treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / ethernet / brocade / bna / bna_hw_defs.h
blobf335b7115c1bdc8997150b5be0369e2d9efe602d
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Linux network driver for QLogic BR-series Converged Network Adapter.
4 */
5 /*
6 * Copyright (c) 2005-2014 Brocade Communications Systems, Inc.
7 * Copyright (c) 2014-2015 QLogic Corporation
8 * All rights reserved
9 * www.qlogic.com
12 /* File for interrupt macros and functions */
14 #ifndef __BNA_HW_DEFS_H__
15 #define __BNA_HW_DEFS_H__
17 #include "bfi_reg.h"
19 /* SW imposed limits */
21 #define BFI_ENET_DEF_TXQ 1
22 #define BFI_ENET_DEF_RXP 1
23 #define BFI_ENET_DEF_UCAM 1
24 #define BFI_ENET_DEF_RITSZ 1
26 #define BFI_ENET_MAX_MCAM 256
28 #define BFI_INVALID_RID -1
30 #define BFI_IBIDX_SIZE 4
32 #define BFI_VLAN_WORD_SHIFT 5 /* 32 bits */
33 #define BFI_VLAN_WORD_MASK 0x1F
34 #define BFI_VLAN_BLOCK_SHIFT 9 /* 512 bits */
35 #define BFI_VLAN_BMASK_ALL 0xFF
37 #define BFI_COALESCING_TIMER_UNIT 5 /* 5us */
38 #define BFI_MAX_COALESCING_TIMEO 0xFF /* in 5us units */
39 #define BFI_MAX_INTERPKT_COUNT 0xFF
40 #define BFI_MAX_INTERPKT_TIMEO 0xF /* in 0.5us units */
41 #define BFI_TX_COALESCING_TIMEO 20 /* 20 * 5 = 100us */
42 #define BFI_TX_INTERPKT_COUNT 12 /* Pkt Cnt = 12 */
43 #define BFI_TX_INTERPKT_TIMEO 15 /* 15 * 0.5 = 7.5us */
44 #define BFI_RX_COALESCING_TIMEO 12 /* 12 * 5 = 60us */
45 #define BFI_RX_INTERPKT_COUNT 6 /* Pkt Cnt = 6 */
46 #define BFI_RX_INTERPKT_TIMEO 3 /* 3 * 0.5 = 1.5us */
48 #define BFI_TXQ_WI_SIZE 64 /* bytes */
49 #define BFI_RXQ_WI_SIZE 8 /* bytes */
50 #define BFI_CQ_WI_SIZE 16 /* bytes */
51 #define BFI_TX_MAX_WRR_QUOTA 0xFFF
53 #define BFI_TX_MAX_VECTORS_PER_WI 4
54 #define BFI_TX_MAX_VECTORS_PER_PKT 0xFF
55 #define BFI_TX_MAX_DATA_PER_VECTOR 0xFFFF
56 #define BFI_TX_MAX_DATA_PER_PKT 0xFFFFFF
58 /* Small Q buffer size */
59 #define BFI_SMALL_RXBUF_SIZE 128
61 #define BFI_TX_MAX_PRIO 8
62 #define BFI_TX_PRIO_MAP_ALL 0xFF
66 * Register definitions and macros
70 #define BNA_PCI_REG_CT_ADDRSZ (0x40000)
72 #define ct_reg_addr_init(_bna, _pcidev) \
73 { \
74 struct bna_reg_offset reg_offset[] = \
75 {{HOSTFN0_INT_STATUS, HOSTFN0_INT_MSK}, \
76 {HOSTFN1_INT_STATUS, HOSTFN1_INT_MSK}, \
77 {HOSTFN2_INT_STATUS, HOSTFN2_INT_MSK}, \
78 {HOSTFN3_INT_STATUS, HOSTFN3_INT_MSK} }; \
80 (_bna)->regs.fn_int_status = (_pcidev)->pci_bar_kva + \
81 reg_offset[(_pcidev)->pci_func].fn_int_status;\
82 (_bna)->regs.fn_int_mask = (_pcidev)->pci_bar_kva + \
83 reg_offset[(_pcidev)->pci_func].fn_int_mask;\
86 #define ct_bit_defn_init(_bna, _pcidev) \
87 { \
88 (_bna)->bits.mbox_status_bits = (__HFN_INT_MBOX_LPU0 | \
89 __HFN_INT_MBOX_LPU1); \
90 (_bna)->bits.mbox_mask_bits = (__HFN_INT_MBOX_LPU0 | \
91 __HFN_INT_MBOX_LPU1); \
92 (_bna)->bits.error_status_bits = (__HFN_INT_ERR_MASK); \
93 (_bna)->bits.error_mask_bits = (__HFN_INT_ERR_MASK); \
94 (_bna)->bits.halt_status_bits = __HFN_INT_LL_HALT; \
95 (_bna)->bits.halt_mask_bits = __HFN_INT_LL_HALT; \
98 #define ct2_reg_addr_init(_bna, _pcidev) \
99 { \
100 (_bna)->regs.fn_int_status = (_pcidev)->pci_bar_kva + \
101 CT2_HOSTFN_INT_STATUS; \
102 (_bna)->regs.fn_int_mask = (_pcidev)->pci_bar_kva + \
103 CT2_HOSTFN_INTR_MASK; \
106 #define ct2_bit_defn_init(_bna, _pcidev) \
108 (_bna)->bits.mbox_status_bits = (__HFN_INT_MBOX_LPU0_CT2 | \
109 __HFN_INT_MBOX_LPU1_CT2); \
110 (_bna)->bits.mbox_mask_bits = (__HFN_INT_MBOX_LPU0_CT2 | \
111 __HFN_INT_MBOX_LPU1_CT2); \
112 (_bna)->bits.error_status_bits = (__HFN_INT_ERR_MASK_CT2); \
113 (_bna)->bits.error_mask_bits = (__HFN_INT_ERR_MASK_CT2); \
114 (_bna)->bits.halt_status_bits = __HFN_INT_CPQ_HALT_CT2; \
115 (_bna)->bits.halt_mask_bits = __HFN_INT_CPQ_HALT_CT2; \
118 #define bna_reg_addr_init(_bna, _pcidev) \
120 switch ((_pcidev)->device_id) { \
121 case PCI_DEVICE_ID_BROCADE_CT: \
122 ct_reg_addr_init((_bna), (_pcidev)); \
123 ct_bit_defn_init((_bna), (_pcidev)); \
124 break; \
125 case BFA_PCI_DEVICE_ID_CT2: \
126 ct2_reg_addr_init((_bna), (_pcidev)); \
127 ct2_bit_defn_init((_bna), (_pcidev)); \
128 break; \
132 #define bna_port_id_get(_bna) ((_bna)->ioceth.ioc.port_id)
134 /* Interrupt related bits, flags and macros */
136 #define IB_STATUS_BITS 0x0000ffff
138 #define BNA_IS_MBOX_INTR(_bna, _intr_status) \
139 ((_intr_status) & (_bna)->bits.mbox_status_bits)
141 #define BNA_IS_HALT_INTR(_bna, _intr_status) \
142 ((_intr_status) & (_bna)->bits.halt_status_bits)
144 #define BNA_IS_ERR_INTR(_bna, _intr_status) \
145 ((_intr_status) & (_bna)->bits.error_status_bits)
147 #define BNA_IS_MBOX_ERR_INTR(_bna, _intr_status) \
148 (BNA_IS_MBOX_INTR(_bna, _intr_status) | \
149 BNA_IS_ERR_INTR(_bna, _intr_status))
151 #define BNA_IS_INTX_DATA_INTR(_intr_status) \
152 ((_intr_status) & IB_STATUS_BITS)
154 #define bna_halt_clear(_bna) \
155 do { \
156 u32 init_halt; \
157 init_halt = readl((_bna)->ioceth.ioc.ioc_regs.ll_halt); \
158 init_halt &= ~__FW_INIT_HALT_P; \
159 writel(init_halt, (_bna)->ioceth.ioc.ioc_regs.ll_halt); \
160 init_halt = readl((_bna)->ioceth.ioc.ioc_regs.ll_halt); \
161 } while (0)
163 #define bna_intx_disable(_bna, _cur_mask) \
165 (_cur_mask) = readl((_bna)->regs.fn_int_mask); \
166 writel(0xffffffff, (_bna)->regs.fn_int_mask); \
169 #define bna_intx_enable(bna, new_mask) \
170 writel((new_mask), (bna)->regs.fn_int_mask)
171 #define bna_mbox_intr_disable(bna) \
172 do { \
173 u32 mask; \
174 mask = readl((bna)->regs.fn_int_mask); \
175 writel((mask | (bna)->bits.mbox_mask_bits | \
176 (bna)->bits.error_mask_bits), (bna)->regs.fn_int_mask); \
177 mask = readl((bna)->regs.fn_int_mask); \
178 } while (0)
180 #define bna_mbox_intr_enable(bna) \
181 do { \
182 u32 mask; \
183 mask = readl((bna)->regs.fn_int_mask); \
184 writel((mask & ~((bna)->bits.mbox_mask_bits | \
185 (bna)->bits.error_mask_bits)), (bna)->regs.fn_int_mask);\
186 mask = readl((bna)->regs.fn_int_mask); \
187 } while (0)
189 #define bna_intr_status_get(_bna, _status) \
191 (_status) = readl((_bna)->regs.fn_int_status); \
192 if (_status) { \
193 writel(((_status) & ~(_bna)->bits.mbox_status_bits), \
194 (_bna)->regs.fn_int_status); \
199 * MAX ACK EVENTS : No. of acks that can be accumulated in driver,
200 * before acking to h/w. The no. of bits is 16 in the doorbell register,
201 * however we keep this limited to 15 bits.
202 * This is because around the edge of 64K boundary (16 bits), one
203 * single poll can make the accumulated ACK counter cross the 64K boundary,
204 * causing problems, when we try to ack with a value greater than 64K.
205 * 15 bits (32K) should be large enough to accumulate, anyways, and the max.
206 * acked events to h/w can be (32K + max poll weight) (currently 64).
208 #define BNA_IB_MAX_ACK_EVENTS BIT(15)
210 /* These macros build the data portion of the TxQ/RxQ doorbell */
211 #define BNA_DOORBELL_Q_PRD_IDX(_pi) (0x80000000 | (_pi))
212 #define BNA_DOORBELL_Q_STOP (0x40000000)
214 /* These macros build the data portion of the IB doorbell */
215 #define BNA_DOORBELL_IB_INT_ACK(_timeout, _events) \
216 (0x80000000 | ((_timeout) << 16) | (_events))
217 #define BNA_DOORBELL_IB_INT_DISABLE (0x40000000)
219 /* Set the coalescing timer for the given ib */
220 #define bna_ib_coalescing_timer_set(_i_dbell, _cls_timer) \
221 ((_i_dbell)->doorbell_ack = BNA_DOORBELL_IB_INT_ACK((_cls_timer), 0));
223 /* Acks 'events' # of events for a given ib while disabling interrupts */
224 #define bna_ib_ack_disable_irq(_i_dbell, _events) \
225 (writel(BNA_DOORBELL_IB_INT_ACK(0, (_events)), \
226 (_i_dbell)->doorbell_addr));
228 /* Acks 'events' # of events for a given ib */
229 #define bna_ib_ack(_i_dbell, _events) \
230 (writel(((_i_dbell)->doorbell_ack | (_events)), \
231 (_i_dbell)->doorbell_addr));
233 #define bna_ib_start(_bna, _ib, _is_regular) \
235 u32 intx_mask; \
236 struct bna_ib *ib = _ib; \
237 if ((ib->intr_type == BNA_INTR_T_INTX)) { \
238 bna_intx_disable((_bna), intx_mask); \
239 intx_mask &= ~(ib->intr_vector); \
240 bna_intx_enable((_bna), intx_mask); \
242 bna_ib_coalescing_timer_set(&ib->door_bell, \
243 ib->coalescing_timeo); \
244 if (_is_regular) \
245 bna_ib_ack(&ib->door_bell, 0); \
248 #define bna_ib_stop(_bna, _ib) \
250 u32 intx_mask; \
251 struct bna_ib *ib = _ib; \
252 writel(BNA_DOORBELL_IB_INT_DISABLE, \
253 ib->door_bell.doorbell_addr); \
254 if (ib->intr_type == BNA_INTR_T_INTX) { \
255 bna_intx_disable((_bna), intx_mask); \
256 intx_mask |= ib->intr_vector; \
257 bna_intx_enable((_bna), intx_mask); \
261 #define bna_txq_prod_indx_doorbell(_tcb) \
262 (writel(BNA_DOORBELL_Q_PRD_IDX((_tcb)->producer_index), \
263 (_tcb)->q_dbell));
265 #define bna_rxq_prod_indx_doorbell(_rcb) \
266 (writel(BNA_DOORBELL_Q_PRD_IDX((_rcb)->producer_index), \
267 (_rcb)->q_dbell));
269 /* TxQ, RxQ, CQ related bits, offsets, macros */
271 /* TxQ Entry Opcodes */
272 #define BNA_TXQ_WI_SEND (0x402) /* Single Frame Transmission */
273 #define BNA_TXQ_WI_SEND_LSO (0x403) /* Multi-Frame Transmission */
274 #define BNA_TXQ_WI_EXTENSION (0x104) /* Extension WI */
276 /* TxQ Entry Control Flags */
277 #define BNA_TXQ_WI_CF_FCOE_CRC BIT(8)
278 #define BNA_TXQ_WI_CF_IPID_MODE BIT(5)
279 #define BNA_TXQ_WI_CF_INS_PRIO BIT(4)
280 #define BNA_TXQ_WI_CF_INS_VLAN BIT(3)
281 #define BNA_TXQ_WI_CF_UDP_CKSUM BIT(2)
282 #define BNA_TXQ_WI_CF_TCP_CKSUM BIT(1)
283 #define BNA_TXQ_WI_CF_IP_CKSUM BIT(0)
285 #define BNA_TXQ_WI_L4_HDR_N_OFFSET(_hdr_size, _offset) \
286 (((_hdr_size) << 10) | ((_offset) & 0x3FF))
289 * Completion Q defines
291 /* CQ Entry Flags */
292 #define BNA_CQ_EF_MAC_ERROR BIT(0)
293 #define BNA_CQ_EF_FCS_ERROR BIT(1)
294 #define BNA_CQ_EF_TOO_LONG BIT(2)
295 #define BNA_CQ_EF_FC_CRC_OK BIT(3)
297 #define BNA_CQ_EF_RSVD1 BIT(4)
298 #define BNA_CQ_EF_L4_CKSUM_OK BIT(5)
299 #define BNA_CQ_EF_L3_CKSUM_OK BIT(6)
300 #define BNA_CQ_EF_HDS_HEADER BIT(7)
302 #define BNA_CQ_EF_UDP BIT(8)
303 #define BNA_CQ_EF_TCP BIT(9)
304 #define BNA_CQ_EF_IP_OPTIONS BIT(10)
305 #define BNA_CQ_EF_IPV6 BIT(11)
307 #define BNA_CQ_EF_IPV4 BIT(12)
308 #define BNA_CQ_EF_VLAN BIT(13)
309 #define BNA_CQ_EF_RSS BIT(14)
310 #define BNA_CQ_EF_RSVD2 BIT(15)
312 #define BNA_CQ_EF_MCAST_MATCH BIT(16)
313 #define BNA_CQ_EF_MCAST BIT(17)
314 #define BNA_CQ_EF_BCAST BIT(18)
315 #define BNA_CQ_EF_REMOTE BIT(19)
317 #define BNA_CQ_EF_LOCAL BIT(20)
318 /* CAT2 ASIC does not use bit 21 as per the SPEC.
319 * Bit 31 is set in every end of frame completion
321 #define BNA_CQ_EF_EOP BIT(31)
323 /* Data structures */
325 struct bna_reg_offset {
326 u32 fn_int_status;
327 u32 fn_int_mask;
330 struct bna_bit_defn {
331 u32 mbox_status_bits;
332 u32 mbox_mask_bits;
333 u32 error_status_bits;
334 u32 error_mask_bits;
335 u32 halt_status_bits;
336 u32 halt_mask_bits;
339 struct bna_reg {
340 void __iomem *fn_int_status;
341 void __iomem *fn_int_mask;
344 /* TxQ Vector (a.k.a. Tx-Buffer Descriptor) */
345 struct bna_dma_addr {
346 u32 msb;
347 u32 lsb;
350 struct bna_txq_wi_vector {
351 u16 reserved;
352 u16 length; /* Only 14 LSB are valid */
353 struct bna_dma_addr host_addr; /* Tx-Buf DMA addr */
356 /* TxQ Entry Structure
358 * BEWARE: Load values into this structure with correct endianness.
360 struct bna_txq_entry {
361 union {
362 struct {
363 u8 reserved;
364 u8 num_vectors; /* number of vectors present */
365 u16 opcode; /* Either */
366 /* BNA_TXQ_WI_SEND or */
367 /* BNA_TXQ_WI_SEND_LSO */
368 u16 flags; /* OR of all the flags */
369 u16 l4_hdr_size_n_offset;
370 u16 vlan_tag;
371 u16 lso_mss; /* Only 14 LSB are valid */
372 u32 frame_length; /* Only 24 LSB are valid */
373 } wi;
375 struct {
376 u16 reserved;
377 u16 opcode; /* Must be */
378 /* BNA_TXQ_WI_EXTENSION */
379 u32 reserved2[3]; /* Place holder for */
380 /* removed vector (12 bytes) */
381 } wi_ext;
382 } hdr;
383 struct bna_txq_wi_vector vector[4];
386 /* RxQ Entry Structure */
387 struct bna_rxq_entry { /* Rx-Buffer */
388 struct bna_dma_addr host_addr; /* Rx-Buffer DMA address */
391 /* CQ Entry Structure */
392 struct bna_cq_entry {
393 u32 flags;
394 u16 vlan_tag;
395 u16 length;
396 u32 rss_hash;
397 u8 valid;
398 u8 reserved1;
399 u8 reserved2;
400 u8 rxq_id;
403 #endif /* __BNA_HW_DEFS_H__ */