treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / ethernet / cavium / thunder / nicvf_queues.c
blob4ab57d33a87e435eb473e49fc82beaa4a9fc8d44
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 Cavium, Inc.
4 */
6 #include <linux/pci.h>
7 #include <linux/netdevice.h>
8 #include <linux/ip.h>
9 #include <linux/etherdevice.h>
10 #include <linux/iommu.h>
11 #include <net/ip.h>
12 #include <net/tso.h>
14 #include "nic_reg.h"
15 #include "nic.h"
16 #include "q_struct.h"
17 #include "nicvf_queues.h"
19 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
20 int size, u64 data);
21 static void nicvf_get_page(struct nicvf *nic)
23 if (!nic->rb_pageref || !nic->rb_page)
24 return;
26 page_ref_add(nic->rb_page, nic->rb_pageref);
27 nic->rb_pageref = 0;
30 /* Poll a register for a specific value */
31 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
32 u64 reg, int bit_pos, int bits, int val)
34 u64 bit_mask;
35 u64 reg_val;
36 int timeout = 10;
38 bit_mask = (1ULL << bits) - 1;
39 bit_mask = (bit_mask << bit_pos);
41 while (timeout) {
42 reg_val = nicvf_queue_reg_read(nic, reg, qidx);
43 if (((reg_val & bit_mask) >> bit_pos) == val)
44 return 0;
45 usleep_range(1000, 2000);
46 timeout--;
48 netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
49 return 1;
52 /* Allocate memory for a queue's descriptors */
53 static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
54 int q_len, int desc_size, int align_bytes)
56 dmem->q_len = q_len;
57 dmem->size = (desc_size * q_len) + align_bytes;
58 /* Save address, need it while freeing */
59 dmem->unalign_base = dma_alloc_coherent(&nic->pdev->dev, dmem->size,
60 &dmem->dma, GFP_KERNEL);
61 if (!dmem->unalign_base)
62 return -ENOMEM;
64 /* Align memory address for 'align_bytes' */
65 dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
66 dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
67 return 0;
70 /* Free queue's descriptor memory */
71 static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
73 if (!dmem)
74 return;
76 dma_free_coherent(&nic->pdev->dev, dmem->size,
77 dmem->unalign_base, dmem->dma);
78 dmem->unalign_base = NULL;
79 dmem->base = NULL;
82 #define XDP_PAGE_REFCNT_REFILL 256
84 /* Allocate a new page or recycle one if possible
86 * We cannot optimize dma mapping here, since
87 * 1. It's only one RBDR ring for 8 Rx queues.
88 * 2. CQE_RX gives address of the buffer where pkt has been DMA'ed
89 * and not idx into RBDR ring, so can't refer to saved info.
90 * 3. There are multiple receive buffers per page
92 static inline struct pgcache *nicvf_alloc_page(struct nicvf *nic,
93 struct rbdr *rbdr, gfp_t gfp)
95 int ref_count;
96 struct page *page = NULL;
97 struct pgcache *pgcache, *next;
99 /* Check if page is already allocated */
100 pgcache = &rbdr->pgcache[rbdr->pgidx];
101 page = pgcache->page;
102 /* Check if page can be recycled */
103 if (page) {
104 ref_count = page_ref_count(page);
105 /* This page can be recycled if internal ref_count and page's
106 * ref_count are equal, indicating that the page has been used
107 * once for packet transmission. For non-XDP mode, internal
108 * ref_count is always '1'.
110 if (rbdr->is_xdp) {
111 if (ref_count == pgcache->ref_count)
112 pgcache->ref_count--;
113 else
114 page = NULL;
115 } else if (ref_count != 1) {
116 page = NULL;
120 if (!page) {
121 page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN, 0);
122 if (!page)
123 return NULL;
125 this_cpu_inc(nic->pnicvf->drv_stats->page_alloc);
127 /* Check for space */
128 if (rbdr->pgalloc >= rbdr->pgcnt) {
129 /* Page can still be used */
130 nic->rb_page = page;
131 return NULL;
134 /* Save the page in page cache */
135 pgcache->page = page;
136 pgcache->dma_addr = 0;
137 pgcache->ref_count = 0;
138 rbdr->pgalloc++;
141 /* Take additional page references for recycling */
142 if (rbdr->is_xdp) {
143 /* Since there is single RBDR (i.e single core doing
144 * page recycling) per 8 Rx queues, in XDP mode adjusting
145 * page references atomically is the biggest bottleneck, so
146 * take bunch of references at a time.
148 * So here, below reference counts defer by '1'.
150 if (!pgcache->ref_count) {
151 pgcache->ref_count = XDP_PAGE_REFCNT_REFILL;
152 page_ref_add(page, XDP_PAGE_REFCNT_REFILL);
154 } else {
155 /* In non-XDP case, single 64K page is divided across multiple
156 * receive buffers, so cost of recycling is less anyway.
157 * So we can do with just one extra reference.
159 page_ref_add(page, 1);
162 rbdr->pgidx++;
163 rbdr->pgidx &= (rbdr->pgcnt - 1);
165 /* Prefetch refcount of next page in page cache */
166 next = &rbdr->pgcache[rbdr->pgidx];
167 page = next->page;
168 if (page)
169 prefetch(&page->_refcount);
171 return pgcache;
174 /* Allocate buffer for packet reception */
175 static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
176 gfp_t gfp, u32 buf_len, u64 *rbuf)
178 struct pgcache *pgcache = NULL;
180 /* Check if request can be accomodated in previous allocated page.
181 * But in XDP mode only one buffer per page is permitted.
183 if (!rbdr->is_xdp && nic->rb_page &&
184 ((nic->rb_page_offset + buf_len) <= PAGE_SIZE)) {
185 nic->rb_pageref++;
186 goto ret;
189 nicvf_get_page(nic);
190 nic->rb_page = NULL;
192 /* Get new page, either recycled or new one */
193 pgcache = nicvf_alloc_page(nic, rbdr, gfp);
194 if (!pgcache && !nic->rb_page) {
195 this_cpu_inc(nic->pnicvf->drv_stats->rcv_buffer_alloc_failures);
196 return -ENOMEM;
199 nic->rb_page_offset = 0;
201 /* Reserve space for header modifications by BPF program */
202 if (rbdr->is_xdp)
203 buf_len += XDP_PACKET_HEADROOM;
205 /* Check if it's recycled */
206 if (pgcache)
207 nic->rb_page = pgcache->page;
208 ret:
209 if (rbdr->is_xdp && pgcache && pgcache->dma_addr) {
210 *rbuf = pgcache->dma_addr;
211 } else {
212 /* HW will ensure data coherency, CPU sync not required */
213 *rbuf = (u64)dma_map_page_attrs(&nic->pdev->dev, nic->rb_page,
214 nic->rb_page_offset, buf_len,
215 DMA_FROM_DEVICE,
216 DMA_ATTR_SKIP_CPU_SYNC);
217 if (dma_mapping_error(&nic->pdev->dev, (dma_addr_t)*rbuf)) {
218 if (!nic->rb_page_offset)
219 __free_pages(nic->rb_page, 0);
220 nic->rb_page = NULL;
221 return -ENOMEM;
223 if (pgcache)
224 pgcache->dma_addr = *rbuf + XDP_PACKET_HEADROOM;
225 nic->rb_page_offset += buf_len;
228 return 0;
231 /* Build skb around receive buffer */
232 static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
233 u64 rb_ptr, int len)
235 void *data;
236 struct sk_buff *skb;
238 data = phys_to_virt(rb_ptr);
240 /* Now build an skb to give to stack */
241 skb = build_skb(data, RCV_FRAG_LEN);
242 if (!skb) {
243 put_page(virt_to_page(data));
244 return NULL;
247 prefetch(skb->data);
248 return skb;
251 /* Allocate RBDR ring and populate receive buffers */
252 static int nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
253 int ring_len, int buf_size)
255 int idx;
256 u64 rbuf;
257 struct rbdr_entry_t *desc;
258 int err;
260 err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
261 sizeof(struct rbdr_entry_t),
262 NICVF_RCV_BUF_ALIGN_BYTES);
263 if (err)
264 return err;
266 rbdr->desc = rbdr->dmem.base;
267 /* Buffer size has to be in multiples of 128 bytes */
268 rbdr->dma_size = buf_size;
269 rbdr->enable = true;
270 rbdr->thresh = RBDR_THRESH;
271 rbdr->head = 0;
272 rbdr->tail = 0;
274 /* Initialize page recycling stuff.
276 * Can't use single buffer per page especially with 64K pages.
277 * On embedded platforms i.e 81xx/83xx available memory itself
278 * is low and minimum ring size of RBDR is 8K, that takes away
279 * lots of memory.
281 * But for XDP it has to be a single buffer per page.
283 if (!nic->pnicvf->xdp_prog) {
284 rbdr->pgcnt = ring_len / (PAGE_SIZE / buf_size);
285 rbdr->is_xdp = false;
286 } else {
287 rbdr->pgcnt = ring_len;
288 rbdr->is_xdp = true;
290 rbdr->pgcnt = roundup_pow_of_two(rbdr->pgcnt);
291 rbdr->pgcache = kcalloc(rbdr->pgcnt, sizeof(*rbdr->pgcache),
292 GFP_KERNEL);
293 if (!rbdr->pgcache)
294 return -ENOMEM;
295 rbdr->pgidx = 0;
296 rbdr->pgalloc = 0;
298 nic->rb_page = NULL;
299 for (idx = 0; idx < ring_len; idx++) {
300 err = nicvf_alloc_rcv_buffer(nic, rbdr, GFP_KERNEL,
301 RCV_FRAG_LEN, &rbuf);
302 if (err) {
303 /* To free already allocated and mapped ones */
304 rbdr->tail = idx - 1;
305 return err;
308 desc = GET_RBDR_DESC(rbdr, idx);
309 desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
312 nicvf_get_page(nic);
314 return 0;
317 /* Free RBDR ring and its receive buffers */
318 static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
320 int head, tail;
321 u64 buf_addr, phys_addr;
322 struct pgcache *pgcache;
323 struct rbdr_entry_t *desc;
325 if (!rbdr)
326 return;
328 rbdr->enable = false;
329 if (!rbdr->dmem.base)
330 return;
332 head = rbdr->head;
333 tail = rbdr->tail;
335 /* Release page references */
336 while (head != tail) {
337 desc = GET_RBDR_DESC(rbdr, head);
338 buf_addr = desc->buf_addr;
339 phys_addr = nicvf_iova_to_phys(nic, buf_addr);
340 dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
341 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
342 if (phys_addr)
343 put_page(virt_to_page(phys_to_virt(phys_addr)));
344 head++;
345 head &= (rbdr->dmem.q_len - 1);
347 /* Release buffer of tail desc */
348 desc = GET_RBDR_DESC(rbdr, tail);
349 buf_addr = desc->buf_addr;
350 phys_addr = nicvf_iova_to_phys(nic, buf_addr);
351 dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
352 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
353 if (phys_addr)
354 put_page(virt_to_page(phys_to_virt(phys_addr)));
356 /* Sync page cache info */
357 smp_rmb();
359 /* Release additional page references held for recycling */
360 head = 0;
361 while (head < rbdr->pgcnt) {
362 pgcache = &rbdr->pgcache[head];
363 if (pgcache->page && page_ref_count(pgcache->page) != 0) {
364 if (rbdr->is_xdp) {
365 page_ref_sub(pgcache->page,
366 pgcache->ref_count - 1);
368 put_page(pgcache->page);
370 head++;
373 /* Free RBDR ring */
374 nicvf_free_q_desc_mem(nic, &rbdr->dmem);
377 /* Refill receive buffer descriptors with new buffers.
379 static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
381 struct queue_set *qs = nic->qs;
382 int rbdr_idx = qs->rbdr_cnt;
383 int tail, qcount;
384 int refill_rb_cnt;
385 struct rbdr *rbdr;
386 struct rbdr_entry_t *desc;
387 u64 rbuf;
388 int new_rb = 0;
390 refill:
391 if (!rbdr_idx)
392 return;
393 rbdr_idx--;
394 rbdr = &qs->rbdr[rbdr_idx];
395 /* Check if it's enabled */
396 if (!rbdr->enable)
397 goto next_rbdr;
399 /* Get no of desc's to be refilled */
400 qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
401 qcount &= 0x7FFFF;
402 /* Doorbell can be ringed with a max of ring size minus 1 */
403 if (qcount >= (qs->rbdr_len - 1))
404 goto next_rbdr;
405 else
406 refill_rb_cnt = qs->rbdr_len - qcount - 1;
408 /* Sync page cache info */
409 smp_rmb();
411 /* Start filling descs from tail */
412 tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
413 while (refill_rb_cnt) {
414 tail++;
415 tail &= (rbdr->dmem.q_len - 1);
417 if (nicvf_alloc_rcv_buffer(nic, rbdr, gfp, RCV_FRAG_LEN, &rbuf))
418 break;
420 desc = GET_RBDR_DESC(rbdr, tail);
421 desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
422 refill_rb_cnt--;
423 new_rb++;
426 nicvf_get_page(nic);
428 /* make sure all memory stores are done before ringing doorbell */
429 smp_wmb();
431 /* Check if buffer allocation failed */
432 if (refill_rb_cnt)
433 nic->rb_alloc_fail = true;
434 else
435 nic->rb_alloc_fail = false;
437 /* Notify HW */
438 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
439 rbdr_idx, new_rb);
440 next_rbdr:
441 /* Re-enable RBDR interrupts only if buffer allocation is success */
442 if (!nic->rb_alloc_fail && rbdr->enable &&
443 netif_running(nic->pnicvf->netdev))
444 nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
446 if (rbdr_idx)
447 goto refill;
450 /* Alloc rcv buffers in non-atomic mode for better success */
451 void nicvf_rbdr_work(struct work_struct *work)
453 struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
455 nicvf_refill_rbdr(nic, GFP_KERNEL);
456 if (nic->rb_alloc_fail)
457 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
458 else
459 nic->rb_work_scheduled = false;
462 /* In Softirq context, alloc rcv buffers in atomic mode */
463 void nicvf_rbdr_task(unsigned long data)
465 struct nicvf *nic = (struct nicvf *)data;
467 nicvf_refill_rbdr(nic, GFP_ATOMIC);
468 if (nic->rb_alloc_fail) {
469 nic->rb_work_scheduled = true;
470 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
474 /* Initialize completion queue */
475 static int nicvf_init_cmp_queue(struct nicvf *nic,
476 struct cmp_queue *cq, int q_len)
478 int err;
480 err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
481 NICVF_CQ_BASE_ALIGN_BYTES);
482 if (err)
483 return err;
485 cq->desc = cq->dmem.base;
486 cq->thresh = pass1_silicon(nic->pdev) ? 0 : CMP_QUEUE_CQE_THRESH;
487 nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
489 return 0;
492 static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
494 if (!cq)
495 return;
496 if (!cq->dmem.base)
497 return;
499 nicvf_free_q_desc_mem(nic, &cq->dmem);
502 /* Initialize transmit queue */
503 static int nicvf_init_snd_queue(struct nicvf *nic,
504 struct snd_queue *sq, int q_len, int qidx)
506 int err;
508 err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
509 NICVF_SQ_BASE_ALIGN_BYTES);
510 if (err)
511 return err;
513 sq->desc = sq->dmem.base;
514 sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
515 if (!sq->skbuff)
516 return -ENOMEM;
518 sq->head = 0;
519 sq->tail = 0;
520 sq->thresh = SND_QUEUE_THRESH;
522 /* Check if this SQ is a XDP TX queue */
523 if (nic->sqs_mode)
524 qidx += ((nic->sqs_id + 1) * MAX_SND_QUEUES_PER_QS);
525 if (qidx < nic->pnicvf->xdp_tx_queues) {
526 /* Alloc memory to save page pointers for XDP_TX */
527 sq->xdp_page = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
528 if (!sq->xdp_page)
529 return -ENOMEM;
530 sq->xdp_desc_cnt = 0;
531 sq->xdp_free_cnt = q_len - 1;
532 sq->is_xdp = true;
533 } else {
534 sq->xdp_page = NULL;
535 sq->xdp_desc_cnt = 0;
536 sq->xdp_free_cnt = 0;
537 sq->is_xdp = false;
539 atomic_set(&sq->free_cnt, q_len - 1);
541 /* Preallocate memory for TSO segment's header */
542 sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
543 q_len * TSO_HEADER_SIZE,
544 &sq->tso_hdrs_phys,
545 GFP_KERNEL);
546 if (!sq->tso_hdrs)
547 return -ENOMEM;
550 return 0;
553 void nicvf_unmap_sndq_buffers(struct nicvf *nic, struct snd_queue *sq,
554 int hdr_sqe, u8 subdesc_cnt)
556 u8 idx;
557 struct sq_gather_subdesc *gather;
559 /* Unmap DMA mapped skb data buffers */
560 for (idx = 0; idx < subdesc_cnt; idx++) {
561 hdr_sqe++;
562 hdr_sqe &= (sq->dmem.q_len - 1);
563 gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, hdr_sqe);
564 /* HW will ensure data coherency, CPU sync not required */
565 dma_unmap_page_attrs(&nic->pdev->dev, gather->addr,
566 gather->size, DMA_TO_DEVICE,
567 DMA_ATTR_SKIP_CPU_SYNC);
571 static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
573 struct sk_buff *skb;
574 struct page *page;
575 struct sq_hdr_subdesc *hdr;
576 struct sq_hdr_subdesc *tso_sqe;
578 if (!sq)
579 return;
580 if (!sq->dmem.base)
581 return;
583 if (sq->tso_hdrs) {
584 dma_free_coherent(&nic->pdev->dev,
585 sq->dmem.q_len * TSO_HEADER_SIZE,
586 sq->tso_hdrs, sq->tso_hdrs_phys);
587 sq->tso_hdrs = NULL;
590 /* Free pending skbs in the queue */
591 smp_rmb();
592 while (sq->head != sq->tail) {
593 skb = (struct sk_buff *)sq->skbuff[sq->head];
594 if (!skb || !sq->xdp_page)
595 goto next;
597 page = (struct page *)sq->xdp_page[sq->head];
598 if (!page)
599 goto next;
600 else
601 put_page(page);
603 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
604 /* Check for dummy descriptor used for HW TSO offload on 88xx */
605 if (hdr->dont_send) {
606 /* Get actual TSO descriptors and unmap them */
607 tso_sqe =
608 (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
609 nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
610 tso_sqe->subdesc_cnt);
611 } else {
612 nicvf_unmap_sndq_buffers(nic, sq, sq->head,
613 hdr->subdesc_cnt);
615 if (skb)
616 dev_kfree_skb_any(skb);
617 next:
618 sq->head++;
619 sq->head &= (sq->dmem.q_len - 1);
621 kfree(sq->skbuff);
622 kfree(sq->xdp_page);
623 nicvf_free_q_desc_mem(nic, &sq->dmem);
626 static void nicvf_reclaim_snd_queue(struct nicvf *nic,
627 struct queue_set *qs, int qidx)
629 /* Disable send queue */
630 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
631 /* Check if SQ is stopped */
632 if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
633 return;
634 /* Reset send queue */
635 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
638 static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
639 struct queue_set *qs, int qidx)
641 union nic_mbx mbx = {};
643 /* Make sure all packets in the pipeline are written back into mem */
644 mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
645 nicvf_send_msg_to_pf(nic, &mbx);
648 static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
649 struct queue_set *qs, int qidx)
651 /* Disable timer threshold (doesn't get reset upon CQ reset */
652 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
653 /* Disable completion queue */
654 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
655 /* Reset completion queue */
656 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
659 static void nicvf_reclaim_rbdr(struct nicvf *nic,
660 struct rbdr *rbdr, int qidx)
662 u64 tmp, fifo_state;
663 int timeout = 10;
665 /* Save head and tail pointers for feeing up buffers */
666 rbdr->head = nicvf_queue_reg_read(nic,
667 NIC_QSET_RBDR_0_1_HEAD,
668 qidx) >> 3;
669 rbdr->tail = nicvf_queue_reg_read(nic,
670 NIC_QSET_RBDR_0_1_TAIL,
671 qidx) >> 3;
673 /* If RBDR FIFO is in 'FAIL' state then do a reset first
674 * before relaiming.
676 fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
677 if (((fifo_state >> 62) & 0x03) == 0x3)
678 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
679 qidx, NICVF_RBDR_RESET);
681 /* Disable RBDR */
682 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
683 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
684 return;
685 while (1) {
686 tmp = nicvf_queue_reg_read(nic,
687 NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
688 qidx);
689 if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
690 break;
691 usleep_range(1000, 2000);
692 timeout--;
693 if (!timeout) {
694 netdev_err(nic->netdev,
695 "Failed polling on prefetch status\n");
696 return;
699 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
700 qidx, NICVF_RBDR_RESET);
702 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
703 return;
704 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
705 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
706 return;
709 void nicvf_config_vlan_stripping(struct nicvf *nic, netdev_features_t features)
711 u64 rq_cfg;
712 int sqs;
714 rq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_RQ_GEN_CFG, 0);
716 /* Enable first VLAN stripping */
717 if (features & NETIF_F_HW_VLAN_CTAG_RX)
718 rq_cfg |= (1ULL << 25);
719 else
720 rq_cfg &= ~(1ULL << 25);
721 nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
723 /* Configure Secondary Qsets, if any */
724 for (sqs = 0; sqs < nic->sqs_count; sqs++)
725 if (nic->snicvf[sqs])
726 nicvf_queue_reg_write(nic->snicvf[sqs],
727 NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
730 static void nicvf_reset_rcv_queue_stats(struct nicvf *nic)
732 union nic_mbx mbx = {};
734 /* Reset all RQ/SQ and VF stats */
735 mbx.reset_stat.msg = NIC_MBOX_MSG_RESET_STAT_COUNTER;
736 mbx.reset_stat.rx_stat_mask = 0x3FFF;
737 mbx.reset_stat.tx_stat_mask = 0x1F;
738 mbx.reset_stat.rq_stat_mask = 0xFFFF;
739 mbx.reset_stat.sq_stat_mask = 0xFFFF;
740 nicvf_send_msg_to_pf(nic, &mbx);
743 /* Configures receive queue */
744 static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
745 int qidx, bool enable)
747 union nic_mbx mbx = {};
748 struct rcv_queue *rq;
749 struct rq_cfg rq_cfg;
751 rq = &qs->rq[qidx];
752 rq->enable = enable;
754 /* Disable receive queue */
755 nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
757 if (!rq->enable) {
758 nicvf_reclaim_rcv_queue(nic, qs, qidx);
759 xdp_rxq_info_unreg(&rq->xdp_rxq);
760 return;
763 rq->cq_qs = qs->vnic_id;
764 rq->cq_idx = qidx;
765 rq->start_rbdr_qs = qs->vnic_id;
766 rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
767 rq->cont_rbdr_qs = qs->vnic_id;
768 rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
769 /* all writes of RBDR data to be loaded into L2 Cache as well*/
770 rq->caching = 1;
772 /* Driver have no proper error path for failed XDP RX-queue info reg */
773 WARN_ON(xdp_rxq_info_reg(&rq->xdp_rxq, nic->netdev, qidx) < 0);
775 /* Send a mailbox msg to PF to config RQ */
776 mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
777 mbx.rq.qs_num = qs->vnic_id;
778 mbx.rq.rq_num = qidx;
779 mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
780 (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
781 (rq->cont_qs_rbdr_idx << 8) |
782 (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
783 nicvf_send_msg_to_pf(nic, &mbx);
785 mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
786 mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
787 (RQ_PASS_RBDR_LVL << 16) | (RQ_PASS_CQ_LVL << 8) |
788 (qs->vnic_id << 0);
789 nicvf_send_msg_to_pf(nic, &mbx);
791 /* RQ drop config
792 * Enable CQ drop to reserve sufficient CQEs for all tx packets
794 mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
795 mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
796 (RQ_PASS_RBDR_LVL << 40) | (RQ_DROP_RBDR_LVL << 32) |
797 (RQ_PASS_CQ_LVL << 16) | (RQ_DROP_CQ_LVL << 8);
798 nicvf_send_msg_to_pf(nic, &mbx);
800 if (!nic->sqs_mode && (qidx == 0)) {
801 /* Enable checking L3/L4 length and TCP/UDP checksums
802 * Also allow IPv6 pkts with zero UDP checksum.
804 nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0,
805 (BIT(24) | BIT(23) | BIT(21) | BIT(20)));
806 nicvf_config_vlan_stripping(nic, nic->netdev->features);
809 /* Enable Receive queue */
810 memset(&rq_cfg, 0, sizeof(struct rq_cfg));
811 rq_cfg.ena = 1;
812 rq_cfg.tcp_ena = 0;
813 nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
816 /* Configures completion queue */
817 void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
818 int qidx, bool enable)
820 struct cmp_queue *cq;
821 struct cq_cfg cq_cfg;
823 cq = &qs->cq[qidx];
824 cq->enable = enable;
826 if (!cq->enable) {
827 nicvf_reclaim_cmp_queue(nic, qs, qidx);
828 return;
831 /* Reset completion queue */
832 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
834 if (!cq->enable)
835 return;
837 spin_lock_init(&cq->lock);
838 /* Set completion queue base address */
839 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
840 qidx, (u64)(cq->dmem.phys_base));
842 /* Enable Completion queue */
843 memset(&cq_cfg, 0, sizeof(struct cq_cfg));
844 cq_cfg.ena = 1;
845 cq_cfg.reset = 0;
846 cq_cfg.caching = 0;
847 cq_cfg.qsize = ilog2(qs->cq_len >> 10);
848 cq_cfg.avg_con = 0;
849 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
851 /* Set threshold value for interrupt generation */
852 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
853 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
854 qidx, CMP_QUEUE_TIMER_THRESH);
857 /* Configures transmit queue */
858 static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
859 int qidx, bool enable)
861 union nic_mbx mbx = {};
862 struct snd_queue *sq;
863 struct sq_cfg sq_cfg;
865 sq = &qs->sq[qidx];
866 sq->enable = enable;
868 if (!sq->enable) {
869 nicvf_reclaim_snd_queue(nic, qs, qidx);
870 return;
873 /* Reset send queue */
874 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
876 sq->cq_qs = qs->vnic_id;
877 sq->cq_idx = qidx;
879 /* Send a mailbox msg to PF to config SQ */
880 mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
881 mbx.sq.qs_num = qs->vnic_id;
882 mbx.sq.sq_num = qidx;
883 mbx.sq.sqs_mode = nic->sqs_mode;
884 mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
885 nicvf_send_msg_to_pf(nic, &mbx);
887 /* Set queue base address */
888 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
889 qidx, (u64)(sq->dmem.phys_base));
891 /* Enable send queue & set queue size */
892 memset(&sq_cfg, 0, sizeof(struct sq_cfg));
893 sq_cfg.ena = 1;
894 sq_cfg.reset = 0;
895 sq_cfg.ldwb = 0;
896 sq_cfg.qsize = ilog2(qs->sq_len >> 10);
897 sq_cfg.tstmp_bgx_intf = 0;
898 /* CQ's level at which HW will stop processing SQEs to avoid
899 * transmitting a pkt with no space in CQ to post CQE_TX.
901 sq_cfg.cq_limit = (CMP_QUEUE_PIPELINE_RSVD * 256) / qs->cq_len;
902 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
904 /* Set threshold value for interrupt generation */
905 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
907 /* Set queue:cpu affinity for better load distribution */
908 if (cpu_online(qidx)) {
909 cpumask_set_cpu(qidx, &sq->affinity_mask);
910 netif_set_xps_queue(nic->netdev,
911 &sq->affinity_mask, qidx);
915 /* Configures receive buffer descriptor ring */
916 static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
917 int qidx, bool enable)
919 struct rbdr *rbdr;
920 struct rbdr_cfg rbdr_cfg;
922 rbdr = &qs->rbdr[qidx];
923 nicvf_reclaim_rbdr(nic, rbdr, qidx);
924 if (!enable)
925 return;
927 /* Set descriptor base address */
928 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
929 qidx, (u64)(rbdr->dmem.phys_base));
931 /* Enable RBDR & set queue size */
932 /* Buffer size should be in multiples of 128 bytes */
933 memset(&rbdr_cfg, 0, sizeof(struct rbdr_cfg));
934 rbdr_cfg.ena = 1;
935 rbdr_cfg.reset = 0;
936 rbdr_cfg.ldwb = 0;
937 rbdr_cfg.qsize = RBDR_SIZE;
938 rbdr_cfg.avg_con = 0;
939 rbdr_cfg.lines = rbdr->dma_size / 128;
940 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
941 qidx, *(u64 *)&rbdr_cfg);
943 /* Notify HW */
944 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
945 qidx, qs->rbdr_len - 1);
947 /* Set threshold value for interrupt generation */
948 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
949 qidx, rbdr->thresh - 1);
952 /* Requests PF to assign and enable Qset */
953 void nicvf_qset_config(struct nicvf *nic, bool enable)
955 union nic_mbx mbx = {};
956 struct queue_set *qs = nic->qs;
957 struct qs_cfg *qs_cfg;
959 if (!qs) {
960 netdev_warn(nic->netdev,
961 "Qset is still not allocated, don't init queues\n");
962 return;
965 qs->enable = enable;
966 qs->vnic_id = nic->vf_id;
968 /* Send a mailbox msg to PF to config Qset */
969 mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
970 mbx.qs.num = qs->vnic_id;
971 mbx.qs.sqs_count = nic->sqs_count;
973 mbx.qs.cfg = 0;
974 qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
975 if (qs->enable) {
976 qs_cfg->ena = 1;
977 #ifdef __BIG_ENDIAN
978 qs_cfg->be = 1;
979 #endif
980 qs_cfg->vnic = qs->vnic_id;
981 /* Enable Tx timestamping capability */
982 if (nic->ptp_clock)
983 qs_cfg->send_tstmp_ena = 1;
985 nicvf_send_msg_to_pf(nic, &mbx);
988 static void nicvf_free_resources(struct nicvf *nic)
990 int qidx;
991 struct queue_set *qs = nic->qs;
993 /* Free receive buffer descriptor ring */
994 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
995 nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
997 /* Free completion queue */
998 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
999 nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
1001 /* Free send queue */
1002 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1003 nicvf_free_snd_queue(nic, &qs->sq[qidx]);
1006 static int nicvf_alloc_resources(struct nicvf *nic)
1008 int qidx;
1009 struct queue_set *qs = nic->qs;
1011 /* Alloc receive buffer descriptor ring */
1012 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1013 if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
1014 DMA_BUFFER_LEN))
1015 goto alloc_fail;
1018 /* Alloc send queue */
1019 for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
1020 if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
1021 goto alloc_fail;
1024 /* Alloc completion queue */
1025 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1026 if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
1027 goto alloc_fail;
1030 return 0;
1031 alloc_fail:
1032 nicvf_free_resources(nic);
1033 return -ENOMEM;
1036 int nicvf_set_qset_resources(struct nicvf *nic)
1038 struct queue_set *qs;
1040 qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
1041 if (!qs)
1042 return -ENOMEM;
1043 nic->qs = qs;
1045 /* Set count of each queue */
1046 qs->rbdr_cnt = DEFAULT_RBDR_CNT;
1047 qs->rq_cnt = min_t(u8, MAX_RCV_QUEUES_PER_QS, num_online_cpus());
1048 qs->sq_cnt = min_t(u8, MAX_SND_QUEUES_PER_QS, num_online_cpus());
1049 qs->cq_cnt = max_t(u8, qs->rq_cnt, qs->sq_cnt);
1051 /* Set queue lengths */
1052 qs->rbdr_len = RCV_BUF_COUNT;
1053 qs->sq_len = SND_QUEUE_LEN;
1054 qs->cq_len = CMP_QUEUE_LEN;
1056 nic->rx_queues = qs->rq_cnt;
1057 nic->tx_queues = qs->sq_cnt;
1058 nic->xdp_tx_queues = 0;
1060 return 0;
1063 int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
1065 bool disable = false;
1066 struct queue_set *qs = nic->qs;
1067 struct queue_set *pqs = nic->pnicvf->qs;
1068 int qidx;
1070 if (!qs)
1071 return 0;
1073 /* Take primary VF's queue lengths.
1074 * This is needed to take queue lengths set from ethtool
1075 * into consideration.
1077 if (nic->sqs_mode && pqs) {
1078 qs->cq_len = pqs->cq_len;
1079 qs->sq_len = pqs->sq_len;
1082 if (enable) {
1083 if (nicvf_alloc_resources(nic))
1084 return -ENOMEM;
1086 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1087 nicvf_snd_queue_config(nic, qs, qidx, enable);
1088 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1089 nicvf_cmp_queue_config(nic, qs, qidx, enable);
1090 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1091 nicvf_rbdr_config(nic, qs, qidx, enable);
1092 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1093 nicvf_rcv_queue_config(nic, qs, qidx, enable);
1094 } else {
1095 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1096 nicvf_rcv_queue_config(nic, qs, qidx, disable);
1097 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1098 nicvf_rbdr_config(nic, qs, qidx, disable);
1099 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1100 nicvf_snd_queue_config(nic, qs, qidx, disable);
1101 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1102 nicvf_cmp_queue_config(nic, qs, qidx, disable);
1104 nicvf_free_resources(nic);
1107 /* Reset RXQ's stats.
1108 * SQ's stats will get reset automatically once SQ is reset.
1110 nicvf_reset_rcv_queue_stats(nic);
1112 return 0;
1115 /* Get a free desc from SQ
1116 * returns descriptor ponter & descriptor number
1118 static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
1120 int qentry;
1122 qentry = sq->tail;
1123 if (!sq->is_xdp)
1124 atomic_sub(desc_cnt, &sq->free_cnt);
1125 else
1126 sq->xdp_free_cnt -= desc_cnt;
1127 sq->tail += desc_cnt;
1128 sq->tail &= (sq->dmem.q_len - 1);
1130 return qentry;
1133 /* Rollback to previous tail pointer when descriptors not used */
1134 static inline void nicvf_rollback_sq_desc(struct snd_queue *sq,
1135 int qentry, int desc_cnt)
1137 sq->tail = qentry;
1138 atomic_add(desc_cnt, &sq->free_cnt);
1141 /* Free descriptor back to SQ for future use */
1142 void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
1144 if (!sq->is_xdp)
1145 atomic_add(desc_cnt, &sq->free_cnt);
1146 else
1147 sq->xdp_free_cnt += desc_cnt;
1148 sq->head += desc_cnt;
1149 sq->head &= (sq->dmem.q_len - 1);
1152 static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
1154 qentry++;
1155 qentry &= (sq->dmem.q_len - 1);
1156 return qentry;
1159 void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
1161 u64 sq_cfg;
1163 sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1164 sq_cfg |= NICVF_SQ_EN;
1165 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1166 /* Ring doorbell so that H/W restarts processing SQEs */
1167 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
1170 void nicvf_sq_disable(struct nicvf *nic, int qidx)
1172 u64 sq_cfg;
1174 sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1175 sq_cfg &= ~NICVF_SQ_EN;
1176 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1179 void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
1180 int qidx)
1182 u64 head, tail;
1183 struct sk_buff *skb;
1184 struct nicvf *nic = netdev_priv(netdev);
1185 struct sq_hdr_subdesc *hdr;
1187 head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1188 tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
1189 while (sq->head != head) {
1190 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1191 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1192 nicvf_put_sq_desc(sq, 1);
1193 continue;
1195 skb = (struct sk_buff *)sq->skbuff[sq->head];
1196 if (skb)
1197 dev_kfree_skb_any(skb);
1198 atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
1199 atomic64_add(hdr->tot_len,
1200 (atomic64_t *)&netdev->stats.tx_bytes);
1201 nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1205 /* XDP Transmit APIs */
1206 void nicvf_xdp_sq_doorbell(struct nicvf *nic,
1207 struct snd_queue *sq, int sq_num)
1209 if (!sq->xdp_desc_cnt)
1210 return;
1212 /* make sure all memory stores are done before ringing doorbell */
1213 wmb();
1215 /* Inform HW to xmit all TSO segments */
1216 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1217 sq_num, sq->xdp_desc_cnt);
1218 sq->xdp_desc_cnt = 0;
1221 static inline void
1222 nicvf_xdp_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
1223 int subdesc_cnt, u64 data, int len)
1225 struct sq_hdr_subdesc *hdr;
1227 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1228 memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1229 hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1230 hdr->subdesc_cnt = subdesc_cnt;
1231 hdr->tot_len = len;
1232 hdr->post_cqe = 1;
1233 sq->xdp_page[qentry] = (u64)virt_to_page((void *)data);
1236 int nicvf_xdp_sq_append_pkt(struct nicvf *nic, struct snd_queue *sq,
1237 u64 bufaddr, u64 dma_addr, u16 len)
1239 int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1240 int qentry;
1242 if (subdesc_cnt > sq->xdp_free_cnt)
1243 return 0;
1245 qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1247 nicvf_xdp_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, bufaddr, len);
1249 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1250 nicvf_sq_add_gather_subdesc(sq, qentry, len, dma_addr);
1252 sq->xdp_desc_cnt += subdesc_cnt;
1254 return 1;
1257 /* Calculate no of SQ subdescriptors needed to transmit all
1258 * segments of this TSO packet.
1259 * Taken from 'Tilera network driver' with a minor modification.
1261 static int nicvf_tso_count_subdescs(struct sk_buff *skb)
1263 struct skb_shared_info *sh = skb_shinfo(skb);
1264 unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1265 unsigned int data_len = skb->len - sh_len;
1266 unsigned int p_len = sh->gso_size;
1267 long f_id = -1; /* id of the current fragment */
1268 long f_size = skb_headlen(skb) - sh_len; /* current fragment size */
1269 long f_used = 0; /* bytes used from the current fragment */
1270 long n; /* size of the current piece of payload */
1271 int num_edescs = 0;
1272 int segment;
1274 for (segment = 0; segment < sh->gso_segs; segment++) {
1275 unsigned int p_used = 0;
1277 /* One edesc for header and for each piece of the payload. */
1278 for (num_edescs++; p_used < p_len; num_edescs++) {
1279 /* Advance as needed. */
1280 while (f_used >= f_size) {
1281 f_id++;
1282 f_size = skb_frag_size(&sh->frags[f_id]);
1283 f_used = 0;
1286 /* Use bytes from the current fragment. */
1287 n = p_len - p_used;
1288 if (n > f_size - f_used)
1289 n = f_size - f_used;
1290 f_used += n;
1291 p_used += n;
1294 /* The last segment may be less than gso_size. */
1295 data_len -= p_len;
1296 if (data_len < p_len)
1297 p_len = data_len;
1300 /* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
1301 return num_edescs + sh->gso_segs;
1304 #define POST_CQE_DESC_COUNT 2
1306 /* Get the number of SQ descriptors needed to xmit this skb */
1307 static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
1309 int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1311 if (skb_shinfo(skb)->gso_size && !nic->hw_tso) {
1312 subdesc_cnt = nicvf_tso_count_subdescs(skb);
1313 return subdesc_cnt;
1316 /* Dummy descriptors to get TSO pkt completion notification */
1317 if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size)
1318 subdesc_cnt += POST_CQE_DESC_COUNT;
1320 if (skb_shinfo(skb)->nr_frags)
1321 subdesc_cnt += skb_shinfo(skb)->nr_frags;
1323 return subdesc_cnt;
1326 /* Add SQ HEADER subdescriptor.
1327 * First subdescriptor for every send descriptor.
1329 static inline void
1330 nicvf_sq_add_hdr_subdesc(struct nicvf *nic, struct snd_queue *sq, int qentry,
1331 int subdesc_cnt, struct sk_buff *skb, int len)
1333 int proto;
1334 struct sq_hdr_subdesc *hdr;
1335 union {
1336 struct iphdr *v4;
1337 struct ipv6hdr *v6;
1338 unsigned char *hdr;
1339 } ip;
1341 ip.hdr = skb_network_header(skb);
1342 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1343 memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1344 hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1346 if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) {
1347 /* post_cqe = 0, to avoid HW posting a CQE for every TSO
1348 * segment transmitted on 88xx.
1350 hdr->subdesc_cnt = subdesc_cnt - POST_CQE_DESC_COUNT;
1351 } else {
1352 sq->skbuff[qentry] = (u64)skb;
1353 /* Enable notification via CQE after processing SQE */
1354 hdr->post_cqe = 1;
1355 /* No of subdescriptors following this */
1356 hdr->subdesc_cnt = subdesc_cnt;
1358 hdr->tot_len = len;
1360 /* Offload checksum calculation to HW */
1361 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1362 if (ip.v4->version == 4)
1363 hdr->csum_l3 = 1; /* Enable IP csum calculation */
1364 hdr->l3_offset = skb_network_offset(skb);
1365 hdr->l4_offset = skb_transport_offset(skb);
1367 proto = (ip.v4->version == 4) ? ip.v4->protocol :
1368 ip.v6->nexthdr;
1370 switch (proto) {
1371 case IPPROTO_TCP:
1372 hdr->csum_l4 = SEND_L4_CSUM_TCP;
1373 break;
1374 case IPPROTO_UDP:
1375 hdr->csum_l4 = SEND_L4_CSUM_UDP;
1376 break;
1377 case IPPROTO_SCTP:
1378 hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1379 break;
1383 if (nic->hw_tso && skb_shinfo(skb)->gso_size) {
1384 hdr->tso = 1;
1385 hdr->tso_start = skb_transport_offset(skb) + tcp_hdrlen(skb);
1386 hdr->tso_max_paysize = skb_shinfo(skb)->gso_size;
1387 /* For non-tunneled pkts, point this to L2 ethertype */
1388 hdr->inner_l3_offset = skb_network_offset(skb) - 2;
1389 this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1392 /* Check if timestamp is requested */
1393 if (!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1394 skb_tx_timestamp(skb);
1395 return;
1398 /* Tx timestamping not supported along with TSO, so ignore request */
1399 if (skb_shinfo(skb)->gso_size)
1400 return;
1402 /* HW supports only a single outstanding packet to timestamp */
1403 if (!atomic_add_unless(&nic->pnicvf->tx_ptp_skbs, 1, 1))
1404 return;
1406 /* Mark the SKB for later reference */
1407 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1409 /* Finally enable timestamp generation
1410 * Since 'post_cqe' is also set, two CQEs will be posted
1411 * for this packet i.e CQE_TYPE_SEND and CQE_TYPE_SEND_PTP.
1413 hdr->tstmp = 1;
1416 /* SQ GATHER subdescriptor
1417 * Must follow HDR descriptor
1419 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1420 int size, u64 data)
1422 struct sq_gather_subdesc *gather;
1424 qentry &= (sq->dmem.q_len - 1);
1425 gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1427 memset(gather, 0, SND_QUEUE_DESC_SIZE);
1428 gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1429 gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1430 gather->size = size;
1431 gather->addr = data;
1434 /* Add HDR + IMMEDIATE subdescriptors right after descriptors of a TSO
1435 * packet so that a CQE is posted as a notifation for transmission of
1436 * TSO packet.
1438 static inline void nicvf_sq_add_cqe_subdesc(struct snd_queue *sq, int qentry,
1439 int tso_sqe, struct sk_buff *skb)
1441 struct sq_imm_subdesc *imm;
1442 struct sq_hdr_subdesc *hdr;
1444 sq->skbuff[qentry] = (u64)skb;
1446 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1447 memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1448 hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1449 /* Enable notification via CQE after processing SQE */
1450 hdr->post_cqe = 1;
1451 /* There is no packet to transmit here */
1452 hdr->dont_send = 1;
1453 hdr->subdesc_cnt = POST_CQE_DESC_COUNT - 1;
1454 hdr->tot_len = 1;
1455 /* Actual TSO header SQE index, needed for cleanup */
1456 hdr->rsvd2 = tso_sqe;
1458 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1459 imm = (struct sq_imm_subdesc *)GET_SQ_DESC(sq, qentry);
1460 memset(imm, 0, SND_QUEUE_DESC_SIZE);
1461 imm->subdesc_type = SQ_DESC_TYPE_IMMEDIATE;
1462 imm->len = 1;
1465 static inline void nicvf_sq_doorbell(struct nicvf *nic, struct sk_buff *skb,
1466 int sq_num, int desc_cnt)
1468 struct netdev_queue *txq;
1470 txq = netdev_get_tx_queue(nic->pnicvf->netdev,
1471 skb_get_queue_mapping(skb));
1473 netdev_tx_sent_queue(txq, skb->len);
1475 /* make sure all memory stores are done before ringing doorbell */
1476 smp_wmb();
1478 /* Inform HW to xmit all TSO segments */
1479 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1480 sq_num, desc_cnt);
1483 /* Segment a TSO packet into 'gso_size' segments and append
1484 * them to SQ for transfer
1486 static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
1487 int sq_num, int qentry, struct sk_buff *skb)
1489 struct tso_t tso;
1490 int seg_subdescs = 0, desc_cnt = 0;
1491 int seg_len, total_len, data_left;
1492 int hdr_qentry = qentry;
1493 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1495 tso_start(skb, &tso);
1496 total_len = skb->len - hdr_len;
1497 while (total_len > 0) {
1498 char *hdr;
1500 /* Save Qentry for adding HDR_SUBDESC at the end */
1501 hdr_qentry = qentry;
1503 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1504 total_len -= data_left;
1506 /* Add segment's header */
1507 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1508 hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
1509 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1510 nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
1511 sq->tso_hdrs_phys +
1512 qentry * TSO_HEADER_SIZE);
1513 /* HDR_SUDESC + GATHER */
1514 seg_subdescs = 2;
1515 seg_len = hdr_len;
1517 /* Add segment's payload fragments */
1518 while (data_left > 0) {
1519 int size;
1521 size = min_t(int, tso.size, data_left);
1523 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1524 nicvf_sq_add_gather_subdesc(sq, qentry, size,
1525 virt_to_phys(tso.data));
1526 seg_subdescs++;
1527 seg_len += size;
1529 data_left -= size;
1530 tso_build_data(skb, &tso, size);
1532 nicvf_sq_add_hdr_subdesc(nic, sq, hdr_qentry,
1533 seg_subdescs - 1, skb, seg_len);
1534 sq->skbuff[hdr_qentry] = (u64)NULL;
1535 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1537 desc_cnt += seg_subdescs;
1539 /* Save SKB in the last segment for freeing */
1540 sq->skbuff[hdr_qentry] = (u64)skb;
1542 nicvf_sq_doorbell(nic, skb, sq_num, desc_cnt);
1544 this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1545 return 1;
1548 /* Append an skb to a SQ for packet transfer. */
1549 int nicvf_sq_append_skb(struct nicvf *nic, struct snd_queue *sq,
1550 struct sk_buff *skb, u8 sq_num)
1552 int i, size;
1553 int subdesc_cnt, hdr_sqe = 0;
1554 int qentry;
1555 u64 dma_addr;
1557 subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
1558 if (subdesc_cnt > atomic_read(&sq->free_cnt))
1559 goto append_fail;
1561 qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1563 /* Check if its a TSO packet */
1564 if (skb_shinfo(skb)->gso_size && !nic->hw_tso)
1565 return nicvf_sq_append_tso(nic, sq, sq_num, qentry, skb);
1567 /* Add SQ header subdesc */
1568 nicvf_sq_add_hdr_subdesc(nic, sq, qentry, subdesc_cnt - 1,
1569 skb, skb->len);
1570 hdr_sqe = qentry;
1572 /* Add SQ gather subdescs */
1573 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1574 size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
1575 /* HW will ensure data coherency, CPU sync not required */
1576 dma_addr = dma_map_page_attrs(&nic->pdev->dev, virt_to_page(skb->data),
1577 offset_in_page(skb->data), size,
1578 DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
1579 if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1580 nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1581 return 0;
1584 nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1586 /* Check for scattered buffer */
1587 if (!skb_is_nonlinear(skb))
1588 goto doorbell;
1590 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1591 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1593 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1594 size = skb_frag_size(frag);
1595 dma_addr = dma_map_page_attrs(&nic->pdev->dev,
1596 skb_frag_page(frag),
1597 skb_frag_off(frag), size,
1598 DMA_TO_DEVICE,
1599 DMA_ATTR_SKIP_CPU_SYNC);
1600 if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1601 /* Free entire chain of mapped buffers
1602 * here 'i' = frags mapped + above mapped skb->data
1604 nicvf_unmap_sndq_buffers(nic, sq, hdr_sqe, i);
1605 nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1606 return 0;
1608 nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1611 doorbell:
1612 if (nic->t88 && skb_shinfo(skb)->gso_size) {
1613 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1614 nicvf_sq_add_cqe_subdesc(sq, qentry, hdr_sqe, skb);
1617 nicvf_sq_doorbell(nic, skb, sq_num, subdesc_cnt);
1619 return 1;
1621 append_fail:
1622 /* Use original PCI dev for debug log */
1623 nic = nic->pnicvf;
1624 netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
1625 return 0;
1628 static inline unsigned frag_num(unsigned i)
1630 #ifdef __BIG_ENDIAN
1631 return (i & ~3) + 3 - (i & 3);
1632 #else
1633 return i;
1634 #endif
1637 static void nicvf_unmap_rcv_buffer(struct nicvf *nic, u64 dma_addr,
1638 u64 buf_addr, bool xdp)
1640 struct page *page = NULL;
1641 int len = RCV_FRAG_LEN;
1643 if (xdp) {
1644 page = virt_to_page(phys_to_virt(buf_addr));
1645 /* Check if it's a recycled page, if not
1646 * unmap the DMA mapping.
1648 * Recycled page holds an extra reference.
1650 if (page_ref_count(page) != 1)
1651 return;
1653 len += XDP_PACKET_HEADROOM;
1654 /* Receive buffers in XDP mode are mapped from page start */
1655 dma_addr &= PAGE_MASK;
1657 dma_unmap_page_attrs(&nic->pdev->dev, dma_addr, len,
1658 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
1661 /* Returns SKB for a received packet */
1662 struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic,
1663 struct cqe_rx_t *cqe_rx, bool xdp)
1665 int frag;
1666 int payload_len = 0;
1667 struct sk_buff *skb = NULL;
1668 struct page *page;
1669 int offset;
1670 u16 *rb_lens = NULL;
1671 u64 *rb_ptrs = NULL;
1672 u64 phys_addr;
1674 rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
1675 /* Except 88xx pass1 on all other chips CQE_RX2_S is added to
1676 * CQE_RX at word6, hence buffer pointers move by word
1678 * Use existing 'hw_tso' flag which will be set for all chips
1679 * except 88xx pass1 instead of a additional cache line
1680 * access (or miss) by using pci dev's revision.
1682 if (!nic->hw_tso)
1683 rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
1684 else
1685 rb_ptrs = (void *)cqe_rx + (7 * sizeof(u64));
1687 for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1688 payload_len = rb_lens[frag_num(frag)];
1689 phys_addr = nicvf_iova_to_phys(nic, *rb_ptrs);
1690 if (!phys_addr) {
1691 if (skb)
1692 dev_kfree_skb_any(skb);
1693 return NULL;
1696 if (!frag) {
1697 /* First fragment */
1698 nicvf_unmap_rcv_buffer(nic,
1699 *rb_ptrs - cqe_rx->align_pad,
1700 phys_addr, xdp);
1701 skb = nicvf_rb_ptr_to_skb(nic,
1702 phys_addr - cqe_rx->align_pad,
1703 payload_len);
1704 if (!skb)
1705 return NULL;
1706 skb_reserve(skb, cqe_rx->align_pad);
1707 skb_put(skb, payload_len);
1708 } else {
1709 /* Add fragments */
1710 nicvf_unmap_rcv_buffer(nic, *rb_ptrs, phys_addr, xdp);
1711 page = virt_to_page(phys_to_virt(phys_addr));
1712 offset = phys_to_virt(phys_addr) - page_address(page);
1713 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1714 offset, payload_len, RCV_FRAG_LEN);
1716 /* Next buffer pointer */
1717 rb_ptrs++;
1719 return skb;
1722 static u64 nicvf_int_type_to_mask(int int_type, int q_idx)
1724 u64 reg_val;
1726 switch (int_type) {
1727 case NICVF_INTR_CQ:
1728 reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1729 break;
1730 case NICVF_INTR_SQ:
1731 reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1732 break;
1733 case NICVF_INTR_RBDR:
1734 reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1735 break;
1736 case NICVF_INTR_PKT_DROP:
1737 reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1738 break;
1739 case NICVF_INTR_TCP_TIMER:
1740 reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1741 break;
1742 case NICVF_INTR_MBOX:
1743 reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
1744 break;
1745 case NICVF_INTR_QS_ERR:
1746 reg_val = (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1747 break;
1748 default:
1749 reg_val = 0;
1752 return reg_val;
1755 /* Enable interrupt */
1756 void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
1758 u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1760 if (!mask) {
1761 netdev_dbg(nic->netdev,
1762 "Failed to enable interrupt: unknown type\n");
1763 return;
1765 nicvf_reg_write(nic, NIC_VF_ENA_W1S,
1766 nicvf_reg_read(nic, NIC_VF_ENA_W1S) | mask);
1769 /* Disable interrupt */
1770 void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
1772 u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1774 if (!mask) {
1775 netdev_dbg(nic->netdev,
1776 "Failed to disable interrupt: unknown type\n");
1777 return;
1780 nicvf_reg_write(nic, NIC_VF_ENA_W1C, mask);
1783 /* Clear interrupt */
1784 void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
1786 u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1788 if (!mask) {
1789 netdev_dbg(nic->netdev,
1790 "Failed to clear interrupt: unknown type\n");
1791 return;
1794 nicvf_reg_write(nic, NIC_VF_INT, mask);
1797 /* Check if interrupt is enabled */
1798 int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
1800 u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1801 /* If interrupt type is unknown, we treat it disabled. */
1802 if (!mask) {
1803 netdev_dbg(nic->netdev,
1804 "Failed to check interrupt enable: unknown type\n");
1805 return 0;
1808 return mask & nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1811 void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
1813 struct rcv_queue *rq;
1815 #define GET_RQ_STATS(reg) \
1816 nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
1817 (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1819 rq = &nic->qs->rq[rq_idx];
1820 rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
1821 rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
1824 void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
1826 struct snd_queue *sq;
1828 #define GET_SQ_STATS(reg) \
1829 nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
1830 (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1832 sq = &nic->qs->sq[sq_idx];
1833 sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
1834 sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
1837 /* Check for errors in the receive cmp.queue entry */
1838 int nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1840 netif_err(nic, rx_err, nic->netdev,
1841 "RX error CQE err_level 0x%x err_opcode 0x%x\n",
1842 cqe_rx->err_level, cqe_rx->err_opcode);
1844 switch (cqe_rx->err_opcode) {
1845 case CQ_RX_ERROP_RE_PARTIAL:
1846 this_cpu_inc(nic->drv_stats->rx_bgx_truncated_pkts);
1847 break;
1848 case CQ_RX_ERROP_RE_JABBER:
1849 this_cpu_inc(nic->drv_stats->rx_jabber_errs);
1850 break;
1851 case CQ_RX_ERROP_RE_FCS:
1852 this_cpu_inc(nic->drv_stats->rx_fcs_errs);
1853 break;
1854 case CQ_RX_ERROP_RE_RX_CTL:
1855 this_cpu_inc(nic->drv_stats->rx_bgx_errs);
1856 break;
1857 case CQ_RX_ERROP_PREL2_ERR:
1858 this_cpu_inc(nic->drv_stats->rx_prel2_errs);
1859 break;
1860 case CQ_RX_ERROP_L2_MAL:
1861 this_cpu_inc(nic->drv_stats->rx_l2_hdr_malformed);
1862 break;
1863 case CQ_RX_ERROP_L2_OVERSIZE:
1864 this_cpu_inc(nic->drv_stats->rx_oversize);
1865 break;
1866 case CQ_RX_ERROP_L2_UNDERSIZE:
1867 this_cpu_inc(nic->drv_stats->rx_undersize);
1868 break;
1869 case CQ_RX_ERROP_L2_LENMISM:
1870 this_cpu_inc(nic->drv_stats->rx_l2_len_mismatch);
1871 break;
1872 case CQ_RX_ERROP_L2_PCLP:
1873 this_cpu_inc(nic->drv_stats->rx_l2_pclp);
1874 break;
1875 case CQ_RX_ERROP_IP_NOT:
1876 this_cpu_inc(nic->drv_stats->rx_ip_ver_errs);
1877 break;
1878 case CQ_RX_ERROP_IP_CSUM_ERR:
1879 this_cpu_inc(nic->drv_stats->rx_ip_csum_errs);
1880 break;
1881 case CQ_RX_ERROP_IP_MAL:
1882 this_cpu_inc(nic->drv_stats->rx_ip_hdr_malformed);
1883 break;
1884 case CQ_RX_ERROP_IP_MALD:
1885 this_cpu_inc(nic->drv_stats->rx_ip_payload_malformed);
1886 break;
1887 case CQ_RX_ERROP_IP_HOP:
1888 this_cpu_inc(nic->drv_stats->rx_ip_ttl_errs);
1889 break;
1890 case CQ_RX_ERROP_L3_PCLP:
1891 this_cpu_inc(nic->drv_stats->rx_l3_pclp);
1892 break;
1893 case CQ_RX_ERROP_L4_MAL:
1894 this_cpu_inc(nic->drv_stats->rx_l4_malformed);
1895 break;
1896 case CQ_RX_ERROP_L4_CHK:
1897 this_cpu_inc(nic->drv_stats->rx_l4_csum_errs);
1898 break;
1899 case CQ_RX_ERROP_UDP_LEN:
1900 this_cpu_inc(nic->drv_stats->rx_udp_len_errs);
1901 break;
1902 case CQ_RX_ERROP_L4_PORT:
1903 this_cpu_inc(nic->drv_stats->rx_l4_port_errs);
1904 break;
1905 case CQ_RX_ERROP_TCP_FLAG:
1906 this_cpu_inc(nic->drv_stats->rx_tcp_flag_errs);
1907 break;
1908 case CQ_RX_ERROP_TCP_OFFSET:
1909 this_cpu_inc(nic->drv_stats->rx_tcp_offset_errs);
1910 break;
1911 case CQ_RX_ERROP_L4_PCLP:
1912 this_cpu_inc(nic->drv_stats->rx_l4_pclp);
1913 break;
1914 case CQ_RX_ERROP_RBDR_TRUNC:
1915 this_cpu_inc(nic->drv_stats->rx_truncated_pkts);
1916 break;
1919 return 1;
1922 /* Check for errors in the send cmp.queue entry */
1923 int nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cqe_send_t *cqe_tx)
1925 switch (cqe_tx->send_status) {
1926 case CQ_TX_ERROP_DESC_FAULT:
1927 this_cpu_inc(nic->drv_stats->tx_desc_fault);
1928 break;
1929 case CQ_TX_ERROP_HDR_CONS_ERR:
1930 this_cpu_inc(nic->drv_stats->tx_hdr_cons_err);
1931 break;
1932 case CQ_TX_ERROP_SUBDC_ERR:
1933 this_cpu_inc(nic->drv_stats->tx_subdesc_err);
1934 break;
1935 case CQ_TX_ERROP_MAX_SIZE_VIOL:
1936 this_cpu_inc(nic->drv_stats->tx_max_size_exceeded);
1937 break;
1938 case CQ_TX_ERROP_IMM_SIZE_OFLOW:
1939 this_cpu_inc(nic->drv_stats->tx_imm_size_oflow);
1940 break;
1941 case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
1942 this_cpu_inc(nic->drv_stats->tx_data_seq_err);
1943 break;
1944 case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
1945 this_cpu_inc(nic->drv_stats->tx_mem_seq_err);
1946 break;
1947 case CQ_TX_ERROP_LOCK_VIOL:
1948 this_cpu_inc(nic->drv_stats->tx_lock_viol);
1949 break;
1950 case CQ_TX_ERROP_DATA_FAULT:
1951 this_cpu_inc(nic->drv_stats->tx_data_fault);
1952 break;
1953 case CQ_TX_ERROP_TSTMP_CONFLICT:
1954 this_cpu_inc(nic->drv_stats->tx_tstmp_conflict);
1955 break;
1956 case CQ_TX_ERROP_TSTMP_TIMEOUT:
1957 this_cpu_inc(nic->drv_stats->tx_tstmp_timeout);
1958 break;
1959 case CQ_TX_ERROP_MEM_FAULT:
1960 this_cpu_inc(nic->drv_stats->tx_mem_fault);
1961 break;
1962 case CQ_TX_ERROP_CK_OVERLAP:
1963 this_cpu_inc(nic->drv_stats->tx_csum_overlap);
1964 break;
1965 case CQ_TX_ERROP_CK_OFLOW:
1966 this_cpu_inc(nic->drv_stats->tx_csum_overflow);
1967 break;
1970 return 1;