2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <linux/uaccess.h>
66 #include <linux/crash_dump.h>
67 #include <net/udp_tunnel.h>
71 #include "cxgb4_filter.h"
73 #include "t4_values.h"
76 #include "t4fw_version.h"
77 #include "cxgb4_dcb.h"
79 #include "cxgb4_debugfs.h"
84 #include "cxgb4_tc_u32.h"
85 #include "cxgb4_tc_flower.h"
86 #include "cxgb4_tc_mqprio.h"
87 #include "cxgb4_tc_matchall.h"
88 #include "cxgb4_ptp.h"
89 #include "cxgb4_cudbg.h"
91 char cxgb4_driver_name
[] = KBUILD_MODNAME
;
96 #define DRV_VERSION "2.0.0-ko"
97 const char cxgb4_driver_version
[] = DRV_VERSION
;
98 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
100 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
101 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
102 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
104 /* Macros needed to support the PCI Device ID Table ...
106 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
107 static const struct pci_device_id cxgb4_pci_tbl[] = {
108 #define CXGB4_UNIFIED_PF 0x4
110 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
112 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
115 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
117 #define CH_PCI_ID_TABLE_ENTRY(devid) \
118 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
120 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
124 #include "t4_pci_id_tbl.h"
126 #define FW4_FNAME "cxgb4/t4fw.bin"
127 #define FW5_FNAME "cxgb4/t5fw.bin"
128 #define FW6_FNAME "cxgb4/t6fw.bin"
129 #define FW4_CFNAME "cxgb4/t4-config.txt"
130 #define FW5_CFNAME "cxgb4/t5-config.txt"
131 #define FW6_CFNAME "cxgb4/t6-config.txt"
132 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
133 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
134 #define PHY_AQ1202_DEVICEID 0x4409
135 #define PHY_BCM84834_DEVICEID 0x4486
137 MODULE_DESCRIPTION(DRV_DESC
);
138 MODULE_AUTHOR("Chelsio Communications");
139 MODULE_LICENSE("Dual BSD/GPL");
140 MODULE_VERSION(DRV_VERSION
);
141 MODULE_DEVICE_TABLE(pci
, cxgb4_pci_tbl
);
142 MODULE_FIRMWARE(FW4_FNAME
);
143 MODULE_FIRMWARE(FW5_FNAME
);
144 MODULE_FIRMWARE(FW6_FNAME
);
147 * The driver uses the best interrupt scheme available on a platform in the
148 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
149 * of these schemes the driver may consider as follows:
151 * msi = 2: choose from among all three options
152 * msi = 1: only consider MSI and INTx interrupts
153 * msi = 0: force INTx interrupts
157 module_param(msi
, int, 0644);
158 MODULE_PARM_DESC(msi
, "whether to use INTx (0), MSI (1) or MSI-X (2)");
161 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
162 * offset by 2 bytes in order to have the IP headers line up on 4-byte
163 * boundaries. This is a requirement for many architectures which will throw
164 * a machine check fault if an attempt is made to access one of the 4-byte IP
165 * header fields on a non-4-byte boundary. And it's a major performance issue
166 * even on some architectures which allow it like some implementations of the
167 * x86 ISA. However, some architectures don't mind this and for some very
168 * edge-case performance sensitive applications (like forwarding large volumes
169 * of small packets), setting this DMA offset to 0 will decrease the number of
170 * PCI-E Bus transfers enough to measurably affect performance.
172 static int rx_dma_offset
= 2;
174 /* TX Queue select used to determine what algorithm to use for selecting TX
175 * queue. Select between the kernel provided function (select_queue=0) or user
176 * cxgb_select_queue function (select_queue=1)
178 * Default: select_queue=0
180 static int select_queue
;
181 module_param(select_queue
, int, 0644);
182 MODULE_PARM_DESC(select_queue
,
183 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
185 static struct dentry
*cxgb4_debugfs_root
;
187 LIST_HEAD(adapter_list
);
188 DEFINE_MUTEX(uld_mutex
);
190 static int cfg_queues(struct adapter
*adap
);
192 static void link_report(struct net_device
*dev
)
194 if (!netif_carrier_ok(dev
))
195 netdev_info(dev
, "link down\n");
197 static const char *fc
[] = { "no", "Rx", "Tx", "Tx/Rx" };
200 const struct port_info
*p
= netdev_priv(dev
);
202 switch (p
->link_cfg
.speed
) {
225 pr_info("%s: unsupported speed: %d\n",
226 dev
->name
, p
->link_cfg
.speed
);
230 netdev_info(dev
, "link up, %s, full-duplex, %s PAUSE\n", s
,
235 #ifdef CONFIG_CHELSIO_T4_DCB
236 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
237 static void dcb_tx_queue_prio_enable(struct net_device
*dev
, int enable
)
239 struct port_info
*pi
= netdev_priv(dev
);
240 struct adapter
*adap
= pi
->adapter
;
241 struct sge_eth_txq
*txq
= &adap
->sge
.ethtxq
[pi
->first_qset
];
244 /* We use a simple mapping of Port TX Queue Index to DCB
245 * Priority when we're enabling DCB.
247 for (i
= 0; i
< pi
->nqsets
; i
++, txq
++) {
251 name
= (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ
) |
253 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH
) |
254 FW_PARAMS_PARAM_YZ_V(txq
->q
.cntxt_id
));
255 value
= enable
? i
: 0xffffffff;
257 /* Since we can be called while atomic (from "interrupt
258 * level") we need to issue the Set Parameters Commannd
259 * without sleeping (timeout < 0).
261 err
= t4_set_params_timeout(adap
, adap
->mbox
, adap
->pf
, 0, 1,
263 -FW_CMD_MAX_TIMEOUT
);
266 dev_err(adap
->pdev_dev
,
267 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
268 enable
? "set" : "unset", pi
->port_id
, i
, -err
);
270 txq
->dcb_prio
= enable
? value
: 0;
274 int cxgb4_dcb_enabled(const struct net_device
*dev
)
276 struct port_info
*pi
= netdev_priv(dev
);
278 if (!pi
->dcb
.enabled
)
281 return ((pi
->dcb
.state
== CXGB4_DCB_STATE_FW_ALLSYNCED
) ||
282 (pi
->dcb
.state
== CXGB4_DCB_STATE_HOST
));
284 #endif /* CONFIG_CHELSIO_T4_DCB */
286 void t4_os_link_changed(struct adapter
*adapter
, int port_id
, int link_stat
)
288 struct net_device
*dev
= adapter
->port
[port_id
];
290 /* Skip changes from disabled ports. */
291 if (netif_running(dev
) && link_stat
!= netif_carrier_ok(dev
)) {
293 netif_carrier_on(dev
);
295 #ifdef CONFIG_CHELSIO_T4_DCB
296 if (cxgb4_dcb_enabled(dev
)) {
297 cxgb4_dcb_reset(dev
);
298 dcb_tx_queue_prio_enable(dev
, false);
300 #endif /* CONFIG_CHELSIO_T4_DCB */
301 netif_carrier_off(dev
);
308 void t4_os_portmod_changed(struct adapter
*adap
, int port_id
)
310 static const char *mod_str
[] = {
311 NULL
, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
314 struct net_device
*dev
= adap
->port
[port_id
];
315 struct port_info
*pi
= netdev_priv(dev
);
317 if (pi
->mod_type
== FW_PORT_MOD_TYPE_NONE
)
318 netdev_info(dev
, "port module unplugged\n");
319 else if (pi
->mod_type
< ARRAY_SIZE(mod_str
))
320 netdev_info(dev
, "%s module inserted\n", mod_str
[pi
->mod_type
]);
321 else if (pi
->mod_type
== FW_PORT_MOD_TYPE_NOTSUPPORTED
)
322 netdev_info(dev
, "%s: unsupported port module inserted\n",
324 else if (pi
->mod_type
== FW_PORT_MOD_TYPE_UNKNOWN
)
325 netdev_info(dev
, "%s: unknown port module inserted\n",
327 else if (pi
->mod_type
== FW_PORT_MOD_TYPE_ERROR
)
328 netdev_info(dev
, "%s: transceiver module error\n", dev
->name
);
330 netdev_info(dev
, "%s: unknown module type %d inserted\n",
331 dev
->name
, pi
->mod_type
);
333 /* If the interface is running, then we'll need any "sticky" Link
334 * Parameters redone with a new Transceiver Module.
336 pi
->link_cfg
.redo_l1cfg
= netif_running(dev
);
339 int dbfifo_int_thresh
= 10; /* 10 == 640 entry threshold */
340 module_param(dbfifo_int_thresh
, int, 0644);
341 MODULE_PARM_DESC(dbfifo_int_thresh
, "doorbell fifo interrupt threshold");
344 * usecs to sleep while draining the dbfifo
346 static int dbfifo_drain_delay
= 1000;
347 module_param(dbfifo_drain_delay
, int, 0644);
348 MODULE_PARM_DESC(dbfifo_drain_delay
,
349 "usecs to sleep while draining the dbfifo");
351 static inline int cxgb4_set_addr_hash(struct port_info
*pi
)
353 struct adapter
*adap
= pi
->adapter
;
356 struct hash_mac_addr
*entry
;
358 /* Calculate the hash vector for the updated list and program it */
359 list_for_each_entry(entry
, &adap
->mac_hlist
, list
) {
360 ucast
|= is_unicast_ether_addr(entry
->addr
);
361 vec
|= (1ULL << hash_mac_addr(entry
->addr
));
363 return t4_set_addr_hash(adap
, adap
->mbox
, pi
->viid
, ucast
,
367 static int cxgb4_mac_sync(struct net_device
*netdev
, const u8
*mac_addr
)
369 struct port_info
*pi
= netdev_priv(netdev
);
370 struct adapter
*adap
= pi
->adapter
;
374 /* idx stores the index of allocated filters,
375 * its size should be modified based on the number of
376 * MAC addresses that we allocate filters for
381 bool ucast
= is_unicast_ether_addr(mac_addr
);
382 const u8
*maclist
[1] = {mac_addr
};
383 struct hash_mac_addr
*new_entry
;
385 ret
= cxgb4_alloc_mac_filt(adap
, pi
->viid
, free
, 1, maclist
,
386 idx
, ucast
? &uhash
: &mhash
, false);
389 /* if hash != 0, then add the addr to hash addr list
390 * so on the end we will calculate the hash for the
391 * list and program it
393 if (uhash
|| mhash
) {
394 new_entry
= kzalloc(sizeof(*new_entry
), GFP_ATOMIC
);
397 ether_addr_copy(new_entry
->addr
, mac_addr
);
398 list_add_tail(&new_entry
->list
, &adap
->mac_hlist
);
399 ret
= cxgb4_set_addr_hash(pi
);
402 return ret
< 0 ? ret
: 0;
405 static int cxgb4_mac_unsync(struct net_device
*netdev
, const u8
*mac_addr
)
407 struct port_info
*pi
= netdev_priv(netdev
);
408 struct adapter
*adap
= pi
->adapter
;
410 const u8
*maclist
[1] = {mac_addr
};
411 struct hash_mac_addr
*entry
, *tmp
;
413 /* If the MAC address to be removed is in the hash addr
414 * list, delete it from the list and update hash vector
416 list_for_each_entry_safe(entry
, tmp
, &adap
->mac_hlist
, list
) {
417 if (ether_addr_equal(entry
->addr
, mac_addr
)) {
418 list_del(&entry
->list
);
420 return cxgb4_set_addr_hash(pi
);
424 ret
= cxgb4_free_mac_filt(adap
, pi
->viid
, 1, maclist
, false);
425 return ret
< 0 ? -EINVAL
: 0;
429 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
430 * If @mtu is -1 it is left unchanged.
432 static int set_rxmode(struct net_device
*dev
, int mtu
, bool sleep_ok
)
434 struct port_info
*pi
= netdev_priv(dev
);
435 struct adapter
*adapter
= pi
->adapter
;
437 __dev_uc_sync(dev
, cxgb4_mac_sync
, cxgb4_mac_unsync
);
438 __dev_mc_sync(dev
, cxgb4_mac_sync
, cxgb4_mac_unsync
);
440 return t4_set_rxmode(adapter
, adapter
->mbox
, pi
->viid
, mtu
,
441 (dev
->flags
& IFF_PROMISC
) ? 1 : 0,
442 (dev
->flags
& IFF_ALLMULTI
) ? 1 : 0, 1, -1,
447 * cxgb4_change_mac - Update match filter for a MAC address.
450 * @tcam_idx: TCAM index of existing filter for old value of MAC address,
452 * @addr: the new MAC address value
453 * @persist: whether a new MAC allocation should be persistent
454 * @add_smt: if true also add the address to the HW SMT
456 * Modifies an MPS filter and sets it to the new MAC address if
457 * @tcam_idx >= 0, or adds the MAC address to a new filter if
458 * @tcam_idx < 0. In the latter case the address is added persistently
459 * if @persist is %true.
460 * Addresses are programmed to hash region, if tcam runs out of entries.
463 int cxgb4_change_mac(struct port_info
*pi
, unsigned int viid
,
464 int *tcam_idx
, const u8
*addr
, bool persist
,
467 struct adapter
*adapter
= pi
->adapter
;
468 struct hash_mac_addr
*entry
, *new_entry
;
471 ret
= t4_change_mac(adapter
, adapter
->mbox
, viid
,
472 *tcam_idx
, addr
, persist
, smt_idx
);
473 /* We ran out of TCAM entries. try programming hash region. */
474 if (ret
== -ENOMEM
) {
475 /* If the MAC address to be updated is in the hash addr
476 * list, update it from the list
478 list_for_each_entry(entry
, &adapter
->mac_hlist
, list
) {
479 if (entry
->iface_mac
) {
480 ether_addr_copy(entry
->addr
, addr
);
484 new_entry
= kzalloc(sizeof(*new_entry
), GFP_KERNEL
);
487 ether_addr_copy(new_entry
->addr
, addr
);
488 new_entry
->iface_mac
= true;
489 list_add_tail(&new_entry
->list
, &adapter
->mac_hlist
);
491 ret
= cxgb4_set_addr_hash(pi
);
492 } else if (ret
>= 0) {
501 * link_start - enable a port
502 * @dev: the port to enable
504 * Performs the MAC and PHY actions needed to enable a port.
506 static int link_start(struct net_device
*dev
)
509 struct port_info
*pi
= netdev_priv(dev
);
510 unsigned int mb
= pi
->adapter
->pf
;
513 * We do not set address filters and promiscuity here, the stack does
514 * that step explicitly.
516 ret
= t4_set_rxmode(pi
->adapter
, mb
, pi
->viid
, dev
->mtu
, -1, -1, -1,
517 !!(dev
->features
& NETIF_F_HW_VLAN_CTAG_RX
), true);
519 ret
= cxgb4_update_mac_filt(pi
, pi
->viid
, &pi
->xact_addr_filt
,
520 dev
->dev_addr
, true, &pi
->smt_idx
);
522 ret
= t4_link_l1cfg(pi
->adapter
, mb
, pi
->tx_chan
,
526 ret
= t4_enable_pi_params(pi
->adapter
, mb
, pi
, true,
527 true, CXGB4_DCB_ENABLED
);
534 #ifdef CONFIG_CHELSIO_T4_DCB
535 /* Handle a Data Center Bridging update message from the firmware. */
536 static void dcb_rpl(struct adapter
*adap
, const struct fw_port_cmd
*pcmd
)
538 int port
= FW_PORT_CMD_PORTID_G(ntohl(pcmd
->op_to_portid
));
539 struct net_device
*dev
= adap
->port
[adap
->chan_map
[port
]];
540 int old_dcb_enabled
= cxgb4_dcb_enabled(dev
);
543 cxgb4_dcb_handle_fw_update(adap
, pcmd
);
544 new_dcb_enabled
= cxgb4_dcb_enabled(dev
);
546 /* If the DCB has become enabled or disabled on the port then we're
547 * going to need to set up/tear down DCB Priority parameters for the
548 * TX Queues associated with the port.
550 if (new_dcb_enabled
!= old_dcb_enabled
)
551 dcb_tx_queue_prio_enable(dev
, new_dcb_enabled
);
553 #endif /* CONFIG_CHELSIO_T4_DCB */
555 /* Response queue handler for the FW event queue.
557 static int fwevtq_handler(struct sge_rspq
*q
, const __be64
*rsp
,
558 const struct pkt_gl
*gl
)
560 u8 opcode
= ((const struct rss_header
*)rsp
)->opcode
;
562 rsp
++; /* skip RSS header */
564 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
566 if (unlikely(opcode
== CPL_FW4_MSG
&&
567 ((const struct cpl_fw4_msg
*)rsp
)->type
== FW_TYPE_RSSCPL
)) {
569 opcode
= ((const struct rss_header
*)rsp
)->opcode
;
571 if (opcode
!= CPL_SGE_EGR_UPDATE
) {
572 dev_err(q
->adap
->pdev_dev
, "unexpected FW4/CPL %#x on FW event queue\n"
578 if (likely(opcode
== CPL_SGE_EGR_UPDATE
)) {
579 const struct cpl_sge_egr_update
*p
= (void *)rsp
;
580 unsigned int qid
= EGR_QID_G(ntohl(p
->opcode_qid
));
583 txq
= q
->adap
->sge
.egr_map
[qid
- q
->adap
->sge
.egr_start
];
585 if (txq
->q_type
== CXGB4_TXQ_ETH
) {
586 struct sge_eth_txq
*eq
;
588 eq
= container_of(txq
, struct sge_eth_txq
, q
);
589 t4_sge_eth_txq_egress_update(q
->adap
, eq
, -1);
591 struct sge_uld_txq
*oq
;
593 oq
= container_of(txq
, struct sge_uld_txq
, q
);
594 tasklet_schedule(&oq
->qresume_tsk
);
596 } else if (opcode
== CPL_FW6_MSG
|| opcode
== CPL_FW4_MSG
) {
597 const struct cpl_fw6_msg
*p
= (void *)rsp
;
599 #ifdef CONFIG_CHELSIO_T4_DCB
600 const struct fw_port_cmd
*pcmd
= (const void *)p
->data
;
601 unsigned int cmd
= FW_CMD_OP_G(ntohl(pcmd
->op_to_portid
));
602 unsigned int action
=
603 FW_PORT_CMD_ACTION_G(ntohl(pcmd
->action_to_len16
));
605 if (cmd
== FW_PORT_CMD
&&
606 (action
== FW_PORT_ACTION_GET_PORT_INFO
||
607 action
== FW_PORT_ACTION_GET_PORT_INFO32
)) {
608 int port
= FW_PORT_CMD_PORTID_G(
609 be32_to_cpu(pcmd
->op_to_portid
));
610 struct net_device
*dev
;
611 int dcbxdis
, state_input
;
613 dev
= q
->adap
->port
[q
->adap
->chan_map
[port
]];
614 dcbxdis
= (action
== FW_PORT_ACTION_GET_PORT_INFO
615 ? !!(pcmd
->u
.info
.dcbxdis_pkd
& FW_PORT_CMD_DCBXDIS_F
)
616 : !!(be32_to_cpu(pcmd
->u
.info32
.lstatus32_to_cbllen32
)
617 & FW_PORT_CMD_DCBXDIS32_F
));
618 state_input
= (dcbxdis
619 ? CXGB4_DCB_INPUT_FW_DISABLED
620 : CXGB4_DCB_INPUT_FW_ENABLED
);
622 cxgb4_dcb_state_fsm(dev
, state_input
);
625 if (cmd
== FW_PORT_CMD
&&
626 action
== FW_PORT_ACTION_L2_DCB_CFG
)
627 dcb_rpl(q
->adap
, pcmd
);
631 t4_handle_fw_rpl(q
->adap
, p
->data
);
632 } else if (opcode
== CPL_L2T_WRITE_RPL
) {
633 const struct cpl_l2t_write_rpl
*p
= (void *)rsp
;
635 do_l2t_write_rpl(q
->adap
, p
);
636 } else if (opcode
== CPL_SMT_WRITE_RPL
) {
637 const struct cpl_smt_write_rpl
*p
= (void *)rsp
;
639 do_smt_write_rpl(q
->adap
, p
);
640 } else if (opcode
== CPL_SET_TCB_RPL
) {
641 const struct cpl_set_tcb_rpl
*p
= (void *)rsp
;
643 filter_rpl(q
->adap
, p
);
644 } else if (opcode
== CPL_ACT_OPEN_RPL
) {
645 const struct cpl_act_open_rpl
*p
= (void *)rsp
;
647 hash_filter_rpl(q
->adap
, p
);
648 } else if (opcode
== CPL_ABORT_RPL_RSS
) {
649 const struct cpl_abort_rpl_rss
*p
= (void *)rsp
;
651 hash_del_filter_rpl(q
->adap
, p
);
652 } else if (opcode
== CPL_SRQ_TABLE_RPL
) {
653 const struct cpl_srq_table_rpl
*p
= (void *)rsp
;
655 do_srq_table_rpl(q
->adap
, p
);
657 dev_err(q
->adap
->pdev_dev
,
658 "unexpected CPL %#x on FW event queue\n", opcode
);
663 static void disable_msi(struct adapter
*adapter
)
665 if (adapter
->flags
& CXGB4_USING_MSIX
) {
666 pci_disable_msix(adapter
->pdev
);
667 adapter
->flags
&= ~CXGB4_USING_MSIX
;
668 } else if (adapter
->flags
& CXGB4_USING_MSI
) {
669 pci_disable_msi(adapter
->pdev
);
670 adapter
->flags
&= ~CXGB4_USING_MSI
;
675 * Interrupt handler for non-data events used with MSI-X.
677 static irqreturn_t
t4_nondata_intr(int irq
, void *cookie
)
679 struct adapter
*adap
= cookie
;
680 u32 v
= t4_read_reg(adap
, MYPF_REG(PL_PF_INT_CAUSE_A
));
684 t4_write_reg(adap
, MYPF_REG(PL_PF_INT_CAUSE_A
), v
);
686 if (adap
->flags
& CXGB4_MASTER_PF
)
687 t4_slow_intr_handler(adap
);
691 int cxgb4_set_msix_aff(struct adapter
*adap
, unsigned short vec
,
692 cpumask_var_t
*aff_mask
, int idx
)
696 if (!zalloc_cpumask_var(aff_mask
, GFP_KERNEL
)) {
697 dev_err(adap
->pdev_dev
, "alloc_cpumask_var failed\n");
701 cpumask_set_cpu(cpumask_local_spread(idx
, dev_to_node(adap
->pdev_dev
)),
704 rv
= irq_set_affinity_hint(vec
, *aff_mask
);
706 dev_warn(adap
->pdev_dev
,
707 "irq_set_affinity_hint %u failed %d\n",
713 void cxgb4_clear_msix_aff(unsigned short vec
, cpumask_var_t aff_mask
)
715 irq_set_affinity_hint(vec
, NULL
);
716 free_cpumask_var(aff_mask
);
719 static int request_msix_queue_irqs(struct adapter
*adap
)
721 struct sge
*s
= &adap
->sge
;
722 struct msix_info
*minfo
;
725 if (s
->fwevtq_msix_idx
< 0)
728 err
= request_irq(adap
->msix_info
[s
->fwevtq_msix_idx
].vec
,
730 adap
->msix_info
[s
->fwevtq_msix_idx
].desc
,
735 for_each_ethrxq(s
, ethqidx
) {
736 minfo
= s
->ethrxq
[ethqidx
].msix
;
737 err
= request_irq(minfo
->vec
,
740 &s
->ethrxq
[ethqidx
].rspq
);
744 cxgb4_set_msix_aff(adap
, minfo
->vec
,
745 &minfo
->aff_mask
, ethqidx
);
750 while (--ethqidx
>= 0) {
751 minfo
= s
->ethrxq
[ethqidx
].msix
;
752 cxgb4_clear_msix_aff(minfo
->vec
, minfo
->aff_mask
);
753 free_irq(minfo
->vec
, &s
->ethrxq
[ethqidx
].rspq
);
755 free_irq(adap
->msix_info
[s
->fwevtq_msix_idx
].vec
, &s
->fw_evtq
);
759 static void free_msix_queue_irqs(struct adapter
*adap
)
761 struct sge
*s
= &adap
->sge
;
762 struct msix_info
*minfo
;
765 free_irq(adap
->msix_info
[s
->fwevtq_msix_idx
].vec
, &s
->fw_evtq
);
766 for_each_ethrxq(s
, i
) {
767 minfo
= s
->ethrxq
[i
].msix
;
768 cxgb4_clear_msix_aff(minfo
->vec
, minfo
->aff_mask
);
769 free_irq(minfo
->vec
, &s
->ethrxq
[i
].rspq
);
773 static int setup_ppod_edram(struct adapter
*adap
)
775 unsigned int param
, val
;
778 /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
779 * if firmware supports ppod edram feature or not. If firmware
780 * returns 1, then driver can enable this feature by sending
781 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
782 * enable ppod edram feature.
784 param
= (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
785 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM
));
787 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0, 1, ¶m
, &val
);
789 dev_warn(adap
->pdev_dev
,
790 "querying PPOD_EDRAM support failed: %d\n",
798 ret
= t4_set_params(adap
, adap
->mbox
, adap
->pf
, 0, 1, ¶m
, &val
);
800 dev_err(adap
->pdev_dev
,
801 "setting PPOD_EDRAM failed: %d\n", ret
);
807 static void adap_config_hpfilter(struct adapter
*adapter
)
812 /* Enable HP filter region. Older fw will fail this request and
815 param
= FW_PARAM_DEV(HPFILTER_REGION_SUPPORT
);
816 ret
= t4_set_params(adapter
, adapter
->mbox
, adapter
->pf
, 0,
819 /* An error means FW doesn't know about HP filter support,
820 * it's not a problem, don't return an error.
823 dev_err(adapter
->pdev_dev
,
824 "HP filter region isn't supported by FW\n");
828 * cxgb4_write_rss - write the RSS table for a given port
830 * @queues: array of queue indices for RSS
832 * Sets up the portion of the HW RSS table for the port's VI to distribute
833 * packets to the Rx queues in @queues.
834 * Should never be called before setting up sge eth rx queues
836 int cxgb4_write_rss(const struct port_info
*pi
, const u16
*queues
)
840 struct adapter
*adapter
= pi
->adapter
;
841 const struct sge_eth_rxq
*rxq
;
843 rxq
= &adapter
->sge
.ethrxq
[pi
->first_qset
];
844 rss
= kmalloc_array(pi
->rss_size
, sizeof(u16
), GFP_KERNEL
);
848 /* map the queue indices to queue ids */
849 for (i
= 0; i
< pi
->rss_size
; i
++, queues
++)
850 rss
[i
] = rxq
[*queues
].rspq
.abs_id
;
852 err
= t4_config_rss_range(adapter
, adapter
->pf
, pi
->viid
, 0,
853 pi
->rss_size
, rss
, pi
->rss_size
);
854 /* If Tunnel All Lookup isn't specified in the global RSS
855 * Configuration, then we need to specify a default Ingress
856 * Queue for any ingress packets which aren't hashed. We'll
857 * use our first ingress queue ...
860 err
= t4_config_vi_rss(adapter
, adapter
->mbox
, pi
->viid
,
861 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F
|
862 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F
|
863 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F
|
864 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F
|
865 FW_RSS_VI_CONFIG_CMD_UDPEN_F
,
872 * setup_rss - configure RSS
875 * Sets up RSS for each port.
877 static int setup_rss(struct adapter
*adap
)
881 for_each_port(adap
, i
) {
882 const struct port_info
*pi
= adap2pinfo(adap
, i
);
884 /* Fill default values with equal distribution */
885 for (j
= 0; j
< pi
->rss_size
; j
++)
886 pi
->rss
[j
] = j
% pi
->nqsets
;
888 err
= cxgb4_write_rss(pi
, pi
->rss
);
896 * Return the channel of the ingress queue with the given qid.
898 static unsigned int rxq_to_chan(const struct sge
*p
, unsigned int qid
)
900 qid
-= p
->ingr_start
;
901 return netdev2pinfo(p
->ingr_map
[qid
]->netdev
)->tx_chan
;
904 void cxgb4_quiesce_rx(struct sge_rspq
*q
)
907 napi_disable(&q
->napi
);
911 * Wait until all NAPI handlers are descheduled.
913 static void quiesce_rx(struct adapter
*adap
)
917 for (i
= 0; i
< adap
->sge
.ingr_sz
; i
++) {
918 struct sge_rspq
*q
= adap
->sge
.ingr_map
[i
];
927 /* Disable interrupt and napi handler */
928 static void disable_interrupts(struct adapter
*adap
)
930 struct sge
*s
= &adap
->sge
;
932 if (adap
->flags
& CXGB4_FULL_INIT_DONE
) {
933 t4_intr_disable(adap
);
934 if (adap
->flags
& CXGB4_USING_MSIX
) {
935 free_msix_queue_irqs(adap
);
936 free_irq(adap
->msix_info
[s
->nd_msix_idx
].vec
,
939 free_irq(adap
->pdev
->irq
, adap
);
945 void cxgb4_enable_rx(struct adapter
*adap
, struct sge_rspq
*q
)
948 napi_enable(&q
->napi
);
950 /* 0-increment GTS to start the timer and enable interrupts */
951 t4_write_reg(adap
, MYPF_REG(SGE_PF_GTS_A
),
952 SEINTARM_V(q
->intr_params
) |
953 INGRESSQID_V(q
->cntxt_id
));
957 * Enable NAPI scheduling and interrupt generation for all Rx queues.
959 static void enable_rx(struct adapter
*adap
)
963 for (i
= 0; i
< adap
->sge
.ingr_sz
; i
++) {
964 struct sge_rspq
*q
= adap
->sge
.ingr_map
[i
];
969 cxgb4_enable_rx(adap
, q
);
973 static int setup_non_data_intr(struct adapter
*adap
)
977 adap
->sge
.nd_msix_idx
= -1;
978 if (!(adap
->flags
& CXGB4_USING_MSIX
))
981 /* Request MSI-X vector for non-data interrupt */
982 msix
= cxgb4_get_msix_idx_from_bmap(adap
);
986 snprintf(adap
->msix_info
[msix
].desc
,
987 sizeof(adap
->msix_info
[msix
].desc
),
988 "%s", adap
->port
[0]->name
);
990 adap
->sge
.nd_msix_idx
= msix
;
994 static int setup_fw_sge_queues(struct adapter
*adap
)
996 struct sge
*s
= &adap
->sge
;
999 bitmap_zero(s
->starving_fl
, s
->egr_sz
);
1000 bitmap_zero(s
->txq_maperr
, s
->egr_sz
);
1002 if (adap
->flags
& CXGB4_USING_MSIX
) {
1003 s
->fwevtq_msix_idx
= -1;
1004 msix
= cxgb4_get_msix_idx_from_bmap(adap
);
1008 snprintf(adap
->msix_info
[msix
].desc
,
1009 sizeof(adap
->msix_info
[msix
].desc
),
1010 "%s-FWeventq", adap
->port
[0]->name
);
1012 err
= t4_sge_alloc_rxq(adap
, &s
->intrq
, false, adap
->port
[0], 0,
1013 NULL
, NULL
, NULL
, -1);
1016 msix
= -((int)s
->intrq
.abs_id
+ 1);
1019 err
= t4_sge_alloc_rxq(adap
, &s
->fw_evtq
, true, adap
->port
[0],
1020 msix
, NULL
, fwevtq_handler
, NULL
, -1);
1021 if (err
&& msix
>= 0)
1022 cxgb4_free_msix_idx_in_bmap(adap
, msix
);
1024 s
->fwevtq_msix_idx
= msix
;
1029 * setup_sge_queues - configure SGE Tx/Rx/response queues
1030 * @adap: the adapter
1032 * Determines how many sets of SGE queues to use and initializes them.
1033 * We support multiple queue sets per port if we have MSI-X, otherwise
1034 * just one queue set per port.
1036 static int setup_sge_queues(struct adapter
*adap
)
1038 struct sge_uld_rxq_info
*rxq_info
= NULL
;
1039 struct sge
*s
= &adap
->sge
;
1040 unsigned int cmplqid
= 0;
1041 int err
, i
, j
, msix
= 0;
1044 rxq_info
= s
->uld_rxq_info
[CXGB4_ULD_RDMA
];
1046 if (!(adap
->flags
& CXGB4_USING_MSIX
))
1047 msix
= -((int)s
->intrq
.abs_id
+ 1);
1049 for_each_port(adap
, i
) {
1050 struct net_device
*dev
= adap
->port
[i
];
1051 struct port_info
*pi
= netdev_priv(dev
);
1052 struct sge_eth_rxq
*q
= &s
->ethrxq
[pi
->first_qset
];
1053 struct sge_eth_txq
*t
= &s
->ethtxq
[pi
->first_qset
];
1055 for (j
= 0; j
< pi
->nqsets
; j
++, q
++) {
1057 msix
= cxgb4_get_msix_idx_from_bmap(adap
);
1063 snprintf(adap
->msix_info
[msix
].desc
,
1064 sizeof(adap
->msix_info
[msix
].desc
),
1065 "%s-Rx%d", dev
->name
, j
);
1066 q
->msix
= &adap
->msix_info
[msix
];
1069 err
= t4_sge_alloc_rxq(adap
, &q
->rspq
, false, dev
,
1073 t4_get_tp_ch_map(adap
,
1078 memset(&q
->stats
, 0, sizeof(q
->stats
));
1081 q
= &s
->ethrxq
[pi
->first_qset
];
1082 for (j
= 0; j
< pi
->nqsets
; j
++, t
++, q
++) {
1083 err
= t4_sge_alloc_eth_txq(adap
, t
, dev
,
1084 netdev_get_tx_queue(dev
, j
),
1086 !!(adap
->flags
& CXGB4_SGE_DBQ_TIMER
));
1092 for_each_port(adap
, i
) {
1093 /* Note that cmplqid below is 0 if we don't
1094 * have RDMA queues, and that's the right value.
1097 cmplqid
= rxq_info
->uldrxq
[i
].rspq
.cntxt_id
;
1099 err
= t4_sge_alloc_ctrl_txq(adap
, &s
->ctrlq
[i
], adap
->port
[i
],
1100 s
->fw_evtq
.cntxt_id
, cmplqid
);
1105 if (!is_t4(adap
->params
.chip
)) {
1106 err
= t4_sge_alloc_eth_txq(adap
, &s
->ptptxq
, adap
->port
[0],
1107 netdev_get_tx_queue(adap
->port
[0], 0)
1108 , s
->fw_evtq
.cntxt_id
, false);
1113 t4_write_reg(adap
, is_t4(adap
->params
.chip
) ?
1114 MPS_TRC_RSS_CONTROL_A
:
1115 MPS_T5_TRC_RSS_CONTROL_A
,
1116 RSSCONTROL_V(netdev2pinfo(adap
->port
[0])->tx_chan
) |
1117 QUEUENUMBER_V(s
->ethrxq
[0].rspq
.abs_id
));
1120 dev_err(adap
->pdev_dev
, "Can't allocate queues, err=%d\n", -err
);
1121 t4_free_sge_resources(adap
);
1125 static u16
cxgb_select_queue(struct net_device
*dev
, struct sk_buff
*skb
,
1126 struct net_device
*sb_dev
)
1130 #ifdef CONFIG_CHELSIO_T4_DCB
1131 /* If a Data Center Bridging has been successfully negotiated on this
1132 * link then we'll use the skb's priority to map it to a TX Queue.
1133 * The skb's priority is determined via the VLAN Tag Priority Code
1136 if (cxgb4_dcb_enabled(dev
) && !is_kdump_kernel()) {
1140 err
= vlan_get_tag(skb
, &vlan_tci
);
1141 if (unlikely(err
)) {
1142 if (net_ratelimit())
1144 "TX Packet without VLAN Tag on DCB Link\n");
1147 txq
= (vlan_tci
& VLAN_PRIO_MASK
) >> VLAN_PRIO_SHIFT
;
1148 #ifdef CONFIG_CHELSIO_T4_FCOE
1149 if (skb
->protocol
== htons(ETH_P_FCOE
))
1150 txq
= skb
->priority
& 0x7;
1151 #endif /* CONFIG_CHELSIO_T4_FCOE */
1155 #endif /* CONFIG_CHELSIO_T4_DCB */
1158 struct port_info
*pi
= netdev2pinfo(dev
);
1161 ver
= ip_hdr(skb
)->version
;
1162 proto
= (ver
== 6) ? ipv6_hdr(skb
)->nexthdr
:
1163 ip_hdr(skb
)->protocol
;
1165 /* Send unsupported traffic pattern to normal NIC queues. */
1166 txq
= netdev_pick_tx(dev
, skb
, sb_dev
);
1167 if (xfrm_offload(skb
) || is_ptp_enabled(skb
, dev
) ||
1168 skb
->encapsulation
||
1169 (proto
!= IPPROTO_TCP
&& proto
!= IPPROTO_UDP
))
1170 txq
= txq
% pi
->nqsets
;
1176 txq
= (skb_rx_queue_recorded(skb
)
1177 ? skb_get_rx_queue(skb
)
1178 : smp_processor_id());
1180 while (unlikely(txq
>= dev
->real_num_tx_queues
))
1181 txq
-= dev
->real_num_tx_queues
;
1186 return netdev_pick_tx(dev
, skb
, NULL
) % dev
->real_num_tx_queues
;
1189 static int closest_timer(const struct sge
*s
, int time
)
1191 int i
, delta
, match
= 0, min_delta
= INT_MAX
;
1193 for (i
= 0; i
< ARRAY_SIZE(s
->timer_val
); i
++) {
1194 delta
= time
- s
->timer_val
[i
];
1197 if (delta
< min_delta
) {
1205 static int closest_thres(const struct sge
*s
, int thres
)
1207 int i
, delta
, match
= 0, min_delta
= INT_MAX
;
1209 for (i
= 0; i
< ARRAY_SIZE(s
->counter_val
); i
++) {
1210 delta
= thres
- s
->counter_val
[i
];
1213 if (delta
< min_delta
) {
1222 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1224 * @us: the hold-off time in us, or 0 to disable timer
1225 * @cnt: the hold-off packet count, or 0 to disable counter
1227 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1228 * one of the two needs to be enabled for the queue to generate interrupts.
1230 int cxgb4_set_rspq_intr_params(struct sge_rspq
*q
,
1231 unsigned int us
, unsigned int cnt
)
1233 struct adapter
*adap
= q
->adap
;
1235 if ((us
| cnt
) == 0)
1242 new_idx
= closest_thres(&adap
->sge
, cnt
);
1243 if (q
->desc
&& q
->pktcnt_idx
!= new_idx
) {
1244 /* the queue has already been created, update it */
1245 v
= FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ
) |
1246 FW_PARAMS_PARAM_X_V(
1247 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH
) |
1248 FW_PARAMS_PARAM_YZ_V(q
->cntxt_id
);
1249 err
= t4_set_params(adap
, adap
->mbox
, adap
->pf
, 0, 1,
1254 q
->pktcnt_idx
= new_idx
;
1257 us
= us
== 0 ? 6 : closest_timer(&adap
->sge
, us
);
1258 q
->intr_params
= QINTR_TIMER_IDX_V(us
) | QINTR_CNT_EN_V(cnt
> 0);
1262 static int cxgb_set_features(struct net_device
*dev
, netdev_features_t features
)
1264 const struct port_info
*pi
= netdev_priv(dev
);
1265 netdev_features_t changed
= dev
->features
^ features
;
1268 if (!(changed
& NETIF_F_HW_VLAN_CTAG_RX
))
1271 err
= t4_set_rxmode(pi
->adapter
, pi
->adapter
->pf
, pi
->viid
, -1,
1273 !!(features
& NETIF_F_HW_VLAN_CTAG_RX
), true);
1275 dev
->features
= features
^ NETIF_F_HW_VLAN_CTAG_RX
;
1279 static int setup_debugfs(struct adapter
*adap
)
1281 if (IS_ERR_OR_NULL(adap
->debugfs_root
))
1284 #ifdef CONFIG_DEBUG_FS
1285 t4_setup_debugfs(adap
);
1291 * upper-layer driver support
1295 * Allocate an active-open TID and set it to the supplied value.
1297 int cxgb4_alloc_atid(struct tid_info
*t
, void *data
)
1301 spin_lock_bh(&t
->atid_lock
);
1303 union aopen_entry
*p
= t
->afree
;
1305 atid
= (p
- t
->atid_tab
) + t
->atid_base
;
1310 spin_unlock_bh(&t
->atid_lock
);
1313 EXPORT_SYMBOL(cxgb4_alloc_atid
);
1316 * Release an active-open TID.
1318 void cxgb4_free_atid(struct tid_info
*t
, unsigned int atid
)
1320 union aopen_entry
*p
= &t
->atid_tab
[atid
- t
->atid_base
];
1322 spin_lock_bh(&t
->atid_lock
);
1326 spin_unlock_bh(&t
->atid_lock
);
1328 EXPORT_SYMBOL(cxgb4_free_atid
);
1331 * Allocate a server TID and set it to the supplied value.
1333 int cxgb4_alloc_stid(struct tid_info
*t
, int family
, void *data
)
1337 spin_lock_bh(&t
->stid_lock
);
1338 if (family
== PF_INET
) {
1339 stid
= find_first_zero_bit(t
->stid_bmap
, t
->nstids
);
1340 if (stid
< t
->nstids
)
1341 __set_bit(stid
, t
->stid_bmap
);
1345 stid
= bitmap_find_free_region(t
->stid_bmap
, t
->nstids
, 1);
1350 t
->stid_tab
[stid
].data
= data
;
1351 stid
+= t
->stid_base
;
1352 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1353 * This is equivalent to 4 TIDs. With CLIP enabled it
1356 if (family
== PF_INET6
) {
1357 t
->stids_in_use
+= 2;
1358 t
->v6_stids_in_use
+= 2;
1363 spin_unlock_bh(&t
->stid_lock
);
1366 EXPORT_SYMBOL(cxgb4_alloc_stid
);
1368 /* Allocate a server filter TID and set it to the supplied value.
1370 int cxgb4_alloc_sftid(struct tid_info
*t
, int family
, void *data
)
1374 spin_lock_bh(&t
->stid_lock
);
1375 if (family
== PF_INET
) {
1376 stid
= find_next_zero_bit(t
->stid_bmap
,
1377 t
->nstids
+ t
->nsftids
, t
->nstids
);
1378 if (stid
< (t
->nstids
+ t
->nsftids
))
1379 __set_bit(stid
, t
->stid_bmap
);
1386 t
->stid_tab
[stid
].data
= data
;
1388 stid
+= t
->sftid_base
;
1391 spin_unlock_bh(&t
->stid_lock
);
1394 EXPORT_SYMBOL(cxgb4_alloc_sftid
);
1396 /* Release a server TID.
1398 void cxgb4_free_stid(struct tid_info
*t
, unsigned int stid
, int family
)
1400 /* Is it a server filter TID? */
1401 if (t
->nsftids
&& (stid
>= t
->sftid_base
)) {
1402 stid
-= t
->sftid_base
;
1405 stid
-= t
->stid_base
;
1408 spin_lock_bh(&t
->stid_lock
);
1409 if (family
== PF_INET
)
1410 __clear_bit(stid
, t
->stid_bmap
);
1412 bitmap_release_region(t
->stid_bmap
, stid
, 1);
1413 t
->stid_tab
[stid
].data
= NULL
;
1414 if (stid
< t
->nstids
) {
1415 if (family
== PF_INET6
) {
1416 t
->stids_in_use
-= 2;
1417 t
->v6_stids_in_use
-= 2;
1425 spin_unlock_bh(&t
->stid_lock
);
1427 EXPORT_SYMBOL(cxgb4_free_stid
);
1430 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1432 static void mk_tid_release(struct sk_buff
*skb
, unsigned int chan
,
1435 struct cpl_tid_release
*req
;
1437 set_wr_txq(skb
, CPL_PRIORITY_SETUP
, chan
);
1438 req
= __skb_put(skb
, sizeof(*req
));
1439 INIT_TP_WR(req
, tid
);
1440 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE
, tid
));
1444 * Queue a TID release request and if necessary schedule a work queue to
1447 static void cxgb4_queue_tid_release(struct tid_info
*t
, unsigned int chan
,
1450 struct adapter
*adap
= container_of(t
, struct adapter
, tids
);
1451 void **p
= &t
->tid_tab
[tid
- t
->tid_base
];
1453 spin_lock_bh(&adap
->tid_release_lock
);
1454 *p
= adap
->tid_release_head
;
1455 /* Low 2 bits encode the Tx channel number */
1456 adap
->tid_release_head
= (void **)((uintptr_t)p
| chan
);
1457 if (!adap
->tid_release_task_busy
) {
1458 adap
->tid_release_task_busy
= true;
1459 queue_work(adap
->workq
, &adap
->tid_release_task
);
1461 spin_unlock_bh(&adap
->tid_release_lock
);
1465 * Process the list of pending TID release requests.
1467 static void process_tid_release_list(struct work_struct
*work
)
1469 struct sk_buff
*skb
;
1470 struct adapter
*adap
;
1472 adap
= container_of(work
, struct adapter
, tid_release_task
);
1474 spin_lock_bh(&adap
->tid_release_lock
);
1475 while (adap
->tid_release_head
) {
1476 void **p
= adap
->tid_release_head
;
1477 unsigned int chan
= (uintptr_t)p
& 3;
1478 p
= (void *)p
- chan
;
1480 adap
->tid_release_head
= *p
;
1482 spin_unlock_bh(&adap
->tid_release_lock
);
1484 while (!(skb
= alloc_skb(sizeof(struct cpl_tid_release
),
1486 schedule_timeout_uninterruptible(1);
1488 mk_tid_release(skb
, chan
, p
- adap
->tids
.tid_tab
);
1489 t4_ofld_send(adap
, skb
);
1490 spin_lock_bh(&adap
->tid_release_lock
);
1492 adap
->tid_release_task_busy
= false;
1493 spin_unlock_bh(&adap
->tid_release_lock
);
1497 * Release a TID and inform HW. If we are unable to allocate the release
1498 * message we defer to a work queue.
1500 void cxgb4_remove_tid(struct tid_info
*t
, unsigned int chan
, unsigned int tid
,
1501 unsigned short family
)
1503 struct adapter
*adap
= container_of(t
, struct adapter
, tids
);
1504 struct sk_buff
*skb
;
1506 WARN_ON(tid_out_of_range(&adap
->tids
, tid
));
1508 if (t
->tid_tab
[tid
- adap
->tids
.tid_base
]) {
1509 t
->tid_tab
[tid
- adap
->tids
.tid_base
] = NULL
;
1510 atomic_dec(&t
->conns_in_use
);
1511 if (t
->hash_base
&& (tid
>= t
->hash_base
)) {
1512 if (family
== AF_INET6
)
1513 atomic_sub(2, &t
->hash_tids_in_use
);
1515 atomic_dec(&t
->hash_tids_in_use
);
1517 if (family
== AF_INET6
)
1518 atomic_sub(2, &t
->tids_in_use
);
1520 atomic_dec(&t
->tids_in_use
);
1524 skb
= alloc_skb(sizeof(struct cpl_tid_release
), GFP_ATOMIC
);
1526 mk_tid_release(skb
, chan
, tid
);
1527 t4_ofld_send(adap
, skb
);
1529 cxgb4_queue_tid_release(t
, chan
, tid
);
1531 EXPORT_SYMBOL(cxgb4_remove_tid
);
1534 * Allocate and initialize the TID tables. Returns 0 on success.
1536 static int tid_init(struct tid_info
*t
)
1538 struct adapter
*adap
= container_of(t
, struct adapter
, tids
);
1539 unsigned int max_ftids
= t
->nftids
+ t
->nsftids
;
1540 unsigned int natids
= t
->natids
;
1541 unsigned int hpftid_bmap_size
;
1542 unsigned int eotid_bmap_size
;
1543 unsigned int stid_bmap_size
;
1544 unsigned int ftid_bmap_size
;
1547 stid_bmap_size
= BITS_TO_LONGS(t
->nstids
+ t
->nsftids
);
1548 ftid_bmap_size
= BITS_TO_LONGS(t
->nftids
);
1549 hpftid_bmap_size
= BITS_TO_LONGS(t
->nhpftids
);
1550 eotid_bmap_size
= BITS_TO_LONGS(t
->neotids
);
1551 size
= t
->ntids
* sizeof(*t
->tid_tab
) +
1552 natids
* sizeof(*t
->atid_tab
) +
1553 t
->nstids
* sizeof(*t
->stid_tab
) +
1554 t
->nsftids
* sizeof(*t
->stid_tab
) +
1555 stid_bmap_size
* sizeof(long) +
1556 t
->nhpftids
* sizeof(*t
->hpftid_tab
) +
1557 hpftid_bmap_size
* sizeof(long) +
1558 max_ftids
* sizeof(*t
->ftid_tab
) +
1559 ftid_bmap_size
* sizeof(long) +
1560 t
->neotids
* sizeof(*t
->eotid_tab
) +
1561 eotid_bmap_size
* sizeof(long);
1563 t
->tid_tab
= kvzalloc(size
, GFP_KERNEL
);
1567 t
->atid_tab
= (union aopen_entry
*)&t
->tid_tab
[t
->ntids
];
1568 t
->stid_tab
= (struct serv_entry
*)&t
->atid_tab
[natids
];
1569 t
->stid_bmap
= (unsigned long *)&t
->stid_tab
[t
->nstids
+ t
->nsftids
];
1570 t
->hpftid_tab
= (struct filter_entry
*)&t
->stid_bmap
[stid_bmap_size
];
1571 t
->hpftid_bmap
= (unsigned long *)&t
->hpftid_tab
[t
->nhpftids
];
1572 t
->ftid_tab
= (struct filter_entry
*)&t
->hpftid_bmap
[hpftid_bmap_size
];
1573 t
->ftid_bmap
= (unsigned long *)&t
->ftid_tab
[max_ftids
];
1574 t
->eotid_tab
= (struct eotid_entry
*)&t
->ftid_bmap
[ftid_bmap_size
];
1575 t
->eotid_bmap
= (unsigned long *)&t
->eotid_tab
[t
->neotids
];
1576 spin_lock_init(&t
->stid_lock
);
1577 spin_lock_init(&t
->atid_lock
);
1578 spin_lock_init(&t
->ftid_lock
);
1580 t
->stids_in_use
= 0;
1581 t
->v6_stids_in_use
= 0;
1582 t
->sftids_in_use
= 0;
1584 t
->atids_in_use
= 0;
1585 atomic_set(&t
->tids_in_use
, 0);
1586 atomic_set(&t
->conns_in_use
, 0);
1587 atomic_set(&t
->hash_tids_in_use
, 0);
1589 /* Setup the free list for atid_tab and clear the stid bitmap. */
1592 t
->atid_tab
[natids
- 1].next
= &t
->atid_tab
[natids
];
1593 t
->afree
= t
->atid_tab
;
1596 if (is_offload(adap
)) {
1597 bitmap_zero(t
->stid_bmap
, t
->nstids
+ t
->nsftids
);
1598 /* Reserve stid 0 for T4/T5 adapters */
1599 if (!t
->stid_base
&&
1600 CHELSIO_CHIP_VERSION(adap
->params
.chip
) <= CHELSIO_T5
)
1601 __set_bit(0, t
->stid_bmap
);
1604 bitmap_zero(t
->eotid_bmap
, t
->neotids
);
1608 bitmap_zero(t
->hpftid_bmap
, t
->nhpftids
);
1609 bitmap_zero(t
->ftid_bmap
, t
->nftids
);
1614 * cxgb4_create_server - create an IP server
1616 * @stid: the server TID
1617 * @sip: local IP address to bind server to
1618 * @sport: the server's TCP port
1619 * @queue: queue to direct messages from this server to
1621 * Create an IP server for the given port and address.
1622 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1624 int cxgb4_create_server(const struct net_device
*dev
, unsigned int stid
,
1625 __be32 sip
, __be16 sport
, __be16 vlan
,
1629 struct sk_buff
*skb
;
1630 struct adapter
*adap
;
1631 struct cpl_pass_open_req
*req
;
1634 skb
= alloc_skb(sizeof(*req
), GFP_KERNEL
);
1638 adap
= netdev2adap(dev
);
1639 req
= __skb_put(skb
, sizeof(*req
));
1641 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ
, stid
));
1642 req
->local_port
= sport
;
1643 req
->peer_port
= htons(0);
1644 req
->local_ip
= sip
;
1645 req
->peer_ip
= htonl(0);
1646 chan
= rxq_to_chan(&adap
->sge
, queue
);
1647 req
->opt0
= cpu_to_be64(TX_CHAN_V(chan
));
1648 req
->opt1
= cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK
) |
1649 SYN_RSS_ENABLE_F
| SYN_RSS_QUEUE_V(queue
));
1650 ret
= t4_mgmt_tx(adap
, skb
);
1651 return net_xmit_eval(ret
);
1653 EXPORT_SYMBOL(cxgb4_create_server
);
1655 /* cxgb4_create_server6 - create an IPv6 server
1657 * @stid: the server TID
1658 * @sip: local IPv6 address to bind server to
1659 * @sport: the server's TCP port
1660 * @queue: queue to direct messages from this server to
1662 * Create an IPv6 server for the given port and address.
1663 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1665 int cxgb4_create_server6(const struct net_device
*dev
, unsigned int stid
,
1666 const struct in6_addr
*sip
, __be16 sport
,
1670 struct sk_buff
*skb
;
1671 struct adapter
*adap
;
1672 struct cpl_pass_open_req6
*req
;
1675 skb
= alloc_skb(sizeof(*req
), GFP_KERNEL
);
1679 adap
= netdev2adap(dev
);
1680 req
= __skb_put(skb
, sizeof(*req
));
1682 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6
, stid
));
1683 req
->local_port
= sport
;
1684 req
->peer_port
= htons(0);
1685 req
->local_ip_hi
= *(__be64
*)(sip
->s6_addr
);
1686 req
->local_ip_lo
= *(__be64
*)(sip
->s6_addr
+ 8);
1687 req
->peer_ip_hi
= cpu_to_be64(0);
1688 req
->peer_ip_lo
= cpu_to_be64(0);
1689 chan
= rxq_to_chan(&adap
->sge
, queue
);
1690 req
->opt0
= cpu_to_be64(TX_CHAN_V(chan
));
1691 req
->opt1
= cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK
) |
1692 SYN_RSS_ENABLE_F
| SYN_RSS_QUEUE_V(queue
));
1693 ret
= t4_mgmt_tx(adap
, skb
);
1694 return net_xmit_eval(ret
);
1696 EXPORT_SYMBOL(cxgb4_create_server6
);
1698 int cxgb4_remove_server(const struct net_device
*dev
, unsigned int stid
,
1699 unsigned int queue
, bool ipv6
)
1701 struct sk_buff
*skb
;
1702 struct adapter
*adap
;
1703 struct cpl_close_listsvr_req
*req
;
1706 adap
= netdev2adap(dev
);
1708 skb
= alloc_skb(sizeof(*req
), GFP_KERNEL
);
1712 req
= __skb_put(skb
, sizeof(*req
));
1714 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ
, stid
));
1715 req
->reply_ctrl
= htons(NO_REPLY_V(0) | (ipv6
? LISTSVR_IPV6_V(1) :
1716 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue
));
1717 ret
= t4_mgmt_tx(adap
, skb
);
1718 return net_xmit_eval(ret
);
1720 EXPORT_SYMBOL(cxgb4_remove_server
);
1723 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1724 * @mtus: the HW MTU table
1725 * @mtu: the target MTU
1726 * @idx: index of selected entry in the MTU table
1728 * Returns the index and the value in the HW MTU table that is closest to
1729 * but does not exceed @mtu, unless @mtu is smaller than any value in the
1730 * table, in which case that smallest available value is selected.
1732 unsigned int cxgb4_best_mtu(const unsigned short *mtus
, unsigned short mtu
,
1737 while (i
< NMTUS
- 1 && mtus
[i
+ 1] <= mtu
)
1743 EXPORT_SYMBOL(cxgb4_best_mtu
);
1746 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1747 * @mtus: the HW MTU table
1748 * @header_size: Header Size
1749 * @data_size_max: maximum Data Segment Size
1750 * @data_size_align: desired Data Segment Size Alignment (2^N)
1751 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1753 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
1754 * MTU Table based solely on a Maximum MTU parameter, we break that
1755 * parameter up into a Header Size and Maximum Data Segment Size, and
1756 * provide a desired Data Segment Size Alignment. If we find an MTU in
1757 * the Hardware MTU Table which will result in a Data Segment Size with
1758 * the requested alignment _and_ that MTU isn't "too far" from the
1759 * closest MTU, then we'll return that rather than the closest MTU.
1761 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus
,
1762 unsigned short header_size
,
1763 unsigned short data_size_max
,
1764 unsigned short data_size_align
,
1765 unsigned int *mtu_idxp
)
1767 unsigned short max_mtu
= header_size
+ data_size_max
;
1768 unsigned short data_size_align_mask
= data_size_align
- 1;
1769 int mtu_idx
, aligned_mtu_idx
;
1771 /* Scan the MTU Table till we find an MTU which is larger than our
1772 * Maximum MTU or we reach the end of the table. Along the way,
1773 * record the last MTU found, if any, which will result in a Data
1774 * Segment Length matching the requested alignment.
1776 for (mtu_idx
= 0, aligned_mtu_idx
= -1; mtu_idx
< NMTUS
; mtu_idx
++) {
1777 unsigned short data_size
= mtus
[mtu_idx
] - header_size
;
1779 /* If this MTU minus the Header Size would result in a
1780 * Data Segment Size of the desired alignment, remember it.
1782 if ((data_size
& data_size_align_mask
) == 0)
1783 aligned_mtu_idx
= mtu_idx
;
1785 /* If we're not at the end of the Hardware MTU Table and the
1786 * next element is larger than our Maximum MTU, drop out of
1789 if (mtu_idx
+1 < NMTUS
&& mtus
[mtu_idx
+1] > max_mtu
)
1793 /* If we fell out of the loop because we ran to the end of the table,
1794 * then we just have to use the last [largest] entry.
1796 if (mtu_idx
== NMTUS
)
1799 /* If we found an MTU which resulted in the requested Data Segment
1800 * Length alignment and that's "not far" from the largest MTU which is
1801 * less than or equal to the maximum MTU, then use that.
1803 if (aligned_mtu_idx
>= 0 &&
1804 mtu_idx
- aligned_mtu_idx
<= 1)
1805 mtu_idx
= aligned_mtu_idx
;
1807 /* If the caller has passed in an MTU Index pointer, pass the
1808 * MTU Index back. Return the MTU value.
1811 *mtu_idxp
= mtu_idx
;
1812 return mtus
[mtu_idx
];
1814 EXPORT_SYMBOL(cxgb4_best_aligned_mtu
);
1817 * cxgb4_port_chan - get the HW channel of a port
1818 * @dev: the net device for the port
1820 * Return the HW Tx channel of the given port.
1822 unsigned int cxgb4_port_chan(const struct net_device
*dev
)
1824 return netdev2pinfo(dev
)->tx_chan
;
1826 EXPORT_SYMBOL(cxgb4_port_chan
);
1829 * cxgb4_port_e2cchan - get the HW c-channel of a port
1830 * @dev: the net device for the port
1832 * Return the HW RX c-channel of the given port.
1834 unsigned int cxgb4_port_e2cchan(const struct net_device
*dev
)
1836 return netdev2pinfo(dev
)->rx_cchan
;
1838 EXPORT_SYMBOL(cxgb4_port_e2cchan
);
1840 unsigned int cxgb4_dbfifo_count(const struct net_device
*dev
, int lpfifo
)
1842 struct adapter
*adap
= netdev2adap(dev
);
1843 u32 v1
, v2
, lp_count
, hp_count
;
1845 v1
= t4_read_reg(adap
, SGE_DBFIFO_STATUS_A
);
1846 v2
= t4_read_reg(adap
, SGE_DBFIFO_STATUS2_A
);
1847 if (is_t4(adap
->params
.chip
)) {
1848 lp_count
= LP_COUNT_G(v1
);
1849 hp_count
= HP_COUNT_G(v1
);
1851 lp_count
= LP_COUNT_T5_G(v1
);
1852 hp_count
= HP_COUNT_T5_G(v2
);
1854 return lpfifo
? lp_count
: hp_count
;
1856 EXPORT_SYMBOL(cxgb4_dbfifo_count
);
1859 * cxgb4_port_viid - get the VI id of a port
1860 * @dev: the net device for the port
1862 * Return the VI id of the given port.
1864 unsigned int cxgb4_port_viid(const struct net_device
*dev
)
1866 return netdev2pinfo(dev
)->viid
;
1868 EXPORT_SYMBOL(cxgb4_port_viid
);
1871 * cxgb4_port_idx - get the index of a port
1872 * @dev: the net device for the port
1874 * Return the index of the given port.
1876 unsigned int cxgb4_port_idx(const struct net_device
*dev
)
1878 return netdev2pinfo(dev
)->port_id
;
1880 EXPORT_SYMBOL(cxgb4_port_idx
);
1882 void cxgb4_get_tcp_stats(struct pci_dev
*pdev
, struct tp_tcp_stats
*v4
,
1883 struct tp_tcp_stats
*v6
)
1885 struct adapter
*adap
= pci_get_drvdata(pdev
);
1887 spin_lock(&adap
->stats_lock
);
1888 t4_tp_get_tcp_stats(adap
, v4
, v6
, false);
1889 spin_unlock(&adap
->stats_lock
);
1891 EXPORT_SYMBOL(cxgb4_get_tcp_stats
);
1893 void cxgb4_iscsi_init(struct net_device
*dev
, unsigned int tag_mask
,
1894 const unsigned int *pgsz_order
)
1896 struct adapter
*adap
= netdev2adap(dev
);
1898 t4_write_reg(adap
, ULP_RX_ISCSI_TAGMASK_A
, tag_mask
);
1899 t4_write_reg(adap
, ULP_RX_ISCSI_PSZ_A
, HPZ0_V(pgsz_order
[0]) |
1900 HPZ1_V(pgsz_order
[1]) | HPZ2_V(pgsz_order
[2]) |
1901 HPZ3_V(pgsz_order
[3]));
1903 EXPORT_SYMBOL(cxgb4_iscsi_init
);
1905 int cxgb4_flush_eq_cache(struct net_device
*dev
)
1907 struct adapter
*adap
= netdev2adap(dev
);
1909 return t4_sge_ctxt_flush(adap
, adap
->mbox
, CTXT_EGRESS
);
1911 EXPORT_SYMBOL(cxgb4_flush_eq_cache
);
1913 static int read_eq_indices(struct adapter
*adap
, u16 qid
, u16
*pidx
, u16
*cidx
)
1915 u32 addr
= t4_read_reg(adap
, SGE_DBQ_CTXT_BADDR_A
) + 24 * qid
+ 8;
1919 spin_lock(&adap
->win0_lock
);
1920 ret
= t4_memory_rw(adap
, 0, MEM_EDC0
, addr
,
1921 sizeof(indices
), (__be32
*)&indices
,
1923 spin_unlock(&adap
->win0_lock
);
1925 *cidx
= (be64_to_cpu(indices
) >> 25) & 0xffff;
1926 *pidx
= (be64_to_cpu(indices
) >> 9) & 0xffff;
1931 int cxgb4_sync_txq_pidx(struct net_device
*dev
, u16 qid
, u16 pidx
,
1934 struct adapter
*adap
= netdev2adap(dev
);
1935 u16 hw_pidx
, hw_cidx
;
1938 ret
= read_eq_indices(adap
, qid
, &hw_pidx
, &hw_cidx
);
1942 if (pidx
!= hw_pidx
) {
1946 if (pidx
>= hw_pidx
)
1947 delta
= pidx
- hw_pidx
;
1949 delta
= size
- hw_pidx
+ pidx
;
1951 if (is_t4(adap
->params
.chip
))
1952 val
= PIDX_V(delta
);
1954 val
= PIDX_T5_V(delta
);
1956 t4_write_reg(adap
, MYPF_REG(SGE_PF_KDOORBELL_A
),
1962 EXPORT_SYMBOL(cxgb4_sync_txq_pidx
);
1964 int cxgb4_read_tpte(struct net_device
*dev
, u32 stag
, __be32
*tpte
)
1966 u32 edc0_size
, edc1_size
, mc0_size
, mc1_size
, size
;
1967 u32 edc0_end
, edc1_end
, mc0_end
, mc1_end
;
1968 u32 offset
, memtype
, memaddr
;
1969 struct adapter
*adap
;
1973 adap
= netdev2adap(dev
);
1975 offset
= ((stag
>> 8) * 32) + adap
->vres
.stag
.start
;
1977 /* Figure out where the offset lands in the Memory Type/Address scheme.
1978 * This code assumes that the memory is laid out starting at offset 0
1979 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1980 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
1981 * MC0, and some have both MC0 and MC1.
1983 size
= t4_read_reg(adap
, MA_EDRAM0_BAR_A
);
1984 edc0_size
= EDRAM0_SIZE_G(size
) << 20;
1985 size
= t4_read_reg(adap
, MA_EDRAM1_BAR_A
);
1986 edc1_size
= EDRAM1_SIZE_G(size
) << 20;
1987 size
= t4_read_reg(adap
, MA_EXT_MEMORY0_BAR_A
);
1988 mc0_size
= EXT_MEM0_SIZE_G(size
) << 20;
1990 if (t4_read_reg(adap
, MA_TARGET_MEM_ENABLE_A
) & HMA_MUX_F
) {
1991 size
= t4_read_reg(adap
, MA_EXT_MEMORY1_BAR_A
);
1992 hma_size
= EXT_MEM1_SIZE_G(size
) << 20;
1994 edc0_end
= edc0_size
;
1995 edc1_end
= edc0_end
+ edc1_size
;
1996 mc0_end
= edc1_end
+ mc0_size
;
1998 if (offset
< edc0_end
) {
2001 } else if (offset
< edc1_end
) {
2003 memaddr
= offset
- edc0_end
;
2005 if (hma_size
&& (offset
< (edc1_end
+ hma_size
))) {
2007 memaddr
= offset
- edc1_end
;
2008 } else if (offset
< mc0_end
) {
2010 memaddr
= offset
- edc1_end
;
2011 } else if (is_t5(adap
->params
.chip
)) {
2012 size
= t4_read_reg(adap
, MA_EXT_MEMORY1_BAR_A
);
2013 mc1_size
= EXT_MEM1_SIZE_G(size
) << 20;
2014 mc1_end
= mc0_end
+ mc1_size
;
2015 if (offset
< mc1_end
) {
2017 memaddr
= offset
- mc0_end
;
2019 /* offset beyond the end of any memory */
2023 /* T4/T6 only has a single memory channel */
2028 spin_lock(&adap
->win0_lock
);
2029 ret
= t4_memory_rw(adap
, 0, memtype
, memaddr
, 32, tpte
, T4_MEMORY_READ
);
2030 spin_unlock(&adap
->win0_lock
);
2034 dev_err(adap
->pdev_dev
, "stag %#x, offset %#x out of range\n",
2038 EXPORT_SYMBOL(cxgb4_read_tpte
);
2040 u64
cxgb4_read_sge_timestamp(struct net_device
*dev
)
2043 struct adapter
*adap
;
2045 adap
= netdev2adap(dev
);
2046 lo
= t4_read_reg(adap
, SGE_TIMESTAMP_LO_A
);
2047 hi
= TSVAL_G(t4_read_reg(adap
, SGE_TIMESTAMP_HI_A
));
2049 return ((u64
)hi
<< 32) | (u64
)lo
;
2051 EXPORT_SYMBOL(cxgb4_read_sge_timestamp
);
2053 int cxgb4_bar2_sge_qregs(struct net_device
*dev
,
2055 enum cxgb4_bar2_qtype qtype
,
2058 unsigned int *pbar2_qid
)
2060 return t4_bar2_sge_qregs(netdev2adap(dev
),
2062 (qtype
== CXGB4_BAR2_QTYPE_EGRESS
2063 ? T4_BAR2_QTYPE_EGRESS
2064 : T4_BAR2_QTYPE_INGRESS
),
2069 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs
);
2071 static struct pci_driver cxgb4_driver
;
2073 static void check_neigh_update(struct neighbour
*neigh
)
2075 const struct device
*parent
;
2076 const struct net_device
*netdev
= neigh
->dev
;
2078 if (is_vlan_dev(netdev
))
2079 netdev
= vlan_dev_real_dev(netdev
);
2080 parent
= netdev
->dev
.parent
;
2081 if (parent
&& parent
->driver
== &cxgb4_driver
.driver
)
2082 t4_l2t_update(dev_get_drvdata(parent
), neigh
);
2085 static int netevent_cb(struct notifier_block
*nb
, unsigned long event
,
2089 case NETEVENT_NEIGH_UPDATE
:
2090 check_neigh_update(data
);
2092 case NETEVENT_REDIRECT
:
2099 static bool netevent_registered
;
2100 static struct notifier_block cxgb4_netevent_nb
= {
2101 .notifier_call
= netevent_cb
2104 static void drain_db_fifo(struct adapter
*adap
, int usecs
)
2106 u32 v1
, v2
, lp_count
, hp_count
;
2109 v1
= t4_read_reg(adap
, SGE_DBFIFO_STATUS_A
);
2110 v2
= t4_read_reg(adap
, SGE_DBFIFO_STATUS2_A
);
2111 if (is_t4(adap
->params
.chip
)) {
2112 lp_count
= LP_COUNT_G(v1
);
2113 hp_count
= HP_COUNT_G(v1
);
2115 lp_count
= LP_COUNT_T5_G(v1
);
2116 hp_count
= HP_COUNT_T5_G(v2
);
2119 if (lp_count
== 0 && hp_count
== 0)
2121 set_current_state(TASK_UNINTERRUPTIBLE
);
2122 schedule_timeout(usecs_to_jiffies(usecs
));
2126 static void disable_txq_db(struct sge_txq
*q
)
2128 unsigned long flags
;
2130 spin_lock_irqsave(&q
->db_lock
, flags
);
2132 spin_unlock_irqrestore(&q
->db_lock
, flags
);
2135 static void enable_txq_db(struct adapter
*adap
, struct sge_txq
*q
)
2137 spin_lock_irq(&q
->db_lock
);
2138 if (q
->db_pidx_inc
) {
2139 /* Make sure that all writes to the TX descriptors
2140 * are committed before we tell HW about them.
2143 t4_write_reg(adap
, MYPF_REG(SGE_PF_KDOORBELL_A
),
2144 QID_V(q
->cntxt_id
) | PIDX_V(q
->db_pidx_inc
));
2148 spin_unlock_irq(&q
->db_lock
);
2151 static void disable_dbs(struct adapter
*adap
)
2155 for_each_ethrxq(&adap
->sge
, i
)
2156 disable_txq_db(&adap
->sge
.ethtxq
[i
].q
);
2157 if (is_offload(adap
)) {
2158 struct sge_uld_txq_info
*txq_info
=
2159 adap
->sge
.uld_txq_info
[CXGB4_TX_OFLD
];
2162 for_each_ofldtxq(&adap
->sge
, i
) {
2163 struct sge_uld_txq
*txq
= &txq_info
->uldtxq
[i
];
2165 disable_txq_db(&txq
->q
);
2169 for_each_port(adap
, i
)
2170 disable_txq_db(&adap
->sge
.ctrlq
[i
].q
);
2173 static void enable_dbs(struct adapter
*adap
)
2177 for_each_ethrxq(&adap
->sge
, i
)
2178 enable_txq_db(adap
, &adap
->sge
.ethtxq
[i
].q
);
2179 if (is_offload(adap
)) {
2180 struct sge_uld_txq_info
*txq_info
=
2181 adap
->sge
.uld_txq_info
[CXGB4_TX_OFLD
];
2184 for_each_ofldtxq(&adap
->sge
, i
) {
2185 struct sge_uld_txq
*txq
= &txq_info
->uldtxq
[i
];
2187 enable_txq_db(adap
, &txq
->q
);
2191 for_each_port(adap
, i
)
2192 enable_txq_db(adap
, &adap
->sge
.ctrlq
[i
].q
);
2195 static void notify_rdma_uld(struct adapter
*adap
, enum cxgb4_control cmd
)
2197 enum cxgb4_uld type
= CXGB4_ULD_RDMA
;
2199 if (adap
->uld
&& adap
->uld
[type
].handle
)
2200 adap
->uld
[type
].control(adap
->uld
[type
].handle
, cmd
);
2203 static void process_db_full(struct work_struct
*work
)
2205 struct adapter
*adap
;
2207 adap
= container_of(work
, struct adapter
, db_full_task
);
2209 drain_db_fifo(adap
, dbfifo_drain_delay
);
2211 notify_rdma_uld(adap
, CXGB4_CONTROL_DB_EMPTY
);
2212 if (CHELSIO_CHIP_VERSION(adap
->params
.chip
) <= CHELSIO_T5
)
2213 t4_set_reg_field(adap
, SGE_INT_ENABLE3_A
,
2214 DBFIFO_HP_INT_F
| DBFIFO_LP_INT_F
,
2215 DBFIFO_HP_INT_F
| DBFIFO_LP_INT_F
);
2217 t4_set_reg_field(adap
, SGE_INT_ENABLE3_A
,
2218 DBFIFO_LP_INT_F
, DBFIFO_LP_INT_F
);
2221 static void sync_txq_pidx(struct adapter
*adap
, struct sge_txq
*q
)
2223 u16 hw_pidx
, hw_cidx
;
2226 spin_lock_irq(&q
->db_lock
);
2227 ret
= read_eq_indices(adap
, (u16
)q
->cntxt_id
, &hw_pidx
, &hw_cidx
);
2230 if (q
->db_pidx
!= hw_pidx
) {
2234 if (q
->db_pidx
>= hw_pidx
)
2235 delta
= q
->db_pidx
- hw_pidx
;
2237 delta
= q
->size
- hw_pidx
+ q
->db_pidx
;
2239 if (is_t4(adap
->params
.chip
))
2240 val
= PIDX_V(delta
);
2242 val
= PIDX_T5_V(delta
);
2244 t4_write_reg(adap
, MYPF_REG(SGE_PF_KDOORBELL_A
),
2245 QID_V(q
->cntxt_id
) | val
);
2250 spin_unlock_irq(&q
->db_lock
);
2252 CH_WARN(adap
, "DB drop recovery failed.\n");
2255 static void recover_all_queues(struct adapter
*adap
)
2259 for_each_ethrxq(&adap
->sge
, i
)
2260 sync_txq_pidx(adap
, &adap
->sge
.ethtxq
[i
].q
);
2261 if (is_offload(adap
)) {
2262 struct sge_uld_txq_info
*txq_info
=
2263 adap
->sge
.uld_txq_info
[CXGB4_TX_OFLD
];
2265 for_each_ofldtxq(&adap
->sge
, i
) {
2266 struct sge_uld_txq
*txq
= &txq_info
->uldtxq
[i
];
2268 sync_txq_pidx(adap
, &txq
->q
);
2272 for_each_port(adap
, i
)
2273 sync_txq_pidx(adap
, &adap
->sge
.ctrlq
[i
].q
);
2276 static void process_db_drop(struct work_struct
*work
)
2278 struct adapter
*adap
;
2280 adap
= container_of(work
, struct adapter
, db_drop_task
);
2282 if (is_t4(adap
->params
.chip
)) {
2283 drain_db_fifo(adap
, dbfifo_drain_delay
);
2284 notify_rdma_uld(adap
, CXGB4_CONTROL_DB_DROP
);
2285 drain_db_fifo(adap
, dbfifo_drain_delay
);
2286 recover_all_queues(adap
);
2287 drain_db_fifo(adap
, dbfifo_drain_delay
);
2289 notify_rdma_uld(adap
, CXGB4_CONTROL_DB_EMPTY
);
2290 } else if (is_t5(adap
->params
.chip
)) {
2291 u32 dropped_db
= t4_read_reg(adap
, 0x010ac);
2292 u16 qid
= (dropped_db
>> 15) & 0x1ffff;
2293 u16 pidx_inc
= dropped_db
& 0x1fff;
2295 unsigned int bar2_qid
;
2298 ret
= t4_bar2_sge_qregs(adap
, qid
, T4_BAR2_QTYPE_EGRESS
,
2299 0, &bar2_qoffset
, &bar2_qid
);
2301 dev_err(adap
->pdev_dev
, "doorbell drop recovery: "
2302 "qid=%d, pidx_inc=%d\n", qid
, pidx_inc
);
2304 writel(PIDX_T5_V(pidx_inc
) | QID_V(bar2_qid
),
2305 adap
->bar2
+ bar2_qoffset
+ SGE_UDB_KDOORBELL
);
2307 /* Re-enable BAR2 WC */
2308 t4_set_reg_field(adap
, 0x10b0, 1<<15, 1<<15);
2311 if (CHELSIO_CHIP_VERSION(adap
->params
.chip
) <= CHELSIO_T5
)
2312 t4_set_reg_field(adap
, SGE_DOORBELL_CONTROL_A
, DROPPED_DB_F
, 0);
2315 void t4_db_full(struct adapter
*adap
)
2317 if (is_t4(adap
->params
.chip
)) {
2319 notify_rdma_uld(adap
, CXGB4_CONTROL_DB_FULL
);
2320 t4_set_reg_field(adap
, SGE_INT_ENABLE3_A
,
2321 DBFIFO_HP_INT_F
| DBFIFO_LP_INT_F
, 0);
2322 queue_work(adap
->workq
, &adap
->db_full_task
);
2326 void t4_db_dropped(struct adapter
*adap
)
2328 if (is_t4(adap
->params
.chip
)) {
2330 notify_rdma_uld(adap
, CXGB4_CONTROL_DB_FULL
);
2332 queue_work(adap
->workq
, &adap
->db_drop_task
);
2335 void t4_register_netevent_notifier(void)
2337 if (!netevent_registered
) {
2338 register_netevent_notifier(&cxgb4_netevent_nb
);
2339 netevent_registered
= true;
2343 static void detach_ulds(struct adapter
*adap
)
2347 mutex_lock(&uld_mutex
);
2348 list_del(&adap
->list_node
);
2350 for (i
= 0; i
< CXGB4_ULD_MAX
; i
++)
2351 if (adap
->uld
&& adap
->uld
[i
].handle
)
2352 adap
->uld
[i
].state_change(adap
->uld
[i
].handle
,
2353 CXGB4_STATE_DETACH
);
2355 if (netevent_registered
&& list_empty(&adapter_list
)) {
2356 unregister_netevent_notifier(&cxgb4_netevent_nb
);
2357 netevent_registered
= false;
2359 mutex_unlock(&uld_mutex
);
2362 static void notify_ulds(struct adapter
*adap
, enum cxgb4_state new_state
)
2366 mutex_lock(&uld_mutex
);
2367 for (i
= 0; i
< CXGB4_ULD_MAX
; i
++)
2368 if (adap
->uld
&& adap
->uld
[i
].handle
)
2369 adap
->uld
[i
].state_change(adap
->uld
[i
].handle
,
2371 mutex_unlock(&uld_mutex
);
2374 #if IS_ENABLED(CONFIG_IPV6)
2375 static int cxgb4_inet6addr_handler(struct notifier_block
*this,
2376 unsigned long event
, void *data
)
2378 struct inet6_ifaddr
*ifa
= data
;
2379 struct net_device
*event_dev
= ifa
->idev
->dev
;
2380 const struct device
*parent
= NULL
;
2381 #if IS_ENABLED(CONFIG_BONDING)
2382 struct adapter
*adap
;
2384 if (is_vlan_dev(event_dev
))
2385 event_dev
= vlan_dev_real_dev(event_dev
);
2386 #if IS_ENABLED(CONFIG_BONDING)
2387 if (event_dev
->flags
& IFF_MASTER
) {
2388 list_for_each_entry(adap
, &adapter_list
, list_node
) {
2391 cxgb4_clip_get(adap
->port
[0],
2392 (const u32
*)ifa
, 1);
2395 cxgb4_clip_release(adap
->port
[0],
2396 (const u32
*)ifa
, 1);
2407 parent
= event_dev
->dev
.parent
;
2409 if (parent
&& parent
->driver
== &cxgb4_driver
.driver
) {
2412 cxgb4_clip_get(event_dev
, (const u32
*)ifa
, 1);
2415 cxgb4_clip_release(event_dev
, (const u32
*)ifa
, 1);
2424 static bool inet6addr_registered
;
2425 static struct notifier_block cxgb4_inet6addr_notifier
= {
2426 .notifier_call
= cxgb4_inet6addr_handler
2429 static void update_clip(const struct adapter
*adap
)
2432 struct net_device
*dev
;
2437 for (i
= 0; i
< MAX_NPORTS
; i
++) {
2438 dev
= adap
->port
[i
];
2442 ret
= cxgb4_update_root_dev_clip(dev
);
2449 #endif /* IS_ENABLED(CONFIG_IPV6) */
2452 * cxgb_up - enable the adapter
2453 * @adap: adapter being enabled
2455 * Called when the first port is enabled, this function performs the
2456 * actions necessary to make an adapter operational, such as completing
2457 * the initialization of HW modules, and enabling interrupts.
2459 * Must be called with the rtnl lock held.
2461 static int cxgb_up(struct adapter
*adap
)
2463 struct sge
*s
= &adap
->sge
;
2466 mutex_lock(&uld_mutex
);
2467 err
= setup_sge_queues(adap
);
2470 err
= setup_rss(adap
);
2474 if (adap
->flags
& CXGB4_USING_MSIX
) {
2475 if (s
->nd_msix_idx
< 0) {
2480 err
= request_irq(adap
->msix_info
[s
->nd_msix_idx
].vec
,
2482 adap
->msix_info
[s
->nd_msix_idx
].desc
, adap
);
2486 err
= request_msix_queue_irqs(adap
);
2488 goto irq_err_free_nd_msix
;
2490 err
= request_irq(adap
->pdev
->irq
, t4_intr_handler(adap
),
2491 (adap
->flags
& CXGB4_USING_MSI
) ? 0
2493 adap
->port
[0]->name
, adap
);
2500 t4_intr_enable(adap
);
2501 adap
->flags
|= CXGB4_FULL_INIT_DONE
;
2502 mutex_unlock(&uld_mutex
);
2504 notify_ulds(adap
, CXGB4_STATE_UP
);
2505 #if IS_ENABLED(CONFIG_IPV6)
2510 irq_err_free_nd_msix
:
2511 free_irq(adap
->msix_info
[s
->nd_msix_idx
].vec
, adap
);
2513 dev_err(adap
->pdev_dev
, "request_irq failed, err %d\n", err
);
2515 t4_free_sge_resources(adap
);
2517 mutex_unlock(&uld_mutex
);
2521 static void cxgb_down(struct adapter
*adapter
)
2523 cancel_work_sync(&adapter
->tid_release_task
);
2524 cancel_work_sync(&adapter
->db_full_task
);
2525 cancel_work_sync(&adapter
->db_drop_task
);
2526 adapter
->tid_release_task_busy
= false;
2527 adapter
->tid_release_head
= NULL
;
2529 t4_sge_stop(adapter
);
2530 t4_free_sge_resources(adapter
);
2532 adapter
->flags
&= ~CXGB4_FULL_INIT_DONE
;
2536 * net_device operations
2538 int cxgb_open(struct net_device
*dev
)
2540 struct port_info
*pi
= netdev_priv(dev
);
2541 struct adapter
*adapter
= pi
->adapter
;
2544 netif_carrier_off(dev
);
2546 if (!(adapter
->flags
& CXGB4_FULL_INIT_DONE
)) {
2547 err
= cxgb_up(adapter
);
2552 /* It's possible that the basic port information could have
2553 * changed since we first read it.
2555 err
= t4_update_port_info(pi
);
2559 err
= link_start(dev
);
2561 netif_tx_start_all_queues(dev
);
2565 int cxgb_close(struct net_device
*dev
)
2567 struct port_info
*pi
= netdev_priv(dev
);
2568 struct adapter
*adapter
= pi
->adapter
;
2571 netif_tx_stop_all_queues(dev
);
2572 netif_carrier_off(dev
);
2573 ret
= t4_enable_pi_params(adapter
, adapter
->pf
, pi
,
2574 false, false, false);
2575 #ifdef CONFIG_CHELSIO_T4_DCB
2576 cxgb4_dcb_reset(dev
);
2577 dcb_tx_queue_prio_enable(dev
, false);
2582 int cxgb4_create_server_filter(const struct net_device
*dev
, unsigned int stid
,
2583 __be32 sip
, __be16 sport
, __be16 vlan
,
2584 unsigned int queue
, unsigned char port
, unsigned char mask
)
2587 struct filter_entry
*f
;
2588 struct adapter
*adap
;
2592 adap
= netdev2adap(dev
);
2594 /* Adjust stid to correct filter index */
2595 stid
-= adap
->tids
.sftid_base
;
2596 stid
+= adap
->tids
.nftids
;
2598 /* Check to make sure the filter requested is writable ...
2600 f
= &adap
->tids
.ftid_tab
[stid
];
2601 ret
= writable_filter(f
);
2605 /* Clear out any old resources being used by the filter before
2606 * we start constructing the new filter.
2609 clear_filter(adap
, f
);
2611 /* Clear out filter specifications */
2612 memset(&f
->fs
, 0, sizeof(struct ch_filter_specification
));
2613 f
->fs
.val
.lport
= cpu_to_be16(sport
);
2614 f
->fs
.mask
.lport
= ~0;
2616 if ((val
[0] | val
[1] | val
[2] | val
[3]) != 0) {
2617 for (i
= 0; i
< 4; i
++) {
2618 f
->fs
.val
.lip
[i
] = val
[i
];
2619 f
->fs
.mask
.lip
[i
] = ~0;
2621 if (adap
->params
.tp
.vlan_pri_map
& PORT_F
) {
2622 f
->fs
.val
.iport
= port
;
2623 f
->fs
.mask
.iport
= mask
;
2627 if (adap
->params
.tp
.vlan_pri_map
& PROTOCOL_F
) {
2628 f
->fs
.val
.proto
= IPPROTO_TCP
;
2629 f
->fs
.mask
.proto
= ~0;
2634 /* Mark filter as locked */
2638 /* Save the actual tid. We need this to get the corresponding
2639 * filter entry structure in filter_rpl.
2641 f
->tid
= stid
+ adap
->tids
.ftid_base
;
2642 ret
= set_filter_wr(adap
, stid
);
2644 clear_filter(adap
, f
);
2650 EXPORT_SYMBOL(cxgb4_create_server_filter
);
2652 int cxgb4_remove_server_filter(const struct net_device
*dev
, unsigned int stid
,
2653 unsigned int queue
, bool ipv6
)
2655 struct filter_entry
*f
;
2656 struct adapter
*adap
;
2658 adap
= netdev2adap(dev
);
2660 /* Adjust stid to correct filter index */
2661 stid
-= adap
->tids
.sftid_base
;
2662 stid
+= adap
->tids
.nftids
;
2664 f
= &adap
->tids
.ftid_tab
[stid
];
2665 /* Unlock the filter */
2668 return delete_filter(adap
, stid
);
2670 EXPORT_SYMBOL(cxgb4_remove_server_filter
);
2672 static void cxgb_get_stats(struct net_device
*dev
,
2673 struct rtnl_link_stats64
*ns
)
2675 struct port_stats stats
;
2676 struct port_info
*p
= netdev_priv(dev
);
2677 struct adapter
*adapter
= p
->adapter
;
2679 /* Block retrieving statistics during EEH error
2680 * recovery. Otherwise, the recovery might fail
2681 * and the PCI device will be removed permanently
2683 spin_lock(&adapter
->stats_lock
);
2684 if (!netif_device_present(dev
)) {
2685 spin_unlock(&adapter
->stats_lock
);
2688 t4_get_port_stats_offset(adapter
, p
->tx_chan
, &stats
,
2690 spin_unlock(&adapter
->stats_lock
);
2692 ns
->tx_bytes
= stats
.tx_octets
;
2693 ns
->tx_packets
= stats
.tx_frames
;
2694 ns
->rx_bytes
= stats
.rx_octets
;
2695 ns
->rx_packets
= stats
.rx_frames
;
2696 ns
->multicast
= stats
.rx_mcast_frames
;
2698 /* detailed rx_errors */
2699 ns
->rx_length_errors
= stats
.rx_jabber
+ stats
.rx_too_long
+
2701 ns
->rx_over_errors
= 0;
2702 ns
->rx_crc_errors
= stats
.rx_fcs_err
;
2703 ns
->rx_frame_errors
= stats
.rx_symbol_err
;
2704 ns
->rx_dropped
= stats
.rx_ovflow0
+ stats
.rx_ovflow1
+
2705 stats
.rx_ovflow2
+ stats
.rx_ovflow3
+
2706 stats
.rx_trunc0
+ stats
.rx_trunc1
+
2707 stats
.rx_trunc2
+ stats
.rx_trunc3
;
2708 ns
->rx_missed_errors
= 0;
2710 /* detailed tx_errors */
2711 ns
->tx_aborted_errors
= 0;
2712 ns
->tx_carrier_errors
= 0;
2713 ns
->tx_fifo_errors
= 0;
2714 ns
->tx_heartbeat_errors
= 0;
2715 ns
->tx_window_errors
= 0;
2717 ns
->tx_errors
= stats
.tx_error_frames
;
2718 ns
->rx_errors
= stats
.rx_symbol_err
+ stats
.rx_fcs_err
+
2719 ns
->rx_length_errors
+ stats
.rx_len_err
+ ns
->rx_fifo_errors
;
2722 static int cxgb_ioctl(struct net_device
*dev
, struct ifreq
*req
, int cmd
)
2725 int ret
= 0, prtad
, devad
;
2726 struct port_info
*pi
= netdev_priv(dev
);
2727 struct adapter
*adapter
= pi
->adapter
;
2728 struct mii_ioctl_data
*data
= (struct mii_ioctl_data
*)&req
->ifr_data
;
2732 if (pi
->mdio_addr
< 0)
2734 data
->phy_id
= pi
->mdio_addr
;
2738 if (mdio_phy_id_is_c45(data
->phy_id
)) {
2739 prtad
= mdio_phy_id_prtad(data
->phy_id
);
2740 devad
= mdio_phy_id_devad(data
->phy_id
);
2741 } else if (data
->phy_id
< 32) {
2742 prtad
= data
->phy_id
;
2744 data
->reg_num
&= 0x1f;
2748 mbox
= pi
->adapter
->pf
;
2749 if (cmd
== SIOCGMIIREG
)
2750 ret
= t4_mdio_rd(pi
->adapter
, mbox
, prtad
, devad
,
2751 data
->reg_num
, &data
->val_out
);
2753 ret
= t4_mdio_wr(pi
->adapter
, mbox
, prtad
, devad
,
2754 data
->reg_num
, data
->val_in
);
2757 return copy_to_user(req
->ifr_data
, &pi
->tstamp_config
,
2758 sizeof(pi
->tstamp_config
)) ?
2761 if (copy_from_user(&pi
->tstamp_config
, req
->ifr_data
,
2762 sizeof(pi
->tstamp_config
)))
2765 if (!is_t4(adapter
->params
.chip
)) {
2766 switch (pi
->tstamp_config
.tx_type
) {
2767 case HWTSTAMP_TX_OFF
:
2768 case HWTSTAMP_TX_ON
:
2774 switch (pi
->tstamp_config
.rx_filter
) {
2775 case HWTSTAMP_FILTER_NONE
:
2776 pi
->rxtstamp
= false;
2778 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
2779 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
2780 cxgb4_ptprx_timestamping(pi
, pi
->port_id
,
2783 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
2784 cxgb4_ptprx_timestamping(pi
, pi
->port_id
,
2787 case HWTSTAMP_FILTER_ALL
:
2788 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
2789 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
2790 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
2791 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
2792 pi
->rxtstamp
= true;
2795 pi
->tstamp_config
.rx_filter
=
2796 HWTSTAMP_FILTER_NONE
;
2800 if ((pi
->tstamp_config
.tx_type
== HWTSTAMP_TX_OFF
) &&
2801 (pi
->tstamp_config
.rx_filter
==
2802 HWTSTAMP_FILTER_NONE
)) {
2803 if (cxgb4_ptp_txtype(adapter
, pi
->port_id
) >= 0)
2804 pi
->ptp_enable
= false;
2807 if (pi
->tstamp_config
.rx_filter
!=
2808 HWTSTAMP_FILTER_NONE
) {
2809 if (cxgb4_ptp_redirect_rx_packet(adapter
,
2811 pi
->ptp_enable
= true;
2814 /* For T4 Adapters */
2815 switch (pi
->tstamp_config
.rx_filter
) {
2816 case HWTSTAMP_FILTER_NONE
:
2817 pi
->rxtstamp
= false;
2819 case HWTSTAMP_FILTER_ALL
:
2820 pi
->rxtstamp
= true;
2823 pi
->tstamp_config
.rx_filter
=
2824 HWTSTAMP_FILTER_NONE
;
2828 return copy_to_user(req
->ifr_data
, &pi
->tstamp_config
,
2829 sizeof(pi
->tstamp_config
)) ?
2837 static void cxgb_set_rxmode(struct net_device
*dev
)
2839 /* unfortunately we can't return errors to the stack */
2840 set_rxmode(dev
, -1, false);
2843 static int cxgb_change_mtu(struct net_device
*dev
, int new_mtu
)
2846 struct port_info
*pi
= netdev_priv(dev
);
2848 ret
= t4_set_rxmode(pi
->adapter
, pi
->adapter
->pf
, pi
->viid
, new_mtu
, -1,
2855 #ifdef CONFIG_PCI_IOV
2856 static int cxgb4_mgmt_open(struct net_device
*dev
)
2858 /* Turn carrier off since we don't have to transmit anything on this
2861 netif_carrier_off(dev
);
2865 /* Fill MAC address that will be assigned by the FW */
2866 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter
*adap
)
2868 u8 hw_addr
[ETH_ALEN
], macaddr
[ETH_ALEN
];
2869 unsigned int i
, vf
, nvfs
;
2874 adap
->params
.pci
.vpd_cap_addr
= pci_find_capability(adap
->pdev
,
2876 err
= t4_get_raw_vpd_params(adap
, &adap
->params
.vpd
);
2880 na
= adap
->params
.vpd
.na
;
2881 for (i
= 0; i
< ETH_ALEN
; i
++)
2882 hw_addr
[i
] = (hex2val(na
[2 * i
+ 0]) * 16 +
2883 hex2val(na
[2 * i
+ 1]));
2885 a
= (hw_addr
[0] << 8) | hw_addr
[1];
2886 b
= (hw_addr
[1] << 8) | hw_addr
[2];
2888 a
|= 0x0200; /* locally assigned Ethernet MAC address */
2889 a
&= ~0x0100; /* not a multicast Ethernet MAC address */
2890 macaddr
[0] = a
>> 8;
2891 macaddr
[1] = a
& 0xff;
2893 for (i
= 2; i
< 5; i
++)
2894 macaddr
[i
] = hw_addr
[i
+ 1];
2896 for (vf
= 0, nvfs
= pci_sriov_get_totalvfs(adap
->pdev
);
2898 macaddr
[5] = adap
->pf
* nvfs
+ vf
;
2899 ether_addr_copy(adap
->vfinfo
[vf
].vf_mac_addr
, macaddr
);
2903 static int cxgb4_mgmt_set_vf_mac(struct net_device
*dev
, int vf
, u8
*mac
)
2905 struct port_info
*pi
= netdev_priv(dev
);
2906 struct adapter
*adap
= pi
->adapter
;
2909 /* verify MAC addr is valid */
2910 if (!is_valid_ether_addr(mac
)) {
2911 dev_err(pi
->adapter
->pdev_dev
,
2912 "Invalid Ethernet address %pM for VF %d\n",
2917 dev_info(pi
->adapter
->pdev_dev
,
2918 "Setting MAC %pM on VF %d\n", mac
, vf
);
2919 ret
= t4_set_vf_mac_acl(adap
, vf
+ 1, 1, mac
);
2921 ether_addr_copy(adap
->vfinfo
[vf
].vf_mac_addr
, mac
);
2925 static int cxgb4_mgmt_get_vf_config(struct net_device
*dev
,
2926 int vf
, struct ifla_vf_info
*ivi
)
2928 struct port_info
*pi
= netdev_priv(dev
);
2929 struct adapter
*adap
= pi
->adapter
;
2930 struct vf_info
*vfinfo
;
2932 if (vf
>= adap
->num_vfs
)
2934 vfinfo
= &adap
->vfinfo
[vf
];
2937 ivi
->max_tx_rate
= vfinfo
->tx_rate
;
2938 ivi
->min_tx_rate
= 0;
2939 ether_addr_copy(ivi
->mac
, vfinfo
->vf_mac_addr
);
2940 ivi
->vlan
= vfinfo
->vlan
;
2941 ivi
->linkstate
= vfinfo
->link_state
;
2945 static int cxgb4_mgmt_get_phys_port_id(struct net_device
*dev
,
2946 struct netdev_phys_item_id
*ppid
)
2948 struct port_info
*pi
= netdev_priv(dev
);
2949 unsigned int phy_port_id
;
2951 phy_port_id
= pi
->adapter
->adap_idx
* 10 + pi
->port_id
;
2952 ppid
->id_len
= sizeof(phy_port_id
);
2953 memcpy(ppid
->id
, &phy_port_id
, ppid
->id_len
);
2957 static int cxgb4_mgmt_set_vf_rate(struct net_device
*dev
, int vf
,
2958 int min_tx_rate
, int max_tx_rate
)
2960 struct port_info
*pi
= netdev_priv(dev
);
2961 struct adapter
*adap
= pi
->adapter
;
2962 unsigned int link_ok
, speed
, mtu
;
2963 u32 fw_pfvf
, fw_class
;
2968 if (vf
>= adap
->num_vfs
)
2972 dev_err(adap
->pdev_dev
,
2973 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2978 if (max_tx_rate
== 0) {
2979 /* unbind VF to to any Traffic Class */
2981 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF
) |
2982 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH
));
2983 fw_class
= 0xffffffff;
2984 ret
= t4_set_params(adap
, adap
->mbox
, adap
->pf
, vf
+ 1, 1,
2985 &fw_pfvf
, &fw_class
);
2987 dev_err(adap
->pdev_dev
,
2988 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
2992 dev_info(adap
->pdev_dev
,
2993 "PF %d VF %d is unbound from TX Rate Limiting\n",
2995 adap
->vfinfo
[vf
].tx_rate
= 0;
2999 ret
= t4_get_link_params(pi
, &link_ok
, &speed
, &mtu
);
3000 if (ret
!= FW_SUCCESS
) {
3001 dev_err(adap
->pdev_dev
,
3002 "Failed to get link information for VF %d\n", vf
);
3007 dev_err(adap
->pdev_dev
, "Link down for VF %d\n", vf
);
3011 if (max_tx_rate
> speed
) {
3012 dev_err(adap
->pdev_dev
,
3013 "Max tx rate %d for VF %d can't be > link-speed %u",
3014 max_tx_rate
, vf
, speed
);
3019 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
3020 pktsize
= pktsize
- sizeof(struct ethhdr
) - 4;
3021 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
3022 pktsize
= pktsize
- sizeof(struct iphdr
) - sizeof(struct tcphdr
);
3023 /* configure Traffic Class for rate-limiting */
3024 ret
= t4_sched_params(adap
, SCHED_CLASS_TYPE_PACKET
,
3025 SCHED_CLASS_LEVEL_CL_RL
,
3026 SCHED_CLASS_MODE_CLASS
,
3027 SCHED_CLASS_RATEUNIT_BITS
,
3028 SCHED_CLASS_RATEMODE_ABS
,
3029 pi
->tx_chan
, class_id
, 0,
3030 max_tx_rate
* 1000, 0, pktsize
);
3032 dev_err(adap
->pdev_dev
, "Err %d for Traffic Class config\n",
3036 dev_info(adap
->pdev_dev
,
3037 "Class %d with MSS %u configured with rate %u\n",
3038 class_id
, pktsize
, max_tx_rate
);
3040 /* bind VF to configured Traffic Class */
3041 fw_pfvf
= (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF
) |
3042 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH
));
3043 fw_class
= class_id
;
3044 ret
= t4_set_params(adap
, adap
->mbox
, adap
->pf
, vf
+ 1, 1, &fw_pfvf
,
3047 dev_err(adap
->pdev_dev
,
3048 "Err %d in binding PF %d VF %d to Traffic Class %d\n",
3049 ret
, adap
->pf
, vf
, class_id
);
3052 dev_info(adap
->pdev_dev
, "PF %d VF %d is bound to Class %d\n",
3053 adap
->pf
, vf
, class_id
);
3054 adap
->vfinfo
[vf
].tx_rate
= max_tx_rate
;
3058 static int cxgb4_mgmt_set_vf_vlan(struct net_device
*dev
, int vf
,
3059 u16 vlan
, u8 qos
, __be16 vlan_proto
)
3061 struct port_info
*pi
= netdev_priv(dev
);
3062 struct adapter
*adap
= pi
->adapter
;
3065 if (vf
>= adap
->num_vfs
|| vlan
> 4095 || qos
> 7)
3068 if (vlan_proto
!= htons(ETH_P_8021Q
) || qos
!= 0)
3069 return -EPROTONOSUPPORT
;
3071 ret
= t4_set_vlan_acl(adap
, adap
->mbox
, vf
+ 1, vlan
);
3073 adap
->vfinfo
[vf
].vlan
= vlan
;
3077 dev_err(adap
->pdev_dev
, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
3078 ret
, (vlan
? "setting" : "clearing"), adap
->pf
, vf
);
3082 static int cxgb4_mgmt_set_vf_link_state(struct net_device
*dev
, int vf
,
3085 struct port_info
*pi
= netdev_priv(dev
);
3086 struct adapter
*adap
= pi
->adapter
;
3090 if (vf
>= adap
->num_vfs
)
3094 case IFLA_VF_LINK_STATE_AUTO
:
3095 val
= FW_VF_LINK_STATE_AUTO
;
3098 case IFLA_VF_LINK_STATE_ENABLE
:
3099 val
= FW_VF_LINK_STATE_ENABLE
;
3102 case IFLA_VF_LINK_STATE_DISABLE
:
3103 val
= FW_VF_LINK_STATE_DISABLE
;
3110 param
= (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF
) |
3111 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE
));
3112 ret
= t4_set_params(adap
, adap
->mbox
, adap
->pf
, vf
+ 1, 1,
3115 dev_err(adap
->pdev_dev
,
3116 "Error %d in setting PF %d VF %d link state\n",
3121 adap
->vfinfo
[vf
].link_state
= link
;
3124 #endif /* CONFIG_PCI_IOV */
3126 static int cxgb_set_mac_addr(struct net_device
*dev
, void *p
)
3129 struct sockaddr
*addr
= p
;
3130 struct port_info
*pi
= netdev_priv(dev
);
3132 if (!is_valid_ether_addr(addr
->sa_data
))
3133 return -EADDRNOTAVAIL
;
3135 ret
= cxgb4_update_mac_filt(pi
, pi
->viid
, &pi
->xact_addr_filt
,
3136 addr
->sa_data
, true, &pi
->smt_idx
);
3140 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
3141 pi
->xact_addr_filt
= ret
;
3145 #ifdef CONFIG_NET_POLL_CONTROLLER
3146 static void cxgb_netpoll(struct net_device
*dev
)
3148 struct port_info
*pi
= netdev_priv(dev
);
3149 struct adapter
*adap
= pi
->adapter
;
3151 if (adap
->flags
& CXGB4_USING_MSIX
) {
3153 struct sge_eth_rxq
*rx
= &adap
->sge
.ethrxq
[pi
->first_qset
];
3155 for (i
= pi
->nqsets
; i
; i
--, rx
++)
3156 t4_sge_intr_msix(0, &rx
->rspq
);
3158 t4_intr_handler(adap
)(0, adap
);
3162 static int cxgb_set_tx_maxrate(struct net_device
*dev
, int index
, u32 rate
)
3164 struct port_info
*pi
= netdev_priv(dev
);
3165 struct adapter
*adap
= pi
->adapter
;
3166 struct ch_sched_queue qe
= { 0 };
3167 struct ch_sched_params p
= { 0 };
3168 struct sched_class
*e
;
3172 if (!can_sched(dev
))
3175 if (index
< 0 || index
> pi
->nqsets
- 1)
3178 if (!(adap
->flags
& CXGB4_FULL_INIT_DONE
)) {
3179 dev_err(adap
->pdev_dev
,
3180 "Failed to rate limit on queue %d. Link Down?\n",
3186 e
= cxgb4_sched_queue_lookup(dev
, &qe
);
3187 if (e
&& e
->info
.u
.params
.level
!= SCHED_CLASS_LEVEL_CL_RL
) {
3188 dev_err(adap
->pdev_dev
,
3189 "Queue %u already bound to class %u of type: %u\n",
3190 index
, e
->idx
, e
->info
.u
.params
.level
);
3194 /* Convert from Mbps to Kbps */
3195 req_rate
= rate
* 1000;
3197 /* Max rate is 100 Gbps */
3198 if (req_rate
> SCHED_MAX_RATE_KBPS
) {
3199 dev_err(adap
->pdev_dev
,
3200 "Invalid rate %u Mbps, Max rate is %u Mbps\n",
3201 rate
, SCHED_MAX_RATE_KBPS
/ 1000);
3205 /* First unbind the queue from any existing class */
3206 memset(&qe
, 0, sizeof(qe
));
3208 qe
.class = SCHED_CLS_NONE
;
3210 err
= cxgb4_sched_class_unbind(dev
, (void *)(&qe
), SCHED_QUEUE
);
3212 dev_err(adap
->pdev_dev
,
3213 "Unbinding Queue %d on port %d fail. Err: %d\n",
3214 index
, pi
->port_id
, err
);
3218 /* Queue already unbound */
3222 /* Fetch any available unused or matching scheduling class */
3223 p
.type
= SCHED_CLASS_TYPE_PACKET
;
3224 p
.u
.params
.level
= SCHED_CLASS_LEVEL_CL_RL
;
3225 p
.u
.params
.mode
= SCHED_CLASS_MODE_CLASS
;
3226 p
.u
.params
.rateunit
= SCHED_CLASS_RATEUNIT_BITS
;
3227 p
.u
.params
.ratemode
= SCHED_CLASS_RATEMODE_ABS
;
3228 p
.u
.params
.channel
= pi
->tx_chan
;
3229 p
.u
.params
.class = SCHED_CLS_NONE
;
3230 p
.u
.params
.minrate
= 0;
3231 p
.u
.params
.maxrate
= req_rate
;
3232 p
.u
.params
.weight
= 0;
3233 p
.u
.params
.pktsize
= dev
->mtu
;
3235 e
= cxgb4_sched_class_alloc(dev
, &p
);
3239 /* Bind the queue to a scheduling class */
3240 memset(&qe
, 0, sizeof(qe
));
3244 err
= cxgb4_sched_class_bind(dev
, (void *)(&qe
), SCHED_QUEUE
);
3246 dev_err(adap
->pdev_dev
,
3247 "Queue rate limiting failed. Err: %d\n", err
);
3251 static int cxgb_setup_tc_flower(struct net_device
*dev
,
3252 struct flow_cls_offload
*cls_flower
)
3254 switch (cls_flower
->command
) {
3255 case FLOW_CLS_REPLACE
:
3256 return cxgb4_tc_flower_replace(dev
, cls_flower
);
3257 case FLOW_CLS_DESTROY
:
3258 return cxgb4_tc_flower_destroy(dev
, cls_flower
);
3259 case FLOW_CLS_STATS
:
3260 return cxgb4_tc_flower_stats(dev
, cls_flower
);
3266 static int cxgb_setup_tc_cls_u32(struct net_device
*dev
,
3267 struct tc_cls_u32_offload
*cls_u32
)
3269 switch (cls_u32
->command
) {
3270 case TC_CLSU32_NEW_KNODE
:
3271 case TC_CLSU32_REPLACE_KNODE
:
3272 return cxgb4_config_knode(dev
, cls_u32
);
3273 case TC_CLSU32_DELETE_KNODE
:
3274 return cxgb4_delete_knode(dev
, cls_u32
);
3280 static int cxgb_setup_tc_matchall(struct net_device
*dev
,
3281 struct tc_cls_matchall_offload
*cls_matchall
,
3284 struct adapter
*adap
= netdev2adap(dev
);
3286 if (!adap
->tc_matchall
)
3289 switch (cls_matchall
->command
) {
3290 case TC_CLSMATCHALL_REPLACE
:
3291 return cxgb4_tc_matchall_replace(dev
, cls_matchall
, ingress
);
3292 case TC_CLSMATCHALL_DESTROY
:
3293 return cxgb4_tc_matchall_destroy(dev
, cls_matchall
, ingress
);
3294 case TC_CLSMATCHALL_STATS
:
3296 return cxgb4_tc_matchall_stats(dev
, cls_matchall
);
3305 static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type
,
3306 void *type_data
, void *cb_priv
)
3308 struct net_device
*dev
= cb_priv
;
3309 struct port_info
*pi
= netdev2pinfo(dev
);
3310 struct adapter
*adap
= netdev2adap(dev
);
3312 if (!(adap
->flags
& CXGB4_FULL_INIT_DONE
)) {
3313 dev_err(adap
->pdev_dev
,
3314 "Failed to setup tc on port %d. Link Down?\n",
3319 if (!tc_cls_can_offload_and_chain0(dev
, type_data
))
3323 case TC_SETUP_CLSU32
:
3324 return cxgb_setup_tc_cls_u32(dev
, type_data
);
3325 case TC_SETUP_CLSFLOWER
:
3326 return cxgb_setup_tc_flower(dev
, type_data
);
3327 case TC_SETUP_CLSMATCHALL
:
3328 return cxgb_setup_tc_matchall(dev
, type_data
, true);
3334 static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type
,
3335 void *type_data
, void *cb_priv
)
3337 struct net_device
*dev
= cb_priv
;
3338 struct port_info
*pi
= netdev2pinfo(dev
);
3339 struct adapter
*adap
= netdev2adap(dev
);
3341 if (!(adap
->flags
& CXGB4_FULL_INIT_DONE
)) {
3342 dev_err(adap
->pdev_dev
,
3343 "Failed to setup tc on port %d. Link Down?\n",
3348 if (!tc_cls_can_offload_and_chain0(dev
, type_data
))
3352 case TC_SETUP_CLSMATCHALL
:
3353 return cxgb_setup_tc_matchall(dev
, type_data
, false);
3361 static int cxgb_setup_tc_mqprio(struct net_device
*dev
,
3362 struct tc_mqprio_qopt_offload
*mqprio
)
3364 struct adapter
*adap
= netdev2adap(dev
);
3366 if (!is_ethofld(adap
) || !adap
->tc_mqprio
)
3369 return cxgb4_setup_tc_mqprio(dev
, mqprio
);
3372 static LIST_HEAD(cxgb_block_cb_list
);
3374 static int cxgb_setup_tc_block(struct net_device
*dev
,
3375 struct flow_block_offload
*f
)
3377 struct port_info
*pi
= netdev_priv(dev
);
3378 flow_setup_cb_t
*cb
;
3381 pi
->tc_block_shared
= f
->block_shared
;
3382 if (f
->binder_type
== FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS
) {
3383 cb
= cxgb_setup_tc_block_egress_cb
;
3384 ingress_only
= false;
3386 cb
= cxgb_setup_tc_block_ingress_cb
;
3387 ingress_only
= true;
3390 return flow_block_cb_setup_simple(f
, &cxgb_block_cb_list
,
3391 cb
, pi
, dev
, ingress_only
);
3394 static int cxgb_setup_tc(struct net_device
*dev
, enum tc_setup_type type
,
3398 case TC_SETUP_QDISC_MQPRIO
:
3399 return cxgb_setup_tc_mqprio(dev
, type_data
);
3400 case TC_SETUP_BLOCK
:
3401 return cxgb_setup_tc_block(dev
, type_data
);
3407 static void cxgb_del_udp_tunnel(struct net_device
*netdev
,
3408 struct udp_tunnel_info
*ti
)
3410 struct port_info
*pi
= netdev_priv(netdev
);
3411 struct adapter
*adapter
= pi
->adapter
;
3412 unsigned int chip_ver
= CHELSIO_CHIP_VERSION(adapter
->params
.chip
);
3413 u8 match_all_mac
[] = { 0, 0, 0, 0, 0, 0 };
3416 if (chip_ver
< CHELSIO_T6
)
3420 case UDP_TUNNEL_TYPE_VXLAN
:
3421 if (!adapter
->vxlan_port_cnt
||
3422 adapter
->vxlan_port
!= ti
->port
)
3423 return; /* Invalid VxLAN destination port */
3425 adapter
->vxlan_port_cnt
--;
3426 if (adapter
->vxlan_port_cnt
)
3429 adapter
->vxlan_port
= 0;
3430 t4_write_reg(adapter
, MPS_RX_VXLAN_TYPE_A
, 0);
3432 case UDP_TUNNEL_TYPE_GENEVE
:
3433 if (!adapter
->geneve_port_cnt
||
3434 adapter
->geneve_port
!= ti
->port
)
3435 return; /* Invalid GENEVE destination port */
3437 adapter
->geneve_port_cnt
--;
3438 if (adapter
->geneve_port_cnt
)
3441 adapter
->geneve_port
= 0;
3442 t4_write_reg(adapter
, MPS_RX_GENEVE_TYPE_A
, 0);
3448 /* Matchall mac entries can be deleted only after all tunnel ports
3449 * are brought down or removed.
3451 if (!adapter
->rawf_cnt
)
3453 for_each_port(adapter
, i
) {
3454 pi
= adap2pinfo(adapter
, i
);
3455 ret
= t4_free_raw_mac_filt(adapter
, pi
->viid
,
3456 match_all_mac
, match_all_mac
,
3457 adapter
->rawf_start
+
3459 1, pi
->port_id
, false);
3461 netdev_info(netdev
, "Failed to free mac filter entry, for port %d\n",
3468 static void cxgb_add_udp_tunnel(struct net_device
*netdev
,
3469 struct udp_tunnel_info
*ti
)
3471 struct port_info
*pi
= netdev_priv(netdev
);
3472 struct adapter
*adapter
= pi
->adapter
;
3473 unsigned int chip_ver
= CHELSIO_CHIP_VERSION(adapter
->params
.chip
);
3474 u8 match_all_mac
[] = { 0, 0, 0, 0, 0, 0 };
3477 if (chip_ver
< CHELSIO_T6
|| !adapter
->rawf_cnt
)
3481 case UDP_TUNNEL_TYPE_VXLAN
:
3482 /* Callback for adding vxlan port can be called with the same
3483 * port for both IPv4 and IPv6. We should not disable the
3484 * offloading when the same port for both protocols is added
3485 * and later one of them is removed.
3487 if (adapter
->vxlan_port_cnt
&&
3488 adapter
->vxlan_port
== ti
->port
) {
3489 adapter
->vxlan_port_cnt
++;
3493 /* We will support only one VxLAN port */
3494 if (adapter
->vxlan_port_cnt
) {
3495 netdev_info(netdev
, "UDP port %d already offloaded, not adding port %d\n",
3496 be16_to_cpu(adapter
->vxlan_port
),
3497 be16_to_cpu(ti
->port
));
3501 adapter
->vxlan_port
= ti
->port
;
3502 adapter
->vxlan_port_cnt
= 1;
3504 t4_write_reg(adapter
, MPS_RX_VXLAN_TYPE_A
,
3505 VXLAN_V(be16_to_cpu(ti
->port
)) | VXLAN_EN_F
);
3507 case UDP_TUNNEL_TYPE_GENEVE
:
3508 if (adapter
->geneve_port_cnt
&&
3509 adapter
->geneve_port
== ti
->port
) {
3510 adapter
->geneve_port_cnt
++;
3514 /* We will support only one GENEVE port */
3515 if (adapter
->geneve_port_cnt
) {
3516 netdev_info(netdev
, "UDP port %d already offloaded, not adding port %d\n",
3517 be16_to_cpu(adapter
->geneve_port
),
3518 be16_to_cpu(ti
->port
));
3522 adapter
->geneve_port
= ti
->port
;
3523 adapter
->geneve_port_cnt
= 1;
3525 t4_write_reg(adapter
, MPS_RX_GENEVE_TYPE_A
,
3526 GENEVE_V(be16_to_cpu(ti
->port
)) | GENEVE_EN_F
);
3532 /* Create a 'match all' mac filter entry for inner mac,
3533 * if raw mac interface is supported. Once the linux kernel provides
3534 * driver entry points for adding/deleting the inner mac addresses,
3535 * we will remove this 'match all' entry and fallback to adding
3536 * exact match filters.
3538 for_each_port(adapter
, i
) {
3539 pi
= adap2pinfo(adapter
, i
);
3541 ret
= t4_alloc_raw_mac_filt(adapter
, pi
->viid
,
3544 adapter
->rawf_start
+
3546 1, pi
->port_id
, false);
3548 netdev_info(netdev
, "Failed to allocate a mac filter entry, not adding port %d\n",
3549 be16_to_cpu(ti
->port
));
3550 cxgb_del_udp_tunnel(netdev
, ti
);
3556 static netdev_features_t
cxgb_features_check(struct sk_buff
*skb
,
3557 struct net_device
*dev
,
3558 netdev_features_t features
)
3560 struct port_info
*pi
= netdev_priv(dev
);
3561 struct adapter
*adapter
= pi
->adapter
;
3563 if (CHELSIO_CHIP_VERSION(adapter
->params
.chip
) < CHELSIO_T6
)
3566 /* Check if hw supports offload for this packet */
3567 if (!skb
->encapsulation
|| cxgb_encap_offload_supported(skb
))
3570 /* Offload is not supported for this encapsulated packet */
3571 return features
& ~(NETIF_F_CSUM_MASK
| NETIF_F_GSO_MASK
);
3574 static netdev_features_t
cxgb_fix_features(struct net_device
*dev
,
3575 netdev_features_t features
)
3577 /* Disable GRO, if RX_CSUM is disabled */
3578 if (!(features
& NETIF_F_RXCSUM
))
3579 features
&= ~NETIF_F_GRO
;
3584 static const struct net_device_ops cxgb4_netdev_ops
= {
3585 .ndo_open
= cxgb_open
,
3586 .ndo_stop
= cxgb_close
,
3587 .ndo_start_xmit
= t4_start_xmit
,
3588 .ndo_select_queue
= cxgb_select_queue
,
3589 .ndo_get_stats64
= cxgb_get_stats
,
3590 .ndo_set_rx_mode
= cxgb_set_rxmode
,
3591 .ndo_set_mac_address
= cxgb_set_mac_addr
,
3592 .ndo_set_features
= cxgb_set_features
,
3593 .ndo_validate_addr
= eth_validate_addr
,
3594 .ndo_do_ioctl
= cxgb_ioctl
,
3595 .ndo_change_mtu
= cxgb_change_mtu
,
3596 #ifdef CONFIG_NET_POLL_CONTROLLER
3597 .ndo_poll_controller
= cxgb_netpoll
,
3599 #ifdef CONFIG_CHELSIO_T4_FCOE
3600 .ndo_fcoe_enable
= cxgb_fcoe_enable
,
3601 .ndo_fcoe_disable
= cxgb_fcoe_disable
,
3602 #endif /* CONFIG_CHELSIO_T4_FCOE */
3603 .ndo_set_tx_maxrate
= cxgb_set_tx_maxrate
,
3604 .ndo_setup_tc
= cxgb_setup_tc
,
3605 .ndo_udp_tunnel_add
= cxgb_add_udp_tunnel
,
3606 .ndo_udp_tunnel_del
= cxgb_del_udp_tunnel
,
3607 .ndo_features_check
= cxgb_features_check
,
3608 .ndo_fix_features
= cxgb_fix_features
,
3611 #ifdef CONFIG_PCI_IOV
3612 static const struct net_device_ops cxgb4_mgmt_netdev_ops
= {
3613 .ndo_open
= cxgb4_mgmt_open
,
3614 .ndo_set_vf_mac
= cxgb4_mgmt_set_vf_mac
,
3615 .ndo_get_vf_config
= cxgb4_mgmt_get_vf_config
,
3616 .ndo_set_vf_rate
= cxgb4_mgmt_set_vf_rate
,
3617 .ndo_get_phys_port_id
= cxgb4_mgmt_get_phys_port_id
,
3618 .ndo_set_vf_vlan
= cxgb4_mgmt_set_vf_vlan
,
3619 .ndo_set_vf_link_state
= cxgb4_mgmt_set_vf_link_state
,
3623 static void cxgb4_mgmt_get_drvinfo(struct net_device
*dev
,
3624 struct ethtool_drvinfo
*info
)
3626 struct adapter
*adapter
= netdev2adap(dev
);
3628 strlcpy(info
->driver
, cxgb4_driver_name
, sizeof(info
->driver
));
3629 strlcpy(info
->version
, cxgb4_driver_version
,
3630 sizeof(info
->version
));
3631 strlcpy(info
->bus_info
, pci_name(adapter
->pdev
),
3632 sizeof(info
->bus_info
));
3635 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops
= {
3636 .get_drvinfo
= cxgb4_mgmt_get_drvinfo
,
3639 static void notify_fatal_err(struct work_struct
*work
)
3641 struct adapter
*adap
;
3643 adap
= container_of(work
, struct adapter
, fatal_err_notify_task
);
3644 notify_ulds(adap
, CXGB4_STATE_FATAL_ERROR
);
3647 void t4_fatal_err(struct adapter
*adap
)
3651 if (pci_channel_offline(adap
->pdev
))
3654 /* Disable the SGE since ULDs are going to free resources that
3655 * could be exposed to the adapter. RDMA MWs for example...
3657 t4_shutdown_adapter(adap
);
3658 for_each_port(adap
, port
) {
3659 struct net_device
*dev
= adap
->port
[port
];
3661 /* If we get here in very early initialization the network
3662 * devices may not have been set up yet.
3667 netif_tx_stop_all_queues(dev
);
3668 netif_carrier_off(dev
);
3670 dev_alert(adap
->pdev_dev
, "encountered fatal error, adapter stopped\n");
3671 queue_work(adap
->workq
, &adap
->fatal_err_notify_task
);
3674 static void setup_memwin(struct adapter
*adap
)
3676 u32 nic_win_base
= t4_get_util_window(adap
);
3678 t4_setup_memwin(adap
, nic_win_base
, MEMWIN_NIC
);
3681 static void setup_memwin_rdma(struct adapter
*adap
)
3683 if (adap
->vres
.ocq
.size
) {
3687 start
= t4_read_pcie_cfg4(adap
, PCI_BASE_ADDRESS_2
);
3688 start
&= PCI_BASE_ADDRESS_MEM_MASK
;
3689 start
+= OCQ_WIN_OFFSET(adap
->pdev
, &adap
->vres
);
3690 sz_kb
= roundup_pow_of_two(adap
->vres
.ocq
.size
) >> 10;
3692 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A
, 3),
3693 start
| BIR_V(1) | WINDOW_V(ilog2(sz_kb
)));
3695 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A
, 3),
3696 adap
->vres
.ocq
.start
);
3698 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A
, 3));
3702 /* HMA Definitions */
3704 /* The maximum number of address that can be send in a single FW cmd */
3705 #define HMA_MAX_ADDR_IN_CMD 5
3707 #define HMA_PAGE_SIZE PAGE_SIZE
3709 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */
3711 #define HMA_PAGE_ORDER \
3712 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \
3713 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3715 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3716 * configuration(in units of MB).
3718 #define HMA_MIN_TOTAL_SIZE 1
3719 #define HMA_MAX_TOTAL_SIZE \
3720 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \
3721 HMA_MAX_NO_FW_ADDRESS) >> 20)
3723 static void adap_free_hma_mem(struct adapter
*adapter
)
3725 struct scatterlist
*iter
;
3729 if (!adapter
->hma
.sgt
)
3732 if (adapter
->hma
.flags
& HMA_DMA_MAPPED_FLAG
) {
3733 dma_unmap_sg(adapter
->pdev_dev
, adapter
->hma
.sgt
->sgl
,
3734 adapter
->hma
.sgt
->nents
, PCI_DMA_BIDIRECTIONAL
);
3735 adapter
->hma
.flags
&= ~HMA_DMA_MAPPED_FLAG
;
3738 for_each_sg(adapter
->hma
.sgt
->sgl
, iter
,
3739 adapter
->hma
.sgt
->orig_nents
, i
) {
3740 page
= sg_page(iter
);
3742 __free_pages(page
, HMA_PAGE_ORDER
);
3745 kfree(adapter
->hma
.phy_addr
);
3746 sg_free_table(adapter
->hma
.sgt
);
3747 kfree(adapter
->hma
.sgt
);
3748 adapter
->hma
.sgt
= NULL
;
3751 static int adap_config_hma(struct adapter
*adapter
)
3753 struct scatterlist
*sgl
, *iter
;
3754 struct sg_table
*sgt
;
3755 struct page
*newpage
;
3756 unsigned int i
, j
, k
;
3757 u32 param
, hma_size
;
3763 /* HMA is supported only for T6+ cards.
3764 * Avoid initializing HMA in kdump kernels.
3766 if (is_kdump_kernel() ||
3767 CHELSIO_CHIP_VERSION(adapter
->params
.chip
) < CHELSIO_T6
)
3770 /* Get the HMA region size required by fw */
3771 param
= (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
3772 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE
));
3773 ret
= t4_query_params(adapter
, adapter
->mbox
, adapter
->pf
, 0,
3774 1, ¶m
, &hma_size
);
3775 /* An error means card has its own memory or HMA is not supported by
3776 * the firmware. Return without any errors.
3778 if (ret
|| !hma_size
)
3781 if (hma_size
< HMA_MIN_TOTAL_SIZE
||
3782 hma_size
> HMA_MAX_TOTAL_SIZE
) {
3783 dev_err(adapter
->pdev_dev
,
3784 "HMA size %uMB beyond bounds(%u-%lu)MB\n",
3785 hma_size
, HMA_MIN_TOTAL_SIZE
, HMA_MAX_TOTAL_SIZE
);
3789 page_size
= HMA_PAGE_SIZE
;
3790 page_order
= HMA_PAGE_ORDER
;
3791 adapter
->hma
.sgt
= kzalloc(sizeof(*adapter
->hma
.sgt
), GFP_KERNEL
);
3792 if (unlikely(!adapter
->hma
.sgt
)) {
3793 dev_err(adapter
->pdev_dev
, "HMA SG table allocation failed\n");
3796 sgt
= adapter
->hma
.sgt
;
3797 /* FW returned value will be in MB's
3799 sgt
->orig_nents
= (hma_size
<< 20) / (page_size
<< page_order
);
3800 if (sg_alloc_table(sgt
, sgt
->orig_nents
, GFP_KERNEL
)) {
3801 dev_err(adapter
->pdev_dev
, "HMA SGL allocation failed\n");
3802 kfree(adapter
->hma
.sgt
);
3803 adapter
->hma
.sgt
= NULL
;
3807 sgl
= adapter
->hma
.sgt
->sgl
;
3808 node
= dev_to_node(adapter
->pdev_dev
);
3809 for_each_sg(sgl
, iter
, sgt
->orig_nents
, i
) {
3810 newpage
= alloc_pages_node(node
, __GFP_NOWARN
| GFP_KERNEL
|
3811 __GFP_ZERO
, page_order
);
3813 dev_err(adapter
->pdev_dev
,
3814 "Not enough memory for HMA page allocation\n");
3818 sg_set_page(iter
, newpage
, page_size
<< page_order
, 0);
3821 sgt
->nents
= dma_map_sg(adapter
->pdev_dev
, sgl
, sgt
->orig_nents
,
3824 dev_err(adapter
->pdev_dev
,
3825 "Not enough memory for HMA DMA mapping");
3829 adapter
->hma
.flags
|= HMA_DMA_MAPPED_FLAG
;
3831 adapter
->hma
.phy_addr
= kcalloc(sgt
->nents
, sizeof(dma_addr_t
),
3833 if (unlikely(!adapter
->hma
.phy_addr
))
3836 for_each_sg(sgl
, iter
, sgt
->nents
, i
) {
3837 newpage
= sg_page(iter
);
3838 adapter
->hma
.phy_addr
[i
] = sg_dma_address(iter
);
3841 ncmds
= DIV_ROUND_UP(sgt
->nents
, HMA_MAX_ADDR_IN_CMD
);
3842 /* Pass on the addresses to firmware */
3843 for (i
= 0, k
= 0; i
< ncmds
; i
++, k
+= HMA_MAX_ADDR_IN_CMD
) {
3844 struct fw_hma_cmd hma_cmd
;
3845 u8 naddr
= HMA_MAX_ADDR_IN_CMD
;
3846 u8 soc
= 0, eoc
= 0;
3847 u8 hma_mode
= 1; /* Presently we support only Page table mode */
3849 soc
= (i
== 0) ? 1 : 0;
3850 eoc
= (i
== ncmds
- 1) ? 1 : 0;
3852 /* For last cmd, set naddr corresponding to remaining
3855 if (i
== ncmds
- 1) {
3856 naddr
= sgt
->nents
% HMA_MAX_ADDR_IN_CMD
;
3857 naddr
= naddr
? naddr
: HMA_MAX_ADDR_IN_CMD
;
3859 memset(&hma_cmd
, 0, sizeof(hma_cmd
));
3860 hma_cmd
.op_pkd
= htonl(FW_CMD_OP_V(FW_HMA_CMD
) |
3861 FW_CMD_REQUEST_F
| FW_CMD_WRITE_F
);
3862 hma_cmd
.retval_len16
= htonl(FW_LEN16(hma_cmd
));
3864 hma_cmd
.mode_to_pcie_params
=
3865 htonl(FW_HMA_CMD_MODE_V(hma_mode
) |
3866 FW_HMA_CMD_SOC_V(soc
) | FW_HMA_CMD_EOC_V(eoc
));
3868 /* HMA cmd size specified in MB's */
3869 hma_cmd
.naddr_size
=
3870 htonl(FW_HMA_CMD_SIZE_V(hma_size
) |
3871 FW_HMA_CMD_NADDR_V(naddr
));
3873 /* Total Page size specified in units of 4K */
3874 hma_cmd
.addr_size_pkd
=
3875 htonl(FW_HMA_CMD_ADDR_SIZE_V
3876 ((page_size
<< page_order
) >> 12));
3878 /* Fill the 5 addresses */
3879 for (j
= 0; j
< naddr
; j
++) {
3880 hma_cmd
.phy_address
[j
] =
3881 cpu_to_be64(adapter
->hma
.phy_addr
[j
+ k
]);
3883 ret
= t4_wr_mbox(adapter
, adapter
->mbox
, &hma_cmd
,
3884 sizeof(hma_cmd
), &hma_cmd
);
3886 dev_err(adapter
->pdev_dev
,
3887 "HMA FW command failed with err %d\n", ret
);
3893 dev_info(adapter
->pdev_dev
,
3894 "Reserved %uMB host memory for HMA\n", hma_size
);
3898 adap_free_hma_mem(adapter
);
3902 static int adap_init1(struct adapter
*adap
, struct fw_caps_config_cmd
*c
)
3907 /* Now that we've successfully configured and initialized the adapter
3908 * can ask the Firmware what resources it has provisioned for us.
3910 ret
= t4_get_pfres(adap
);
3912 dev_err(adap
->pdev_dev
,
3913 "Unable to retrieve resource provisioning information\n");
3917 /* get device capabilities */
3918 memset(c
, 0, sizeof(*c
));
3919 c
->op_to_write
= htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD
) |
3920 FW_CMD_REQUEST_F
| FW_CMD_READ_F
);
3921 c
->cfvalid_to_len16
= htonl(FW_LEN16(*c
));
3922 ret
= t4_wr_mbox(adap
, adap
->mbox
, c
, sizeof(*c
), c
);
3926 c
->op_to_write
= htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD
) |
3927 FW_CMD_REQUEST_F
| FW_CMD_WRITE_F
);
3928 ret
= t4_wr_mbox(adap
, adap
->mbox
, c
, sizeof(*c
), NULL
);
3932 ret
= t4_config_glbl_rss(adap
, adap
->pf
,
3933 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
,
3934 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F
|
3935 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F
);
3939 ret
= t4_cfg_pfvf(adap
, adap
->mbox
, adap
->pf
, 0, adap
->sge
.egr_sz
, 64,
3940 MAX_INGQ
, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF
,
3947 /* tweak some settings */
3948 t4_write_reg(adap
, TP_SHIFT_CNT_A
, 0x64f8849);
3949 t4_write_reg(adap
, ULP_RX_TDDP_PSZ_A
, HPZ0_V(PAGE_SHIFT
- 12));
3950 t4_write_reg(adap
, TP_PIO_ADDR_A
, TP_INGRESS_CONFIG_A
);
3951 v
= t4_read_reg(adap
, TP_PIO_DATA_A
);
3952 t4_write_reg(adap
, TP_PIO_DATA_A
, v
& ~CSUM_HAS_PSEUDO_HDR_F
);
3954 /* first 4 Tx modulation queues point to consecutive Tx channels */
3955 adap
->params
.tp
.tx_modq_map
= 0xE4;
3956 t4_write_reg(adap
, TP_TX_MOD_QUEUE_REQ_MAP_A
,
3957 TX_MOD_QUEUE_REQ_MAP_V(adap
->params
.tp
.tx_modq_map
));
3959 /* associate each Tx modulation queue with consecutive Tx channels */
3961 t4_write_indirect(adap
, TP_PIO_ADDR_A
, TP_PIO_DATA_A
,
3962 &v
, 1, TP_TX_SCHED_HDR_A
);
3963 t4_write_indirect(adap
, TP_PIO_ADDR_A
, TP_PIO_DATA_A
,
3964 &v
, 1, TP_TX_SCHED_FIFO_A
);
3965 t4_write_indirect(adap
, TP_PIO_ADDR_A
, TP_PIO_DATA_A
,
3966 &v
, 1, TP_TX_SCHED_PCMD_A
);
3968 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3969 if (is_offload(adap
)) {
3970 t4_write_reg(adap
, TP_TX_MOD_QUEUE_WEIGHT0_A
,
3971 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT
) |
3972 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT
) |
3973 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT
) |
3974 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT
));
3975 t4_write_reg(adap
, TP_TX_MOD_CHANNEL_WEIGHT_A
,
3976 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT
) |
3977 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT
) |
3978 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT
) |
3979 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT
));
3982 /* get basic stuff going */
3983 return t4_early_init(adap
, adap
->pf
);
3987 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
3989 #define MAX_ATIDS 8192U
3992 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3994 * If the firmware we're dealing with has Configuration File support, then
3995 * we use that to perform all configuration
3999 * Tweak configuration based on module parameters, etc. Most of these have
4000 * defaults assigned to them by Firmware Configuration Files (if we're using
4001 * them) but need to be explicitly set if we're using hard-coded
4002 * initialization. But even in the case of using Firmware Configuration
4003 * Files, we'd like to expose the ability to change these via module
4004 * parameters so these are essentially common tweaks/settings for
4005 * Configuration Files and hard-coded initialization ...
4007 static int adap_init0_tweaks(struct adapter
*adapter
)
4010 * Fix up various Host-Dependent Parameters like Page Size, Cache
4011 * Line Size, etc. The firmware default is for a 4KB Page Size and
4012 * 64B Cache Line Size ...
4014 t4_fixup_host_params(adapter
, PAGE_SIZE
, L1_CACHE_BYTES
);
4017 * Process module parameters which affect early initialization.
4019 if (rx_dma_offset
!= 2 && rx_dma_offset
!= 0) {
4020 dev_err(&adapter
->pdev
->dev
,
4021 "Ignoring illegal rx_dma_offset=%d, using 2\n",
4025 t4_set_reg_field(adapter
, SGE_CONTROL_A
,
4026 PKTSHIFT_V(PKTSHIFT_M
),
4027 PKTSHIFT_V(rx_dma_offset
));
4030 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4031 * adds the pseudo header itself.
4033 t4_tp_wr_bits_indirect(adapter
, TP_INGRESS_CONFIG_A
,
4034 CSUM_HAS_PSEUDO_HDR_F
, 0);
4039 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
4040 * unto themselves and they contain their own firmware to perform their
4043 static int phy_aq1202_version(const u8
*phy_fw_data
,
4048 /* At offset 0x8 you're looking for the primary image's
4049 * starting offset which is 3 Bytes wide
4051 * At offset 0xa of the primary image, you look for the offset
4052 * of the DRAM segment which is 3 Bytes wide.
4054 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
4057 #define be16(__p) (((__p)[0] << 8) | (__p)[1])
4058 #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
4059 #define le24(__p) (le16(__p) | ((__p)[2] << 16))
4061 offset
= le24(phy_fw_data
+ 0x8) << 12;
4062 offset
= le24(phy_fw_data
+ offset
+ 0xa);
4063 return be16(phy_fw_data
+ offset
+ 0x27e);
4070 static struct info_10gbt_phy_fw
{
4071 unsigned int phy_fw_id
; /* PCI Device ID */
4072 char *phy_fw_file
; /* /lib/firmware/ PHY Firmware file */
4073 int (*phy_fw_version
)(const u8
*phy_fw_data
, size_t phy_fw_size
);
4074 int phy_flash
; /* Has FLASH for PHY Firmware */
4075 } phy_info_array
[] = {
4077 PHY_AQ1202_DEVICEID
,
4078 PHY_AQ1202_FIRMWARE
,
4083 PHY_BCM84834_DEVICEID
,
4084 PHY_BCM84834_FIRMWARE
,
4091 static struct info_10gbt_phy_fw
*find_phy_info(int devid
)
4095 for (i
= 0; i
< ARRAY_SIZE(phy_info_array
); i
++) {
4096 if (phy_info_array
[i
].phy_fw_id
== devid
)
4097 return &phy_info_array
[i
];
4102 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
4103 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
4104 * we return a negative error number. If we transfer new firmware we return 1
4105 * (from t4_load_phy_fw()). If we don't do anything we return 0.
4107 static int adap_init0_phy(struct adapter
*adap
)
4109 const struct firmware
*phyf
;
4111 struct info_10gbt_phy_fw
*phy_info
;
4113 /* Use the device ID to determine which PHY file to flash.
4115 phy_info
= find_phy_info(adap
->pdev
->device
);
4117 dev_warn(adap
->pdev_dev
,
4118 "No PHY Firmware file found for this PHY\n");
4122 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
4123 * use that. The adapter firmware provides us with a memory buffer
4124 * where we can load a PHY firmware file from the host if we want to
4125 * override the PHY firmware File in flash.
4127 ret
= request_firmware_direct(&phyf
, phy_info
->phy_fw_file
,
4130 /* For adapters without FLASH attached to PHY for their
4131 * firmware, it's obviously a fatal error if we can't get the
4132 * firmware to the adapter. For adapters with PHY firmware
4133 * FLASH storage, it's worth a warning if we can't find the
4134 * PHY Firmware but we'll neuter the error ...
4136 dev_err(adap
->pdev_dev
, "unable to find PHY Firmware image "
4137 "/lib/firmware/%s, error %d\n",
4138 phy_info
->phy_fw_file
, -ret
);
4139 if (phy_info
->phy_flash
) {
4140 int cur_phy_fw_ver
= 0;
4142 t4_phy_fw_ver(adap
, &cur_phy_fw_ver
);
4143 dev_warn(adap
->pdev_dev
, "continuing with, on-adapter "
4144 "FLASH copy, version %#x\n", cur_phy_fw_ver
);
4151 /* Load PHY Firmware onto adapter.
4153 ret
= t4_load_phy_fw(adap
, MEMWIN_NIC
, &adap
->win0_lock
,
4154 phy_info
->phy_fw_version
,
4155 (u8
*)phyf
->data
, phyf
->size
);
4157 dev_err(adap
->pdev_dev
, "PHY Firmware transfer error %d\n",
4160 int new_phy_fw_ver
= 0;
4162 if (phy_info
->phy_fw_version
)
4163 new_phy_fw_ver
= phy_info
->phy_fw_version(phyf
->data
,
4165 dev_info(adap
->pdev_dev
, "Successfully transferred PHY "
4166 "Firmware /lib/firmware/%s, version %#x\n",
4167 phy_info
->phy_fw_file
, new_phy_fw_ver
);
4170 release_firmware(phyf
);
4176 * Attempt to initialize the adapter via a Firmware Configuration File.
4178 static int adap_init0_config(struct adapter
*adapter
, int reset
)
4180 char *fw_config_file
, fw_config_file_path
[256];
4181 u32 finiver
, finicsum
, cfcsum
, param
, val
;
4182 struct fw_caps_config_cmd caps_cmd
;
4183 unsigned long mtype
= 0, maddr
= 0;
4184 const struct firmware
*cf
;
4185 char *config_name
= NULL
;
4186 int config_issued
= 0;
4190 * Reset device if necessary.
4193 ret
= t4_fw_reset(adapter
, adapter
->mbox
,
4194 PIORSTMODE_F
| PIORST_F
);
4199 /* If this is a 10Gb/s-BT adapter make sure the chip-external
4200 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
4201 * to be performed after any global adapter RESET above since some
4202 * PHYs only have local RAM copies of the PHY firmware.
4204 if (is_10gbt_device(adapter
->pdev
->device
)) {
4205 ret
= adap_init0_phy(adapter
);
4210 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4211 * then use that. Otherwise, use the configuration file stored
4212 * in the adapter flash ...
4214 switch (CHELSIO_CHIP_VERSION(adapter
->params
.chip
)) {
4216 fw_config_file
= FW4_CFNAME
;
4219 fw_config_file
= FW5_CFNAME
;
4222 fw_config_file
= FW6_CFNAME
;
4225 dev_err(adapter
->pdev_dev
, "Device %d is not supported\n",
4226 adapter
->pdev
->device
);
4231 ret
= request_firmware(&cf
, fw_config_file
, adapter
->pdev_dev
);
4233 config_name
= "On FLASH";
4234 mtype
= FW_MEMTYPE_CF_FLASH
;
4235 maddr
= t4_flash_cfg_addr(adapter
);
4237 u32 params
[7], val
[7];
4239 sprintf(fw_config_file_path
,
4240 "/lib/firmware/%s", fw_config_file
);
4241 config_name
= fw_config_file_path
;
4243 if (cf
->size
>= FLASH_CFG_MAX_SIZE
)
4246 params
[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
4247 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF
));
4248 ret
= t4_query_params(adapter
, adapter
->mbox
,
4249 adapter
->pf
, 0, 1, params
, val
);
4252 * For t4_memory_rw() below addresses and
4253 * sizes have to be in terms of multiples of 4
4254 * bytes. So, if the Configuration File isn't
4255 * a multiple of 4 bytes in length we'll have
4256 * to write that out separately since we can't
4257 * guarantee that the bytes following the
4258 * residual byte in the buffer returned by
4259 * request_firmware() are zeroed out ...
4261 size_t resid
= cf
->size
& 0x3;
4262 size_t size
= cf
->size
& ~0x3;
4263 __be32
*data
= (__be32
*)cf
->data
;
4265 mtype
= FW_PARAMS_PARAM_Y_G(val
[0]);
4266 maddr
= FW_PARAMS_PARAM_Z_G(val
[0]) << 16;
4268 spin_lock(&adapter
->win0_lock
);
4269 ret
= t4_memory_rw(adapter
, 0, mtype
, maddr
,
4270 size
, data
, T4_MEMORY_WRITE
);
4271 if (ret
== 0 && resid
!= 0) {
4278 last
.word
= data
[size
>> 2];
4279 for (i
= resid
; i
< 4; i
++)
4281 ret
= t4_memory_rw(adapter
, 0, mtype
,
4286 spin_unlock(&adapter
->win0_lock
);
4290 release_firmware(cf
);
4297 /* Ofld + Hash filter is supported. Older fw will fail this request and
4300 param
= (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
4301 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD
));
4302 ret
= t4_set_params(adapter
, adapter
->mbox
, adapter
->pf
, 0,
4305 /* FW doesn't know about Hash filter + ofld support,
4306 * it's not a problem, don't return an error.
4309 dev_warn(adapter
->pdev_dev
,
4310 "Hash filter with ofld is not supported by FW\n");
4314 * Issue a Capability Configuration command to the firmware to get it
4315 * to parse the Configuration File. We don't use t4_fw_config_file()
4316 * because we want the ability to modify various features after we've
4317 * processed the configuration file ...
4319 memset(&caps_cmd
, 0, sizeof(caps_cmd
));
4320 caps_cmd
.op_to_write
=
4321 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD
) |
4324 caps_cmd
.cfvalid_to_len16
=
4325 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F
|
4326 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype
) |
4327 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr
>> 16) |
4328 FW_LEN16(caps_cmd
));
4329 ret
= t4_wr_mbox(adapter
, adapter
->mbox
, &caps_cmd
, sizeof(caps_cmd
),
4332 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4333 * Configuration File in FLASH), our last gasp effort is to use the
4334 * Firmware Configuration File which is embedded in the firmware. A
4335 * very few early versions of the firmware didn't have one embedded
4336 * but we can ignore those.
4338 if (ret
== -ENOENT
) {
4339 memset(&caps_cmd
, 0, sizeof(caps_cmd
));
4340 caps_cmd
.op_to_write
=
4341 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD
) |
4344 caps_cmd
.cfvalid_to_len16
= htonl(FW_LEN16(caps_cmd
));
4345 ret
= t4_wr_mbox(adapter
, adapter
->mbox
, &caps_cmd
,
4346 sizeof(caps_cmd
), &caps_cmd
);
4347 config_name
= "Firmware Default";
4354 finiver
= ntohl(caps_cmd
.finiver
);
4355 finicsum
= ntohl(caps_cmd
.finicsum
);
4356 cfcsum
= ntohl(caps_cmd
.cfcsum
);
4357 if (finicsum
!= cfcsum
)
4358 dev_warn(adapter
->pdev_dev
, "Configuration File checksum "\
4359 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4363 * And now tell the firmware to use the configuration we just loaded.
4365 caps_cmd
.op_to_write
=
4366 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD
) |
4369 caps_cmd
.cfvalid_to_len16
= htonl(FW_LEN16(caps_cmd
));
4370 ret
= t4_wr_mbox(adapter
, adapter
->mbox
, &caps_cmd
, sizeof(caps_cmd
),
4376 * Tweak configuration based on system architecture, module
4379 ret
= adap_init0_tweaks(adapter
);
4383 /* We will proceed even if HMA init fails. */
4384 ret
= adap_config_hma(adapter
);
4386 dev_err(adapter
->pdev_dev
,
4387 "HMA configuration failed with error %d\n", ret
);
4389 if (is_t6(adapter
->params
.chip
)) {
4390 adap_config_hpfilter(adapter
);
4391 ret
= setup_ppod_edram(adapter
);
4393 dev_info(adapter
->pdev_dev
, "Successfully enabled "
4394 "ppod edram feature\n");
4398 * And finally tell the firmware to initialize itself using the
4399 * parameters from the Configuration File.
4401 ret
= t4_fw_initialize(adapter
, adapter
->mbox
);
4405 /* Emit Firmware Configuration File information and return
4408 dev_info(adapter
->pdev_dev
, "Successfully configured using Firmware "\
4409 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4410 config_name
, finiver
, cfcsum
);
4414 * Something bad happened. Return the error ... (If the "error"
4415 * is that there's no Configuration File on the adapter we don't
4416 * want to issue a warning since this is fairly common.)
4419 if (config_issued
&& ret
!= -ENOENT
)
4420 dev_warn(adapter
->pdev_dev
, "\"%s\" configuration file error %d\n",
4425 static struct fw_info fw_info_array
[] = {
4428 .fs_name
= FW4_CFNAME
,
4429 .fw_mod_name
= FW4_FNAME
,
4431 .chip
= FW_HDR_CHIP_T4
,
4432 .fw_ver
= __cpu_to_be32(FW_VERSION(T4
)),
4433 .intfver_nic
= FW_INTFVER(T4
, NIC
),
4434 .intfver_vnic
= FW_INTFVER(T4
, VNIC
),
4435 .intfver_ri
= FW_INTFVER(T4
, RI
),
4436 .intfver_iscsi
= FW_INTFVER(T4
, ISCSI
),
4437 .intfver_fcoe
= FW_INTFVER(T4
, FCOE
),
4441 .fs_name
= FW5_CFNAME
,
4442 .fw_mod_name
= FW5_FNAME
,
4444 .chip
= FW_HDR_CHIP_T5
,
4445 .fw_ver
= __cpu_to_be32(FW_VERSION(T5
)),
4446 .intfver_nic
= FW_INTFVER(T5
, NIC
),
4447 .intfver_vnic
= FW_INTFVER(T5
, VNIC
),
4448 .intfver_ri
= FW_INTFVER(T5
, RI
),
4449 .intfver_iscsi
= FW_INTFVER(T5
, ISCSI
),
4450 .intfver_fcoe
= FW_INTFVER(T5
, FCOE
),
4454 .fs_name
= FW6_CFNAME
,
4455 .fw_mod_name
= FW6_FNAME
,
4457 .chip
= FW_HDR_CHIP_T6
,
4458 .fw_ver
= __cpu_to_be32(FW_VERSION(T6
)),
4459 .intfver_nic
= FW_INTFVER(T6
, NIC
),
4460 .intfver_vnic
= FW_INTFVER(T6
, VNIC
),
4461 .intfver_ofld
= FW_INTFVER(T6
, OFLD
),
4462 .intfver_ri
= FW_INTFVER(T6
, RI
),
4463 .intfver_iscsipdu
= FW_INTFVER(T6
, ISCSIPDU
),
4464 .intfver_iscsi
= FW_INTFVER(T6
, ISCSI
),
4465 .intfver_fcoepdu
= FW_INTFVER(T6
, FCOEPDU
),
4466 .intfver_fcoe
= FW_INTFVER(T6
, FCOE
),
4472 static struct fw_info
*find_fw_info(int chip
)
4476 for (i
= 0; i
< ARRAY_SIZE(fw_info_array
); i
++) {
4477 if (fw_info_array
[i
].chip
== chip
)
4478 return &fw_info_array
[i
];
4484 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4486 static int adap_init0(struct adapter
*adap
, int vpd_skip
)
4488 struct fw_caps_config_cmd caps_cmd
;
4489 u32 params
[7], val
[7];
4490 enum dev_state state
;
4495 /* Grab Firmware Device Log parameters as early as possible so we have
4496 * access to it for debugging, etc.
4498 ret
= t4_init_devlog_params(adap
);
4502 /* Contact FW, advertising Master capability */
4503 ret
= t4_fw_hello(adap
, adap
->mbox
, adap
->mbox
,
4504 is_kdump_kernel() ? MASTER_MUST
: MASTER_MAY
, &state
);
4506 dev_err(adap
->pdev_dev
, "could not connect to FW, error %d\n",
4510 if (ret
== adap
->mbox
)
4511 adap
->flags
|= CXGB4_MASTER_PF
;
4514 * If we're the Master PF Driver and the device is uninitialized,
4515 * then let's consider upgrading the firmware ... (We always want
4516 * to check the firmware version number in order to A. get it for
4517 * later reporting and B. to warn if the currently loaded firmware
4518 * is excessively mismatched relative to the driver.)
4521 t4_get_version_info(adap
);
4522 ret
= t4_check_fw_version(adap
);
4523 /* If firmware is too old (not supported by driver) force an update. */
4525 state
= DEV_STATE_UNINIT
;
4526 if ((adap
->flags
& CXGB4_MASTER_PF
) && state
!= DEV_STATE_INIT
) {
4527 struct fw_info
*fw_info
;
4528 struct fw_hdr
*card_fw
;
4529 const struct firmware
*fw
;
4530 const u8
*fw_data
= NULL
;
4531 unsigned int fw_size
= 0;
4533 /* This is the firmware whose headers the driver was compiled
4536 fw_info
= find_fw_info(CHELSIO_CHIP_VERSION(adap
->params
.chip
));
4537 if (fw_info
== NULL
) {
4538 dev_err(adap
->pdev_dev
,
4539 "unable to get firmware info for chip %d.\n",
4540 CHELSIO_CHIP_VERSION(adap
->params
.chip
));
4544 /* allocate memory to read the header of the firmware on the
4547 card_fw
= kvzalloc(sizeof(*card_fw
), GFP_KERNEL
);
4553 /* Get FW from from /lib/firmware/ */
4554 ret
= request_firmware(&fw
, fw_info
->fw_mod_name
,
4557 dev_err(adap
->pdev_dev
,
4558 "unable to load firmware image %s, error %d\n",
4559 fw_info
->fw_mod_name
, ret
);
4565 /* upgrade FW logic */
4566 ret
= t4_prep_fw(adap
, fw_info
, fw_data
, fw_size
, card_fw
,
4570 release_firmware(fw
);
4577 /* If the firmware is initialized already, emit a simply note to that
4578 * effect. Otherwise, it's time to try initializing the adapter.
4580 if (state
== DEV_STATE_INIT
) {
4581 ret
= adap_config_hma(adap
);
4583 dev_err(adap
->pdev_dev
,
4584 "HMA configuration failed with error %d\n",
4586 dev_info(adap
->pdev_dev
, "Coming up as %s: "\
4587 "Adapter already initialized\n",
4588 adap
->flags
& CXGB4_MASTER_PF
? "MASTER" : "SLAVE");
4590 dev_info(adap
->pdev_dev
, "Coming up as MASTER: "\
4591 "Initializing adapter\n");
4593 /* Find out whether we're dealing with a version of the
4594 * firmware which has configuration file support.
4596 params
[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
4597 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF
));
4598 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0, 1,
4601 /* If the firmware doesn't support Configuration Files,
4605 dev_err(adap
->pdev_dev
, "firmware doesn't support "
4606 "Firmware Configuration Files\n");
4610 /* The firmware provides us with a memory buffer where we can
4611 * load a Configuration File from the host if we want to
4612 * override the Configuration File in flash.
4614 ret
= adap_init0_config(adap
, reset
);
4615 if (ret
== -ENOENT
) {
4616 dev_err(adap
->pdev_dev
, "no Configuration File "
4617 "present on adapter.\n");
4621 dev_err(adap
->pdev_dev
, "could not initialize "
4622 "adapter, error %d\n", -ret
);
4627 /* Now that we've successfully configured and initialized the adapter
4628 * (or found it already initialized), we can ask the Firmware what
4629 * resources it has provisioned for us.
4631 ret
= t4_get_pfres(adap
);
4633 dev_err(adap
->pdev_dev
,
4634 "Unable to retrieve resource provisioning information\n");
4638 /* Grab VPD parameters. This should be done after we establish a
4639 * connection to the firmware since some of the VPD parameters
4640 * (notably the Core Clock frequency) are retrieved via requests to
4641 * the firmware. On the other hand, we need these fairly early on
4642 * so we do this right after getting ahold of the firmware.
4644 * We need to do this after initializing the adapter because someone
4645 * could have FLASHed a new VPD which won't be read by the firmware
4646 * until we do the RESET ...
4649 ret
= t4_get_vpd_params(adap
, &adap
->params
.vpd
);
4654 /* Find out what ports are available to us. Note that we need to do
4655 * this before calling adap_init0_no_config() since it needs nports
4659 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
4660 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC
);
4661 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0, 1, &v
, &port_vec
);
4665 adap
->params
.nports
= hweight32(port_vec
);
4666 adap
->params
.portvec
= port_vec
;
4668 /* Give the SGE code a chance to pull in anything that it needs ...
4669 * Note that this must be called after we retrieve our VPD parameters
4670 * in order to know how to convert core ticks to seconds, etc.
4672 ret
= t4_sge_init(adap
);
4676 /* Grab the SGE Doorbell Queue Timer values. If successful, that
4677 * indicates that the Firmware and Hardware support this.
4679 params
[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
4680 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK
));
4681 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0,
4685 adap
->sge
.dbqtimer_tick
= val
[0];
4686 ret
= t4_read_sge_dbqtimers(adap
,
4687 ARRAY_SIZE(adap
->sge
.dbqtimer_val
),
4688 adap
->sge
.dbqtimer_val
);
4692 adap
->flags
|= CXGB4_SGE_DBQ_TIMER
;
4694 if (is_bypass_device(adap
->pdev
->device
))
4695 adap
->params
.bypass
= 1;
4698 * Grab some of our basic fundamental operating parameters.
4700 params
[0] = FW_PARAM_PFVF(EQ_START
);
4701 params
[1] = FW_PARAM_PFVF(L2T_START
);
4702 params
[2] = FW_PARAM_PFVF(L2T_END
);
4703 params
[3] = FW_PARAM_PFVF(FILTER_START
);
4704 params
[4] = FW_PARAM_PFVF(FILTER_END
);
4705 params
[5] = FW_PARAM_PFVF(IQFLINT_START
);
4706 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0, 6, params
, val
);
4709 adap
->sge
.egr_start
= val
[0];
4710 adap
->l2t_start
= val
[1];
4711 adap
->l2t_end
= val
[2];
4712 adap
->tids
.ftid_base
= val
[3];
4713 adap
->tids
.nftids
= val
[4] - val
[3] + 1;
4714 adap
->sge
.ingr_start
= val
[5];
4716 if (CHELSIO_CHIP_VERSION(adap
->params
.chip
) > CHELSIO_T5
) {
4717 params
[0] = FW_PARAM_PFVF(HPFILTER_START
);
4718 params
[1] = FW_PARAM_PFVF(HPFILTER_END
);
4719 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0, 2,
4724 adap
->tids
.hpftid_base
= val
[0];
4725 adap
->tids
.nhpftids
= val
[1] - val
[0] + 1;
4727 /* Read the raw mps entries. In T6, the last 2 tcam entries
4728 * are reserved for raw mac addresses (rawf = 2, one per port).
4730 params
[0] = FW_PARAM_PFVF(RAWF_START
);
4731 params
[1] = FW_PARAM_PFVF(RAWF_END
);
4732 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0, 2,
4735 adap
->rawf_start
= val
[0];
4736 adap
->rawf_cnt
= val
[1] - val
[0] + 1;
4739 adap
->tids
.tid_base
=
4740 t4_read_reg(adap
, LE_DB_ACTIVE_TABLE_START_INDEX_A
);
4743 /* qids (ingress/egress) returned from firmware can be anywhere
4744 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4745 * Hence driver needs to allocate memory for this range to
4746 * store the queue info. Get the highest IQFLINT/EQ index returned
4747 * in FW_EQ_*_CMD.alloc command.
4749 params
[0] = FW_PARAM_PFVF(EQ_END
);
4750 params
[1] = FW_PARAM_PFVF(IQFLINT_END
);
4751 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0, 2, params
, val
);
4754 adap
->sge
.egr_sz
= val
[0] - adap
->sge
.egr_start
+ 1;
4755 adap
->sge
.ingr_sz
= val
[1] - adap
->sge
.ingr_start
+ 1;
4757 adap
->sge
.egr_map
= kcalloc(adap
->sge
.egr_sz
,
4758 sizeof(*adap
->sge
.egr_map
), GFP_KERNEL
);
4759 if (!adap
->sge
.egr_map
) {
4764 adap
->sge
.ingr_map
= kcalloc(adap
->sge
.ingr_sz
,
4765 sizeof(*adap
->sge
.ingr_map
), GFP_KERNEL
);
4766 if (!adap
->sge
.ingr_map
) {
4771 /* Allocate the memory for the vaious egress queue bitmaps
4772 * ie starving_fl, txq_maperr and blocked_fl.
4774 adap
->sge
.starving_fl
= kcalloc(BITS_TO_LONGS(adap
->sge
.egr_sz
),
4775 sizeof(long), GFP_KERNEL
);
4776 if (!adap
->sge
.starving_fl
) {
4781 adap
->sge
.txq_maperr
= kcalloc(BITS_TO_LONGS(adap
->sge
.egr_sz
),
4782 sizeof(long), GFP_KERNEL
);
4783 if (!adap
->sge
.txq_maperr
) {
4788 #ifdef CONFIG_DEBUG_FS
4789 adap
->sge
.blocked_fl
= kcalloc(BITS_TO_LONGS(adap
->sge
.egr_sz
),
4790 sizeof(long), GFP_KERNEL
);
4791 if (!adap
->sge
.blocked_fl
) {
4797 params
[0] = FW_PARAM_PFVF(CLIP_START
);
4798 params
[1] = FW_PARAM_PFVF(CLIP_END
);
4799 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0, 2, params
, val
);
4802 adap
->clipt_start
= val
[0];
4803 adap
->clipt_end
= val
[1];
4805 /* Get the supported number of traffic classes */
4806 params
[0] = FW_PARAM_DEV(NUM_TM_CLASS
);
4807 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0, 1, params
, val
);
4809 /* We couldn't retrieve the number of Traffic Classes
4810 * supported by the hardware/firmware. So we hard
4813 adap
->params
.nsched_cls
= is_t4(adap
->params
.chip
) ? 15 : 16;
4815 adap
->params
.nsched_cls
= val
[0];
4818 /* query params related to active filter region */
4819 params
[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START
);
4820 params
[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END
);
4821 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0, 2, params
, val
);
4822 /* If Active filter size is set we enable establishing
4823 * offload connection through firmware work request
4825 if ((val
[0] != val
[1]) && (ret
>= 0)) {
4826 adap
->flags
|= CXGB4_FW_OFLD_CONN
;
4827 adap
->tids
.aftid_base
= val
[0];
4828 adap
->tids
.aftid_end
= val
[1];
4831 /* If we're running on newer firmware, let it know that we're
4832 * prepared to deal with encapsulated CPL messages. Older
4833 * firmware won't understand this and we'll just get
4834 * unencapsulated messages ...
4836 params
[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP
);
4838 (void)t4_set_params(adap
, adap
->mbox
, adap
->pf
, 0, 1, params
, val
);
4841 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4842 * capability. Earlier versions of the firmware didn't have the
4843 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4844 * permission to use ULPTX MEMWRITE DSGL.
4846 if (is_t4(adap
->params
.chip
)) {
4847 adap
->params
.ulptx_memwrite_dsgl
= false;
4849 params
[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL
);
4850 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0,
4852 adap
->params
.ulptx_memwrite_dsgl
= (ret
== 0 && val
[0] != 0);
4855 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
4856 params
[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR
);
4857 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0,
4859 adap
->params
.fr_nsmr_tpte_wr_support
= (ret
== 0 && val
[0] != 0);
4861 /* See if FW supports FW_FILTER2 work request */
4862 if (is_t4(adap
->params
.chip
)) {
4863 adap
->params
.filter2_wr_support
= 0;
4865 params
[0] = FW_PARAM_DEV(FILTER2_WR
);
4866 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0,
4868 adap
->params
.filter2_wr_support
= (ret
== 0 && val
[0] != 0);
4871 /* Check if FW supports returning vin and smt index.
4872 * If this is not supported, driver will interpret
4873 * these values from viid.
4875 params
[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN
);
4876 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0,
4878 adap
->params
.viid_smt_extn_support
= (ret
== 0 && val
[0] != 0);
4881 * Get device capabilities so we can determine what resources we need
4884 memset(&caps_cmd
, 0, sizeof(caps_cmd
));
4885 caps_cmd
.op_to_write
= htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD
) |
4886 FW_CMD_REQUEST_F
| FW_CMD_READ_F
);
4887 caps_cmd
.cfvalid_to_len16
= htonl(FW_LEN16(caps_cmd
));
4888 ret
= t4_wr_mbox(adap
, adap
->mbox
, &caps_cmd
, sizeof(caps_cmd
),
4893 /* hash filter has some mandatory register settings to be tested and for
4894 * that it needs to test whether offload is enabled or not, hence
4895 * checking and setting it here.
4897 if (caps_cmd
.ofldcaps
)
4898 adap
->params
.offload
= 1;
4900 if (caps_cmd
.ofldcaps
||
4901 (caps_cmd
.niccaps
& htons(FW_CAPS_CONFIG_NIC_HASHFILTER
)) ||
4902 (caps_cmd
.niccaps
& htons(FW_CAPS_CONFIG_NIC_ETHOFLD
))) {
4903 /* query offload-related parameters */
4904 params
[0] = FW_PARAM_DEV(NTID
);
4905 params
[1] = FW_PARAM_PFVF(SERVER_START
);
4906 params
[2] = FW_PARAM_PFVF(SERVER_END
);
4907 params
[3] = FW_PARAM_PFVF(TDDP_START
);
4908 params
[4] = FW_PARAM_PFVF(TDDP_END
);
4909 params
[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ
);
4910 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0, 6,
4914 adap
->tids
.ntids
= val
[0];
4915 adap
->tids
.natids
= min(adap
->tids
.ntids
/ 2, MAX_ATIDS
);
4916 adap
->tids
.stid_base
= val
[1];
4917 adap
->tids
.nstids
= val
[2] - val
[1] + 1;
4919 * Setup server filter region. Divide the available filter
4920 * region into two parts. Regular filters get 1/3rd and server
4921 * filters get 2/3rd part. This is only enabled if workarond
4923 * 1. For regular filters.
4924 * 2. Server filter: This are special filters which are used
4925 * to redirect SYN packets to offload queue.
4927 if (adap
->flags
& CXGB4_FW_OFLD_CONN
&& !is_bypass(adap
)) {
4928 adap
->tids
.sftid_base
= adap
->tids
.ftid_base
+
4929 DIV_ROUND_UP(adap
->tids
.nftids
, 3);
4930 adap
->tids
.nsftids
= adap
->tids
.nftids
-
4931 DIV_ROUND_UP(adap
->tids
.nftids
, 3);
4932 adap
->tids
.nftids
= adap
->tids
.sftid_base
-
4933 adap
->tids
.ftid_base
;
4935 adap
->vres
.ddp
.start
= val
[3];
4936 adap
->vres
.ddp
.size
= val
[4] - val
[3] + 1;
4937 adap
->params
.ofldq_wr_cred
= val
[5];
4939 if (caps_cmd
.niccaps
& htons(FW_CAPS_CONFIG_NIC_HASHFILTER
)) {
4940 init_hash_filter(adap
);
4942 adap
->num_ofld_uld
+= 1;
4945 if (caps_cmd
.niccaps
& htons(FW_CAPS_CONFIG_NIC_ETHOFLD
)) {
4946 params
[0] = FW_PARAM_PFVF(ETHOFLD_START
);
4947 params
[1] = FW_PARAM_PFVF(ETHOFLD_END
);
4948 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0, 2,
4951 adap
->tids
.eotid_base
= val
[0];
4952 adap
->tids
.neotids
= min_t(u32
, MAX_ATIDS
,
4953 val
[1] - val
[0] + 1);
4954 adap
->params
.ethofld
= 1;
4958 if (caps_cmd
.rdmacaps
) {
4959 params
[0] = FW_PARAM_PFVF(STAG_START
);
4960 params
[1] = FW_PARAM_PFVF(STAG_END
);
4961 params
[2] = FW_PARAM_PFVF(RQ_START
);
4962 params
[3] = FW_PARAM_PFVF(RQ_END
);
4963 params
[4] = FW_PARAM_PFVF(PBL_START
);
4964 params
[5] = FW_PARAM_PFVF(PBL_END
);
4965 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0, 6,
4969 adap
->vres
.stag
.start
= val
[0];
4970 adap
->vres
.stag
.size
= val
[1] - val
[0] + 1;
4971 adap
->vres
.rq
.start
= val
[2];
4972 adap
->vres
.rq
.size
= val
[3] - val
[2] + 1;
4973 adap
->vres
.pbl
.start
= val
[4];
4974 adap
->vres
.pbl
.size
= val
[5] - val
[4] + 1;
4976 params
[0] = FW_PARAM_PFVF(SRQ_START
);
4977 params
[1] = FW_PARAM_PFVF(SRQ_END
);
4978 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0, 2,
4981 adap
->vres
.srq
.start
= val
[0];
4982 adap
->vres
.srq
.size
= val
[1] - val
[0] + 1;
4984 if (adap
->vres
.srq
.size
) {
4985 adap
->srq
= t4_init_srq(adap
->vres
.srq
.size
);
4987 dev_warn(&adap
->pdev
->dev
, "could not allocate SRQ, continuing\n");
4990 params
[0] = FW_PARAM_PFVF(SQRQ_START
);
4991 params
[1] = FW_PARAM_PFVF(SQRQ_END
);
4992 params
[2] = FW_PARAM_PFVF(CQ_START
);
4993 params
[3] = FW_PARAM_PFVF(CQ_END
);
4994 params
[4] = FW_PARAM_PFVF(OCQ_START
);
4995 params
[5] = FW_PARAM_PFVF(OCQ_END
);
4996 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0, 6, params
,
5000 adap
->vres
.qp
.start
= val
[0];
5001 adap
->vres
.qp
.size
= val
[1] - val
[0] + 1;
5002 adap
->vres
.cq
.start
= val
[2];
5003 adap
->vres
.cq
.size
= val
[3] - val
[2] + 1;
5004 adap
->vres
.ocq
.start
= val
[4];
5005 adap
->vres
.ocq
.size
= val
[5] - val
[4] + 1;
5007 params
[0] = FW_PARAM_DEV(MAXORDIRD_QP
);
5008 params
[1] = FW_PARAM_DEV(MAXIRD_ADAPTER
);
5009 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0, 2, params
,
5012 adap
->params
.max_ordird_qp
= 8;
5013 adap
->params
.max_ird_adapter
= 32 * adap
->tids
.ntids
;
5016 adap
->params
.max_ordird_qp
= val
[0];
5017 adap
->params
.max_ird_adapter
= val
[1];
5019 dev_info(adap
->pdev_dev
,
5020 "max_ordird_qp %d max_ird_adapter %d\n",
5021 adap
->params
.max_ordird_qp
,
5022 adap
->params
.max_ird_adapter
);
5024 /* Enable write_with_immediate if FW supports it */
5025 params
[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM
);
5026 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0, 1, params
,
5028 adap
->params
.write_w_imm_support
= (ret
== 0 && val
[0] != 0);
5030 /* Enable write_cmpl if FW supports it */
5031 params
[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR
);
5032 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0, 1, params
,
5034 adap
->params
.write_cmpl_support
= (ret
== 0 && val
[0] != 0);
5035 adap
->num_ofld_uld
+= 2;
5037 if (caps_cmd
.iscsicaps
) {
5038 params
[0] = FW_PARAM_PFVF(ISCSI_START
);
5039 params
[1] = FW_PARAM_PFVF(ISCSI_END
);
5040 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0, 2,
5044 adap
->vres
.iscsi
.start
= val
[0];
5045 adap
->vres
.iscsi
.size
= val
[1] - val
[0] + 1;
5046 if (is_t6(adap
->params
.chip
)) {
5047 params
[0] = FW_PARAM_PFVF(PPOD_EDRAM_START
);
5048 params
[1] = FW_PARAM_PFVF(PPOD_EDRAM_END
);
5049 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0, 2,
5052 adap
->vres
.ppod_edram
.start
= val
[0];
5053 adap
->vres
.ppod_edram
.size
=
5054 val
[1] - val
[0] + 1;
5056 dev_info(adap
->pdev_dev
,
5057 "ppod edram start 0x%x end 0x%x size 0x%x\n",
5059 adap
->vres
.ppod_edram
.size
);
5062 /* LIO target and cxgb4i initiaitor */
5063 adap
->num_ofld_uld
+= 2;
5065 if (caps_cmd
.cryptocaps
) {
5066 if (ntohs(caps_cmd
.cryptocaps
) &
5067 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE
) {
5068 params
[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE
);
5069 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0,
5075 adap
->vres
.ncrypto_fc
= val
[0];
5077 adap
->num_ofld_uld
+= 1;
5079 if (ntohs(caps_cmd
.cryptocaps
) &
5080 FW_CAPS_CONFIG_TLS_INLINE
) {
5081 params
[0] = FW_PARAM_PFVF(TLS_START
);
5082 params
[1] = FW_PARAM_PFVF(TLS_END
);
5083 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0,
5087 adap
->vres
.key
.start
= val
[0];
5088 adap
->vres
.key
.size
= val
[1] - val
[0] + 1;
5091 adap
->params
.crypto
= ntohs(caps_cmd
.cryptocaps
);
5094 /* The MTU/MSS Table is initialized by now, so load their values. If
5095 * we're initializing the adapter, then we'll make any modifications
5096 * we want to the MTU/MSS Table and also initialize the congestion
5099 t4_read_mtu_tbl(adap
, adap
->params
.mtus
, NULL
);
5100 if (state
!= DEV_STATE_INIT
) {
5103 /* The default MTU Table contains values 1492 and 1500.
5104 * However, for TCP, it's better to have two values which are
5105 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5106 * This allows us to have a TCP Data Payload which is a
5107 * multiple of 8 regardless of what combination of TCP Options
5108 * are in use (always a multiple of 4 bytes) which is
5109 * important for performance reasons. For instance, if no
5110 * options are in use, then we have a 20-byte IP header and a
5111 * 20-byte TCP header. In this case, a 1500-byte MSS would
5112 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5113 * which is not a multiple of 8. So using an MSS of 1488 in
5114 * this case results in a TCP Data Payload of 1448 bytes which
5115 * is a multiple of 8. On the other hand, if 12-byte TCP Time
5116 * Stamps have been negotiated, then an MTU of 1500 bytes
5117 * results in a TCP Data Payload of 1448 bytes which, as
5118 * above, is a multiple of 8 bytes ...
5120 for (i
= 0; i
< NMTUS
; i
++)
5121 if (adap
->params
.mtus
[i
] == 1492) {
5122 adap
->params
.mtus
[i
] = 1488;
5126 t4_load_mtus(adap
, adap
->params
.mtus
, adap
->params
.a_wnd
,
5127 adap
->params
.b_wnd
);
5129 t4_init_sge_params(adap
);
5130 adap
->flags
|= CXGB4_FW_OK
;
5131 t4_init_tp_params(adap
, true);
5135 * Something bad happened. If a command timed out or failed with EIO
5136 * FW does not operate within its spec or something catastrophic
5137 * happened to HW/FW, stop issuing commands.
5140 adap_free_hma_mem(adap
);
5141 kfree(adap
->sge
.egr_map
);
5142 kfree(adap
->sge
.ingr_map
);
5143 kfree(adap
->sge
.starving_fl
);
5144 kfree(adap
->sge
.txq_maperr
);
5145 #ifdef CONFIG_DEBUG_FS
5146 kfree(adap
->sge
.blocked_fl
);
5148 if (ret
!= -ETIMEDOUT
&& ret
!= -EIO
)
5149 t4_fw_bye(adap
, adap
->mbox
);
5155 static pci_ers_result_t
eeh_err_detected(struct pci_dev
*pdev
,
5156 pci_channel_state_t state
)
5159 struct adapter
*adap
= pci_get_drvdata(pdev
);
5165 adap
->flags
&= ~CXGB4_FW_OK
;
5166 notify_ulds(adap
, CXGB4_STATE_START_RECOVERY
);
5167 spin_lock(&adap
->stats_lock
);
5168 for_each_port(adap
, i
) {
5169 struct net_device
*dev
= adap
->port
[i
];
5171 netif_device_detach(dev
);
5172 netif_carrier_off(dev
);
5175 spin_unlock(&adap
->stats_lock
);
5176 disable_interrupts(adap
);
5177 if (adap
->flags
& CXGB4_FULL_INIT_DONE
)
5180 if ((adap
->flags
& CXGB4_DEV_ENABLED
)) {
5181 pci_disable_device(pdev
);
5182 adap
->flags
&= ~CXGB4_DEV_ENABLED
;
5184 out
: return state
== pci_channel_io_perm_failure
?
5185 PCI_ERS_RESULT_DISCONNECT
: PCI_ERS_RESULT_NEED_RESET
;
5188 static pci_ers_result_t
eeh_slot_reset(struct pci_dev
*pdev
)
5191 struct fw_caps_config_cmd c
;
5192 struct adapter
*adap
= pci_get_drvdata(pdev
);
5195 pci_restore_state(pdev
);
5196 pci_save_state(pdev
);
5197 return PCI_ERS_RESULT_RECOVERED
;
5200 if (!(adap
->flags
& CXGB4_DEV_ENABLED
)) {
5201 if (pci_enable_device(pdev
)) {
5202 dev_err(&pdev
->dev
, "Cannot reenable PCI "
5203 "device after reset\n");
5204 return PCI_ERS_RESULT_DISCONNECT
;
5206 adap
->flags
|= CXGB4_DEV_ENABLED
;
5209 pci_set_master(pdev
);
5210 pci_restore_state(pdev
);
5211 pci_save_state(pdev
);
5213 if (t4_wait_dev_ready(adap
->regs
) < 0)
5214 return PCI_ERS_RESULT_DISCONNECT
;
5215 if (t4_fw_hello(adap
, adap
->mbox
, adap
->pf
, MASTER_MUST
, NULL
) < 0)
5216 return PCI_ERS_RESULT_DISCONNECT
;
5217 adap
->flags
|= CXGB4_FW_OK
;
5218 if (adap_init1(adap
, &c
))
5219 return PCI_ERS_RESULT_DISCONNECT
;
5221 for_each_port(adap
, i
) {
5222 struct port_info
*pi
= adap2pinfo(adap
, i
);
5223 u8 vivld
= 0, vin
= 0;
5225 ret
= t4_alloc_vi(adap
, adap
->mbox
, pi
->tx_chan
, adap
->pf
, 0, 1,
5226 NULL
, NULL
, &vivld
, &vin
);
5228 return PCI_ERS_RESULT_DISCONNECT
;
5230 pi
->xact_addr_filt
= -1;
5231 /* If fw supports returning the VIN as part of FW_VI_CMD,
5232 * save the returned values.
5234 if (adap
->params
.viid_smt_extn_support
) {
5238 /* Retrieve the values from VIID */
5239 pi
->vivld
= FW_VIID_VIVLD_G(pi
->viid
);
5240 pi
->vin
= FW_VIID_VIN_G(pi
->viid
);
5244 t4_load_mtus(adap
, adap
->params
.mtus
, adap
->params
.a_wnd
,
5245 adap
->params
.b_wnd
);
5248 return PCI_ERS_RESULT_DISCONNECT
;
5249 return PCI_ERS_RESULT_RECOVERED
;
5252 static void eeh_resume(struct pci_dev
*pdev
)
5255 struct adapter
*adap
= pci_get_drvdata(pdev
);
5261 for_each_port(adap
, i
) {
5262 struct net_device
*dev
= adap
->port
[i
];
5264 if (netif_running(dev
)) {
5266 cxgb_set_rxmode(dev
);
5268 netif_device_attach(dev
);
5274 static void eeh_reset_prepare(struct pci_dev
*pdev
)
5276 struct adapter
*adapter
= pci_get_drvdata(pdev
);
5279 if (adapter
->pf
!= 4)
5282 adapter
->flags
&= ~CXGB4_FW_OK
;
5284 notify_ulds(adapter
, CXGB4_STATE_DOWN
);
5286 for_each_port(adapter
, i
)
5287 if (adapter
->port
[i
]->reg_state
== NETREG_REGISTERED
)
5288 cxgb_close(adapter
->port
[i
]);
5290 disable_interrupts(adapter
);
5291 cxgb4_free_mps_ref_entries(adapter
);
5293 adap_free_hma_mem(adapter
);
5295 if (adapter
->flags
& CXGB4_FULL_INIT_DONE
)
5299 static void eeh_reset_done(struct pci_dev
*pdev
)
5301 struct adapter
*adapter
= pci_get_drvdata(pdev
);
5304 if (adapter
->pf
!= 4)
5307 err
= t4_wait_dev_ready(adapter
->regs
);
5309 dev_err(adapter
->pdev_dev
,
5310 "Device not ready, err %d", err
);
5314 setup_memwin(adapter
);
5316 err
= adap_init0(adapter
, 1);
5318 dev_err(adapter
->pdev_dev
,
5319 "Adapter init failed, err %d", err
);
5323 setup_memwin_rdma(adapter
);
5325 if (adapter
->flags
& CXGB4_FW_OK
) {
5326 err
= t4_port_init(adapter
, adapter
->pf
, adapter
->pf
, 0);
5328 dev_err(adapter
->pdev_dev
,
5329 "Port init failed, err %d", err
);
5334 err
= cfg_queues(adapter
);
5336 dev_err(adapter
->pdev_dev
,
5337 "Config queues failed, err %d", err
);
5341 cxgb4_init_mps_ref_entries(adapter
);
5343 err
= setup_fw_sge_queues(adapter
);
5345 dev_err(adapter
->pdev_dev
,
5346 "FW sge queue allocation failed, err %d", err
);
5350 for_each_port(adapter
, i
)
5351 if (adapter
->port
[i
]->reg_state
== NETREG_REGISTERED
)
5352 cxgb_open(adapter
->port
[i
]);
5355 static const struct pci_error_handlers cxgb4_eeh
= {
5356 .error_detected
= eeh_err_detected
,
5357 .slot_reset
= eeh_slot_reset
,
5358 .resume
= eeh_resume
,
5359 .reset_prepare
= eeh_reset_prepare
,
5360 .reset_done
= eeh_reset_done
,
5363 /* Return true if the Link Configuration supports "High Speeds" (those greater
5366 static inline bool is_x_10g_port(const struct link_config
*lc
)
5368 unsigned int speeds
, high_speeds
;
5370 speeds
= FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc
->pcaps
));
5371 high_speeds
= speeds
&
5372 ~(FW_PORT_CAP32_SPEED_100M
| FW_PORT_CAP32_SPEED_1G
);
5374 return high_speeds
!= 0;
5377 /* Perform default configuration of DMA queues depending on the number and type
5378 * of ports we found and the number of available CPUs. Most settings can be
5379 * modified by the admin prior to actual use.
5381 static int cfg_queues(struct adapter
*adap
)
5383 u32 avail_qsets
, avail_eth_qsets
, avail_uld_qsets
;
5384 u32 niqflint
, neq
, num_ulds
;
5385 struct sge
*s
= &adap
->sge
;
5386 u32 i
, n10g
= 0, qidx
= 0;
5387 #ifndef CONFIG_CHELSIO_T4_DCB
5391 /* Reduce memory usage in kdump environment, disable all offload. */
5392 if (is_kdump_kernel() || (is_uld(adap
) && t4_uld_mem_alloc(adap
))) {
5393 adap
->params
.offload
= 0;
5394 adap
->params
.crypto
= 0;
5395 adap
->params
.ethofld
= 0;
5398 /* Calculate the number of Ethernet Queue Sets available based on
5399 * resources provisioned for us. We always have an Asynchronous
5400 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy
5401 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
5402 * Ingress Queue. Meanwhile, we need two Egress Queues for each
5403 * Queue Set: one for the Free List and one for the Ethernet TX Queue.
5405 * Note that we should also take into account all of the various
5406 * Offload Queues. But, in any situation where we're operating in
5407 * a Resource Constrained Provisioning environment, doing any Offload
5408 * at all is problematic ...
5410 niqflint
= adap
->params
.pfres
.niqflint
- 1;
5411 if (!(adap
->flags
& CXGB4_USING_MSIX
))
5413 neq
= adap
->params
.pfres
.neq
/ 2;
5414 avail_qsets
= min(niqflint
, neq
);
5416 if (avail_qsets
< adap
->params
.nports
) {
5417 dev_err(adap
->pdev_dev
, "avail_eth_qsets=%d < nports=%d\n",
5418 avail_qsets
, adap
->params
.nports
);
5422 /* Count the number of 10Gb/s or better ports */
5423 for_each_port(adap
, i
)
5424 n10g
+= is_x_10g_port(&adap2pinfo(adap
, i
)->link_cfg
);
5426 avail_eth_qsets
= min_t(u32
, avail_qsets
, MAX_ETH_QSETS
);
5427 #ifdef CONFIG_CHELSIO_T4_DCB
5428 /* For Data Center Bridging support we need to be able to support up
5429 * to 8 Traffic Priorities; each of which will be assigned to its
5430 * own TX Queue in order to prevent Head-Of-Line Blocking.
5432 if (adap
->params
.nports
* 8 > avail_eth_qsets
) {
5433 dev_err(adap
->pdev_dev
, "DCB avail_eth_qsets=%d < %d!\n",
5434 avail_eth_qsets
, adap
->params
.nports
* 8);
5438 for_each_port(adap
, i
) {
5439 struct port_info
*pi
= adap2pinfo(adap
, i
);
5441 pi
->first_qset
= qidx
;
5442 pi
->nqsets
= is_kdump_kernel() ? 1 : 8;
5445 #else /* !CONFIG_CHELSIO_T4_DCB */
5446 /* We default to 1 queue per non-10G port and up to # of cores queues
5450 q10g
= (avail_eth_qsets
- (adap
->params
.nports
- n10g
)) / n10g
;
5451 if (q10g
> netif_get_num_default_rss_queues())
5452 q10g
= netif_get_num_default_rss_queues();
5454 if (is_kdump_kernel())
5457 for_each_port(adap
, i
) {
5458 struct port_info
*pi
= adap2pinfo(adap
, i
);
5460 pi
->first_qset
= qidx
;
5461 pi
->nqsets
= is_x_10g_port(&pi
->link_cfg
) ? q10g
: 1;
5464 #endif /* !CONFIG_CHELSIO_T4_DCB */
5467 s
->max_ethqsets
= qidx
; /* MSI-X may lower it later */
5468 avail_qsets
-= qidx
;
5471 /* For offload we use 1 queue/channel if all ports are up to 1G,
5472 * otherwise we divide all available queues amongst the channels
5473 * capped by the number of available cores.
5475 num_ulds
= adap
->num_uld
+ adap
->num_ofld_uld
;
5476 i
= min_t(u32
, MAX_OFLD_QSETS
, num_online_cpus());
5477 avail_uld_qsets
= roundup(i
, adap
->params
.nports
);
5478 if (avail_qsets
< num_ulds
* adap
->params
.nports
) {
5479 adap
->params
.offload
= 0;
5480 adap
->params
.crypto
= 0;
5482 } else if (avail_qsets
< num_ulds
* avail_uld_qsets
|| !n10g
) {
5483 s
->ofldqsets
= adap
->params
.nports
;
5485 s
->ofldqsets
= avail_uld_qsets
;
5488 avail_qsets
-= num_ulds
* s
->ofldqsets
;
5491 /* ETHOFLD Queues used for QoS offload should follow same
5492 * allocation scheme as normal Ethernet Queues.
5494 if (is_ethofld(adap
)) {
5495 if (avail_qsets
< s
->max_ethqsets
) {
5496 adap
->params
.ethofld
= 0;
5499 s
->eoqsets
= s
->max_ethqsets
;
5501 avail_qsets
-= s
->eoqsets
;
5504 for (i
= 0; i
< ARRAY_SIZE(s
->ethrxq
); i
++) {
5505 struct sge_eth_rxq
*r
= &s
->ethrxq
[i
];
5507 init_rspq(adap
, &r
->rspq
, 5, 10, 1024, 64);
5511 for (i
= 0; i
< ARRAY_SIZE(s
->ethtxq
); i
++)
5512 s
->ethtxq
[i
].q
.size
= 1024;
5514 for (i
= 0; i
< ARRAY_SIZE(s
->ctrlq
); i
++)
5515 s
->ctrlq
[i
].q
.size
= 512;
5517 if (!is_t4(adap
->params
.chip
))
5518 s
->ptptxq
.q
.size
= 8;
5520 init_rspq(adap
, &s
->fw_evtq
, 0, 1, 1024, 64);
5521 init_rspq(adap
, &s
->intrq
, 0, 1, 512, 64);
5527 * Reduce the number of Ethernet queues across all ports to at most n.
5528 * n provides at least one queue per port.
5530 static void reduce_ethqs(struct adapter
*adap
, int n
)
5533 struct port_info
*pi
;
5535 while (n
< adap
->sge
.ethqsets
)
5536 for_each_port(adap
, i
) {
5537 pi
= adap2pinfo(adap
, i
);
5538 if (pi
->nqsets
> 1) {
5540 adap
->sge
.ethqsets
--;
5541 if (adap
->sge
.ethqsets
<= n
)
5547 for_each_port(adap
, i
) {
5548 pi
= adap2pinfo(adap
, i
);
5554 static int alloc_msix_info(struct adapter
*adap
, u32 num_vec
)
5556 struct msix_info
*msix_info
;
5558 msix_info
= kcalloc(num_vec
, sizeof(*msix_info
), GFP_KERNEL
);
5562 adap
->msix_bmap
.msix_bmap
= kcalloc(BITS_TO_LONGS(num_vec
),
5563 sizeof(long), GFP_KERNEL
);
5564 if (!adap
->msix_bmap
.msix_bmap
) {
5569 spin_lock_init(&adap
->msix_bmap
.lock
);
5570 adap
->msix_bmap
.mapsize
= num_vec
;
5572 adap
->msix_info
= msix_info
;
5576 static void free_msix_info(struct adapter
*adap
)
5578 kfree(adap
->msix_bmap
.msix_bmap
);
5579 kfree(adap
->msix_info
);
5582 int cxgb4_get_msix_idx_from_bmap(struct adapter
*adap
)
5584 struct msix_bmap
*bmap
= &adap
->msix_bmap
;
5585 unsigned int msix_idx
;
5586 unsigned long flags
;
5588 spin_lock_irqsave(&bmap
->lock
, flags
);
5589 msix_idx
= find_first_zero_bit(bmap
->msix_bmap
, bmap
->mapsize
);
5590 if (msix_idx
< bmap
->mapsize
) {
5591 __set_bit(msix_idx
, bmap
->msix_bmap
);
5593 spin_unlock_irqrestore(&bmap
->lock
, flags
);
5597 spin_unlock_irqrestore(&bmap
->lock
, flags
);
5601 void cxgb4_free_msix_idx_in_bmap(struct adapter
*adap
,
5602 unsigned int msix_idx
)
5604 struct msix_bmap
*bmap
= &adap
->msix_bmap
;
5605 unsigned long flags
;
5607 spin_lock_irqsave(&bmap
->lock
, flags
);
5608 __clear_bit(msix_idx
, bmap
->msix_bmap
);
5609 spin_unlock_irqrestore(&bmap
->lock
, flags
);
5612 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5613 #define EXTRA_VECS 2
5615 static int enable_msix(struct adapter
*adap
)
5617 u32 eth_need
, uld_need
= 0, ethofld_need
= 0;
5618 u32 ethqsets
= 0, ofldqsets
= 0, eoqsets
= 0;
5619 u8 num_uld
= 0, nchan
= adap
->params
.nports
;
5620 u32 i
, want
, need
, num_vec
;
5621 struct sge
*s
= &adap
->sge
;
5622 struct msix_entry
*entries
;
5623 struct port_info
*pi
;
5626 want
= s
->max_ethqsets
;
5627 #ifdef CONFIG_CHELSIO_T4_DCB
5628 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5637 num_uld
= adap
->num_ofld_uld
+ adap
->num_uld
;
5638 want
+= num_uld
* s
->ofldqsets
;
5639 uld_need
= num_uld
* nchan
;
5643 if (is_ethofld(adap
)) {
5645 ethofld_need
= eth_need
;
5646 need
+= ethofld_need
;
5652 entries
= kmalloc_array(want
, sizeof(*entries
), GFP_KERNEL
);
5656 for (i
= 0; i
< want
; i
++)
5657 entries
[i
].entry
= i
;
5659 allocated
= pci_enable_msix_range(adap
->pdev
, entries
, need
, want
);
5660 if (allocated
< 0) {
5661 /* Disable offload and attempt to get vectors for NIC
5664 want
= s
->max_ethqsets
+ EXTRA_VECS
;
5665 need
= eth_need
+ EXTRA_VECS
;
5666 allocated
= pci_enable_msix_range(adap
->pdev
, entries
,
5668 if (allocated
< 0) {
5669 dev_info(adap
->pdev_dev
,
5670 "Disabling MSI-X due to insufficient MSI-X vectors\n");
5675 dev_info(adap
->pdev_dev
,
5676 "Disabling offload due to insufficient MSI-X vectors\n");
5677 adap
->params
.offload
= 0;
5678 adap
->params
.crypto
= 0;
5679 adap
->params
.ethofld
= 0;
5686 num_vec
= allocated
;
5687 if (num_vec
< want
) {
5688 /* Distribute available vectors to the various queue groups.
5689 * Every group gets its minimum requirement and NIC gets top
5690 * priority for leftovers.
5692 ethqsets
= eth_need
;
5695 if (is_ethofld(adap
))
5696 eoqsets
= ethofld_need
;
5700 if (num_vec
< eth_need
+ ethofld_need
||
5701 ethqsets
> s
->max_ethqsets
)
5704 for_each_port(adap
, i
) {
5705 pi
= adap2pinfo(adap
, i
);
5720 if (num_vec
< uld_need
||
5721 ofldqsets
> s
->ofldqsets
)
5725 num_vec
-= uld_need
;
5729 ethqsets
= s
->max_ethqsets
;
5731 ofldqsets
= s
->ofldqsets
;
5732 if (is_ethofld(adap
))
5733 eoqsets
= s
->eoqsets
;
5736 if (ethqsets
< s
->max_ethqsets
) {
5737 s
->max_ethqsets
= ethqsets
;
5738 reduce_ethqs(adap
, ethqsets
);
5742 s
->ofldqsets
= ofldqsets
;
5743 s
->nqs_per_uld
= s
->ofldqsets
;
5746 if (is_ethofld(adap
))
5747 s
->eoqsets
= eoqsets
;
5750 ret
= alloc_msix_info(adap
, allocated
);
5752 goto out_disable_msix
;
5754 for (i
= 0; i
< allocated
; i
++) {
5755 adap
->msix_info
[i
].vec
= entries
[i
].vector
;
5756 adap
->msix_info
[i
].idx
= i
;
5759 dev_info(adap
->pdev_dev
,
5760 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d\n",
5761 allocated
, s
->max_ethqsets
, s
->eoqsets
, s
->nqs_per_uld
);
5767 pci_disable_msix(adap
->pdev
);
5776 static int init_rss(struct adapter
*adap
)
5781 err
= t4_init_rss_mode(adap
, adap
->mbox
);
5785 for_each_port(adap
, i
) {
5786 struct port_info
*pi
= adap2pinfo(adap
, i
);
5788 pi
->rss
= kcalloc(pi
->rss_size
, sizeof(u16
), GFP_KERNEL
);
5795 /* Dump basic information about the adapter */
5796 static void print_adapter_info(struct adapter
*adapter
)
5798 /* Hardware/Firmware/etc. Version/Revision IDs */
5799 t4_dump_version_info(adapter
);
5801 /* Software/Hardware configuration */
5802 dev_info(adapter
->pdev_dev
, "Configuration: %sNIC %s, %s capable\n",
5803 is_offload(adapter
) ? "R" : "",
5804 ((adapter
->flags
& CXGB4_USING_MSIX
) ? "MSI-X" :
5805 (adapter
->flags
& CXGB4_USING_MSI
) ? "MSI" : ""),
5806 is_offload(adapter
) ? "Offload" : "non-Offload");
5809 static void print_port_info(const struct net_device
*dev
)
5813 const struct port_info
*pi
= netdev_priv(dev
);
5814 const struct adapter
*adap
= pi
->adapter
;
5816 if (pi
->link_cfg
.pcaps
& FW_PORT_CAP32_SPEED_100M
)
5817 bufp
+= sprintf(bufp
, "100M/");
5818 if (pi
->link_cfg
.pcaps
& FW_PORT_CAP32_SPEED_1G
)
5819 bufp
+= sprintf(bufp
, "1G/");
5820 if (pi
->link_cfg
.pcaps
& FW_PORT_CAP32_SPEED_10G
)
5821 bufp
+= sprintf(bufp
, "10G/");
5822 if (pi
->link_cfg
.pcaps
& FW_PORT_CAP32_SPEED_25G
)
5823 bufp
+= sprintf(bufp
, "25G/");
5824 if (pi
->link_cfg
.pcaps
& FW_PORT_CAP32_SPEED_40G
)
5825 bufp
+= sprintf(bufp
, "40G/");
5826 if (pi
->link_cfg
.pcaps
& FW_PORT_CAP32_SPEED_50G
)
5827 bufp
+= sprintf(bufp
, "50G/");
5828 if (pi
->link_cfg
.pcaps
& FW_PORT_CAP32_SPEED_100G
)
5829 bufp
+= sprintf(bufp
, "100G/");
5830 if (pi
->link_cfg
.pcaps
& FW_PORT_CAP32_SPEED_200G
)
5831 bufp
+= sprintf(bufp
, "200G/");
5832 if (pi
->link_cfg
.pcaps
& FW_PORT_CAP32_SPEED_400G
)
5833 bufp
+= sprintf(bufp
, "400G/");
5836 sprintf(bufp
, "BASE-%s", t4_get_port_type_description(pi
->port_type
));
5838 netdev_info(dev
, "%s: Chelsio %s (%s) %s\n",
5839 dev
->name
, adap
->params
.vpd
.id
, adap
->name
, buf
);
5843 * Free the following resources:
5844 * - memory used for tables
5847 * - resources FW is holding for us
5849 static void free_some_resources(struct adapter
*adapter
)
5853 kvfree(adapter
->smt
);
5854 kvfree(adapter
->l2t
);
5855 kvfree(adapter
->srq
);
5856 t4_cleanup_sched(adapter
);
5857 kvfree(adapter
->tids
.tid_tab
);
5858 cxgb4_cleanup_tc_matchall(adapter
);
5859 cxgb4_cleanup_tc_mqprio(adapter
);
5860 cxgb4_cleanup_tc_flower(adapter
);
5861 cxgb4_cleanup_tc_u32(adapter
);
5862 kfree(adapter
->sge
.egr_map
);
5863 kfree(adapter
->sge
.ingr_map
);
5864 kfree(adapter
->sge
.starving_fl
);
5865 kfree(adapter
->sge
.txq_maperr
);
5866 #ifdef CONFIG_DEBUG_FS
5867 kfree(adapter
->sge
.blocked_fl
);
5869 disable_msi(adapter
);
5871 for_each_port(adapter
, i
)
5872 if (adapter
->port
[i
]) {
5873 struct port_info
*pi
= adap2pinfo(adapter
, i
);
5876 t4_free_vi(adapter
, adapter
->mbox
, adapter
->pf
,
5878 kfree(adap2pinfo(adapter
, i
)->rss
);
5879 free_netdev(adapter
->port
[i
]);
5881 if (adapter
->flags
& CXGB4_FW_OK
)
5882 t4_fw_bye(adapter
, adapter
->pf
);
5885 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \
5887 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5888 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5889 #define SEGMENT_SIZE 128
5891 static int t4_get_chip_type(struct adapter
*adap
, int ver
)
5893 u32 pl_rev
= REV_G(t4_read_reg(adap
, PL_REV_A
));
5897 return CHELSIO_CHIP_CODE(CHELSIO_T4
, pl_rev
);
5899 return CHELSIO_CHIP_CODE(CHELSIO_T5
, pl_rev
);
5901 return CHELSIO_CHIP_CODE(CHELSIO_T6
, pl_rev
);
5908 #ifdef CONFIG_PCI_IOV
5909 static void cxgb4_mgmt_setup(struct net_device
*dev
)
5911 dev
->type
= ARPHRD_NONE
;
5913 dev
->hard_header_len
= 0;
5915 dev
->tx_queue_len
= 0;
5916 dev
->flags
|= IFF_NOARP
;
5917 dev
->priv_flags
|= IFF_NO_QUEUE
;
5919 /* Initialize the device structure. */
5920 dev
->netdev_ops
= &cxgb4_mgmt_netdev_ops
;
5921 dev
->ethtool_ops
= &cxgb4_mgmt_ethtool_ops
;
5924 static int cxgb4_iov_configure(struct pci_dev
*pdev
, int num_vfs
)
5926 struct adapter
*adap
= pci_get_drvdata(pdev
);
5928 int current_vfs
= pci_num_vf(pdev
);
5931 pcie_fw
= readl(adap
->regs
+ PCIE_FW_A
);
5932 /* Check if fw is initialized */
5933 if (!(pcie_fw
& PCIE_FW_INIT_F
)) {
5934 dev_warn(&pdev
->dev
, "Device not initialized\n");
5938 /* If any of the VF's is already assigned to Guest OS, then
5939 * SRIOV for the same cannot be modified
5941 if (current_vfs
&& pci_vfs_assigned(pdev
)) {
5943 "Cannot modify SR-IOV while VFs are assigned\n");
5946 /* Note that the upper-level code ensures that we're never called with
5947 * a non-zero "num_vfs" when we already have VFs instantiated. But
5948 * it never hurts to code defensively.
5950 if (num_vfs
!= 0 && current_vfs
!= 0)
5953 /* Nothing to do for no change. */
5954 if (num_vfs
== current_vfs
)
5957 /* Disable SRIOV when zero is passed. */
5959 pci_disable_sriov(pdev
);
5960 /* free VF Management Interface */
5961 unregister_netdev(adap
->port
[0]);
5962 free_netdev(adap
->port
[0]);
5963 adap
->port
[0] = NULL
;
5965 /* free VF resources */
5967 kfree(adap
->vfinfo
);
5968 adap
->vfinfo
= NULL
;
5973 struct fw_pfvf_cmd port_cmd
, port_rpl
;
5974 struct net_device
*netdev
;
5975 unsigned int pmask
, port
;
5976 struct pci_dev
*pbridge
;
5977 struct port_info
*pi
;
5978 char name
[IFNAMSIZ
];
5982 /* If we want to instantiate Virtual Functions, then our
5983 * parent bridge's PCI-E needs to support Alternative Routing
5984 * ID (ARI) because our VFs will show up at function offset 8
5987 pbridge
= pdev
->bus
->self
;
5988 pcie_capability_read_word(pbridge
, PCI_EXP_FLAGS
, &flags
);
5989 pcie_capability_read_dword(pbridge
, PCI_EXP_DEVCAP2
, &devcap2
);
5991 if ((flags
& PCI_EXP_FLAGS_VERS
) < 2 ||
5992 !(devcap2
& PCI_EXP_DEVCAP2_ARI
)) {
5993 /* Our parent bridge does not support ARI so issue a
5994 * warning and skip instantiating the VFs. They
5995 * won't be reachable.
5997 dev_warn(&pdev
->dev
, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
5998 pbridge
->bus
->number
, PCI_SLOT(pbridge
->devfn
),
5999 PCI_FUNC(pbridge
->devfn
));
6002 memset(&port_cmd
, 0, sizeof(port_cmd
));
6003 port_cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD
) |
6006 FW_PFVF_CMD_PFN_V(adap
->pf
) |
6007 FW_PFVF_CMD_VFN_V(0));
6008 port_cmd
.retval_len16
= cpu_to_be32(FW_LEN16(port_cmd
));
6009 err
= t4_wr_mbox(adap
, adap
->mbox
, &port_cmd
, sizeof(port_cmd
),
6013 pmask
= FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl
.type_to_neq
));
6014 port
= ffs(pmask
) - 1;
6015 /* Allocate VF Management Interface. */
6016 snprintf(name
, IFNAMSIZ
, "mgmtpf%d,%d", adap
->adap_idx
,
6018 netdev
= alloc_netdev(sizeof(struct port_info
),
6019 name
, NET_NAME_UNKNOWN
, cxgb4_mgmt_setup
);
6023 pi
= netdev_priv(netdev
);
6027 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
6029 adap
->port
[0] = netdev
;
6032 err
= register_netdev(adap
->port
[0]);
6034 pr_info("Unable to register VF mgmt netdev %s\n", name
);
6035 free_netdev(adap
->port
[0]);
6036 adap
->port
[0] = NULL
;
6039 /* Allocate and set up VF Information. */
6040 adap
->vfinfo
= kcalloc(pci_sriov_get_totalvfs(pdev
),
6041 sizeof(struct vf_info
), GFP_KERNEL
);
6042 if (!adap
->vfinfo
) {
6043 unregister_netdev(adap
->port
[0]);
6044 free_netdev(adap
->port
[0]);
6045 adap
->port
[0] = NULL
;
6048 cxgb4_mgmt_fill_vf_station_mac_addr(adap
);
6050 /* Instantiate the requested number of VFs. */
6051 err
= pci_enable_sriov(pdev
, num_vfs
);
6053 pr_info("Unable to instantiate %d VFs\n", num_vfs
);
6055 unregister_netdev(adap
->port
[0]);
6056 free_netdev(adap
->port
[0]);
6057 adap
->port
[0] = NULL
;
6058 kfree(adap
->vfinfo
);
6059 adap
->vfinfo
= NULL
;
6064 adap
->num_vfs
= num_vfs
;
6067 #endif /* CONFIG_PCI_IOV */
6069 static int init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
6071 struct net_device
*netdev
;
6072 struct adapter
*adapter
;
6073 static int adap_idx
= 1;
6074 int s_qpp
, qpp
, num_seg
;
6075 struct port_info
*pi
;
6076 bool highdma
= false;
6077 enum chip_type chip
;
6084 printk_once(KERN_INFO
"%s - version %s\n", DRV_DESC
, DRV_VERSION
);
6086 err
= pci_request_regions(pdev
, KBUILD_MODNAME
);
6088 /* Just info, some other driver may have claimed the device. */
6089 dev_info(&pdev
->dev
, "cannot obtain PCI resources\n");
6093 err
= pci_enable_device(pdev
);
6095 dev_err(&pdev
->dev
, "cannot enable PCI device\n");
6096 goto out_release_regions
;
6099 regs
= pci_ioremap_bar(pdev
, 0);
6101 dev_err(&pdev
->dev
, "cannot map device registers\n");
6103 goto out_disable_device
;
6106 adapter
= kzalloc(sizeof(*adapter
), GFP_KERNEL
);
6109 goto out_unmap_bar0
;
6112 adapter
->regs
= regs
;
6113 err
= t4_wait_dev_ready(regs
);
6115 goto out_free_adapter
;
6117 /* We control everything through one PF */
6118 whoami
= t4_read_reg(adapter
, PL_WHOAMI_A
);
6119 pci_read_config_word(pdev
, PCI_DEVICE_ID
, &device_id
);
6120 chip
= t4_get_chip_type(adapter
, CHELSIO_PCI_ID_VER(device_id
));
6121 if ((int)chip
< 0) {
6122 dev_err(&pdev
->dev
, "Device %d is not supported\n", device_id
);
6124 goto out_free_adapter
;
6126 chip_ver
= CHELSIO_CHIP_VERSION(chip
);
6127 func
= chip_ver
<= CHELSIO_T5
?
6128 SOURCEPF_G(whoami
) : T6_SOURCEPF_G(whoami
);
6130 adapter
->pdev
= pdev
;
6131 adapter
->pdev_dev
= &pdev
->dev
;
6132 adapter
->name
= pci_name(pdev
);
6133 adapter
->mbox
= func
;
6135 adapter
->params
.chip
= chip
;
6136 adapter
->adap_idx
= adap_idx
;
6137 adapter
->msg_enable
= DFLT_MSG_ENABLE
;
6138 adapter
->mbox_log
= kzalloc(sizeof(*adapter
->mbox_log
) +
6139 (sizeof(struct mbox_cmd
) *
6140 T4_OS_LOG_MBOX_CMDS
),
6142 if (!adapter
->mbox_log
) {
6144 goto out_free_adapter
;
6146 spin_lock_init(&adapter
->mbox_lock
);
6147 INIT_LIST_HEAD(&adapter
->mlist
.list
);
6148 adapter
->mbox_log
->size
= T4_OS_LOG_MBOX_CMDS
;
6149 pci_set_drvdata(pdev
, adapter
);
6151 if (func
!= ent
->driver_data
) {
6152 pci_disable_device(pdev
);
6153 pci_save_state(pdev
); /* to restore SR-IOV later */
6157 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
6159 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
6161 dev_err(&pdev
->dev
, "unable to obtain 64-bit DMA for "
6162 "coherent allocations\n");
6163 goto out_free_adapter
;
6166 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
6168 dev_err(&pdev
->dev
, "no usable DMA configuration\n");
6169 goto out_free_adapter
;
6173 pci_enable_pcie_error_reporting(pdev
);
6174 pci_set_master(pdev
);
6175 pci_save_state(pdev
);
6177 adapter
->workq
= create_singlethread_workqueue("cxgb4");
6178 if (!adapter
->workq
) {
6180 goto out_free_adapter
;
6183 /* PCI device has been enabled */
6184 adapter
->flags
|= CXGB4_DEV_ENABLED
;
6185 memset(adapter
->chan_map
, 0xff, sizeof(adapter
->chan_map
));
6187 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
6188 * Ingress Packet Data to Free List Buffers in order to allow for
6189 * chipset performance optimizations between the Root Complex and
6190 * Memory Controllers. (Messages to the associated Ingress Queue
6191 * notifying new Packet Placement in the Free Lists Buffers will be
6192 * send without the Relaxed Ordering Attribute thus guaranteeing that
6193 * all preceding PCIe Transaction Layer Packets will be processed
6194 * first.) But some Root Complexes have various issues with Upstream
6195 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
6196 * The PCIe devices which under the Root Complexes will be cleared the
6197 * Relaxed Ordering bit in the configuration space, So we check our
6198 * PCIe configuration space to see if it's flagged with advice against
6199 * using Relaxed Ordering.
6201 if (!pcie_relaxed_ordering_enabled(pdev
))
6202 adapter
->flags
|= CXGB4_ROOT_NO_RELAXED_ORDERING
;
6204 spin_lock_init(&adapter
->stats_lock
);
6205 spin_lock_init(&adapter
->tid_release_lock
);
6206 spin_lock_init(&adapter
->win0_lock
);
6208 INIT_WORK(&adapter
->tid_release_task
, process_tid_release_list
);
6209 INIT_WORK(&adapter
->db_full_task
, process_db_full
);
6210 INIT_WORK(&adapter
->db_drop_task
, process_db_drop
);
6211 INIT_WORK(&adapter
->fatal_err_notify_task
, notify_fatal_err
);
6213 err
= t4_prep_adapter(adapter
);
6215 goto out_free_adapter
;
6217 if (is_kdump_kernel()) {
6218 /* Collect hardware state and append to /proc/vmcore */
6219 err
= cxgb4_cudbg_vmcore_add_dump(adapter
);
6221 dev_warn(adapter
->pdev_dev
,
6222 "Fail collecting vmcore device dump, err: %d. Continuing\n",
6228 if (!is_t4(adapter
->params
.chip
)) {
6229 s_qpp
= (QUEUESPERPAGEPF0_S
+
6230 (QUEUESPERPAGEPF1_S
- QUEUESPERPAGEPF0_S
) *
6232 qpp
= 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter
,
6233 SGE_EGRESS_QUEUES_PER_PAGE_PF_A
) >> s_qpp
);
6234 num_seg
= PAGE_SIZE
/ SEGMENT_SIZE
;
6236 /* Each segment size is 128B. Write coalescing is enabled only
6237 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6238 * queue is less no of segments that can be accommodated in
6241 if (qpp
> num_seg
) {
6243 "Incorrect number of egress queues per page\n");
6245 goto out_free_adapter
;
6247 adapter
->bar2
= ioremap_wc(pci_resource_start(pdev
, 2),
6248 pci_resource_len(pdev
, 2));
6249 if (!adapter
->bar2
) {
6250 dev_err(&pdev
->dev
, "cannot map device bar2 region\n");
6252 goto out_free_adapter
;
6256 setup_memwin(adapter
);
6257 err
= adap_init0(adapter
, 0);
6258 #ifdef CONFIG_DEBUG_FS
6259 bitmap_zero(adapter
->sge
.blocked_fl
, adapter
->sge
.egr_sz
);
6261 setup_memwin_rdma(adapter
);
6265 /* configure SGE_STAT_CFG_A to read WC stats */
6266 if (!is_t4(adapter
->params
.chip
))
6267 t4_write_reg(adapter
, SGE_STAT_CFG_A
, STATSOURCE_T5_V(7) |
6268 (is_t5(adapter
->params
.chip
) ? STATMODE_V(0) :
6271 /* Initialize hash mac addr list */
6272 INIT_LIST_HEAD(&adapter
->mac_hlist
);
6274 for_each_port(adapter
, i
) {
6275 /* For supporting MQPRIO Offload, need some extra
6276 * queues for each ETHOFLD TIDs. Keep it equal to
6277 * MAX_ATIDs for now. Once we connect to firmware
6278 * later and query the EOTID params, we'll come to
6279 * know the actual # of EOTIDs supported.
6281 netdev
= alloc_etherdev_mq(sizeof(struct port_info
),
6282 MAX_ETH_QSETS
+ MAX_ATIDS
);
6288 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
6290 adapter
->port
[i
] = netdev
;
6291 pi
= netdev_priv(netdev
);
6292 pi
->adapter
= adapter
;
6293 pi
->xact_addr_filt
= -1;
6295 netdev
->irq
= pdev
->irq
;
6297 netdev
->hw_features
= NETIF_F_SG
| TSO_FLAGS
|
6298 NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
6299 NETIF_F_RXCSUM
| NETIF_F_RXHASH
| NETIF_F_GRO
|
6300 NETIF_F_HW_VLAN_CTAG_TX
| NETIF_F_HW_VLAN_CTAG_RX
|
6303 if (chip_ver
> CHELSIO_T5
) {
6304 netdev
->hw_enc_features
|= NETIF_F_IP_CSUM
|
6307 NETIF_F_GSO_UDP_TUNNEL
|
6308 NETIF_F_GSO_UDP_TUNNEL_CSUM
|
6309 NETIF_F_TSO
| NETIF_F_TSO6
;
6311 netdev
->hw_features
|= NETIF_F_GSO_UDP_TUNNEL
|
6312 NETIF_F_GSO_UDP_TUNNEL_CSUM
|
6313 NETIF_F_HW_TLS_RECORD
;
6317 netdev
->hw_features
|= NETIF_F_HIGHDMA
;
6318 netdev
->features
|= netdev
->hw_features
;
6319 netdev
->vlan_features
= netdev
->features
& VLAN_FEAT
;
6321 netdev
->priv_flags
|= IFF_UNICAST_FLT
;
6323 /* MTU range: 81 - 9600 */
6324 netdev
->min_mtu
= 81; /* accommodate SACK */
6325 netdev
->max_mtu
= MAX_MTU
;
6327 netdev
->netdev_ops
= &cxgb4_netdev_ops
;
6328 #ifdef CONFIG_CHELSIO_T4_DCB
6329 netdev
->dcbnl_ops
= &cxgb4_dcb_ops
;
6330 cxgb4_dcb_state_init(netdev
);
6331 cxgb4_dcb_version_init(netdev
);
6333 cxgb4_set_ethtool_ops(netdev
);
6336 cxgb4_init_ethtool_dump(adapter
);
6338 pci_set_drvdata(pdev
, adapter
);
6340 if (adapter
->flags
& CXGB4_FW_OK
) {
6341 err
= t4_port_init(adapter
, func
, func
, 0);
6344 } else if (adapter
->params
.nports
== 1) {
6345 /* If we don't have a connection to the firmware -- possibly
6346 * because of an error -- grab the raw VPD parameters so we
6347 * can set the proper MAC Address on the debug network
6348 * interface that we've created.
6350 u8 hw_addr
[ETH_ALEN
];
6351 u8
*na
= adapter
->params
.vpd
.na
;
6353 err
= t4_get_raw_vpd_params(adapter
, &adapter
->params
.vpd
);
6355 for (i
= 0; i
< ETH_ALEN
; i
++)
6356 hw_addr
[i
] = (hex2val(na
[2 * i
+ 0]) * 16 +
6357 hex2val(na
[2 * i
+ 1]));
6358 t4_set_hw_addr(adapter
, 0, hw_addr
);
6362 if (!(adapter
->flags
& CXGB4_FW_OK
))
6363 goto fw_attach_fail
;
6365 /* Configure queues and allocate tables now, they can be needed as
6366 * soon as the first register_netdev completes.
6368 err
= cfg_queues(adapter
);
6372 adapter
->smt
= t4_init_smt();
6373 if (!adapter
->smt
) {
6374 /* We tolerate a lack of SMT, giving up some functionality */
6375 dev_warn(&pdev
->dev
, "could not allocate SMT, continuing\n");
6378 adapter
->l2t
= t4_init_l2t(adapter
->l2t_start
, adapter
->l2t_end
);
6379 if (!adapter
->l2t
) {
6380 /* We tolerate a lack of L2T, giving up some functionality */
6381 dev_warn(&pdev
->dev
, "could not allocate L2T, continuing\n");
6382 adapter
->params
.offload
= 0;
6385 #if IS_ENABLED(CONFIG_IPV6)
6386 if (chip_ver
<= CHELSIO_T5
&&
6387 (!(t4_read_reg(adapter
, LE_DB_CONFIG_A
) & ASLIPCOMPEN_F
))) {
6388 /* CLIP functionality is not present in hardware,
6389 * hence disable all offload features
6391 dev_warn(&pdev
->dev
,
6392 "CLIP not enabled in hardware, continuing\n");
6393 adapter
->params
.offload
= 0;
6395 adapter
->clipt
= t4_init_clip_tbl(adapter
->clipt_start
,
6396 adapter
->clipt_end
);
6397 if (!adapter
->clipt
) {
6398 /* We tolerate a lack of clip_table, giving up
6399 * some functionality
6401 dev_warn(&pdev
->dev
,
6402 "could not allocate Clip table, continuing\n");
6403 adapter
->params
.offload
= 0;
6408 for_each_port(adapter
, i
) {
6409 pi
= adap2pinfo(adapter
, i
);
6410 pi
->sched_tbl
= t4_init_sched(adapter
->params
.nsched_cls
);
6412 dev_warn(&pdev
->dev
,
6413 "could not activate scheduling on port %d\n",
6417 if (tid_init(&adapter
->tids
) < 0) {
6418 dev_warn(&pdev
->dev
, "could not allocate TID table, "
6420 adapter
->params
.offload
= 0;
6422 adapter
->tc_u32
= cxgb4_init_tc_u32(adapter
);
6423 if (!adapter
->tc_u32
)
6424 dev_warn(&pdev
->dev
,
6425 "could not offload tc u32, continuing\n");
6427 if (cxgb4_init_tc_flower(adapter
))
6428 dev_warn(&pdev
->dev
,
6429 "could not offload tc flower, continuing\n");
6431 if (cxgb4_init_tc_mqprio(adapter
))
6432 dev_warn(&pdev
->dev
,
6433 "could not offload tc mqprio, continuing\n");
6435 if (cxgb4_init_tc_matchall(adapter
))
6436 dev_warn(&pdev
->dev
,
6437 "could not offload tc matchall, continuing\n");
6440 if (is_offload(adapter
) || is_hashfilter(adapter
)) {
6441 if (t4_read_reg(adapter
, LE_DB_CONFIG_A
) & HASHEN_F
) {
6442 u32 hash_base
, hash_reg
;
6444 if (chip_ver
<= CHELSIO_T5
) {
6445 hash_reg
= LE_DB_TID_HASHBASE_A
;
6446 hash_base
= t4_read_reg(adapter
, hash_reg
);
6447 adapter
->tids
.hash_base
= hash_base
/ 4;
6449 hash_reg
= T6_LE_DB_HASH_TID_BASE_A
;
6450 hash_base
= t4_read_reg(adapter
, hash_reg
);
6451 adapter
->tids
.hash_base
= hash_base
;
6456 /* See what interrupts we'll be using */
6457 if (msi
> 1 && enable_msix(adapter
) == 0)
6458 adapter
->flags
|= CXGB4_USING_MSIX
;
6459 else if (msi
> 0 && pci_enable_msi(pdev
) == 0) {
6460 adapter
->flags
|= CXGB4_USING_MSI
;
6462 free_msix_info(adapter
);
6465 /* check for PCI Express bandwidth capabiltites */
6466 pcie_print_link_status(pdev
);
6468 cxgb4_init_mps_ref_entries(adapter
);
6470 err
= init_rss(adapter
);
6474 err
= setup_non_data_intr(adapter
);
6476 dev_err(adapter
->pdev_dev
,
6477 "Non Data interrupt allocation failed, err: %d\n", err
);
6481 err
= setup_fw_sge_queues(adapter
);
6483 dev_err(adapter
->pdev_dev
,
6484 "FW sge queue allocation failed, err %d", err
);
6490 * The card is now ready to go. If any errors occur during device
6491 * registration we do not fail the whole card but rather proceed only
6492 * with the ports we manage to register successfully. However we must
6493 * register at least one net device.
6495 for_each_port(adapter
, i
) {
6496 pi
= adap2pinfo(adapter
, i
);
6497 adapter
->port
[i
]->dev_port
= pi
->lport
;
6498 netif_set_real_num_tx_queues(adapter
->port
[i
], pi
->nqsets
);
6499 netif_set_real_num_rx_queues(adapter
->port
[i
], pi
->nqsets
);
6501 netif_carrier_off(adapter
->port
[i
]);
6503 err
= register_netdev(adapter
->port
[i
]);
6506 adapter
->chan_map
[pi
->tx_chan
] = i
;
6507 print_port_info(adapter
->port
[i
]);
6510 dev_err(&pdev
->dev
, "could not register any net devices\n");
6514 dev_warn(&pdev
->dev
, "only %d net devices registered\n", i
);
6518 if (cxgb4_debugfs_root
) {
6519 adapter
->debugfs_root
= debugfs_create_dir(pci_name(pdev
),
6520 cxgb4_debugfs_root
);
6521 setup_debugfs(adapter
);
6524 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6525 pdev
->needs_freset
= 1;
6527 if (is_uld(adapter
)) {
6528 mutex_lock(&uld_mutex
);
6529 list_add_tail(&adapter
->list_node
, &adapter_list
);
6530 mutex_unlock(&uld_mutex
);
6533 if (!is_t4(adapter
->params
.chip
))
6534 cxgb4_ptp_init(adapter
);
6536 if (IS_REACHABLE(CONFIG_THERMAL
) &&
6537 !is_t4(adapter
->params
.chip
) && (adapter
->flags
& CXGB4_FW_OK
))
6538 cxgb4_thermal_init(adapter
);
6540 print_adapter_info(adapter
);
6544 t4_free_sge_resources(adapter
);
6545 free_some_resources(adapter
);
6546 if (adapter
->flags
& CXGB4_USING_MSIX
)
6547 free_msix_info(adapter
);
6548 if (adapter
->num_uld
|| adapter
->num_ofld_uld
)
6549 t4_uld_mem_free(adapter
);
6551 if (!is_t4(adapter
->params
.chip
))
6552 iounmap(adapter
->bar2
);
6555 destroy_workqueue(adapter
->workq
);
6557 kfree(adapter
->mbox_log
);
6562 pci_disable_pcie_error_reporting(pdev
);
6563 pci_disable_device(pdev
);
6564 out_release_regions
:
6565 pci_release_regions(pdev
);
6569 static void remove_one(struct pci_dev
*pdev
)
6571 struct adapter
*adapter
= pci_get_drvdata(pdev
);
6572 struct hash_mac_addr
*entry
, *tmp
;
6575 pci_release_regions(pdev
);
6579 /* If we allocated filters, free up state associated with any
6582 clear_all_filters(adapter
);
6584 adapter
->flags
|= CXGB4_SHUTTING_DOWN
;
6586 if (adapter
->pf
== 4) {
6589 /* Tear down per-adapter Work Queue first since it can contain
6590 * references to our adapter data structure.
6592 destroy_workqueue(adapter
->workq
);
6594 if (is_uld(adapter
)) {
6595 detach_ulds(adapter
);
6596 t4_uld_clean_up(adapter
);
6599 adap_free_hma_mem(adapter
);
6601 disable_interrupts(adapter
);
6603 cxgb4_free_mps_ref_entries(adapter
);
6605 for_each_port(adapter
, i
)
6606 if (adapter
->port
[i
]->reg_state
== NETREG_REGISTERED
)
6607 unregister_netdev(adapter
->port
[i
]);
6609 debugfs_remove_recursive(adapter
->debugfs_root
);
6611 if (!is_t4(adapter
->params
.chip
))
6612 cxgb4_ptp_stop(adapter
);
6613 if (IS_REACHABLE(CONFIG_THERMAL
))
6614 cxgb4_thermal_remove(adapter
);
6616 if (adapter
->flags
& CXGB4_FULL_INIT_DONE
)
6619 if (adapter
->flags
& CXGB4_USING_MSIX
)
6620 free_msix_info(adapter
);
6621 if (adapter
->num_uld
|| adapter
->num_ofld_uld
)
6622 t4_uld_mem_free(adapter
);
6623 free_some_resources(adapter
);
6624 list_for_each_entry_safe(entry
, tmp
, &adapter
->mac_hlist
,
6626 list_del(&entry
->list
);
6630 #if IS_ENABLED(CONFIG_IPV6)
6631 t4_cleanup_clip_tbl(adapter
);
6633 if (!is_t4(adapter
->params
.chip
))
6634 iounmap(adapter
->bar2
);
6636 #ifdef CONFIG_PCI_IOV
6638 cxgb4_iov_configure(adapter
->pdev
, 0);
6641 iounmap(adapter
->regs
);
6642 pci_disable_pcie_error_reporting(pdev
);
6643 if ((adapter
->flags
& CXGB4_DEV_ENABLED
)) {
6644 pci_disable_device(pdev
);
6645 adapter
->flags
&= ~CXGB4_DEV_ENABLED
;
6647 pci_release_regions(pdev
);
6648 kfree(adapter
->mbox_log
);
6653 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
6654 * delivery. This is essentially a stripped down version of the PCI remove()
6655 * function where we do the minimal amount of work necessary to shutdown any
6658 static void shutdown_one(struct pci_dev
*pdev
)
6660 struct adapter
*adapter
= pci_get_drvdata(pdev
);
6662 /* As with remove_one() above (see extended comment), we only want do
6663 * do cleanup on PCI Devices which went all the way through init_one()
6667 pci_release_regions(pdev
);
6671 adapter
->flags
|= CXGB4_SHUTTING_DOWN
;
6673 if (adapter
->pf
== 4) {
6676 for_each_port(adapter
, i
)
6677 if (adapter
->port
[i
]->reg_state
== NETREG_REGISTERED
)
6678 cxgb_close(adapter
->port
[i
]);
6680 if (is_uld(adapter
)) {
6681 detach_ulds(adapter
);
6682 t4_uld_clean_up(adapter
);
6685 disable_interrupts(adapter
);
6686 disable_msi(adapter
);
6688 t4_sge_stop(adapter
);
6689 if (adapter
->flags
& CXGB4_FW_OK
)
6690 t4_fw_bye(adapter
, adapter
->mbox
);
6694 static struct pci_driver cxgb4_driver
= {
6695 .name
= KBUILD_MODNAME
,
6696 .id_table
= cxgb4_pci_tbl
,
6698 .remove
= remove_one
,
6699 .shutdown
= shutdown_one
,
6700 #ifdef CONFIG_PCI_IOV
6701 .sriov_configure
= cxgb4_iov_configure
,
6703 .err_handler
= &cxgb4_eeh
,
6706 static int __init
cxgb4_init_module(void)
6710 cxgb4_debugfs_root
= debugfs_create_dir(KBUILD_MODNAME
, NULL
);
6712 ret
= pci_register_driver(&cxgb4_driver
);
6716 #if IS_ENABLED(CONFIG_IPV6)
6717 if (!inet6addr_registered
) {
6718 ret
= register_inet6addr_notifier(&cxgb4_inet6addr_notifier
);
6720 pci_unregister_driver(&cxgb4_driver
);
6722 inet6addr_registered
= true;
6730 debugfs_remove(cxgb4_debugfs_root
);
6735 static void __exit
cxgb4_cleanup_module(void)
6737 #if IS_ENABLED(CONFIG_IPV6)
6738 if (inet6addr_registered
) {
6739 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier
);
6740 inet6addr_registered
= false;
6743 pci_unregister_driver(&cxgb4_driver
);
6744 debugfs_remove(cxgb4_debugfs_root
); /* NULL ok */
6747 module_init(cxgb4_init_module
);
6748 module_exit(cxgb4_cleanup_module
);