef BNX2X_ILT_ZALLOC
38 #define BNX2X_ILT_ZALLOC(x, y, sz)
45 static int bnx2x_gunzip(struct bnx2x
*bp
, const u8
*zbuf
, int len
);
46 static void bnx2x_reg_wr_ind(struct bnx2x
*bp
, u32 addr
, u32 val
);
47 static void bnx2x_write_dmae_phys_len(struct bnx2x
*bp
,
48 dma_addr_t phys_addr
, u32 addr
,
51 static void bnx2x_init_str_wr(struct bnx2x
*bp
, u32 addr
,
52 const u32
*data
, u32 len
)
56 for (i
= 0; i
< len
; i
++)
57 REG_WR(bp
, addr
+ i
*4, data
[i
]);
60 static void bnx2x_init_ind_wr(struct bnx2x
*bp
, u32 addr
,
61 const u32
*data
, u32 len
)
65 for (i
= 0; i
< len
; i
++)
66 bnx2x_reg_wr_ind(bp
, addr
+ i
*4, data
[i
]);
69 static void bnx2x_write_big_buf(struct bnx2x
*bp
, u32 addr
, u32 len
,
73 bnx2x_write_dmae_phys_len(bp
, GUNZIP_PHYS(bp
), addr
, len
);
75 /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
76 else if (wb
&& CHIP_IS_E1(bp
))
77 bnx2x_init_ind_wr(bp
, addr
, GUNZIP_BUF(bp
), len
);
79 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
81 bnx2x_init_str_wr(bp
, addr
, GUNZIP_BUF(bp
), len
);
84 static void bnx2x_init_fill(struct bnx2x
*bp
, u32 addr
, int fill
,
87 u32 buf_len
= (((len
*4) > FW_BUF_SIZE
) ? FW_BUF_SIZE
: (len
*4));
88 u32 buf_len32
= buf_len
/4;
91 memset(GUNZIP_BUF(bp
), (u8
)fill
, buf_len
);
93 for (i
= 0; i
< len
; i
+= buf_len32
) {
94 u32 cur_len
= min(buf_len32
, len
- i
);
96 bnx2x_write_big_buf(bp
, addr
+ i
*4, cur_len
, wb
);
100 static void bnx2x_write_big_buf_wb(struct bnx2x
*bp
, u32 addr
, u32 len
)
103 bnx2x_write_dmae_phys_len(bp
, GUNZIP_PHYS(bp
), addr
, len
);
105 /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
106 else if (CHIP_IS_E1(bp
))
107 bnx2x_init_ind_wr(bp
, addr
, GUNZIP_BUF(bp
), len
);
109 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
111 bnx2x_init_str_wr(bp
, addr
, GUNZIP_BUF(bp
), len
);
114 static void bnx2x_init_wr_64(struct bnx2x
*bp
, u32 addr
,
115 const u32
*data
, u32 len64
)
117 u32 buf_len32
= FW_BUF_SIZE
/4;
122 /* 64 bit value is in a blob: first low DWORD, then high DWORD */
123 data64
= HILO_U64((*(data
+ 1)), (*data
));
125 len64
= min((u32
)(FW_BUF_SIZE
/8), len64
);
126 for (i
= 0; i
< len64
; i
++) {
127 u64
*pdata
= ((u64
*)(GUNZIP_BUF(bp
))) + i
;
132 for (i
= 0; i
< len
; i
+= buf_len32
) {
133 u32 cur_len
= min(buf_len32
, len
- i
);
135 bnx2x_write_big_buf_wb(bp
, addr
+ i
*4, cur_len
);
139 /*********************************************************
140 There are different blobs for each PRAM section.
141 In addition, each blob write operation is divided into a few operations
142 in order to decrease the amount of phys. contiguous buffer needed.
143 Thus, when we select a blob the address may be with some offset
144 from the beginning of PRAM section.
145 The same holds for the INT_TABLE sections.
146 **********************************************************/
147 #define IF_IS_INT_TABLE_ADDR(base, addr) \
148 if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
150 #define IF_IS_PRAM_ADDR(base, addr) \
151 if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
153 static const u8
*bnx2x_sel_blob(struct bnx2x
*bp
, u32 addr
,
156 IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE
, addr
)
157 data
= INIT_TSEM_INT_TABLE_DATA(bp
);
159 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE
, addr
)
160 data
= INIT_CSEM_INT_TABLE_DATA(bp
);
162 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE
, addr
)
163 data
= INIT_USEM_INT_TABLE_DATA(bp
);
165 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE
, addr
)
166 data
= INIT_XSEM_INT_TABLE_DATA(bp
);
168 IF_IS_PRAM_ADDR(TSEM_REG_PRAM
, addr
)
169 data
= INIT_TSEM_PRAM_DATA(bp
);
171 IF_IS_PRAM_ADDR(CSEM_REG_PRAM
, addr
)
172 data
= INIT_CSEM_PRAM_DATA(bp
);
174 IF_IS_PRAM_ADDR(USEM_REG_PRAM
, addr
)
175 data
= INIT_USEM_PRAM_DATA(bp
);
177 IF_IS_PRAM_ADDR(XSEM_REG_PRAM
, addr
)
178 data
= INIT_XSEM_PRAM_DATA(bp
);
183 static void bnx2x_init_wr_wb(struct bnx2x
*bp
, u32 addr
,
184 const u32
*data
, u32 len
)
187 VIRT_WR_DMAE_LEN(bp
, data
, addr
, len
, 0);
189 /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
190 else if (CHIP_IS_E1(bp
))
191 bnx2x_init_ind_wr(bp
, addr
, data
, len
);
193 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
195 bnx2x_init_str_wr(bp
, addr
, data
, len
);
198 static void bnx2x_wr_64(struct bnx2x
*bp
, u32 reg
, u32 val_lo
,
203 wb_write
[0] = val_lo
;
204 wb_write
[1] = val_hi
;
205 REG_WR_DMAE_LEN(bp
, reg
, wb_write
, 2);
207 static void bnx2x_init_wr_zp(struct bnx2x
*bp
, u32 addr
, u32 len
,
210 const u8
*data
= NULL
;
214 data
= bnx2x_sel_blob(bp
, addr
, data
) + blob_off
*4;
216 rc
= bnx2x_gunzip(bp
, data
, len
);
220 /* gunzip_outlen is in dwords */
221 len
= GUNZIP_OUTLEN(bp
);
222 for (i
= 0; i
< len
; i
++)
223 ((u32
*)GUNZIP_BUF(bp
))[i
] = (__force u32
)
224 cpu_to_le32(((u32
*)GUNZIP_BUF(bp
))[i
]);
226 bnx2x_write_big_buf_wb(bp
, addr
, len
);
229 static void bnx2x_init_block(struct bnx2x
*bp
, u32 block
, u32 stage
)
232 INIT_OPS_OFFSETS(bp
)[BLOCK_OPS_IDX(block
, stage
,
235 INIT_OPS_OFFSETS(bp
)[BLOCK_OPS_IDX(block
, stage
,
237 const union init_op
*op
;
238 u32 op_idx
, op_type
, addr
, len
;
239 const u32
*data
, *data_base
;
242 if (op_start
== op_end
)
245 data_base
= INIT_DATA(bp
);
247 for (op_idx
= op_start
; op_idx
< op_end
; op_idx
++) {
249 op
= (const union init_op
*)&(INIT_OPS(bp
)[op_idx
]);
250 /* Get generic data */
251 op_type
= op
->raw
.op
;
252 addr
= op
->raw
.offset
;
253 /* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
254 * OP_WR64 (we assume that op_arr_write and op_write have the
257 len
= op
->arr_wr
.data_len
;
258 data
= data_base
+ op
->arr_wr
.data_off
;
265 REG_WR(bp
, addr
, op
->write
.val
);
268 bnx2x_init_str_wr(bp
, addr
, data
, len
);
271 bnx2x_init_wr_wb(bp
, addr
, data
, len
);
274 bnx2x_init_fill(bp
, addr
, 0, op
->zero
.len
, 0);
277 bnx2x_init_fill(bp
, addr
, 0, op
->zero
.len
, 1);
280 bnx2x_init_wr_zp(bp
, addr
, len
,
281 op
->arr_wr
.data_off
);
284 bnx2x_init_wr_64(bp
, addr
, data
, len
);
287 /* if any of the flags doesn't match, skip the
290 if ((INIT_MODE_FLAGS(bp
) &
291 op
->if_mode
.mode_bit_map
) !=
292 op
->if_mode
.mode_bit_map
)
293 op_idx
+= op
->if_mode
.cmd_offset
;
296 /* if all the flags don't match, skip the conditional
299 if ((INIT_MODE_FLAGS(bp
) &
300 op
->if_mode
.mode_bit_map
) == 0)
301 op_idx
+= op
->if_mode
.cmd_offset
;
304 /* Should never get here! */
312 /****************************************************************************
314 ****************************************************************************/
316 * This code configures the PCI read/write arbiter
317 * which implements a weighted round robin
318 * between the virtual queues in the chip.
320 * The values were derived for each PCI max payload and max request size.
321 * since max payload and max request size are only known at run time,
322 * this is done as a separate init stage.
330 /* configuration for one arbiter queue */
337 /* derived configuration for each read queue for each max request size */
338 static const struct arb_line read_arb_data
[NUM_RD_Q
][MAX_RD_ORD
+ 1] = {
339 /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
340 { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
341 { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
342 { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
343 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
344 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
345 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
346 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
347 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
348 /* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
349 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
350 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
351 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
352 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
353 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
354 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
355 { {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
356 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
357 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
358 /* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
359 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
360 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
361 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
362 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
363 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
364 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
365 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
366 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
367 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
370 /* derived configuration for each write queue for each max request size */
371 static const struct arb_line write_arb_data
[NUM_WR_Q
][MAX_WR_ORD
+ 1] = {
372 /* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
373 { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
374 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
375 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
376 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
377 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
378 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
379 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
380 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
381 /* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
382 { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
383 { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
384 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
387 /* register addresses for read queues */
388 static const struct arb_line read_arb_addr
[NUM_RD_Q
-1] = {
389 /* 1 */ {PXP2_REG_RQ_BW_RD_L0
, PXP2_REG_RQ_BW_RD_ADD0
,
390 PXP2_REG_RQ_BW_RD_UBOUND0
},
391 {PXP2_REG_PSWRQ_BW_L1
, PXP2_REG_PSWRQ_BW_ADD1
,
392 PXP2_REG_PSWRQ_BW_UB1
},
393 {PXP2_REG_PSWRQ_BW_L2
, PXP2_REG_PSWRQ_BW_ADD2
,
394 PXP2_REG_PSWRQ_BW_UB2
},
395 {PXP2_REG_PSWRQ_BW_L3
, PXP2_REG_PSWRQ_BW_ADD3
,
396 PXP2_REG_PSWRQ_BW_UB3
},
397 {PXP2_REG_RQ_BW_RD_L4
, PXP2_REG_RQ_BW_RD_ADD4
,
398 PXP2_REG_RQ_BW_RD_UBOUND4
},
399 {PXP2_REG_RQ_BW_RD_L5
, PXP2_REG_RQ_BW_RD_ADD5
,
400 PXP2_REG_RQ_BW_RD_UBOUND5
},
401 {PXP2_REG_PSWRQ_BW_L6
, PXP2_REG_PSWRQ_BW_ADD6
,
402 PXP2_REG_PSWRQ_BW_UB6
},
403 {PXP2_REG_PSWRQ_BW_L7
, PXP2_REG_PSWRQ_BW_ADD7
,
404 PXP2_REG_PSWRQ_BW_UB7
},
405 {PXP2_REG_PSWRQ_BW_L8
, PXP2_REG_PSWRQ_BW_ADD8
,
406 PXP2_REG_PSWRQ_BW_UB8
},
407 /* 10 */{PXP2_REG_PSWRQ_BW_L9
, PXP2_REG_PSWRQ_BW_ADD9
,
408 PXP2_REG_PSWRQ_BW_UB9
},
409 {PXP2_REG_PSWRQ_BW_L10
, PXP2_REG_PSWRQ_BW_ADD10
,
410 PXP2_REG_PSWRQ_BW_UB10
},
411 {PXP2_REG_PSWRQ_BW_L11
, PXP2_REG_PSWRQ_BW_ADD11
,
412 PXP2_REG_PSWRQ_BW_UB11
},
413 {PXP2_REG_RQ_BW_RD_L12
, PXP2_REG_RQ_BW_RD_ADD12
,
414 PXP2_REG_RQ_BW_RD_UBOUND12
},
415 {PXP2_REG_RQ_BW_RD_L13
, PXP2_REG_RQ_BW_RD_ADD13
,
416 PXP2_REG_RQ_BW_RD_UBOUND13
},
417 {PXP2_REG_RQ_BW_RD_L14
, PXP2_REG_RQ_BW_RD_ADD14
,
418 PXP2_REG_RQ_BW_RD_UBOUND14
},
419 {PXP2_REG_RQ_BW_RD_L15
, PXP2_REG_RQ_BW_RD_ADD15
,
420 PXP2_REG_RQ_BW_RD_UBOUND15
},
421 {PXP2_REG_RQ_BW_RD_L16
, PXP2_REG_RQ_BW_RD_ADD16
,
422 PXP2_REG_RQ_BW_RD_UBOUND16
},
423 {PXP2_REG_RQ_BW_RD_L17
, PXP2_REG_RQ_BW_RD_ADD17
,
424 PXP2_REG_RQ_BW_RD_UBOUND17
},
425 {PXP2_REG_RQ_BW_RD_L18
, PXP2_REG_RQ_BW_RD_ADD18
,
426 PXP2_REG_RQ_BW_RD_UBOUND18
},
427 /* 20 */{PXP2_REG_RQ_BW_RD_L19
, PXP2_REG_RQ_BW_RD_ADD19
,
428 PXP2_REG_RQ_BW_RD_UBOUND19
},
429 {PXP2_REG_RQ_BW_RD_L20
, PXP2_REG_RQ_BW_RD_ADD20
,
430 PXP2_REG_RQ_BW_RD_UBOUND20
},
431 {PXP2_REG_RQ_BW_RD_L22
, PXP2_REG_RQ_BW_RD_ADD22
,
432 PXP2_REG_RQ_BW_RD_UBOUND22
},
433 {PXP2_REG_RQ_BW_RD_L23
, PXP2_REG_RQ_BW_RD_ADD23
,
434 PXP2_REG_RQ_BW_RD_UBOUND23
},
435 {PXP2_REG_RQ_BW_RD_L24
, PXP2_REG_RQ_BW_RD_ADD24
,
436 PXP2_REG_RQ_BW_RD_UBOUND24
},
437 {PXP2_REG_RQ_BW_RD_L25
, PXP2_REG_RQ_BW_RD_ADD25
,
438 PXP2_REG_RQ_BW_RD_UBOUND25
},
439 {PXP2_REG_RQ_BW_RD_L26
, PXP2_REG_RQ_BW_RD_ADD26
,
440 PXP2_REG_RQ_BW_RD_UBOUND26
},
441 {PXP2_REG_RQ_BW_RD_L27
, PXP2_REG_RQ_BW_RD_ADD27
,
442 PXP2_REG_RQ_BW_RD_UBOUND27
},
443 {PXP2_REG_PSWRQ_BW_L28
, PXP2_REG_PSWRQ_BW_ADD28
,
444 PXP2_REG_PSWRQ_BW_UB28
}
447 /* register addresses for write queues */
448 static const struct arb_line write_arb_addr
[NUM_WR_Q
-1] = {
449 /* 1 */ {PXP2_REG_PSWRQ_BW_L1
, PXP2_REG_PSWRQ_BW_ADD1
,
450 PXP2_REG_PSWRQ_BW_UB1
},
451 {PXP2_REG_PSWRQ_BW_L2
, PXP2_REG_PSWRQ_BW_ADD2
,
452 PXP2_REG_PSWRQ_BW_UB2
},
453 {PXP2_REG_PSWRQ_BW_L3
, PXP2_REG_PSWRQ_BW_ADD3
,
454 PXP2_REG_PSWRQ_BW_UB3
},
455 {PXP2_REG_PSWRQ_BW_L6
, PXP2_REG_PSWRQ_BW_ADD6
,
456 PXP2_REG_PSWRQ_BW_UB6
},
457 {PXP2_REG_PSWRQ_BW_L7
, PXP2_REG_PSWRQ_BW_ADD7
,
458 PXP2_REG_PSWRQ_BW_UB7
},
459 {PXP2_REG_PSWRQ_BW_L8
, PXP2_REG_PSWRQ_BW_ADD8
,
460 PXP2_REG_PSWRQ_BW_UB8
},
461 {PXP2_REG_PSWRQ_BW_L9
, PXP2_REG_PSWRQ_BW_ADD9
,
462 PXP2_REG_PSWRQ_BW_UB9
},
463 {PXP2_REG_PSWRQ_BW_L10
, PXP2_REG_PSWRQ_BW_ADD10
,
464 PXP2_REG_PSWRQ_BW_UB10
},
465 {PXP2_REG_PSWRQ_BW_L11
, PXP2_REG_PSWRQ_BW_ADD11
,
466 PXP2_REG_PSWRQ_BW_UB11
},
467 /* 10 */{PXP2_REG_PSWRQ_BW_L28
, PXP2_REG_PSWRQ_BW_ADD28
,
468 PXP2_REG_PSWRQ_BW_UB28
},
469 {PXP2_REG_RQ_BW_WR_L29
, PXP2_REG_RQ_BW_WR_ADD29
,
470 PXP2_REG_RQ_BW_WR_UBOUND29
},
471 {PXP2_REG_RQ_BW_WR_L30
, PXP2_REG_RQ_BW_WR_ADD30
,
472 PXP2_REG_RQ_BW_WR_UBOUND30
}
475 static void bnx2x_init_pxp_arb(struct bnx2x
*bp
, int r_order
,
480 if (r_order
> MAX_RD_ORD
) {
481 DP(NETIF_MSG_HW
, "read order of %d order adjusted to %d\n",
482 r_order
, MAX_RD_ORD
);
483 r_order
= MAX_RD_ORD
;
485 if (w_order
> MAX_WR_ORD
) {
486 DP(NETIF_MSG_HW
, "write order of %d order adjusted to %d\n",
487 w_order
, MAX_WR_ORD
);
488 w_order
= MAX_WR_ORD
;
490 if (CHIP_REV_IS_FPGA(bp
)) {
491 DP(NETIF_MSG_HW
, "write order adjusted to 1 for FPGA\n");
494 DP(NETIF_MSG_HW
, "read order %d write order %d\n", r_order
, w_order
);
496 for (i
= 0; i
< NUM_RD_Q
-1; i
++) {
497 REG_WR(bp
, read_arb_addr
[i
].l
, read_arb_data
[i
][r_order
].l
);
498 REG_WR(bp
, read_arb_addr
[i
].add
,
499 read_arb_data
[i
][r_order
].add
);
500 REG_WR(bp
, read_arb_addr
[i
].ubound
,
501 read_arb_data
[i
][r_order
].ubound
);
504 for (i
= 0; i
< NUM_WR_Q
-1; i
++) {
505 if ((write_arb_addr
[i
].l
== PXP2_REG_RQ_BW_WR_L29
) ||
506 (write_arb_addr
[i
].l
== PXP2_REG_RQ_BW_WR_L30
)) {
508 REG_WR(bp
, write_arb_addr
[i
].l
,
509 write_arb_data
[i
][w_order
].l
);
511 REG_WR(bp
, write_arb_addr
[i
].add
,
512 write_arb_data
[i
][w_order
].add
);
514 REG_WR(bp
, write_arb_addr
[i
].ubound
,
515 write_arb_data
[i
][w_order
].ubound
);
518 val
= REG_RD(bp
, write_arb_addr
[i
].l
);
519 REG_WR(bp
, write_arb_addr
[i
].l
,
520 val
| (write_arb_data
[i
][w_order
].l
<< 10));
522 val
= REG_RD(bp
, write_arb_addr
[i
].add
);
523 REG_WR(bp
, write_arb_addr
[i
].add
,
524 val
| (write_arb_data
[i
][w_order
].add
<< 10));
526 val
= REG_RD(bp
, write_arb_addr
[i
].ubound
);
527 REG_WR(bp
, write_arb_addr
[i
].ubound
,
528 val
| (write_arb_data
[i
][w_order
].ubound
<< 7));
532 val
= write_arb_data
[NUM_WR_Q
-1][w_order
].add
;
533 val
+= write_arb_data
[NUM_WR_Q
-1][w_order
].ubound
<< 10;
534 val
+= write_arb_data
[NUM_WR_Q
-1][w_order
].l
<< 17;
535 REG_WR(bp
, PXP2_REG_PSWRQ_BW_RD
, val
);
537 val
= read_arb_data
[NUM_RD_Q
-1][r_order
].add
;
538 val
+= read_arb_data
[NUM_RD_Q
-1][r_order
].ubound
<< 10;
539 val
+= read_arb_data
[NUM_RD_Q
-1][r_order
].l
<< 17;
540 REG_WR(bp
, PXP2_REG_PSWRQ_BW_WR
, val
);
542 REG_WR(bp
, PXP2_REG_RQ_WR_MBS0
, w_order
);
543 REG_WR(bp
, PXP2_REG_RQ_WR_MBS1
, w_order
);
544 REG_WR(bp
, PXP2_REG_RQ_RD_MBS0
, r_order
);
545 REG_WR(bp
, PXP2_REG_RQ_RD_MBS1
, r_order
);
547 if ((CHIP_IS_E1(bp
) || CHIP_IS_E1H(bp
)) && (r_order
== MAX_RD_ORD
))
548 REG_WR(bp
, PXP2_REG_RQ_PDR_LIMIT
, 0xe00);
551 REG_WR(bp
, PXP2_REG_WR_USDMDP_TH
, (0x4 << w_order
));
552 else if (CHIP_IS_E2(bp
))
553 REG_WR(bp
, PXP2_REG_WR_USDMDP_TH
, (0x8 << w_order
));
555 REG_WR(bp
, PXP2_REG_WR_USDMDP_TH
, (0x18 << w_order
));
557 if (!CHIP_IS_E1(bp
)) {
558 /* MPS w_order optimal TH presently TH
563 /* DMAE is special */
564 if (!CHIP_IS_E1H(bp
)) {
565 /* E2 can use optimal TH */
567 REG_WR(bp
, PXP2_REG_WR_DMAE_MPS
, val
);
569 val
= ((w_order
== 0) ? 2 : 3);
570 REG_WR(bp
, PXP2_REG_WR_DMAE_MPS
, 2);
573 REG_WR(bp
, PXP2_REG_WR_HC_MPS
, val
);
574 REG_WR(bp
, PXP2_REG_WR_USDM_MPS
, val
);
575 REG_WR(bp
, PXP2_REG_WR_CSDM_MPS
, val
);
576 REG_WR(bp
, PXP2_REG_WR_TSDM_MPS
, val
);
577 REG_WR(bp
, PXP2_REG_WR_XSDM_MPS
, val
);
578 REG_WR(bp
, PXP2_REG_WR_QM_MPS
, val
);
579 REG_WR(bp
, PXP2_REG_WR_TM_MPS
, val
);
580 REG_WR(bp
, PXP2_REG_WR_SRC_MPS
, val
);
581 REG_WR(bp
, PXP2_REG_WR_DBG_MPS
, val
);
582 REG_WR(bp
, PXP2_REG_WR_CDU_MPS
, val
);
585 /* Validate number of tags suppoted by device */
586 #define PCIE_REG_PCIER_TL_HDR_FC_ST 0x2980
587 val
= REG_RD(bp
, PCIE_REG_PCIER_TL_HDR_FC_ST
);
590 REG_WR(bp
, PXP2_REG_PGL_TAGS_LIMIT
, 0x20);
593 /****************************************************************************
595 ****************************************************************************/
597 * This codes hides the low level HW interaction for ILT management and
598 * configuration. The API consists of a shadow ILT table which is set by the
599 * driver and a set of routines to use it to configure the HW.
603 /* ILT HW init operations */
605 /* ILT memory management operations */
606 #define ILT_MEMOP_ALLOC 0
607 #define ILT_MEMOP_FREE 1
609 /* the phys address is shifted right 12 bits and has an added
610 * 1=valid bit added to the 53rd bit
611 * then since this is a wide register(TM)
612 * we split it into two 32 bit writes
614 #define ILT_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF))
615 #define ILT_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44)))
616 #define ILT_RANGE(f, l) (((l) << 10) | f)
618 static int bnx2x_ilt_line_mem_op(struct bnx2x
*bp
,
619 struct ilt_line
*line
, u32 size
, u8 memop
)
621 if (memop
== ILT_MEMOP_FREE
) {
622 BNX2X_ILT_FREE(line
->page
, line
->page_mapping
, line
->size
);
625 BNX2X_ILT_ZALLOC(line
->page
, &line
->page_mapping
, size
);
633 static int bnx2x_ilt_client_mem_op(struct bnx2x
*bp
, int cli_num
,
637 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
638 struct ilt_client_info
*ilt_cli
= &ilt
->clients
[cli_num
];
640 if (!ilt
|| !ilt
->lines
)
643 if (ilt_cli
->flags
& (ILT_CLIENT_SKIP_INIT
| ILT_CLIENT_SKIP_MEM
))
646 for (rc
= 0, i
= ilt_cli
->start
; i
<= ilt_cli
->end
&& !rc
; i
++) {
647 rc
= bnx2x_ilt_line_mem_op(bp
, &ilt
->lines
[i
],
648 ilt_cli
->page_size
, memop
);
653 static int bnx2x_ilt_mem_op_cnic(struct bnx2x
*bp
, u8 memop
)
657 if (CONFIGURE_NIC_MODE(bp
))
658 rc
= bnx2x_ilt_client_mem_op(bp
, ILT_CLIENT_SRC
, memop
);
660 rc
= bnx2x_ilt_client_mem_op(bp
, ILT_CLIENT_TM
, memop
);
665 static int bnx2x_ilt_mem_op(struct bnx2x
*bp
, u8 memop
)
667 int rc
= bnx2x_ilt_client_mem_op(bp
, ILT_CLIENT_CDU
, memop
);
669 rc
= bnx2x_ilt_client_mem_op(bp
, ILT_CLIENT_QM
, memop
);
670 if (!rc
&& CNIC_SUPPORT(bp
) && !CONFIGURE_NIC_MODE(bp
))
671 rc
= bnx2x_ilt_client_mem_op(bp
, ILT_CLIENT_SRC
, memop
);
676 static void bnx2x_ilt_line_wr(struct bnx2x
*bp
, int abs_idx
,
677 dma_addr_t page_mapping
)
682 reg
= PXP2_REG_RQ_ONCHIP_AT
+ abs_idx
*8;
684 reg
= PXP2_REG_RQ_ONCHIP_AT_B0
+ abs_idx
*8;
686 bnx2x_wr_64(bp
, reg
, ILT_ADDR1(page_mapping
), ILT_ADDR2(page_mapping
));
689 static void bnx2x_ilt_line_init_op(struct bnx2x
*bp
,
690 struct bnx2x_ilt
*ilt
, int idx
, u8 initop
)
692 dma_addr_t null_mapping
;
693 int abs_idx
= ilt
->start_line
+ idx
;
698 /* set in the init-value array */
700 bnx2x_ilt_line_wr(bp
, abs_idx
, ilt
->lines
[idx
].page_mapping
);
704 bnx2x_ilt_line_wr(bp
, abs_idx
, null_mapping
);
709 static void bnx2x_ilt_boundry_init_op(struct bnx2x
*bp
,
710 struct ilt_client_info
*ilt_cli
,
711 u32 ilt_start
, u8 initop
)
716 /* The boundary is either SET or INIT,
717 CLEAR => SET and for now SET ~~ INIT */
719 /* find the appropriate regs */
720 if (CHIP_IS_E1(bp
)) {
721 switch (ilt_cli
->client_num
) {
723 start_reg
= PXP2_REG_PSWRQ_CDU0_L2P
;
726 start_reg
= PXP2_REG_PSWRQ_QM0_L2P
;
729 start_reg
= PXP2_REG_PSWRQ_SRC0_L2P
;
732 start_reg
= PXP2_REG_PSWRQ_TM0_L2P
;
735 REG_WR(bp
, start_reg
+ BP_FUNC(bp
)*4,
736 ILT_RANGE((ilt_start
+ ilt_cli
->start
),
737 (ilt_start
+ ilt_cli
->end
)));
739 switch (ilt_cli
->client_num
) {
741 start_reg
= PXP2_REG_RQ_CDU_FIRST_ILT
;
742 end_reg
= PXP2_REG_RQ_CDU_LAST_ILT
;
745 start_reg
= PXP2_REG_RQ_QM_FIRST_ILT
;
746 end_reg
= PXP2_REG_RQ_QM_LAST_ILT
;
749 start_reg
= PXP2_REG_RQ_SRC_FIRST_ILT
;
750 end_reg
= PXP2_REG_RQ_SRC_LAST_ILT
;
753 start_reg
= PXP2_REG_RQ_TM_FIRST_ILT
;
754 end_reg
= PXP2_REG_RQ_TM_LAST_ILT
;
757 REG_WR(bp
, start_reg
, (ilt_start
+ ilt_cli
->start
));
758 REG_WR(bp
, end_reg
, (ilt_start
+ ilt_cli
->end
));
762 static void bnx2x_ilt_client_init_op_ilt(struct bnx2x
*bp
,
763 struct bnx2x_ilt
*ilt
,
764 struct ilt_client_info
*ilt_cli
,
769 if (ilt_cli
->flags
& ILT_CLIENT_SKIP_INIT
)
772 for (i
= ilt_cli
->start
; i
<= ilt_cli
->end
; i
++)
773 bnx2x_ilt_line_init_op(bp
, ilt
, i
, initop
);
775 /* init/clear the ILT boundries */
776 bnx2x_ilt_boundry_init_op(bp
, ilt_cli
, ilt
->start_line
, initop
);
779 static void bnx2x_ilt_client_init_op(struct bnx2x
*bp
,
780 struct ilt_client_info
*ilt_cli
, u8 initop
)
782 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
784 bnx2x_ilt_client_init_op_ilt(bp
, ilt
, ilt_cli
, initop
);
787 static void bnx2x_ilt_client_id_init_op(struct bnx2x
*bp
,
788 int cli_num
, u8 initop
)
790 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
791 struct ilt_client_info
*ilt_cli
= &ilt
->clients
[cli_num
];
793 bnx2x_ilt_client_init_op(bp
, ilt_cli
, initop
);
796 static void bnx2x_ilt_init_op_cnic(struct bnx2x
*bp
, u8 initop
)
798 if (CONFIGURE_NIC_MODE(bp
))
799 bnx2x_ilt_client_id_init_op(bp
, ILT_CLIENT_SRC
, initop
);
800 bnx2x_ilt_client_id_init_op(bp
, ILT_CLIENT_TM
, initop
);
803 static void bnx2x_ilt_init_op(struct bnx2x
*bp
, u8 initop
)
805 bnx2x_ilt_client_id_init_op(bp
, ILT_CLIENT_CDU
, initop
);
806 bnx2x_ilt_client_id_init_op(bp
, ILT_CLIENT_QM
, initop
);
807 if (CNIC_SUPPORT(bp
) && !CONFIGURE_NIC_MODE(bp
))
808 bnx2x_ilt_client_id_init_op(bp
, ILT_CLIENT_SRC
, initop
);
811 static void bnx2x_ilt_init_client_psz(struct bnx2x
*bp
, int cli_num
,
812 u32 psz_reg
, u8 initop
)
814 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
815 struct ilt_client_info
*ilt_cli
= &ilt
->clients
[cli_num
];
817 if (ilt_cli
->flags
& ILT_CLIENT_SKIP_INIT
)
822 /* set in the init-value array */
824 REG_WR(bp
, psz_reg
, ILOG2(ilt_cli
->page_size
>> 12));
832 * called during init common stage, ilt clients should be initialized
833 * prioir to calling this function
835 static void bnx2x_ilt_init_page_size(struct bnx2x
*bp
, u8 initop
)
837 bnx2x_ilt_init_client_psz(bp
, ILT_CLIENT_CDU
,
838 PXP2_REG_RQ_CDU_P_SIZE
, initop
);
839 bnx2x_ilt_init_client_psz(bp
, ILT_CLIENT_QM
,
840 PXP2_REG_RQ_QM_P_SIZE
, initop
);
841 bnx2x_ilt_init_client_psz(bp
, ILT_CLIENT_SRC
,
842 PXP2_REG_RQ_SRC_P_SIZE
, initop
);
843 bnx2x_ilt_init_client_psz(bp
, ILT_CLIENT_TM
,
844 PXP2_REG_RQ_TM_P_SIZE
, initop
);
847 /****************************************************************************
849 ****************************************************************************/
850 #define QM_QUEUES_PER_FUNC 16 /* E1 has 32, but only 16 are used */
851 #define QM_INIT_MIN_CID_COUNT 31
852 #define QM_INIT(cid_cnt) (cid_cnt > QM_INIT_MIN_CID_COUNT)
854 /* called during init port stage */
855 static void bnx2x_qm_init_cid_count(struct bnx2x
*bp
, int qm_cid_count
,
858 int port
= BP_PORT(bp
);
860 if (QM_INIT(qm_cid_count
)) {
863 /* set in the init-value array */
865 REG_WR(bp
, QM_REG_CONNNUM_0
+ port
*4,
866 qm_cid_count
/16 - 1);
874 static void bnx2x_qm_set_ptr_table(struct bnx2x
*bp
, int qm_cid_count
,
875 u32 base_reg
, u32 reg
)
878 u32 wb_data
[2] = {0, 0};
879 for (i
= 0; i
< 4 * QM_QUEUES_PER_FUNC
; i
++) {
880 REG_WR(bp
, base_reg
+ i
*4,
881 qm_cid_count
* 4 * (i
% QM_QUEUES_PER_FUNC
));
882 bnx2x_init_wr_wb(bp
, reg
+ i
*8, wb_data
, 2);
886 /* called during init common stage */
887 static void bnx2x_qm_init_ptr_table(struct bnx2x
*bp
, int qm_cid_count
,
890 if (!QM_INIT(qm_cid_count
))
895 /* set in the init-value array */
897 bnx2x_qm_set_ptr_table(bp
, qm_cid_count
,
898 QM_REG_BASEADDR
, QM_REG_PTRTBL
);
900 bnx2x_qm_set_ptr_table(bp
, qm_cid_count
,
901 QM_REG_BASEADDR_EXT_A
,
902 QM_REG_PTRTBL_EXT_A
);
909 /****************************************************************************
910 * SRC initializations
911 ****************************************************************************/
912 /* called during init func stage */
913 static void bnx2x_src_init_t2(struct bnx2x
*bp
, struct src_ent
*t2
,
914 dma_addr_t t2_mapping
, int src_cid_count
)
917 int port
= BP_PORT(bp
);
920 for (i
= 0; i
< src_cid_count
-1; i
++)
921 t2
[i
].next
= (u64
)(t2_mapping
+
922 (i
+1)*sizeof(struct src_ent
));
924 /* tell the searcher where the T2 table is */
925 REG_WR(bp
, SRC_REG_COUNTFREE0
+ port
*4, src_cid_count
);
927 bnx2x_wr_64(bp
, SRC_REG_FIRSTFREE0
+ port
*16,
928 U64_LO(t2_mapping
), U64_HI(t2_mapping
));
930 bnx2x_wr_64(bp
, SRC_REG_LASTFREE0
+ port
*16,
931 U64_LO((u64
)t2_mapping
+
932 (src_cid_count
-1) * sizeof(struct src_ent
)),
933 U64_HI((u64
)t2_mapping
+
934 (src_cid_count
-1) * sizeof(struct src_ent
)));
936 #endif /* BNX2X_INIT_OPS_H */