treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / ethernet / broadcom / bnxt / bnxt_sriov.c
blob2aba1e02a8f429127f917100c341c54a1ecbb92d
1 /* Broadcom NetXtreme-C/E network driver.
3 * Copyright (c) 2014-2016 Broadcom Corporation
4 * Copyright (c) 2016-2018 Broadcom Limited
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation.
9 */
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/if_vlan.h>
15 #include <linux/interrupt.h>
16 #include <linux/etherdevice.h>
17 #include "bnxt_hsi.h"
18 #include "bnxt.h"
19 #include "bnxt_ulp.h"
20 #include "bnxt_sriov.h"
21 #include "bnxt_vfr.h"
22 #include "bnxt_ethtool.h"
24 #ifdef CONFIG_BNXT_SRIOV
25 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp,
26 struct bnxt_vf_info *vf, u16 event_id)
28 struct hwrm_fwd_async_event_cmpl_input req = {0};
29 struct hwrm_async_event_cmpl *async_cmpl;
30 int rc = 0;
32 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_ASYNC_EVENT_CMPL, -1, -1);
33 if (vf)
34 req.encap_async_event_target_id = cpu_to_le16(vf->fw_fid);
35 else
36 /* broadcast this async event to all VFs */
37 req.encap_async_event_target_id = cpu_to_le16(0xffff);
38 async_cmpl = (struct hwrm_async_event_cmpl *)req.encap_async_event_cmpl;
39 async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT);
40 async_cmpl->event_id = cpu_to_le16(event_id);
42 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
43 if (rc)
44 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n",
45 rc);
46 return rc;
49 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id)
51 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
52 netdev_err(bp->dev, "vf ndo called though PF is down\n");
53 return -EINVAL;
55 if (!bp->pf.active_vfs) {
56 netdev_err(bp->dev, "vf ndo called though sriov is disabled\n");
57 return -EINVAL;
59 if (vf_id >= bp->pf.active_vfs) {
60 netdev_err(bp->dev, "Invalid VF id %d\n", vf_id);
61 return -EINVAL;
63 return 0;
66 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting)
68 struct hwrm_func_cfg_input req = {0};
69 struct bnxt *bp = netdev_priv(dev);
70 struct bnxt_vf_info *vf;
71 bool old_setting = false;
72 u32 func_flags;
73 int rc;
75 if (bp->hwrm_spec_code < 0x10701)
76 return -ENOTSUPP;
78 rc = bnxt_vf_ndo_prep(bp, vf_id);
79 if (rc)
80 return rc;
82 vf = &bp->pf.vf[vf_id];
83 if (vf->flags & BNXT_VF_SPOOFCHK)
84 old_setting = true;
85 if (old_setting == setting)
86 return 0;
88 func_flags = vf->func_flags;
89 if (setting)
90 func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_ENABLE;
91 else
92 func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_DISABLE;
93 /*TODO: if the driver supports VLAN filter on guest VLAN,
94 * the spoof check should also include vlan anti-spoofing
96 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
97 req.fid = cpu_to_le16(vf->fw_fid);
98 req.flags = cpu_to_le32(func_flags);
99 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
100 if (!rc) {
101 vf->func_flags = func_flags;
102 if (setting)
103 vf->flags |= BNXT_VF_SPOOFCHK;
104 else
105 vf->flags &= ~BNXT_VF_SPOOFCHK;
107 return rc;
110 static int bnxt_hwrm_func_qcfg_flags(struct bnxt *bp, struct bnxt_vf_info *vf)
112 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
113 struct hwrm_func_qcfg_input req = {0};
114 int rc;
116 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
117 req.fid = cpu_to_le16(vf->fw_fid);
118 mutex_lock(&bp->hwrm_cmd_lock);
119 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
120 if (rc) {
121 mutex_unlock(&bp->hwrm_cmd_lock);
122 return rc;
124 vf->func_qcfg_flags = le16_to_cpu(resp->flags);
125 mutex_unlock(&bp->hwrm_cmd_lock);
126 return 0;
129 static bool bnxt_is_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf)
131 if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF))
132 return !!(vf->flags & BNXT_VF_TRUST);
134 bnxt_hwrm_func_qcfg_flags(bp, vf);
135 return !!(vf->func_qcfg_flags & FUNC_QCFG_RESP_FLAGS_TRUSTED_VF);
138 static int bnxt_hwrm_set_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf)
140 struct hwrm_func_cfg_input req = {0};
141 int rc;
143 if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF))
144 return 0;
146 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
147 req.fid = cpu_to_le16(vf->fw_fid);
148 if (vf->flags & BNXT_VF_TRUST)
149 req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE);
150 else
151 req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_DISABLE);
152 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
153 return rc;
156 int bnxt_set_vf_trust(struct net_device *dev, int vf_id, bool trusted)
158 struct bnxt *bp = netdev_priv(dev);
159 struct bnxt_vf_info *vf;
161 if (bnxt_vf_ndo_prep(bp, vf_id))
162 return -EINVAL;
164 vf = &bp->pf.vf[vf_id];
165 if (trusted)
166 vf->flags |= BNXT_VF_TRUST;
167 else
168 vf->flags &= ~BNXT_VF_TRUST;
170 bnxt_hwrm_set_trusted_vf(bp, vf);
171 return 0;
174 int bnxt_get_vf_config(struct net_device *dev, int vf_id,
175 struct ifla_vf_info *ivi)
177 struct bnxt *bp = netdev_priv(dev);
178 struct bnxt_vf_info *vf;
179 int rc;
181 rc = bnxt_vf_ndo_prep(bp, vf_id);
182 if (rc)
183 return rc;
185 ivi->vf = vf_id;
186 vf = &bp->pf.vf[vf_id];
188 if (is_valid_ether_addr(vf->mac_addr))
189 memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN);
190 else
191 memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN);
192 ivi->max_tx_rate = vf->max_tx_rate;
193 ivi->min_tx_rate = vf->min_tx_rate;
194 ivi->vlan = vf->vlan;
195 if (vf->flags & BNXT_VF_QOS)
196 ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT;
197 else
198 ivi->qos = 0;
199 ivi->spoofchk = !!(vf->flags & BNXT_VF_SPOOFCHK);
200 ivi->trusted = bnxt_is_trusted_vf(bp, vf);
201 if (!(vf->flags & BNXT_VF_LINK_FORCED))
202 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
203 else if (vf->flags & BNXT_VF_LINK_UP)
204 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
205 else
206 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
208 return 0;
211 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac)
213 struct hwrm_func_cfg_input req = {0};
214 struct bnxt *bp = netdev_priv(dev);
215 struct bnxt_vf_info *vf;
216 int rc;
218 rc = bnxt_vf_ndo_prep(bp, vf_id);
219 if (rc)
220 return rc;
221 /* reject bc or mc mac addr, zero mac addr means allow
222 * VF to use its own mac addr
224 if (is_multicast_ether_addr(mac)) {
225 netdev_err(dev, "Invalid VF ethernet address\n");
226 return -EINVAL;
228 vf = &bp->pf.vf[vf_id];
230 memcpy(vf->mac_addr, mac, ETH_ALEN);
231 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
232 req.fid = cpu_to_le16(vf->fw_fid);
233 req.flags = cpu_to_le32(vf->func_flags);
234 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
235 memcpy(req.dflt_mac_addr, mac, ETH_ALEN);
236 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
239 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos,
240 __be16 vlan_proto)
242 struct hwrm_func_cfg_input req = {0};
243 struct bnxt *bp = netdev_priv(dev);
244 struct bnxt_vf_info *vf;
245 u16 vlan_tag;
246 int rc;
248 if (bp->hwrm_spec_code < 0x10201)
249 return -ENOTSUPP;
251 if (vlan_proto != htons(ETH_P_8021Q))
252 return -EPROTONOSUPPORT;
254 rc = bnxt_vf_ndo_prep(bp, vf_id);
255 if (rc)
256 return rc;
258 /* TODO: needed to implement proper handling of user priority,
259 * currently fail the command if there is valid priority
261 if (vlan_id > 4095 || qos)
262 return -EINVAL;
264 vf = &bp->pf.vf[vf_id];
265 vlan_tag = vlan_id;
266 if (vlan_tag == vf->vlan)
267 return 0;
269 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
270 req.fid = cpu_to_le16(vf->fw_fid);
271 req.flags = cpu_to_le32(vf->func_flags);
272 req.dflt_vlan = cpu_to_le16(vlan_tag);
273 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
274 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
275 if (!rc)
276 vf->vlan = vlan_tag;
277 return rc;
280 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate,
281 int max_tx_rate)
283 struct hwrm_func_cfg_input req = {0};
284 struct bnxt *bp = netdev_priv(dev);
285 struct bnxt_vf_info *vf;
286 u32 pf_link_speed;
287 int rc;
289 rc = bnxt_vf_ndo_prep(bp, vf_id);
290 if (rc)
291 return rc;
293 vf = &bp->pf.vf[vf_id];
294 pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
295 if (max_tx_rate > pf_link_speed) {
296 netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n",
297 max_tx_rate, vf_id);
298 return -EINVAL;
301 if (min_tx_rate > pf_link_speed || min_tx_rate > max_tx_rate) {
302 netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n",
303 min_tx_rate, vf_id);
304 return -EINVAL;
306 if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate)
307 return 0;
308 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
309 req.fid = cpu_to_le16(vf->fw_fid);
310 req.flags = cpu_to_le32(vf->func_flags);
311 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW);
312 req.max_bw = cpu_to_le32(max_tx_rate);
313 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW);
314 req.min_bw = cpu_to_le32(min_tx_rate);
315 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
316 if (!rc) {
317 vf->min_tx_rate = min_tx_rate;
318 vf->max_tx_rate = max_tx_rate;
320 return rc;
323 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link)
325 struct bnxt *bp = netdev_priv(dev);
326 struct bnxt_vf_info *vf;
327 int rc;
329 rc = bnxt_vf_ndo_prep(bp, vf_id);
330 if (rc)
331 return rc;
333 vf = &bp->pf.vf[vf_id];
335 vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED);
336 switch (link) {
337 case IFLA_VF_LINK_STATE_AUTO:
338 vf->flags |= BNXT_VF_LINK_UP;
339 break;
340 case IFLA_VF_LINK_STATE_DISABLE:
341 vf->flags |= BNXT_VF_LINK_FORCED;
342 break;
343 case IFLA_VF_LINK_STATE_ENABLE:
344 vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED;
345 break;
346 default:
347 netdev_err(bp->dev, "Invalid link option\n");
348 rc = -EINVAL;
349 break;
351 if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED))
352 rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf,
353 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE);
354 return rc;
357 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs)
359 int i;
360 struct bnxt_vf_info *vf;
362 for (i = 0; i < num_vfs; i++) {
363 vf = &bp->pf.vf[i];
364 memset(vf, 0, sizeof(*vf));
366 return 0;
369 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs)
371 int i, rc = 0;
372 struct bnxt_pf_info *pf = &bp->pf;
373 struct hwrm_func_vf_resc_free_input req = {0};
375 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESC_FREE, -1, -1);
377 mutex_lock(&bp->hwrm_cmd_lock);
378 for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) {
379 req.vf_id = cpu_to_le16(i);
380 rc = _hwrm_send_message(bp, &req, sizeof(req),
381 HWRM_CMD_TIMEOUT);
382 if (rc)
383 break;
385 mutex_unlock(&bp->hwrm_cmd_lock);
386 return rc;
389 static void bnxt_free_vf_resources(struct bnxt *bp)
391 struct pci_dev *pdev = bp->pdev;
392 int i;
394 kfree(bp->pf.vf_event_bmap);
395 bp->pf.vf_event_bmap = NULL;
397 for (i = 0; i < 4; i++) {
398 if (bp->pf.hwrm_cmd_req_addr[i]) {
399 dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE,
400 bp->pf.hwrm_cmd_req_addr[i],
401 bp->pf.hwrm_cmd_req_dma_addr[i]);
402 bp->pf.hwrm_cmd_req_addr[i] = NULL;
406 kfree(bp->pf.vf);
407 bp->pf.vf = NULL;
410 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs)
412 struct pci_dev *pdev = bp->pdev;
413 u32 nr_pages, size, i, j, k = 0;
415 bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL);
416 if (!bp->pf.vf)
417 return -ENOMEM;
419 bnxt_set_vf_attr(bp, num_vfs);
421 size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE;
422 nr_pages = size / BNXT_PAGE_SIZE;
423 if (size & (BNXT_PAGE_SIZE - 1))
424 nr_pages++;
426 for (i = 0; i < nr_pages; i++) {
427 bp->pf.hwrm_cmd_req_addr[i] =
428 dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE,
429 &bp->pf.hwrm_cmd_req_dma_addr[i],
430 GFP_KERNEL);
432 if (!bp->pf.hwrm_cmd_req_addr[i])
433 return -ENOMEM;
435 for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) {
436 struct bnxt_vf_info *vf = &bp->pf.vf[k];
438 vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] +
439 j * BNXT_HWRM_REQ_MAX_SIZE;
440 vf->hwrm_cmd_req_dma_addr =
441 bp->pf.hwrm_cmd_req_dma_addr[i] + j *
442 BNXT_HWRM_REQ_MAX_SIZE;
443 k++;
447 /* Max 128 VF's */
448 bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL);
449 if (!bp->pf.vf_event_bmap)
450 return -ENOMEM;
452 bp->pf.hwrm_cmd_req_pages = nr_pages;
453 return 0;
456 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp)
458 struct hwrm_func_buf_rgtr_input req = {0};
460 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BUF_RGTR, -1, -1);
462 req.req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages);
463 req.req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT);
464 req.req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE);
465 req.req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]);
466 req.req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]);
467 req.req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]);
468 req.req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]);
470 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
473 /* Caller holds bp->hwrm_cmd_lock mutex lock */
474 static void __bnxt_set_vf_params(struct bnxt *bp, int vf_id)
476 struct hwrm_func_cfg_input req = {0};
477 struct bnxt_vf_info *vf;
479 vf = &bp->pf.vf[vf_id];
480 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
481 req.fid = cpu_to_le16(vf->fw_fid);
482 req.flags = cpu_to_le32(vf->func_flags);
484 if (is_valid_ether_addr(vf->mac_addr)) {
485 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
486 memcpy(req.dflt_mac_addr, vf->mac_addr, ETH_ALEN);
488 if (vf->vlan) {
489 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
490 req.dflt_vlan = cpu_to_le16(vf->vlan);
492 if (vf->max_tx_rate) {
493 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW);
494 req.max_bw = cpu_to_le32(vf->max_tx_rate);
495 #ifdef HAVE_IFLA_TX_RATE
496 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW);
497 req.min_bw = cpu_to_le32(vf->min_tx_rate);
498 #endif
500 if (vf->flags & BNXT_VF_TRUST)
501 req.flags |= cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE);
503 _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
506 /* Only called by PF to reserve resources for VFs, returns actual number of
507 * VFs configured, or < 0 on error.
509 static int bnxt_hwrm_func_vf_resc_cfg(struct bnxt *bp, int num_vfs, bool reset)
511 struct hwrm_func_vf_resource_cfg_input req = {0};
512 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
513 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings;
514 u16 vf_stat_ctx, vf_vnics, vf_ring_grps;
515 struct bnxt_pf_info *pf = &bp->pf;
516 int i, rc = 0, min = 1;
517 u16 vf_msix = 0;
518 u16 vf_rss;
520 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESOURCE_CFG, -1, -1);
522 if (bp->flags & BNXT_FLAG_CHIP_P5) {
523 vf_msix = hw_resc->max_nqs - bnxt_nq_rings_in_use(bp);
524 vf_ring_grps = 0;
525 } else {
526 vf_ring_grps = hw_resc->max_hw_ring_grps - bp->rx_nr_rings;
528 vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp);
529 vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp);
530 if (bp->flags & BNXT_FLAG_AGG_RINGS)
531 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings * 2;
532 else
533 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings;
534 vf_tx_rings = hw_resc->max_tx_rings - bp->tx_nr_rings;
535 vf_vnics = hw_resc->max_vnics - bp->nr_vnics;
536 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
537 vf_rss = hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs;
539 req.min_rsscos_ctx = cpu_to_le16(BNXT_VF_MIN_RSS_CTX);
540 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) {
541 min = 0;
542 req.min_rsscos_ctx = cpu_to_le16(min);
544 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL ||
545 pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) {
546 req.min_cmpl_rings = cpu_to_le16(min);
547 req.min_tx_rings = cpu_to_le16(min);
548 req.min_rx_rings = cpu_to_le16(min);
549 req.min_l2_ctxs = cpu_to_le16(min);
550 req.min_vnics = cpu_to_le16(min);
551 req.min_stat_ctx = cpu_to_le16(min);
552 if (!(bp->flags & BNXT_FLAG_CHIP_P5))
553 req.min_hw_ring_grps = cpu_to_le16(min);
554 } else {
555 vf_cp_rings /= num_vfs;
556 vf_tx_rings /= num_vfs;
557 vf_rx_rings /= num_vfs;
558 vf_vnics /= num_vfs;
559 vf_stat_ctx /= num_vfs;
560 vf_ring_grps /= num_vfs;
561 vf_rss /= num_vfs;
563 req.min_cmpl_rings = cpu_to_le16(vf_cp_rings);
564 req.min_tx_rings = cpu_to_le16(vf_tx_rings);
565 req.min_rx_rings = cpu_to_le16(vf_rx_rings);
566 req.min_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
567 req.min_vnics = cpu_to_le16(vf_vnics);
568 req.min_stat_ctx = cpu_to_le16(vf_stat_ctx);
569 req.min_hw_ring_grps = cpu_to_le16(vf_ring_grps);
570 req.min_rsscos_ctx = cpu_to_le16(vf_rss);
572 req.max_cmpl_rings = cpu_to_le16(vf_cp_rings);
573 req.max_tx_rings = cpu_to_le16(vf_tx_rings);
574 req.max_rx_rings = cpu_to_le16(vf_rx_rings);
575 req.max_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
576 req.max_vnics = cpu_to_le16(vf_vnics);
577 req.max_stat_ctx = cpu_to_le16(vf_stat_ctx);
578 req.max_hw_ring_grps = cpu_to_le16(vf_ring_grps);
579 req.max_rsscos_ctx = cpu_to_le16(vf_rss);
580 if (bp->flags & BNXT_FLAG_CHIP_P5)
581 req.max_msix = cpu_to_le16(vf_msix / num_vfs);
583 mutex_lock(&bp->hwrm_cmd_lock);
584 for (i = 0; i < num_vfs; i++) {
585 if (reset)
586 __bnxt_set_vf_params(bp, i);
588 req.vf_id = cpu_to_le16(pf->first_vf_id + i);
589 rc = _hwrm_send_message(bp, &req, sizeof(req),
590 HWRM_CMD_TIMEOUT);
591 if (rc)
592 break;
593 pf->active_vfs = i + 1;
594 pf->vf[i].fw_fid = pf->first_vf_id + i;
596 mutex_unlock(&bp->hwrm_cmd_lock);
597 if (pf->active_vfs) {
598 u16 n = pf->active_vfs;
600 hw_resc->max_tx_rings -= le16_to_cpu(req.min_tx_rings) * n;
601 hw_resc->max_rx_rings -= le16_to_cpu(req.min_rx_rings) * n;
602 hw_resc->max_hw_ring_grps -= le16_to_cpu(req.min_hw_ring_grps) *
604 hw_resc->max_cp_rings -= le16_to_cpu(req.min_cmpl_rings) * n;
605 hw_resc->max_rsscos_ctxs -= le16_to_cpu(req.min_rsscos_ctx) * n;
606 hw_resc->max_stat_ctxs -= le16_to_cpu(req.min_stat_ctx) * n;
607 hw_resc->max_vnics -= le16_to_cpu(req.min_vnics) * n;
608 if (bp->flags & BNXT_FLAG_CHIP_P5)
609 hw_resc->max_irqs -= vf_msix * n;
611 rc = pf->active_vfs;
613 return rc;
616 /* Only called by PF to reserve resources for VFs, returns actual number of
617 * VFs configured, or < 0 on error.
619 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs)
621 u32 rc = 0, mtu, i;
622 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics;
623 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
624 struct hwrm_func_cfg_input req = {0};
625 struct bnxt_pf_info *pf = &bp->pf;
626 int total_vf_tx_rings = 0;
627 u16 vf_ring_grps;
629 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
631 /* Remaining rings are distributed equally amongs VF's for now */
632 vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp) / num_vfs;
633 vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp) / num_vfs;
634 if (bp->flags & BNXT_FLAG_AGG_RINGS)
635 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings * 2) /
636 num_vfs;
637 else
638 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings) /
639 num_vfs;
640 vf_ring_grps = (hw_resc->max_hw_ring_grps - bp->rx_nr_rings) / num_vfs;
641 vf_tx_rings = (hw_resc->max_tx_rings - bp->tx_nr_rings) / num_vfs;
642 vf_vnics = (hw_resc->max_vnics - bp->nr_vnics) / num_vfs;
643 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
645 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MTU |
646 FUNC_CFG_REQ_ENABLES_MRU |
647 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS |
648 FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS |
649 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
650 FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS |
651 FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS |
652 FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS |
653 FUNC_CFG_REQ_ENABLES_NUM_VNICS |
654 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS);
656 mtu = bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
657 req.mru = cpu_to_le16(mtu);
658 req.mtu = cpu_to_le16(mtu);
660 req.num_rsscos_ctxs = cpu_to_le16(1);
661 req.num_cmpl_rings = cpu_to_le16(vf_cp_rings);
662 req.num_tx_rings = cpu_to_le16(vf_tx_rings);
663 req.num_rx_rings = cpu_to_le16(vf_rx_rings);
664 req.num_hw_ring_grps = cpu_to_le16(vf_ring_grps);
665 req.num_l2_ctxs = cpu_to_le16(4);
667 req.num_vnics = cpu_to_le16(vf_vnics);
668 /* FIXME spec currently uses 1 bit for stats ctx */
669 req.num_stat_ctxs = cpu_to_le16(vf_stat_ctx);
671 mutex_lock(&bp->hwrm_cmd_lock);
672 for (i = 0; i < num_vfs; i++) {
673 int vf_tx_rsvd = vf_tx_rings;
675 req.fid = cpu_to_le16(pf->first_vf_id + i);
676 rc = _hwrm_send_message(bp, &req, sizeof(req),
677 HWRM_CMD_TIMEOUT);
678 if (rc)
679 break;
680 pf->active_vfs = i + 1;
681 pf->vf[i].fw_fid = le16_to_cpu(req.fid);
682 rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid,
683 &vf_tx_rsvd);
684 if (rc)
685 break;
686 total_vf_tx_rings += vf_tx_rsvd;
688 mutex_unlock(&bp->hwrm_cmd_lock);
689 if (pf->active_vfs) {
690 hw_resc->max_tx_rings -= total_vf_tx_rings;
691 hw_resc->max_rx_rings -= vf_rx_rings * num_vfs;
692 hw_resc->max_hw_ring_grps -= vf_ring_grps * num_vfs;
693 hw_resc->max_cp_rings -= vf_cp_rings * num_vfs;
694 hw_resc->max_rsscos_ctxs -= num_vfs;
695 hw_resc->max_stat_ctxs -= vf_stat_ctx * num_vfs;
696 hw_resc->max_vnics -= vf_vnics * num_vfs;
697 rc = pf->active_vfs;
699 return rc;
702 static int bnxt_func_cfg(struct bnxt *bp, int num_vfs, bool reset)
704 if (BNXT_NEW_RM(bp))
705 return bnxt_hwrm_func_vf_resc_cfg(bp, num_vfs, reset);
706 else
707 return bnxt_hwrm_func_cfg(bp, num_vfs);
710 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset)
712 int rc;
714 /* Register buffers for VFs */
715 rc = bnxt_hwrm_func_buf_rgtr(bp);
716 if (rc)
717 return rc;
719 /* Reserve resources for VFs */
720 rc = bnxt_func_cfg(bp, *num_vfs, reset);
721 if (rc != *num_vfs) {
722 if (rc <= 0) {
723 netdev_warn(bp->dev, "Unable to reserve resources for SRIOV.\n");
724 *num_vfs = 0;
725 return rc;
727 netdev_warn(bp->dev, "Only able to reserve resources for %d VFs.\n",
728 rc);
729 *num_vfs = rc;
732 bnxt_ulp_sriov_cfg(bp, *num_vfs);
733 return 0;
736 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs)
738 int rc = 0, vfs_supported;
739 int min_rx_rings, min_tx_rings, min_rss_ctxs;
740 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
741 int tx_ok = 0, rx_ok = 0, rss_ok = 0;
742 int avail_cp, avail_stat;
744 /* Check if we can enable requested num of vf's. At a mininum
745 * we require 1 RX 1 TX rings for each VF. In this minimum conf
746 * features like TPA will not be available.
748 vfs_supported = *num_vfs;
750 avail_cp = bnxt_get_avail_cp_rings_for_en(bp);
751 avail_stat = bnxt_get_avail_stat_ctxs_for_en(bp);
752 avail_cp = min_t(int, avail_cp, avail_stat);
754 while (vfs_supported) {
755 min_rx_rings = vfs_supported;
756 min_tx_rings = vfs_supported;
757 min_rss_ctxs = vfs_supported;
759 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
760 if (hw_resc->max_rx_rings - bp->rx_nr_rings * 2 >=
761 min_rx_rings)
762 rx_ok = 1;
763 } else {
764 if (hw_resc->max_rx_rings - bp->rx_nr_rings >=
765 min_rx_rings)
766 rx_ok = 1;
768 if (hw_resc->max_vnics - bp->nr_vnics < min_rx_rings ||
769 avail_cp < min_rx_rings)
770 rx_ok = 0;
772 if (hw_resc->max_tx_rings - bp->tx_nr_rings >= min_tx_rings &&
773 avail_cp >= min_tx_rings)
774 tx_ok = 1;
776 if (hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs >=
777 min_rss_ctxs)
778 rss_ok = 1;
780 if (tx_ok && rx_ok && rss_ok)
781 break;
783 vfs_supported--;
786 if (!vfs_supported) {
787 netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n");
788 return -EINVAL;
791 if (vfs_supported != *num_vfs) {
792 netdev_info(bp->dev, "Requested VFs %d, can enable %d\n",
793 *num_vfs, vfs_supported);
794 *num_vfs = vfs_supported;
797 rc = bnxt_alloc_vf_resources(bp, *num_vfs);
798 if (rc)
799 goto err_out1;
801 rc = bnxt_cfg_hw_sriov(bp, num_vfs, false);
802 if (rc)
803 goto err_out2;
805 rc = pci_enable_sriov(bp->pdev, *num_vfs);
806 if (rc)
807 goto err_out2;
809 return 0;
811 err_out2:
812 /* Free the resources reserved for various VF's */
813 bnxt_hwrm_func_vf_resource_free(bp, *num_vfs);
815 err_out1:
816 bnxt_free_vf_resources(bp);
818 return rc;
821 void bnxt_sriov_disable(struct bnxt *bp)
823 u16 num_vfs = pci_num_vf(bp->pdev);
825 if (!num_vfs)
826 return;
828 /* synchronize VF and VF-rep create and destroy */
829 mutex_lock(&bp->sriov_lock);
830 bnxt_vf_reps_destroy(bp);
832 if (pci_vfs_assigned(bp->pdev)) {
833 bnxt_hwrm_fwd_async_event_cmpl(
834 bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD);
835 netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n",
836 num_vfs);
837 } else {
838 pci_disable_sriov(bp->pdev);
839 /* Free the HW resources reserved for various VF's */
840 bnxt_hwrm_func_vf_resource_free(bp, num_vfs);
842 mutex_unlock(&bp->sriov_lock);
844 bnxt_free_vf_resources(bp);
846 bp->pf.active_vfs = 0;
847 /* Reclaim all resources for the PF. */
848 rtnl_lock();
849 bnxt_restore_pf_fw_resources(bp);
850 rtnl_unlock();
852 bnxt_ulp_sriov_cfg(bp, 0);
855 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs)
857 struct net_device *dev = pci_get_drvdata(pdev);
858 struct bnxt *bp = netdev_priv(dev);
860 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
861 netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n");
862 return 0;
865 rtnl_lock();
866 if (!netif_running(dev)) {
867 netdev_warn(dev, "Reject SRIOV config request since if is down!\n");
868 rtnl_unlock();
869 return 0;
871 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
872 netdev_warn(dev, "Reject SRIOV config request when FW reset is in progress\n");
873 rtnl_unlock();
874 return 0;
876 bp->sriov_cfg = true;
877 rtnl_unlock();
879 if (pci_vfs_assigned(bp->pdev)) {
880 netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n");
881 num_vfs = 0;
882 goto sriov_cfg_exit;
885 /* Check if enabled VFs is same as requested */
886 if (num_vfs && num_vfs == bp->pf.active_vfs)
887 goto sriov_cfg_exit;
889 /* if there are previous existing VFs, clean them up */
890 bnxt_sriov_disable(bp);
891 if (!num_vfs)
892 goto sriov_cfg_exit;
894 bnxt_sriov_enable(bp, &num_vfs);
896 sriov_cfg_exit:
897 bp->sriov_cfg = false;
898 wake_up(&bp->sriov_cfg_wait);
900 return num_vfs;
903 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
904 void *encap_resp, __le64 encap_resp_addr,
905 __le16 encap_resp_cpr, u32 msg_size)
907 int rc = 0;
908 struct hwrm_fwd_resp_input req = {0};
910 if (BNXT_FWD_RESP_SIZE_ERR(msg_size))
911 return -EINVAL;
913 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_RESP, -1, -1);
915 /* Set the new target id */
916 req.target_id = cpu_to_le16(vf->fw_fid);
917 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
918 req.encap_resp_len = cpu_to_le16(msg_size);
919 req.encap_resp_addr = encap_resp_addr;
920 req.encap_resp_cmpl_ring = encap_resp_cpr;
921 memcpy(req.encap_resp, encap_resp, msg_size);
923 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
924 if (rc)
925 netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc);
926 return rc;
929 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
930 u32 msg_size)
932 int rc = 0;
933 struct hwrm_reject_fwd_resp_input req = {0};
935 if (BNXT_REJ_FWD_RESP_SIZE_ERR(msg_size))
936 return -EINVAL;
938 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_REJECT_FWD_RESP, -1, -1);
939 /* Set the new target id */
940 req.target_id = cpu_to_le16(vf->fw_fid);
941 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
942 memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
944 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
945 if (rc)
946 netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc);
947 return rc;
950 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
951 u32 msg_size)
953 int rc = 0;
954 struct hwrm_exec_fwd_resp_input req = {0};
956 if (BNXT_EXEC_FWD_RESP_SIZE_ERR(msg_size))
957 return -EINVAL;
959 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_EXEC_FWD_RESP, -1, -1);
960 /* Set the new target id */
961 req.target_id = cpu_to_le16(vf->fw_fid);
962 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
963 memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
965 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
966 if (rc)
967 netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc);
968 return rc;
971 static int bnxt_vf_configure_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
973 u32 msg_size = sizeof(struct hwrm_func_vf_cfg_input);
974 struct hwrm_func_vf_cfg_input *req =
975 (struct hwrm_func_vf_cfg_input *)vf->hwrm_cmd_req_addr;
977 /* Allow VF to set a valid MAC address, if trust is set to on or
978 * if the PF assigned MAC address is zero
980 if (req->enables & cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR)) {
981 bool trust = bnxt_is_trusted_vf(bp, vf);
983 if (is_valid_ether_addr(req->dflt_mac_addr) &&
984 (trust || !is_valid_ether_addr(vf->mac_addr) ||
985 ether_addr_equal(req->dflt_mac_addr, vf->mac_addr))) {
986 ether_addr_copy(vf->vf_mac_addr, req->dflt_mac_addr);
987 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
989 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
991 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
994 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
996 u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input);
997 struct hwrm_cfa_l2_filter_alloc_input *req =
998 (struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr;
999 bool mac_ok = false;
1001 if (!is_valid_ether_addr((const u8 *)req->l2_addr))
1002 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
1004 /* Allow VF to set a valid MAC address, if trust is set to on.
1005 * Or VF MAC address must first match MAC address in PF's context.
1006 * Otherwise, it must match the VF MAC address if firmware spec >=
1007 * 1.2.2
1009 if (bnxt_is_trusted_vf(bp, vf)) {
1010 mac_ok = true;
1011 } else if (is_valid_ether_addr(vf->mac_addr)) {
1012 if (ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr))
1013 mac_ok = true;
1014 } else if (is_valid_ether_addr(vf->vf_mac_addr)) {
1015 if (ether_addr_equal((const u8 *)req->l2_addr, vf->vf_mac_addr))
1016 mac_ok = true;
1017 } else {
1018 /* There are two cases:
1019 * 1.If firmware spec < 0x10202,VF MAC address is not forwarded
1020 * to the PF and so it doesn't have to match
1021 * 2.Allow VF to modify it's own MAC when PF has not assigned a
1022 * valid MAC address and firmware spec >= 0x10202
1024 mac_ok = true;
1026 if (mac_ok)
1027 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
1028 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
1031 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf)
1033 int rc = 0;
1035 if (!(vf->flags & BNXT_VF_LINK_FORCED)) {
1036 /* real link */
1037 rc = bnxt_hwrm_exec_fwd_resp(
1038 bp, vf, sizeof(struct hwrm_port_phy_qcfg_input));
1039 } else {
1040 struct hwrm_port_phy_qcfg_output phy_qcfg_resp;
1041 struct hwrm_port_phy_qcfg_input *phy_qcfg_req;
1043 phy_qcfg_req =
1044 (struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr;
1045 mutex_lock(&bp->hwrm_cmd_lock);
1046 memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp,
1047 sizeof(phy_qcfg_resp));
1048 mutex_unlock(&bp->hwrm_cmd_lock);
1049 phy_qcfg_resp.resp_len = cpu_to_le16(sizeof(phy_qcfg_resp));
1050 phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id;
1051 phy_qcfg_resp.valid = 1;
1053 if (vf->flags & BNXT_VF_LINK_UP) {
1054 /* if physical link is down, force link up on VF */
1055 if (phy_qcfg_resp.link !=
1056 PORT_PHY_QCFG_RESP_LINK_LINK) {
1057 phy_qcfg_resp.link =
1058 PORT_PHY_QCFG_RESP_LINK_LINK;
1059 phy_qcfg_resp.link_speed = cpu_to_le16(
1060 PORT_PHY_QCFG_RESP_LINK_SPEED_10GB);
1061 phy_qcfg_resp.duplex_cfg =
1062 PORT_PHY_QCFG_RESP_DUPLEX_CFG_FULL;
1063 phy_qcfg_resp.duplex_state =
1064 PORT_PHY_QCFG_RESP_DUPLEX_STATE_FULL;
1065 phy_qcfg_resp.pause =
1066 (PORT_PHY_QCFG_RESP_PAUSE_TX |
1067 PORT_PHY_QCFG_RESP_PAUSE_RX);
1069 } else {
1070 /* force link down */
1071 phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK;
1072 phy_qcfg_resp.link_speed = 0;
1073 phy_qcfg_resp.duplex_state =
1074 PORT_PHY_QCFG_RESP_DUPLEX_STATE_HALF;
1075 phy_qcfg_resp.pause = 0;
1077 rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp,
1078 phy_qcfg_req->resp_addr,
1079 phy_qcfg_req->cmpl_ring,
1080 sizeof(phy_qcfg_resp));
1082 return rc;
1085 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf)
1087 int rc = 0;
1088 struct input *encap_req = vf->hwrm_cmd_req_addr;
1089 u32 req_type = le16_to_cpu(encap_req->req_type);
1091 switch (req_type) {
1092 case HWRM_FUNC_VF_CFG:
1093 rc = bnxt_vf_configure_mac(bp, vf);
1094 break;
1095 case HWRM_CFA_L2_FILTER_ALLOC:
1096 rc = bnxt_vf_validate_set_mac(bp, vf);
1097 break;
1098 case HWRM_FUNC_CFG:
1099 /* TODO Validate if VF is allowed to change mac address,
1100 * mtu, num of rings etc
1102 rc = bnxt_hwrm_exec_fwd_resp(
1103 bp, vf, sizeof(struct hwrm_func_cfg_input));
1104 break;
1105 case HWRM_PORT_PHY_QCFG:
1106 rc = bnxt_vf_set_link(bp, vf);
1107 break;
1108 default:
1109 break;
1111 return rc;
1114 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
1116 u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id;
1118 /* Scan through VF's and process commands */
1119 while (1) {
1120 vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i);
1121 if (vf_id >= active_vfs)
1122 break;
1124 clear_bit(vf_id, bp->pf.vf_event_bmap);
1125 bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]);
1126 i = vf_id + 1;
1130 void bnxt_update_vf_mac(struct bnxt *bp)
1132 struct hwrm_func_qcaps_input req = {0};
1133 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
1135 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
1136 req.fid = cpu_to_le16(0xffff);
1138 mutex_lock(&bp->hwrm_cmd_lock);
1139 if (_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
1140 goto update_vf_mac_exit;
1142 /* Store MAC address from the firmware. There are 2 cases:
1143 * 1. MAC address is valid. It is assigned from the PF and we
1144 * need to override the current VF MAC address with it.
1145 * 2. MAC address is zero. The VF will use a random MAC address by
1146 * default but the stored zero MAC will allow the VF user to change
1147 * the random MAC address using ndo_set_mac_address() if he wants.
1149 if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr))
1150 memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN);
1152 /* overwrite netdev dev_addr with admin VF MAC */
1153 if (is_valid_ether_addr(bp->vf.mac_addr))
1154 memcpy(bp->dev->dev_addr, bp->vf.mac_addr, ETH_ALEN);
1155 update_vf_mac_exit:
1156 mutex_unlock(&bp->hwrm_cmd_lock);
1159 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict)
1161 struct hwrm_func_vf_cfg_input req = {0};
1162 int rc = 0;
1164 if (!BNXT_VF(bp))
1165 return 0;
1167 if (bp->hwrm_spec_code < 0x10202) {
1168 if (is_valid_ether_addr(bp->vf.mac_addr))
1169 rc = -EADDRNOTAVAIL;
1170 goto mac_done;
1172 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
1173 req.enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
1174 memcpy(req.dflt_mac_addr, mac, ETH_ALEN);
1175 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
1176 mac_done:
1177 if (rc && strict) {
1178 rc = -EADDRNOTAVAIL;
1179 netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n",
1180 mac);
1181 return rc;
1183 return 0;
1185 #else
1187 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset)
1189 if (*num_vfs)
1190 return -EOPNOTSUPP;
1191 return 0;
1194 void bnxt_sriov_disable(struct bnxt *bp)
1198 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
1200 netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n");
1203 void bnxt_update_vf_mac(struct bnxt *bp)
1207 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict)
1209 return 0;
1211 #endif