2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 #include <linux/pci.h>
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4_values.h"
43 #include "../cxgb4/t4fw_api.h"
46 * Wait for the device to become ready (signified by our "who am I" register
47 * returning a value other than all 1's). Return an error if it doesn't
50 int t4vf_wait_dev_ready(struct adapter
*adapter
)
52 const u32 whoami
= T4VF_PL_BASE_ADDR
+ PL_VF_WHOAMI
;
53 const u32 notready1
= 0xffffffff;
54 const u32 notready2
= 0xeeeeeeee;
57 val
= t4_read_reg(adapter
, whoami
);
58 if (val
!= notready1
&& val
!= notready2
)
61 val
= t4_read_reg(adapter
, whoami
);
62 if (val
!= notready1
&& val
!= notready2
)
69 * Get the reply to a mailbox command and store it in @rpl in big-endian order
70 * (since the firmware data structures are specified in a big-endian layout).
72 static void get_mbox_rpl(struct adapter
*adapter
, __be64
*rpl
, int size
,
75 for ( ; size
; size
-= 8, mbox_data
+= 8)
76 *rpl
++ = cpu_to_be64(t4_read_reg64(adapter
, mbox_data
));
80 * t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
81 * @adapter: the adapter
82 * @cmd: the Firmware Mailbox Command or Reply
83 * @size: command length in bytes
84 * @access: the time (ms) needed to access the Firmware Mailbox
85 * @execute: the time (ms) the command spent being executed
87 static void t4vf_record_mbox(struct adapter
*adapter
, const __be64
*cmd
,
88 int size
, int access
, int execute
)
90 struct mbox_cmd_log
*log
= adapter
->mbox_log
;
91 struct mbox_cmd
*entry
;
94 entry
= mbox_cmd_log_entry(log
, log
->cursor
++);
95 if (log
->cursor
== log
->size
)
98 for (i
= 0; i
< size
/ 8; i
++)
99 entry
->cmd
[i
] = be64_to_cpu(cmd
[i
]);
100 while (i
< MBOX_LEN
/ 8)
102 entry
->timestamp
= jiffies
;
103 entry
->seqno
= log
->seqno
++;
104 entry
->access
= access
;
105 entry
->execute
= execute
;
109 * t4vf_wr_mbox_core - send a command to FW through the mailbox
110 * @adapter: the adapter
111 * @cmd: the command to write
112 * @size: command length in bytes
113 * @rpl: where to optionally store the reply
114 * @sleep_ok: if true we may sleep while awaiting command completion
116 * Sends the given command to FW through the mailbox and waits for the
117 * FW to execute the command. If @rpl is not %NULL it is used to store
118 * the FW's reply to the command. The command and its optional reply
119 * are of the same length. FW can take up to 500 ms to respond.
120 * @sleep_ok determines whether we may sleep while awaiting the response.
121 * If sleeping is allowed we use progressive backoff otherwise we spin.
123 * The return value is 0 on success or a negative errno on failure. A
124 * failure can happen either because we are not able to execute the
125 * command or FW executes it but signals an error. In the latter case
126 * the return value is the error code indicated by FW (negated).
128 int t4vf_wr_mbox_core(struct adapter
*adapter
, const void *cmd
, int size
,
129 void *rpl
, bool sleep_ok
)
131 static const int delay
[] = {
132 1, 1, 3, 5, 10, 10, 20, 50, 100
135 u16 access
= 0, execute
= 0;
137 int i
, ms
, delay_idx
, ret
;
139 u32 mbox_ctl
= T4VF_CIM_BASE_ADDR
+ CIM_VF_EXT_MAILBOX_CTRL
;
140 u32 cmd_op
= FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr
*)cmd
)->hi
));
141 __be64 cmd_rpl
[MBOX_LEN
/ 8];
142 struct mbox_list entry
;
144 /* In T6, mailbox size is changed to 128 bytes to avoid
145 * invalidating the entire prefetch buffer.
147 if (CHELSIO_CHIP_VERSION(adapter
->params
.chip
) <= CHELSIO_T5
)
148 mbox_data
= T4VF_MBDATA_BASE_ADDR
;
150 mbox_data
= T6VF_MBDATA_BASE_ADDR
;
153 * Commands must be multiples of 16 bytes in length and may not be
154 * larger than the size of the Mailbox Data register array.
156 if ((size
% 16) != 0 ||
157 size
> NUM_CIM_VF_MAILBOX_DATA_INSTANCES
* 4)
160 /* Queue ourselves onto the mailbox access list. When our entry is at
161 * the front of the list, we have rights to access the mailbox. So we
162 * wait [for a while] till we're at the front [or bail out with an
165 spin_lock(&adapter
->mbox_lock
);
166 list_add_tail(&entry
.list
, &adapter
->mlist
.list
);
167 spin_unlock(&adapter
->mbox_lock
);
172 for (i
= 0; ; i
+= ms
) {
173 /* If we've waited too long, return a busy indication. This
174 * really ought to be based on our initial position in the
175 * mailbox access list but this is a start. We very rearely
176 * contend on access to the mailbox ...
178 if (i
> FW_CMD_MAX_TIMEOUT
) {
179 spin_lock(&adapter
->mbox_lock
);
180 list_del(&entry
.list
);
181 spin_unlock(&adapter
->mbox_lock
);
183 t4vf_record_mbox(adapter
, cmd
, size
, access
, ret
);
187 /* If we're at the head, break out and start the mailbox
190 if (list_first_entry(&adapter
->mlist
.list
, struct mbox_list
,
194 /* Delay for a bit before checking again ... */
196 ms
= delay
[delay_idx
]; /* last element may repeat */
197 if (delay_idx
< ARRAY_SIZE(delay
) - 1)
206 * Loop trying to get ownership of the mailbox. Return an error
207 * if we can't gain ownership.
209 v
= MBOWNER_G(t4_read_reg(adapter
, mbox_ctl
));
210 for (i
= 0; v
== MBOX_OWNER_NONE
&& i
< 3; i
++)
211 v
= MBOWNER_G(t4_read_reg(adapter
, mbox_ctl
));
212 if (v
!= MBOX_OWNER_DRV
) {
213 spin_lock(&adapter
->mbox_lock
);
214 list_del(&entry
.list
);
215 spin_unlock(&adapter
->mbox_lock
);
216 ret
= (v
== MBOX_OWNER_FW
) ? -EBUSY
: -ETIMEDOUT
;
217 t4vf_record_mbox(adapter
, cmd
, size
, access
, ret
);
222 * Write the command array into the Mailbox Data register array and
223 * transfer ownership of the mailbox to the firmware.
225 * For the VFs, the Mailbox Data "registers" are actually backed by
226 * T4's "MA" interface rather than PL Registers (as is the case for
227 * the PFs). Because these are in different coherency domains, the
228 * write to the VF's PL-register-backed Mailbox Control can race in
229 * front of the writes to the MA-backed VF Mailbox Data "registers".
230 * So we need to do a read-back on at least one byte of the VF Mailbox
231 * Data registers before doing the write to the VF Mailbox Control
234 if (cmd_op
!= FW_VI_STATS_CMD
)
235 t4vf_record_mbox(adapter
, cmd
, size
, access
, 0);
236 for (i
= 0, p
= cmd
; i
< size
; i
+= 8)
237 t4_write_reg64(adapter
, mbox_data
+ i
, be64_to_cpu(*p
++));
238 t4_read_reg(adapter
, mbox_data
); /* flush write */
240 t4_write_reg(adapter
, mbox_ctl
,
241 MBMSGVALID_F
| MBOWNER_V(MBOX_OWNER_FW
));
242 t4_read_reg(adapter
, mbox_ctl
); /* flush write */
245 * Spin waiting for firmware to acknowledge processing our command.
250 for (i
= 0; i
< FW_CMD_MAX_TIMEOUT
; i
+= ms
) {
252 ms
= delay
[delay_idx
];
253 if (delay_idx
< ARRAY_SIZE(delay
) - 1)
260 * If we're the owner, see if this is the reply we wanted.
262 v
= t4_read_reg(adapter
, mbox_ctl
);
263 if (MBOWNER_G(v
) == MBOX_OWNER_DRV
) {
265 * If the Message Valid bit isn't on, revoke ownership
266 * of the mailbox and continue waiting for our reply.
268 if ((v
& MBMSGVALID_F
) == 0) {
269 t4_write_reg(adapter
, mbox_ctl
,
270 MBOWNER_V(MBOX_OWNER_NONE
));
275 * We now have our reply. Extract the command return
276 * value, copy the reply back to our caller's buffer
277 * (if specified) and revoke ownership of the mailbox.
278 * We return the (negated) firmware command return
279 * code (this depends on FW_SUCCESS == 0).
281 get_mbox_rpl(adapter
, cmd_rpl
, size
, mbox_data
);
283 /* return value in low-order little-endian word */
284 v
= be64_to_cpu(cmd_rpl
[0]);
287 /* request bit in high-order BE word */
288 WARN_ON((be32_to_cpu(*(const __be32
*)cmd
)
289 & FW_CMD_REQUEST_F
) == 0);
290 memcpy(rpl
, cmd_rpl
, size
);
291 WARN_ON((be32_to_cpu(*(__be32
*)rpl
)
292 & FW_CMD_REQUEST_F
) != 0);
294 t4_write_reg(adapter
, mbox_ctl
,
295 MBOWNER_V(MBOX_OWNER_NONE
));
297 if (cmd_op
!= FW_VI_STATS_CMD
)
298 t4vf_record_mbox(adapter
, cmd_rpl
, size
, access
,
300 spin_lock(&adapter
->mbox_lock
);
301 list_del(&entry
.list
);
302 spin_unlock(&adapter
->mbox_lock
);
303 return -FW_CMD_RETVAL_G(v
);
307 /* We timed out. Return the error ... */
309 t4vf_record_mbox(adapter
, cmd
, size
, access
, ret
);
310 spin_lock(&adapter
->mbox_lock
);
311 list_del(&entry
.list
);
312 spin_unlock(&adapter
->mbox_lock
);
316 /* In the Physical Function Driver Common Code, the ADVERT_MASK is used to
317 * mask out bits in the Advertised Port Capabilities which are managed via
318 * separate controls, like Pause Frames and Forward Error Correction. In the
319 * Virtual Function Common Code, since we never perform L1 Configuration on
320 * the Link, the only things we really need to filter out are things which
321 * we decode and report separately like Speed.
323 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
324 FW_PORT_CAP32_802_3_PAUSE | \
325 FW_PORT_CAP32_802_3_ASM_DIR | \
326 FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M) | \
330 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
331 * @caps16: a 16-bit Port Capabilities value
333 * Returns the equivalent 32-bit Port Capabilities value.
335 static fw_port_cap32_t
fwcaps16_to_caps32(fw_port_cap16_t caps16
)
337 fw_port_cap32_t caps32
= 0;
339 #define CAP16_TO_CAP32(__cap) \
341 if (caps16 & FW_PORT_CAP_##__cap) \
342 caps32 |= FW_PORT_CAP32_##__cap; \
345 CAP16_TO_CAP32(SPEED_100M
);
346 CAP16_TO_CAP32(SPEED_1G
);
347 CAP16_TO_CAP32(SPEED_25G
);
348 CAP16_TO_CAP32(SPEED_10G
);
349 CAP16_TO_CAP32(SPEED_40G
);
350 CAP16_TO_CAP32(SPEED_100G
);
351 CAP16_TO_CAP32(FC_RX
);
352 CAP16_TO_CAP32(FC_TX
);
353 CAP16_TO_CAP32(ANEG
);
354 CAP16_TO_CAP32(MDIAUTO
);
355 CAP16_TO_CAP32(MDISTRAIGHT
);
356 CAP16_TO_CAP32(FEC_RS
);
357 CAP16_TO_CAP32(FEC_BASER_RS
);
358 CAP16_TO_CAP32(802_3_PAUSE
);
359 CAP16_TO_CAP32(802_3_ASM_DIR
);
361 #undef CAP16_TO_CAP32
366 /* Translate Firmware Pause specification to Common Code */
367 static inline enum cc_pause
fwcap_to_cc_pause(fw_port_cap32_t fw_pause
)
369 enum cc_pause cc_pause
= 0;
371 if (fw_pause
& FW_PORT_CAP32_FC_RX
)
372 cc_pause
|= PAUSE_RX
;
373 if (fw_pause
& FW_PORT_CAP32_FC_TX
)
374 cc_pause
|= PAUSE_TX
;
379 /* Translate Firmware Forward Error Correction specification to Common Code */
380 static inline enum cc_fec
fwcap_to_cc_fec(fw_port_cap32_t fw_fec
)
382 enum cc_fec cc_fec
= 0;
384 if (fw_fec
& FW_PORT_CAP32_FEC_RS
)
386 if (fw_fec
& FW_PORT_CAP32_FEC_BASER_RS
)
387 cc_fec
|= FEC_BASER_RS
;
393 * Return the highest speed set in the port capabilities, in Mb/s.
395 static unsigned int fwcap_to_speed(fw_port_cap32_t caps
)
397 #define TEST_SPEED_RETURN(__caps_speed, __speed) \
399 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
403 TEST_SPEED_RETURN(400G
, 400000);
404 TEST_SPEED_RETURN(200G
, 200000);
405 TEST_SPEED_RETURN(100G
, 100000);
406 TEST_SPEED_RETURN(50G
, 50000);
407 TEST_SPEED_RETURN(40G
, 40000);
408 TEST_SPEED_RETURN(25G
, 25000);
409 TEST_SPEED_RETURN(10G
, 10000);
410 TEST_SPEED_RETURN(1G
, 1000);
411 TEST_SPEED_RETURN(100M
, 100);
413 #undef TEST_SPEED_RETURN
419 * fwcap_to_fwspeed - return highest speed in Port Capabilities
420 * @acaps: advertised Port Capabilities
422 * Get the highest speed for the port from the advertised Port
423 * Capabilities. It will be either the highest speed from the list of
424 * speeds or whatever user has set using ethtool.
426 static fw_port_cap32_t
fwcap_to_fwspeed(fw_port_cap32_t acaps
)
428 #define TEST_SPEED_RETURN(__caps_speed) \
430 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
431 return FW_PORT_CAP32_SPEED_##__caps_speed; \
434 TEST_SPEED_RETURN(400G
);
435 TEST_SPEED_RETURN(200G
);
436 TEST_SPEED_RETURN(100G
);
437 TEST_SPEED_RETURN(50G
);
438 TEST_SPEED_RETURN(40G
);
439 TEST_SPEED_RETURN(25G
);
440 TEST_SPEED_RETURN(10G
);
441 TEST_SPEED_RETURN(1G
);
442 TEST_SPEED_RETURN(100M
);
444 #undef TEST_SPEED_RETURN
449 * init_link_config - initialize a link's SW state
450 * @lc: structure holding the link state
451 * @pcaps: link Port Capabilities
452 * @acaps: link current Advertised Port Capabilities
454 * Initializes the SW state maintained for each link, including the link's
455 * capabilities and default speed/flow-control/autonegotiation settings.
457 static void init_link_config(struct link_config
*lc
,
458 fw_port_cap32_t pcaps
,
459 fw_port_cap32_t acaps
)
465 lc
->requested_fc
= lc
->fc
= PAUSE_RX
| PAUSE_TX
;
467 /* For Forward Error Control, we default to whatever the Firmware
468 * tells us the Link is currently advertising.
470 lc
->auto_fec
= fwcap_to_cc_fec(acaps
);
471 lc
->requested_fec
= FEC_AUTO
;
472 lc
->fec
= lc
->auto_fec
;
474 /* If the Port is capable of Auto-Negtotiation, initialize it as
475 * "enabled" and copy over all of the Physical Port Capabilities
476 * to the Advertised Port Capabilities. Otherwise mark it as
477 * Auto-Negotiate disabled and select the highest supported speed
478 * for the link. Note parallel structure in t4_link_l1cfg_core()
479 * and t4_handle_get_port_info().
481 if (lc
->pcaps
& FW_PORT_CAP32_ANEG
) {
482 lc
->acaps
= acaps
& ADVERT_MASK
;
483 lc
->autoneg
= AUTONEG_ENABLE
;
484 lc
->requested_fc
|= PAUSE_AUTONEG
;
487 lc
->autoneg
= AUTONEG_DISABLE
;
488 lc
->speed_caps
= fwcap_to_fwspeed(acaps
);
493 * t4vf_port_init - initialize port hardware/software state
494 * @adapter: the adapter
495 * @pidx: the adapter port index
497 int t4vf_port_init(struct adapter
*adapter
, int pidx
)
499 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
500 unsigned int fw_caps
= adapter
->params
.fw_caps_support
;
501 struct fw_vi_cmd vi_cmd
, vi_rpl
;
502 struct fw_port_cmd port_cmd
, port_rpl
;
503 enum fw_port_type port_type
;
505 fw_port_cap32_t pcaps
, acaps
;
508 /* If we haven't yet determined whether we're talking to Firmware
509 * which knows the new 32-bit Port Capabilities, it's time to find
510 * out now. This will also tell new Firmware to send us Port Status
511 * Updates using the new 32-bit Port Capabilities version of the
512 * Port Information message.
514 if (fw_caps
== FW_CAPS_UNKNOWN
) {
517 param
= (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF
) |
518 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32
));
520 ret
= t4vf_set_params(adapter
, 1, ¶m
, &val
);
521 fw_caps
= (ret
== 0 ? FW_CAPS32
: FW_CAPS16
);
522 adapter
->params
.fw_caps_support
= fw_caps
;
526 * Execute a VI Read command to get our Virtual Interface information
527 * like MAC address, etc.
529 memset(&vi_cmd
, 0, sizeof(vi_cmd
));
530 vi_cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD
) |
533 vi_cmd
.alloc_to_len16
= cpu_to_be32(FW_LEN16(vi_cmd
));
534 vi_cmd
.type_viid
= cpu_to_be16(FW_VI_CMD_VIID_V(pi
->viid
));
535 ret
= t4vf_wr_mbox(adapter
, &vi_cmd
, sizeof(vi_cmd
), &vi_rpl
);
536 if (ret
!= FW_SUCCESS
)
539 BUG_ON(pi
->port_id
!= FW_VI_CMD_PORTID_G(vi_rpl
.portid_pkd
));
540 pi
->rss_size
= FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl
.rsssize_pkd
));
541 t4_os_set_hw_addr(adapter
, pidx
, vi_rpl
.mac
);
544 * If we don't have read access to our port information, we're done
545 * now. Otherwise, execute a PORT Read command to get it ...
547 if (!(adapter
->params
.vfres
.r_caps
& FW_CMD_CAP_PORT
))
550 memset(&port_cmd
, 0, sizeof(port_cmd
));
551 port_cmd
.op_to_portid
= cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD
) |
554 FW_PORT_CMD_PORTID_V(pi
->port_id
));
555 port_cmd
.action_to_len16
= cpu_to_be32(
556 FW_PORT_CMD_ACTION_V(fw_caps
== FW_CAPS16
557 ? FW_PORT_ACTION_GET_PORT_INFO
558 : FW_PORT_ACTION_GET_PORT_INFO32
) |
560 ret
= t4vf_wr_mbox(adapter
, &port_cmd
, sizeof(port_cmd
), &port_rpl
);
561 if (ret
!= FW_SUCCESS
)
564 /* Extract the various fields from the Port Information message. */
565 if (fw_caps
== FW_CAPS16
) {
566 u32 lstatus
= be32_to_cpu(port_rpl
.u
.info
.lstatus_to_modtype
);
568 port_type
= FW_PORT_CMD_PTYPE_G(lstatus
);
569 mdio_addr
= ((lstatus
& FW_PORT_CMD_MDIOCAP_F
)
570 ? FW_PORT_CMD_MDIOADDR_G(lstatus
)
572 pcaps
= fwcaps16_to_caps32(be16_to_cpu(port_rpl
.u
.info
.pcap
));
573 acaps
= fwcaps16_to_caps32(be16_to_cpu(port_rpl
.u
.info
.acap
));
576 be32_to_cpu(port_rpl
.u
.info32
.lstatus32_to_cbllen32
);
578 port_type
= FW_PORT_CMD_PORTTYPE32_G(lstatus32
);
579 mdio_addr
= ((lstatus32
& FW_PORT_CMD_MDIOCAP32_F
)
580 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32
)
582 pcaps
= be32_to_cpu(port_rpl
.u
.info32
.pcaps32
);
583 acaps
= be32_to_cpu(port_rpl
.u
.info32
.acaps32
);
586 pi
->port_type
= port_type
;
587 pi
->mdio_addr
= mdio_addr
;
588 pi
->mod_type
= FW_PORT_MOD_TYPE_NA
;
590 init_link_config(&pi
->link_cfg
, pcaps
, acaps
);
595 * t4vf_fw_reset - issue a reset to FW
596 * @adapter: the adapter
598 * Issues a reset command to FW. For a Physical Function this would
599 * result in the Firmware resetting all of its state. For a Virtual
600 * Function this just resets the state associated with the VF.
602 int t4vf_fw_reset(struct adapter
*adapter
)
604 struct fw_reset_cmd cmd
;
606 memset(&cmd
, 0, sizeof(cmd
));
607 cmd
.op_to_write
= cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD
) |
609 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
610 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
614 * t4vf_query_params - query FW or device parameters
615 * @adapter: the adapter
616 * @nparams: the number of parameters
617 * @params: the parameter names
618 * @vals: the parameter values
620 * Reads the values of firmware or device parameters. Up to 7 parameters
621 * can be queried at once.
623 static int t4vf_query_params(struct adapter
*adapter
, unsigned int nparams
,
624 const u32
*params
, u32
*vals
)
627 struct fw_params_cmd cmd
, rpl
;
628 struct fw_params_param
*p
;
634 memset(&cmd
, 0, sizeof(cmd
));
635 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD
) |
638 len16
= DIV_ROUND_UP(offsetof(struct fw_params_cmd
,
639 param
[nparams
].mnem
), 16);
640 cmd
.retval_len16
= cpu_to_be32(FW_CMD_LEN16_V(len16
));
641 for (i
= 0, p
= &cmd
.param
[0]; i
< nparams
; i
++, p
++)
642 p
->mnem
= htonl(*params
++);
644 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
646 for (i
= 0, p
= &rpl
.param
[0]; i
< nparams
; i
++, p
++)
647 *vals
++ = be32_to_cpu(p
->val
);
652 * t4vf_set_params - sets FW or device parameters
653 * @adapter: the adapter
654 * @nparams: the number of parameters
655 * @params: the parameter names
656 * @vals: the parameter values
658 * Sets the values of firmware or device parameters. Up to 7 parameters
659 * can be specified at once.
661 int t4vf_set_params(struct adapter
*adapter
, unsigned int nparams
,
662 const u32
*params
, const u32
*vals
)
665 struct fw_params_cmd cmd
;
666 struct fw_params_param
*p
;
672 memset(&cmd
, 0, sizeof(cmd
));
673 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD
) |
676 len16
= DIV_ROUND_UP(offsetof(struct fw_params_cmd
,
677 param
[nparams
]), 16);
678 cmd
.retval_len16
= cpu_to_be32(FW_CMD_LEN16_V(len16
));
679 for (i
= 0, p
= &cmd
.param
[0]; i
< nparams
; i
++, p
++) {
680 p
->mnem
= cpu_to_be32(*params
++);
681 p
->val
= cpu_to_be32(*vals
++);
684 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
688 * t4vf_fl_pkt_align - return the fl packet alignment
689 * @adapter: the adapter
691 * T4 has a single field to specify the packing and padding boundary.
692 * T5 onwards has separate fields for this and hence the alignment for
693 * next packet offset is maximum of these two. And T6 changes the
694 * Ingress Padding Boundary Shift, so it's all a mess and it's best
695 * if we put this in low-level Common Code ...
698 int t4vf_fl_pkt_align(struct adapter
*adapter
)
700 u32 sge_control
, sge_control2
;
701 unsigned int ingpadboundary
, ingpackboundary
, fl_align
, ingpad_shift
;
703 sge_control
= adapter
->params
.sge
.sge_control
;
705 /* T4 uses a single control field to specify both the PCIe Padding and
706 * Packing Boundary. T5 introduced the ability to specify these
707 * separately. The actual Ingress Packet Data alignment boundary
708 * within Packed Buffer Mode is the maximum of these two
709 * specifications. (Note that it makes no real practical sense to
710 * have the Pading Boudary be larger than the Packing Boundary but you
711 * could set the chip up that way and, in fact, legacy T4 code would
712 * end doing this because it would initialize the Padding Boundary and
713 * leave the Packing Boundary initialized to 0 (16 bytes).)
714 * Padding Boundary values in T6 starts from 8B,
715 * where as it is 32B for T4 and T5.
717 if (CHELSIO_CHIP_VERSION(adapter
->params
.chip
) <= CHELSIO_T5
)
718 ingpad_shift
= INGPADBOUNDARY_SHIFT_X
;
720 ingpad_shift
= T6_INGPADBOUNDARY_SHIFT_X
;
722 ingpadboundary
= 1 << (INGPADBOUNDARY_G(sge_control
) + ingpad_shift
);
724 fl_align
= ingpadboundary
;
725 if (!is_t4(adapter
->params
.chip
)) {
726 /* T5 has a different interpretation of one of the PCIe Packing
729 sge_control2
= adapter
->params
.sge
.sge_control2
;
730 ingpackboundary
= INGPACKBOUNDARY_G(sge_control2
);
731 if (ingpackboundary
== INGPACKBOUNDARY_16B_X
)
732 ingpackboundary
= 16;
734 ingpackboundary
= 1 << (ingpackboundary
+
735 INGPACKBOUNDARY_SHIFT_X
);
737 fl_align
= max(ingpadboundary
, ingpackboundary
);
743 * t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
744 * @adapter: the adapter
746 * @qtype: the Ingress or Egress type for @qid
747 * @pbar2_qoffset: BAR2 Queue Offset
748 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
750 * Returns the BAR2 SGE Queue Registers information associated with the
751 * indicated Absolute Queue ID. These are passed back in return value
752 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
753 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
755 * This may return an error which indicates that BAR2 SGE Queue
756 * registers aren't available. If an error is not returned, then the
757 * following values are returned:
759 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
760 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
762 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
763 * require the "Inferred Queue ID" ability may be used. E.g. the
764 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
765 * then these "Inferred Queue ID" register may not be used.
767 int t4vf_bar2_sge_qregs(struct adapter
*adapter
,
769 enum t4_bar2_qtype qtype
,
771 unsigned int *pbar2_qid
)
773 unsigned int page_shift
, page_size
, qpp_shift
, qpp_mask
;
774 u64 bar2_page_offset
, bar2_qoffset
;
775 unsigned int bar2_qid
, bar2_qid_offset
, bar2_qinferred
;
777 /* T4 doesn't support BAR2 SGE Queue registers.
779 if (is_t4(adapter
->params
.chip
))
782 /* Get our SGE Page Size parameters.
784 page_shift
= adapter
->params
.sge
.sge_vf_hps
+ 10;
785 page_size
= 1 << page_shift
;
787 /* Get the right Queues per Page parameters for our Queue.
789 qpp_shift
= (qtype
== T4_BAR2_QTYPE_EGRESS
790 ? adapter
->params
.sge
.sge_vf_eq_qpp
791 : adapter
->params
.sge
.sge_vf_iq_qpp
);
792 qpp_mask
= (1 << qpp_shift
) - 1;
794 /* Calculate the basics of the BAR2 SGE Queue register area:
795 * o The BAR2 page the Queue registers will be in.
796 * o The BAR2 Queue ID.
797 * o The BAR2 Queue ID Offset into the BAR2 page.
799 bar2_page_offset
= ((u64
)(qid
>> qpp_shift
) << page_shift
);
800 bar2_qid
= qid
& qpp_mask
;
801 bar2_qid_offset
= bar2_qid
* SGE_UDB_SIZE
;
803 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
804 * hardware will infer the Absolute Queue ID simply from the writes to
805 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
806 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
807 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
808 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
809 * from the BAR2 Page and BAR2 Queue ID.
811 * One important censequence of this is that some BAR2 SGE registers
812 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
813 * there. But other registers synthesize the SGE Queue ID purely
814 * from the writes to the registers -- the Write Combined Doorbell
815 * Buffer is a good example. These BAR2 SGE Registers are only
816 * available for those BAR2 SGE Register areas where the SGE Absolute
817 * Queue ID can be inferred from simple writes.
819 bar2_qoffset
= bar2_page_offset
;
820 bar2_qinferred
= (bar2_qid_offset
< page_size
);
821 if (bar2_qinferred
) {
822 bar2_qoffset
+= bar2_qid_offset
;
826 *pbar2_qoffset
= bar2_qoffset
;
827 *pbar2_qid
= bar2_qid
;
831 unsigned int t4vf_get_pf_from_vf(struct adapter
*adapter
)
835 whoami
= t4_read_reg(adapter
, T4VF_PL_BASE_ADDR
+ PL_VF_WHOAMI_A
);
836 return (CHELSIO_CHIP_VERSION(adapter
->params
.chip
) <= CHELSIO_T5
?
837 SOURCEPF_G(whoami
) : T6_SOURCEPF_G(whoami
));
841 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
842 * @adapter: the adapter
844 * Retrieves various core SGE parameters in the form of hardware SGE
845 * register values. The caller is responsible for decoding these as
846 * needed. The SGE parameters are stored in @adapter->params.sge.
848 int t4vf_get_sge_params(struct adapter
*adapter
)
850 struct sge_params
*sge_params
= &adapter
->params
.sge
;
851 u32 params
[7], vals
[7];
854 params
[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
855 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A
));
856 params
[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
857 FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A
));
858 params
[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
859 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A
));
860 params
[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
861 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A
));
862 params
[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
863 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A
));
864 params
[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
865 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A
));
866 params
[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
867 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A
));
868 v
= t4vf_query_params(adapter
, 7, params
, vals
);
871 sge_params
->sge_control
= vals
[0];
872 sge_params
->sge_host_page_size
= vals
[1];
873 sge_params
->sge_fl_buffer_size
[0] = vals
[2];
874 sge_params
->sge_fl_buffer_size
[1] = vals
[3];
875 sge_params
->sge_timer_value_0_and_1
= vals
[4];
876 sge_params
->sge_timer_value_2_and_3
= vals
[5];
877 sge_params
->sge_timer_value_4_and_5
= vals
[6];
879 /* T4 uses a single control field to specify both the PCIe Padding and
880 * Packing Boundary. T5 introduced the ability to specify these
881 * separately with the Padding Boundary in SGE_CONTROL and and Packing
882 * Boundary in SGE_CONTROL2. So for T5 and later we need to grab
883 * SGE_CONTROL in order to determine how ingress packet data will be
884 * laid out in Packed Buffer Mode. Unfortunately, older versions of
885 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
886 * failure grabbing it we throw an error since we can't figure out the
889 if (!is_t4(adapter
->params
.chip
)) {
890 params
[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
891 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A
));
892 v
= t4vf_query_params(adapter
, 1, params
, vals
);
893 if (v
!= FW_SUCCESS
) {
894 dev_err(adapter
->pdev_dev
,
895 "Unable to get SGE Control2; "
896 "probably old firmware.\n");
899 sge_params
->sge_control2
= vals
[0];
902 params
[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
903 FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A
));
904 params
[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
905 FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A
));
906 v
= t4vf_query_params(adapter
, 2, params
, vals
);
909 sge_params
->sge_ingress_rx_threshold
= vals
[0];
910 sge_params
->sge_congestion_control
= vals
[1];
912 /* For T5 and later we want to use the new BAR2 Doorbells.
913 * Unfortunately, older firmware didn't allow the this register to be
916 if (!is_t4(adapter
->params
.chip
)) {
917 unsigned int pf
, s_hps
, s_qpp
;
919 params
[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
920 FW_PARAMS_PARAM_XYZ_V(
921 SGE_EGRESS_QUEUES_PER_PAGE_VF_A
));
922 params
[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG
) |
923 FW_PARAMS_PARAM_XYZ_V(
924 SGE_INGRESS_QUEUES_PER_PAGE_VF_A
));
925 v
= t4vf_query_params(adapter
, 2, params
, vals
);
926 if (v
!= FW_SUCCESS
) {
927 dev_warn(adapter
->pdev_dev
,
928 "Unable to get VF SGE Queues/Page; "
929 "probably old firmware.\n");
932 sge_params
->sge_egress_queues_per_page
= vals
[0];
933 sge_params
->sge_ingress_queues_per_page
= vals
[1];
935 /* We need the Queues/Page for our VF. This is based on the
936 * PF from which we're instantiated and is indexed in the
937 * register we just read. Do it once here so other code in
938 * the driver can just use it.
940 pf
= t4vf_get_pf_from_vf(adapter
);
941 s_hps
= (HOSTPAGESIZEPF0_S
+
942 (HOSTPAGESIZEPF1_S
- HOSTPAGESIZEPF0_S
) * pf
);
943 sge_params
->sge_vf_hps
=
944 ((sge_params
->sge_host_page_size
>> s_hps
)
945 & HOSTPAGESIZEPF0_M
);
947 s_qpp
= (QUEUESPERPAGEPF0_S
+
948 (QUEUESPERPAGEPF1_S
- QUEUESPERPAGEPF0_S
) * pf
);
949 sge_params
->sge_vf_eq_qpp
=
950 ((sge_params
->sge_egress_queues_per_page
>> s_qpp
)
951 & QUEUESPERPAGEPF0_M
);
952 sge_params
->sge_vf_iq_qpp
=
953 ((sge_params
->sge_ingress_queues_per_page
>> s_qpp
)
954 & QUEUESPERPAGEPF0_M
);
961 * t4vf_get_vpd_params - retrieve device VPD paremeters
962 * @adapter: the adapter
964 * Retrives various device Vital Product Data parameters. The parameters
965 * are stored in @adapter->params.vpd.
967 int t4vf_get_vpd_params(struct adapter
*adapter
)
969 struct vpd_params
*vpd_params
= &adapter
->params
.vpd
;
970 u32 params
[7], vals
[7];
973 params
[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
974 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK
));
975 v
= t4vf_query_params(adapter
, 1, params
, vals
);
978 vpd_params
->cclk
= vals
[0];
984 * t4vf_get_dev_params - retrieve device paremeters
985 * @adapter: the adapter
987 * Retrives various device parameters. The parameters are stored in
988 * @adapter->params.dev.
990 int t4vf_get_dev_params(struct adapter
*adapter
)
992 struct dev_params
*dev_params
= &adapter
->params
.dev
;
993 u32 params
[7], vals
[7];
996 params
[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
997 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV
));
998 params
[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
999 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV
));
1000 v
= t4vf_query_params(adapter
, 2, params
, vals
);
1003 dev_params
->fwrev
= vals
[0];
1004 dev_params
->tprev
= vals
[1];
1010 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
1011 * @adapter: the adapter
1013 * Retrieves global RSS mode and parameters with which we have to live
1014 * and stores them in the @adapter's RSS parameters.
1016 int t4vf_get_rss_glb_config(struct adapter
*adapter
)
1018 struct rss_params
*rss
= &adapter
->params
.rss
;
1019 struct fw_rss_glb_config_cmd cmd
, rpl
;
1023 * Execute an RSS Global Configuration read command to retrieve
1024 * our RSS configuration.
1026 memset(&cmd
, 0, sizeof(cmd
));
1027 cmd
.op_to_write
= cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD
) |
1030 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
1031 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
1036 * Transate the big-endian RSS Global Configuration into our
1037 * cpu-endian format based on the RSS mode. We also do first level
1038 * filtering at this point to weed out modes which don't support
1041 rss
->mode
= FW_RSS_GLB_CONFIG_CMD_MODE_G(
1042 be32_to_cpu(rpl
.u
.manual
.mode_pkd
));
1043 switch (rss
->mode
) {
1044 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
: {
1045 u32 word
= be32_to_cpu(
1046 rpl
.u
.basicvirtual
.synmapen_to_hashtoeplitz
);
1048 rss
->u
.basicvirtual
.synmapen
=
1049 ((word
& FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F
) != 0);
1050 rss
->u
.basicvirtual
.syn4tupenipv6
=
1051 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F
) != 0);
1052 rss
->u
.basicvirtual
.syn2tupenipv6
=
1053 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F
) != 0);
1054 rss
->u
.basicvirtual
.syn4tupenipv4
=
1055 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F
) != 0);
1056 rss
->u
.basicvirtual
.syn2tupenipv4
=
1057 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F
) != 0);
1059 rss
->u
.basicvirtual
.ofdmapen
=
1060 ((word
& FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F
) != 0);
1062 rss
->u
.basicvirtual
.tnlmapen
=
1063 ((word
& FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F
) != 0);
1064 rss
->u
.basicvirtual
.tnlalllookup
=
1065 ((word
& FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F
) != 0);
1067 rss
->u
.basicvirtual
.hashtoeplitz
=
1068 ((word
& FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F
) != 0);
1070 /* we need at least Tunnel Map Enable to be set */
1071 if (!rss
->u
.basicvirtual
.tnlmapen
)
1077 /* all unknown/unsupported RSS modes result in an error */
1085 * t4vf_get_vfres - retrieve VF resource limits
1086 * @adapter: the adapter
1088 * Retrieves configured resource limits and capabilities for a virtual
1089 * function. The results are stored in @adapter->vfres.
1091 int t4vf_get_vfres(struct adapter
*adapter
)
1093 struct vf_resources
*vfres
= &adapter
->params
.vfres
;
1094 struct fw_pfvf_cmd cmd
, rpl
;
1099 * Execute PFVF Read command to get VF resource limits; bail out early
1100 * with error on command failure.
1102 memset(&cmd
, 0, sizeof(cmd
));
1103 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD
) |
1106 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
1107 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
1112 * Extract VF resource limits and return success.
1114 word
= be32_to_cpu(rpl
.niqflint_niq
);
1115 vfres
->niqflint
= FW_PFVF_CMD_NIQFLINT_G(word
);
1116 vfres
->niq
= FW_PFVF_CMD_NIQ_G(word
);
1118 word
= be32_to_cpu(rpl
.type_to_neq
);
1119 vfres
->neq
= FW_PFVF_CMD_NEQ_G(word
);
1120 vfres
->pmask
= FW_PFVF_CMD_PMASK_G(word
);
1122 word
= be32_to_cpu(rpl
.tc_to_nexactf
);
1123 vfres
->tc
= FW_PFVF_CMD_TC_G(word
);
1124 vfres
->nvi
= FW_PFVF_CMD_NVI_G(word
);
1125 vfres
->nexactf
= FW_PFVF_CMD_NEXACTF_G(word
);
1127 word
= be32_to_cpu(rpl
.r_caps_to_nethctrl
);
1128 vfres
->r_caps
= FW_PFVF_CMD_R_CAPS_G(word
);
1129 vfres
->wx_caps
= FW_PFVF_CMD_WX_CAPS_G(word
);
1130 vfres
->nethctrl
= FW_PFVF_CMD_NETHCTRL_G(word
);
1136 * t4vf_read_rss_vi_config - read a VI's RSS configuration
1137 * @adapter: the adapter
1138 * @viid: Virtual Interface ID
1139 * @config: pointer to host-native VI RSS Configuration buffer
1141 * Reads the Virtual Interface's RSS configuration information and
1142 * translates it into CPU-native format.
1144 int t4vf_read_rss_vi_config(struct adapter
*adapter
, unsigned int viid
,
1145 union rss_vi_config
*config
)
1147 struct fw_rss_vi_config_cmd cmd
, rpl
;
1150 memset(&cmd
, 0, sizeof(cmd
));
1151 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD
) |
1154 FW_RSS_VI_CONFIG_CMD_VIID(viid
));
1155 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
1156 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
1160 switch (adapter
->params
.rss
.mode
) {
1161 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
: {
1162 u32 word
= be32_to_cpu(rpl
.u
.basicvirtual
.defaultq_to_udpen
);
1164 config
->basicvirtual
.ip6fourtupen
=
1165 ((word
& FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F
) != 0);
1166 config
->basicvirtual
.ip6twotupen
=
1167 ((word
& FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F
) != 0);
1168 config
->basicvirtual
.ip4fourtupen
=
1169 ((word
& FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F
) != 0);
1170 config
->basicvirtual
.ip4twotupen
=
1171 ((word
& FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F
) != 0);
1172 config
->basicvirtual
.udpen
=
1173 ((word
& FW_RSS_VI_CONFIG_CMD_UDPEN_F
) != 0);
1174 config
->basicvirtual
.defaultq
=
1175 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word
);
1187 * t4vf_write_rss_vi_config - write a VI's RSS configuration
1188 * @adapter: the adapter
1189 * @viid: Virtual Interface ID
1190 * @config: pointer to host-native VI RSS Configuration buffer
1192 * Write the Virtual Interface's RSS configuration information
1193 * (translating it into firmware-native format before writing).
1195 int t4vf_write_rss_vi_config(struct adapter
*adapter
, unsigned int viid
,
1196 union rss_vi_config
*config
)
1198 struct fw_rss_vi_config_cmd cmd
, rpl
;
1200 memset(&cmd
, 0, sizeof(cmd
));
1201 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD
) |
1204 FW_RSS_VI_CONFIG_CMD_VIID(viid
));
1205 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
1206 switch (adapter
->params
.rss
.mode
) {
1207 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
: {
1210 if (config
->basicvirtual
.ip6fourtupen
)
1211 word
|= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F
;
1212 if (config
->basicvirtual
.ip6twotupen
)
1213 word
|= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F
;
1214 if (config
->basicvirtual
.ip4fourtupen
)
1215 word
|= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F
;
1216 if (config
->basicvirtual
.ip4twotupen
)
1217 word
|= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F
;
1218 if (config
->basicvirtual
.udpen
)
1219 word
|= FW_RSS_VI_CONFIG_CMD_UDPEN_F
;
1220 word
|= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
1221 config
->basicvirtual
.defaultq
);
1222 cmd
.u
.basicvirtual
.defaultq_to_udpen
= cpu_to_be32(word
);
1230 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
1234 * t4vf_config_rss_range - configure a portion of the RSS mapping table
1235 * @adapter: the adapter
1236 * @viid: Virtual Interface of RSS Table Slice
1237 * @start: starting entry in the table to write
1238 * @n: how many table entries to write
1239 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table
1240 * @nrspq: number of values in @rspq
1242 * Programs the selected part of the VI's RSS mapping table with the
1243 * provided values. If @nrspq < @n the supplied values are used repeatedly
1244 * until the full table range is populated.
1246 * The caller must ensure the values in @rspq are in the range 0..1023.
1248 int t4vf_config_rss_range(struct adapter
*adapter
, unsigned int viid
,
1249 int start
, int n
, const u16
*rspq
, int nrspq
)
1251 const u16
*rsp
= rspq
;
1252 const u16
*rsp_end
= rspq
+nrspq
;
1253 struct fw_rss_ind_tbl_cmd cmd
;
1256 * Initialize firmware command template to write the RSS table.
1258 memset(&cmd
, 0, sizeof(cmd
));
1259 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD
) |
1262 FW_RSS_IND_TBL_CMD_VIID_V(viid
));
1263 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
1266 * Each firmware RSS command can accommodate up to 32 RSS Ingress
1267 * Queue Identifiers. These Ingress Queue IDs are packed three to
1268 * a 32-bit word as 10-bit values with the upper remaining 2 bits
1272 __be32
*qp
= &cmd
.iq0_to_iq2
;
1273 int nq
= min(n
, 32);
1277 * Set up the firmware RSS command header to send the next
1278 * "nq" Ingress Queue IDs to the firmware.
1280 cmd
.niqid
= cpu_to_be16(nq
);
1281 cmd
.startidx
= cpu_to_be16(start
);
1284 * "nq" more done for the start of the next loop.
1290 * While there are still Ingress Queue IDs to stuff into the
1291 * current firmware RSS command, retrieve them from the
1292 * Ingress Queue ID array and insert them into the command.
1296 * Grab up to the next 3 Ingress Queue IDs (wrapping
1297 * around the Ingress Queue ID array if necessary) and
1298 * insert them into the firmware RSS command at the
1299 * current 3-tuple position within the commad.
1303 int nqbuf
= min(3, nq
);
1306 qbuf
[0] = qbuf
[1] = qbuf
[2] = 0;
1313 *qp
++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf
[0]) |
1314 FW_RSS_IND_TBL_CMD_IQ1_V(qbuf
[1]) |
1315 FW_RSS_IND_TBL_CMD_IQ2_V(qbuf
[2]));
1319 * Send this portion of the RRS table update to the firmware;
1320 * bail out on any errors.
1322 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
1330 * t4vf_alloc_vi - allocate a virtual interface on a port
1331 * @adapter: the adapter
1332 * @port_id: physical port associated with the VI
1334 * Allocate a new Virtual Interface and bind it to the indicated
1335 * physical port. Return the new Virtual Interface Identifier on
1336 * success, or a [negative] error number on failure.
1338 int t4vf_alloc_vi(struct adapter
*adapter
, int port_id
)
1340 struct fw_vi_cmd cmd
, rpl
;
1344 * Execute a VI command to allocate Virtual Interface and return its
1347 memset(&cmd
, 0, sizeof(cmd
));
1348 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD
) |
1352 cmd
.alloc_to_len16
= cpu_to_be32(FW_LEN16(cmd
) |
1354 cmd
.portid_pkd
= FW_VI_CMD_PORTID_V(port_id
);
1355 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
1359 return FW_VI_CMD_VIID_G(be16_to_cpu(rpl
.type_viid
));
1363 * t4vf_free_vi -- free a virtual interface
1364 * @adapter: the adapter
1365 * @viid: the virtual interface identifier
1367 * Free a previously allocated Virtual Interface. Return an error on
1370 int t4vf_free_vi(struct adapter
*adapter
, int viid
)
1372 struct fw_vi_cmd cmd
;
1375 * Execute a VI command to free the Virtual Interface.
1377 memset(&cmd
, 0, sizeof(cmd
));
1378 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD
) |
1381 cmd
.alloc_to_len16
= cpu_to_be32(FW_LEN16(cmd
) |
1383 cmd
.type_viid
= cpu_to_be16(FW_VI_CMD_VIID_V(viid
));
1384 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
1388 * t4vf_enable_vi - enable/disable a virtual interface
1389 * @adapter: the adapter
1390 * @viid: the Virtual Interface ID
1391 * @rx_en: 1=enable Rx, 0=disable Rx
1392 * @tx_en: 1=enable Tx, 0=disable Tx
1394 * Enables/disables a virtual interface.
1396 int t4vf_enable_vi(struct adapter
*adapter
, unsigned int viid
,
1397 bool rx_en
, bool tx_en
)
1399 struct fw_vi_enable_cmd cmd
;
1401 memset(&cmd
, 0, sizeof(cmd
));
1402 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD
) |
1405 FW_VI_ENABLE_CMD_VIID_V(viid
));
1406 cmd
.ien_to_len16
= cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en
) |
1407 FW_VI_ENABLE_CMD_EEN_V(tx_en
) |
1409 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
1413 * t4vf_enable_pi - enable/disable a Port's virtual interface
1414 * @adapter: the adapter
1415 * @pi: the Port Information structure
1416 * @rx_en: 1=enable Rx, 0=disable Rx
1417 * @tx_en: 1=enable Tx, 0=disable Tx
1419 * Enables/disables a Port's virtual interface. If the Virtual
1420 * Interface enable/disable operation is successful, we notify the
1421 * OS-specific code of a potential Link Status change via the OS Contract
1422 * API t4vf_os_link_changed().
1424 int t4vf_enable_pi(struct adapter
*adapter
, struct port_info
*pi
,
1425 bool rx_en
, bool tx_en
)
1427 int ret
= t4vf_enable_vi(adapter
, pi
->viid
, rx_en
, tx_en
);
1431 t4vf_os_link_changed(adapter
, pi
->pidx
,
1432 rx_en
&& tx_en
&& pi
->link_cfg
.link_ok
);
1437 * t4vf_identify_port - identify a VI's port by blinking its LED
1438 * @adapter: the adapter
1439 * @viid: the Virtual Interface ID
1440 * @nblinks: how many times to blink LED at 2.5 Hz
1442 * Identifies a VI's port by blinking its LED.
1444 int t4vf_identify_port(struct adapter
*adapter
, unsigned int viid
,
1445 unsigned int nblinks
)
1447 struct fw_vi_enable_cmd cmd
;
1449 memset(&cmd
, 0, sizeof(cmd
));
1450 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD
) |
1453 FW_VI_ENABLE_CMD_VIID_V(viid
));
1454 cmd
.ien_to_len16
= cpu_to_be32(FW_VI_ENABLE_CMD_LED_F
|
1456 cmd
.blinkdur
= cpu_to_be16(nblinks
);
1457 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
1461 * t4vf_set_rxmode - set Rx properties of a virtual interface
1462 * @adapter: the adapter
1464 * @mtu: the new MTU or -1 for no change
1465 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1466 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1467 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1468 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1471 * Sets Rx properties of a virtual interface.
1473 int t4vf_set_rxmode(struct adapter
*adapter
, unsigned int viid
,
1474 int mtu
, int promisc
, int all_multi
, int bcast
, int vlanex
,
1477 struct fw_vi_rxmode_cmd cmd
;
1479 /* convert to FW values */
1481 mtu
= FW_VI_RXMODE_CMD_MTU_M
;
1483 promisc
= FW_VI_RXMODE_CMD_PROMISCEN_M
;
1485 all_multi
= FW_VI_RXMODE_CMD_ALLMULTIEN_M
;
1487 bcast
= FW_VI_RXMODE_CMD_BROADCASTEN_M
;
1489 vlanex
= FW_VI_RXMODE_CMD_VLANEXEN_M
;
1491 memset(&cmd
, 0, sizeof(cmd
));
1492 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD
) |
1495 FW_VI_RXMODE_CMD_VIID_V(viid
));
1496 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
1497 cmd
.mtu_to_vlanexen
=
1498 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu
) |
1499 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc
) |
1500 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi
) |
1501 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast
) |
1502 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex
));
1503 return t4vf_wr_mbox_core(adapter
, &cmd
, sizeof(cmd
), NULL
, sleep_ok
);
1507 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1508 * @adapter: the adapter
1509 * @viid: the Virtual Interface Identifier
1510 * @free: if true any existing filters for this VI id are first removed
1511 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
1512 * @addr: the MAC address(es)
1513 * @idx: where to store the index of each allocated filter
1514 * @hash: pointer to hash address filter bitmap
1515 * @sleep_ok: call is allowed to sleep
1517 * Allocates an exact-match filter for each of the supplied addresses and
1518 * sets it to the corresponding address. If @idx is not %NULL it should
1519 * have at least @naddr entries, each of which will be set to the index of
1520 * the filter allocated for the corresponding MAC address. If a filter
1521 * could not be allocated for an address its index is set to 0xffff.
1522 * If @hash is not %NULL addresses that fail to allocate an exact filter
1523 * are hashed and update the hash filter bitmap pointed at by @hash.
1525 * Returns a negative error number or the number of filters allocated.
1527 int t4vf_alloc_mac_filt(struct adapter
*adapter
, unsigned int viid
, bool free
,
1528 unsigned int naddr
, const u8
**addr
, u16
*idx
,
1529 u64
*hash
, bool sleep_ok
)
1531 int offset
, ret
= 0;
1532 unsigned nfilters
= 0;
1533 unsigned int rem
= naddr
;
1534 struct fw_vi_mac_cmd cmd
, rpl
;
1535 unsigned int max_naddr
= adapter
->params
.arch
.mps_tcam_size
;
1537 if (naddr
> max_naddr
)
1540 for (offset
= 0; offset
< naddr
; /**/) {
1541 unsigned int fw_naddr
= (rem
< ARRAY_SIZE(cmd
.u
.exact
)
1543 : ARRAY_SIZE(cmd
.u
.exact
));
1544 size_t len16
= DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd
,
1545 u
.exact
[fw_naddr
]), 16);
1546 struct fw_vi_mac_exact
*p
;
1549 memset(&cmd
, 0, sizeof(cmd
));
1550 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD
) |
1553 (free
? FW_CMD_EXEC_F
: 0) |
1554 FW_VI_MAC_CMD_VIID_V(viid
));
1555 cmd
.freemacs_to_len16
=
1556 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free
) |
1557 FW_CMD_LEN16_V(len16
));
1559 for (i
= 0, p
= cmd
.u
.exact
; i
< fw_naddr
; i
++, p
++) {
1560 p
->valid_to_idx
= cpu_to_be16(
1561 FW_VI_MAC_CMD_VALID_F
|
1562 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC
));
1563 memcpy(p
->macaddr
, addr
[offset
+i
], sizeof(p
->macaddr
));
1567 ret
= t4vf_wr_mbox_core(adapter
, &cmd
, sizeof(cmd
), &rpl
,
1569 if (ret
&& ret
!= -ENOMEM
)
1572 for (i
= 0, p
= rpl
.u
.exact
; i
< fw_naddr
; i
++, p
++) {
1573 u16 index
= FW_VI_MAC_CMD_IDX_G(
1574 be16_to_cpu(p
->valid_to_idx
));
1581 if (index
< max_naddr
)
1584 *hash
|= (1ULL << hash_mac_addr(addr
[offset
+i
]));
1593 * If there were no errors or we merely ran out of room in our MAC
1594 * address arena, return the number of filters actually written.
1596 if (ret
== 0 || ret
== -ENOMEM
)
1602 * t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1603 * @adapter: the adapter
1605 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
1606 * @addr: the MAC address(es)
1607 * @sleep_ok: call is allowed to sleep
1609 * Frees the exact-match filter for each of the supplied addresses
1611 * Returns a negative error number or the number of filters freed.
1613 int t4vf_free_mac_filt(struct adapter
*adapter
, unsigned int viid
,
1614 unsigned int naddr
, const u8
**addr
, bool sleep_ok
)
1616 int offset
, ret
= 0;
1617 struct fw_vi_mac_cmd cmd
;
1618 unsigned int nfilters
= 0;
1619 unsigned int max_naddr
= adapter
->params
.arch
.mps_tcam_size
;
1620 unsigned int rem
= naddr
;
1622 if (naddr
> max_naddr
)
1625 for (offset
= 0; offset
< (int)naddr
; /**/) {
1626 unsigned int fw_naddr
= (rem
< ARRAY_SIZE(cmd
.u
.exact
) ?
1627 rem
: ARRAY_SIZE(cmd
.u
.exact
));
1628 size_t len16
= DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd
,
1629 u
.exact
[fw_naddr
]), 16);
1630 struct fw_vi_mac_exact
*p
;
1633 memset(&cmd
, 0, sizeof(cmd
));
1634 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD
) |
1638 FW_VI_MAC_CMD_VIID_V(viid
));
1639 cmd
.freemacs_to_len16
=
1640 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1641 FW_CMD_LEN16_V(len16
));
1643 for (i
= 0, p
= cmd
.u
.exact
; i
< (int)fw_naddr
; i
++, p
++) {
1644 p
->valid_to_idx
= cpu_to_be16(
1645 FW_VI_MAC_CMD_VALID_F
|
1646 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE
));
1647 memcpy(p
->macaddr
, addr
[offset
+i
], sizeof(p
->macaddr
));
1650 ret
= t4vf_wr_mbox_core(adapter
, &cmd
, sizeof(cmd
), &cmd
,
1655 for (i
= 0, p
= cmd
.u
.exact
; i
< fw_naddr
; i
++, p
++) {
1656 u16 index
= FW_VI_MAC_CMD_IDX_G(
1657 be16_to_cpu(p
->valid_to_idx
));
1659 if (index
< max_naddr
)
1673 * t4vf_change_mac - modifies the exact-match filter for a MAC address
1674 * @adapter: the adapter
1675 * @viid: the Virtual Interface ID
1676 * @idx: index of existing filter for old value of MAC address, or -1
1677 * @addr: the new MAC address value
1678 * @persist: if idx < 0, the new MAC allocation should be persistent
1680 * Modifies an exact-match filter and sets it to the new MAC address.
1681 * Note that in general it is not possible to modify the value of a given
1682 * filter so the generic way to modify an address filter is to free the
1683 * one being used by the old address value and allocate a new filter for
1684 * the new address value. @idx can be -1 if the address is a new
1687 * Returns a negative error number or the index of the filter with the new
1690 int t4vf_change_mac(struct adapter
*adapter
, unsigned int viid
,
1691 int idx
, const u8
*addr
, bool persist
)
1694 struct fw_vi_mac_cmd cmd
, rpl
;
1695 struct fw_vi_mac_exact
*p
= &cmd
.u
.exact
[0];
1696 size_t len16
= DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd
,
1698 unsigned int max_mac_addr
= adapter
->params
.arch
.mps_tcam_size
;
1701 * If this is a new allocation, determine whether it should be
1702 * persistent (across a "freemacs" operation) or not.
1705 idx
= persist
? FW_VI_MAC_ADD_PERSIST_MAC
: FW_VI_MAC_ADD_MAC
;
1707 memset(&cmd
, 0, sizeof(cmd
));
1708 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD
) |
1711 FW_VI_MAC_CMD_VIID_V(viid
));
1712 cmd
.freemacs_to_len16
= cpu_to_be32(FW_CMD_LEN16_V(len16
));
1713 p
->valid_to_idx
= cpu_to_be16(FW_VI_MAC_CMD_VALID_F
|
1714 FW_VI_MAC_CMD_IDX_V(idx
));
1715 memcpy(p
->macaddr
, addr
, sizeof(p
->macaddr
));
1717 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
1719 p
= &rpl
.u
.exact
[0];
1720 ret
= FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p
->valid_to_idx
));
1721 if (ret
>= max_mac_addr
)
1728 * t4vf_set_addr_hash - program the MAC inexact-match hash filter
1729 * @adapter: the adapter
1730 * @viid: the Virtual Interface Identifier
1731 * @ucast: whether the hash filter should also match unicast addresses
1732 * @vec: the value to be written to the hash filter
1733 * @sleep_ok: call is allowed to sleep
1735 * Sets the 64-bit inexact-match hash filter for a virtual interface.
1737 int t4vf_set_addr_hash(struct adapter
*adapter
, unsigned int viid
,
1738 bool ucast
, u64 vec
, bool sleep_ok
)
1740 struct fw_vi_mac_cmd cmd
;
1741 size_t len16
= DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd
,
1744 memset(&cmd
, 0, sizeof(cmd
));
1745 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD
) |
1748 FW_VI_ENABLE_CMD_VIID_V(viid
));
1749 cmd
.freemacs_to_len16
= cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F
|
1750 FW_VI_MAC_CMD_HASHUNIEN_V(ucast
) |
1751 FW_CMD_LEN16_V(len16
));
1752 cmd
.u
.hash
.hashvec
= cpu_to_be64(vec
);
1753 return t4vf_wr_mbox_core(adapter
, &cmd
, sizeof(cmd
), NULL
, sleep_ok
);
1757 * t4vf_get_port_stats - collect "port" statistics
1758 * @adapter: the adapter
1759 * @pidx: the port index
1760 * @s: the stats structure to fill
1762 * Collect statistics for the "port"'s Virtual Interface.
1764 int t4vf_get_port_stats(struct adapter
*adapter
, int pidx
,
1765 struct t4vf_port_stats
*s
)
1767 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
1768 struct fw_vi_stats_vf fwstats
;
1769 unsigned int rem
= VI_VF_NUM_STATS
;
1770 __be64
*fwsp
= (__be64
*)&fwstats
;
1773 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1774 * commands. We could use a Work Request and get all of them at once
1775 * but that's an asynchronous interface which is awkward to use.
1778 unsigned int ix
= VI_VF_NUM_STATS
- rem
;
1779 unsigned int nstats
= min(6U, rem
);
1780 struct fw_vi_stats_cmd cmd
, rpl
;
1781 size_t len
= (offsetof(struct fw_vi_stats_cmd
, u
) +
1782 sizeof(struct fw_vi_stats_ctl
));
1783 size_t len16
= DIV_ROUND_UP(len
, 16);
1786 memset(&cmd
, 0, sizeof(cmd
));
1787 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD
) |
1788 FW_VI_STATS_CMD_VIID_V(pi
->viid
) |
1791 cmd
.retval_len16
= cpu_to_be32(FW_CMD_LEN16_V(len16
));
1792 cmd
.u
.ctl
.nstats_ix
=
1793 cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix
) |
1794 FW_VI_STATS_CMD_NSTATS_V(nstats
));
1795 ret
= t4vf_wr_mbox_ns(adapter
, &cmd
, len
, &rpl
);
1799 memcpy(fwsp
, &rpl
.u
.ctl
.stat0
, sizeof(__be64
) * nstats
);
1806 * Translate firmware statistics into host native statistics.
1808 s
->tx_bcast_bytes
= be64_to_cpu(fwstats
.tx_bcast_bytes
);
1809 s
->tx_bcast_frames
= be64_to_cpu(fwstats
.tx_bcast_frames
);
1810 s
->tx_mcast_bytes
= be64_to_cpu(fwstats
.tx_mcast_bytes
);
1811 s
->tx_mcast_frames
= be64_to_cpu(fwstats
.tx_mcast_frames
);
1812 s
->tx_ucast_bytes
= be64_to_cpu(fwstats
.tx_ucast_bytes
);
1813 s
->tx_ucast_frames
= be64_to_cpu(fwstats
.tx_ucast_frames
);
1814 s
->tx_drop_frames
= be64_to_cpu(fwstats
.tx_drop_frames
);
1815 s
->tx_offload_bytes
= be64_to_cpu(fwstats
.tx_offload_bytes
);
1816 s
->tx_offload_frames
= be64_to_cpu(fwstats
.tx_offload_frames
);
1818 s
->rx_bcast_bytes
= be64_to_cpu(fwstats
.rx_bcast_bytes
);
1819 s
->rx_bcast_frames
= be64_to_cpu(fwstats
.rx_bcast_frames
);
1820 s
->rx_mcast_bytes
= be64_to_cpu(fwstats
.rx_mcast_bytes
);
1821 s
->rx_mcast_frames
= be64_to_cpu(fwstats
.rx_mcast_frames
);
1822 s
->rx_ucast_bytes
= be64_to_cpu(fwstats
.rx_ucast_bytes
);
1823 s
->rx_ucast_frames
= be64_to_cpu(fwstats
.rx_ucast_frames
);
1825 s
->rx_err_frames
= be64_to_cpu(fwstats
.rx_err_frames
);
1831 * t4vf_iq_free - free an ingress queue and its free lists
1832 * @adapter: the adapter
1833 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1834 * @iqid: ingress queue ID
1835 * @fl0id: FL0 queue ID or 0xffff if no attached FL0
1836 * @fl1id: FL1 queue ID or 0xffff if no attached FL1
1838 * Frees an ingress queue and its associated free lists, if any.
1840 int t4vf_iq_free(struct adapter
*adapter
, unsigned int iqtype
,
1841 unsigned int iqid
, unsigned int fl0id
, unsigned int fl1id
)
1843 struct fw_iq_cmd cmd
;
1845 memset(&cmd
, 0, sizeof(cmd
));
1846 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD
) |
1849 cmd
.alloc_to_len16
= cpu_to_be32(FW_IQ_CMD_FREE_F
|
1851 cmd
.type_to_iqandstindex
=
1852 cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype
));
1854 cmd
.iqid
= cpu_to_be16(iqid
);
1855 cmd
.fl0id
= cpu_to_be16(fl0id
);
1856 cmd
.fl1id
= cpu_to_be16(fl1id
);
1857 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
1861 * t4vf_eth_eq_free - free an Ethernet egress queue
1862 * @adapter: the adapter
1863 * @eqid: egress queue ID
1865 * Frees an Ethernet egress queue.
1867 int t4vf_eth_eq_free(struct adapter
*adapter
, unsigned int eqid
)
1869 struct fw_eq_eth_cmd cmd
;
1871 memset(&cmd
, 0, sizeof(cmd
));
1872 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD
) |
1875 cmd
.alloc_to_len16
= cpu_to_be32(FW_EQ_ETH_CMD_FREE_F
|
1877 cmd
.eqid_pkd
= cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid
));
1878 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
1882 * t4vf_link_down_rc_str - return a string for a Link Down Reason Code
1883 * @link_down_rc: Link Down Reason Code
1885 * Returns a string representation of the Link Down Reason Code.
1887 static const char *t4vf_link_down_rc_str(unsigned char link_down_rc
)
1889 static const char * const reason
[] = {
1892 "Auto-negotiation Failure",
1894 "Insufficient Airflow",
1895 "Unable To Determine Reason",
1896 "No RX Signal Detected",
1900 if (link_down_rc
>= ARRAY_SIZE(reason
))
1901 return "Bad Reason Code";
1903 return reason
[link_down_rc
];
1907 * t4vf_handle_get_port_info - process a FW reply message
1908 * @pi: the port info
1909 * @rpl: start of the FW message
1911 * Processes a GET_PORT_INFO FW reply message.
1913 static void t4vf_handle_get_port_info(struct port_info
*pi
,
1914 const struct fw_port_cmd
*cmd
)
1916 fw_port_cap32_t pcaps
, acaps
, lpacaps
, linkattr
;
1917 struct link_config
*lc
= &pi
->link_cfg
;
1918 struct adapter
*adapter
= pi
->adapter
;
1919 unsigned int speed
, fc
, fec
, adv_fc
;
1920 enum fw_port_module_type mod_type
;
1921 int action
, link_ok
, linkdnrc
;
1922 enum fw_port_type port_type
;
1924 /* Extract the various fields from the Port Information message. */
1925 action
= FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd
->action_to_len16
));
1927 case FW_PORT_ACTION_GET_PORT_INFO
: {
1928 u32 lstatus
= be32_to_cpu(cmd
->u
.info
.lstatus_to_modtype
);
1930 link_ok
= (lstatus
& FW_PORT_CMD_LSTATUS_F
) != 0;
1931 linkdnrc
= FW_PORT_CMD_LINKDNRC_G(lstatus
);
1932 port_type
= FW_PORT_CMD_PTYPE_G(lstatus
);
1933 mod_type
= FW_PORT_CMD_MODTYPE_G(lstatus
);
1934 pcaps
= fwcaps16_to_caps32(be16_to_cpu(cmd
->u
.info
.pcap
));
1935 acaps
= fwcaps16_to_caps32(be16_to_cpu(cmd
->u
.info
.acap
));
1936 lpacaps
= fwcaps16_to_caps32(be16_to_cpu(cmd
->u
.info
.lpacap
));
1938 /* Unfortunately the format of the Link Status in the old
1939 * 16-bit Port Information message isn't the same as the
1940 * 16-bit Port Capabilities bitfield used everywhere else ...
1943 if (lstatus
& FW_PORT_CMD_RXPAUSE_F
)
1944 linkattr
|= FW_PORT_CAP32_FC_RX
;
1945 if (lstatus
& FW_PORT_CMD_TXPAUSE_F
)
1946 linkattr
|= FW_PORT_CAP32_FC_TX
;
1947 if (lstatus
& FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M
))
1948 linkattr
|= FW_PORT_CAP32_SPEED_100M
;
1949 if (lstatus
& FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G
))
1950 linkattr
|= FW_PORT_CAP32_SPEED_1G
;
1951 if (lstatus
& FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G
))
1952 linkattr
|= FW_PORT_CAP32_SPEED_10G
;
1953 if (lstatus
& FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G
))
1954 linkattr
|= FW_PORT_CAP32_SPEED_25G
;
1955 if (lstatus
& FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G
))
1956 linkattr
|= FW_PORT_CAP32_SPEED_40G
;
1957 if (lstatus
& FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G
))
1958 linkattr
|= FW_PORT_CAP32_SPEED_100G
;
1963 case FW_PORT_ACTION_GET_PORT_INFO32
: {
1966 lstatus32
= be32_to_cpu(cmd
->u
.info32
.lstatus32_to_cbllen32
);
1967 link_ok
= (lstatus32
& FW_PORT_CMD_LSTATUS32_F
) != 0;
1968 linkdnrc
= FW_PORT_CMD_LINKDNRC32_G(lstatus32
);
1969 port_type
= FW_PORT_CMD_PORTTYPE32_G(lstatus32
);
1970 mod_type
= FW_PORT_CMD_MODTYPE32_G(lstatus32
);
1971 pcaps
= be32_to_cpu(cmd
->u
.info32
.pcaps32
);
1972 acaps
= be32_to_cpu(cmd
->u
.info32
.acaps32
);
1973 lpacaps
= be32_to_cpu(cmd
->u
.info32
.lpacaps32
);
1974 linkattr
= be32_to_cpu(cmd
->u
.info32
.linkattr32
);
1979 dev_err(adapter
->pdev_dev
, "Handle Port Information: Bad Command/Action %#x\n",
1980 be32_to_cpu(cmd
->action_to_len16
));
1984 fec
= fwcap_to_cc_fec(acaps
);
1985 adv_fc
= fwcap_to_cc_pause(acaps
);
1986 fc
= fwcap_to_cc_pause(linkattr
);
1987 speed
= fwcap_to_speed(linkattr
);
1989 if (mod_type
!= pi
->mod_type
) {
1990 /* When a new Transceiver Module is inserted, the Firmware
1991 * will examine any Forward Error Correction parameters
1992 * present in the Transceiver Module i2c EPROM and determine
1993 * the supported and recommended FEC settings from those
1994 * based on IEEE 802.3 standards. We always record the
1995 * IEEE 802.3 recommended "automatic" settings.
1999 /* Some versions of the early T6 Firmware "cheated" when
2000 * handling different Transceiver Modules by changing the
2001 * underlaying Port Type reported to the Host Drivers. As
2002 * such we need to capture whatever Port Type the Firmware
2003 * sends us and record it in case it's different from what we
2004 * were told earlier. Unfortunately, since Firmware is
2005 * forever, we'll need to keep this code here forever, but in
2006 * later T6 Firmware it should just be an assignment of the
2007 * same value already recorded.
2009 pi
->port_type
= port_type
;
2011 pi
->mod_type
= mod_type
;
2012 t4vf_os_portmod_changed(adapter
, pi
->pidx
);
2015 if (link_ok
!= lc
->link_ok
|| speed
!= lc
->speed
||
2016 fc
!= lc
->fc
|| adv_fc
!= lc
->advertised_fc
||
2018 /* something changed */
2019 if (!link_ok
&& lc
->link_ok
) {
2020 lc
->link_down_rc
= linkdnrc
;
2021 dev_warn_ratelimited(adapter
->pdev_dev
,
2022 "Port %d link down, reason: %s\n",
2024 t4vf_link_down_rc_str(linkdnrc
));
2026 lc
->link_ok
= link_ok
;
2028 lc
->advertised_fc
= adv_fc
;
2033 lc
->lpacaps
= lpacaps
;
2034 lc
->acaps
= acaps
& ADVERT_MASK
;
2036 /* If we're not physically capable of Auto-Negotiation, note
2037 * this as Auto-Negotiation disabled. Otherwise, we track
2038 * what Auto-Negotiation settings we have. Note parallel
2039 * structure in init_link_config().
2041 if (!(lc
->pcaps
& FW_PORT_CAP32_ANEG
)) {
2042 lc
->autoneg
= AUTONEG_DISABLE
;
2043 } else if (lc
->acaps
& FW_PORT_CAP32_ANEG
) {
2044 lc
->autoneg
= AUTONEG_ENABLE
;
2046 /* When Autoneg is disabled, user needs to set
2048 * Similar to cxgb4_ethtool.c: set_link_ksettings
2051 lc
->speed_caps
= fwcap_to_speed(acaps
);
2052 lc
->autoneg
= AUTONEG_DISABLE
;
2055 t4vf_os_link_changed(adapter
, pi
->pidx
, link_ok
);
2060 * t4vf_update_port_info - retrieve and update port information if changed
2061 * @pi: the port_info
2063 * We issue a Get Port Information Command to the Firmware and, if
2064 * successful, we check to see if anything is different from what we
2065 * last recorded and update things accordingly.
2067 int t4vf_update_port_info(struct port_info
*pi
)
2069 unsigned int fw_caps
= pi
->adapter
->params
.fw_caps_support
;
2070 struct fw_port_cmd port_cmd
;
2073 memset(&port_cmd
, 0, sizeof(port_cmd
));
2074 port_cmd
.op_to_portid
= cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD
) |
2075 FW_CMD_REQUEST_F
| FW_CMD_READ_F
|
2076 FW_PORT_CMD_PORTID_V(pi
->port_id
));
2077 port_cmd
.action_to_len16
= cpu_to_be32(
2078 FW_PORT_CMD_ACTION_V(fw_caps
== FW_CAPS16
2079 ? FW_PORT_ACTION_GET_PORT_INFO
2080 : FW_PORT_ACTION_GET_PORT_INFO32
) |
2081 FW_LEN16(port_cmd
));
2082 ret
= t4vf_wr_mbox(pi
->adapter
, &port_cmd
, sizeof(port_cmd
),
2086 t4vf_handle_get_port_info(pi
, &port_cmd
);
2091 * t4vf_handle_fw_rpl - process a firmware reply message
2092 * @adapter: the adapter
2093 * @rpl: start of the firmware message
2095 * Processes a firmware message, such as link state change messages.
2097 int t4vf_handle_fw_rpl(struct adapter
*adapter
, const __be64
*rpl
)
2099 const struct fw_cmd_hdr
*cmd_hdr
= (const struct fw_cmd_hdr
*)rpl
;
2100 u8 opcode
= FW_CMD_OP_G(be32_to_cpu(cmd_hdr
->hi
));
2105 * Link/module state change message.
2107 const struct fw_port_cmd
*port_cmd
=
2108 (const struct fw_port_cmd
*)rpl
;
2109 int action
= FW_PORT_CMD_ACTION_G(
2110 be32_to_cpu(port_cmd
->action_to_len16
));
2113 if (action
!= FW_PORT_ACTION_GET_PORT_INFO
&&
2114 action
!= FW_PORT_ACTION_GET_PORT_INFO32
) {
2115 dev_err(adapter
->pdev_dev
,
2116 "Unknown firmware PORT reply action %x\n",
2121 port_id
= FW_PORT_CMD_PORTID_G(
2122 be32_to_cpu(port_cmd
->op_to_portid
));
2123 for_each_port(adapter
, pidx
) {
2124 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
2126 if (pi
->port_id
!= port_id
)
2128 t4vf_handle_get_port_info(pi
, port_cmd
);
2134 dev_err(adapter
->pdev_dev
, "Unknown firmware reply %X\n",
2142 int t4vf_prep_adapter(struct adapter
*adapter
)
2145 unsigned int chipid
;
2147 /* Wait for the device to become ready before proceeding ...
2149 err
= t4vf_wait_dev_ready(adapter
);
2153 /* Default port and clock for debugging in case we can't reach
2156 adapter
->params
.nports
= 1;
2157 adapter
->params
.vfres
.pmask
= 1;
2158 adapter
->params
.vpd
.cclk
= 50000;
2160 adapter
->params
.chip
= 0;
2161 switch (CHELSIO_PCI_ID_VER(adapter
->pdev
->device
)) {
2163 adapter
->params
.chip
|= CHELSIO_CHIP_CODE(CHELSIO_T4
, 0);
2164 adapter
->params
.arch
.sge_fl_db
= DBPRIO_F
;
2165 adapter
->params
.arch
.mps_tcam_size
=
2166 NUM_MPS_CLS_SRAM_L_INSTANCES
;
2170 chipid
= REV_G(t4_read_reg(adapter
, PL_VF_REV_A
));
2171 adapter
->params
.chip
|= CHELSIO_CHIP_CODE(CHELSIO_T5
, chipid
);
2172 adapter
->params
.arch
.sge_fl_db
= DBPRIO_F
| DBTYPE_F
;
2173 adapter
->params
.arch
.mps_tcam_size
=
2174 NUM_MPS_T5_CLS_SRAM_L_INSTANCES
;
2178 chipid
= REV_G(t4_read_reg(adapter
, PL_VF_REV_A
));
2179 adapter
->params
.chip
|= CHELSIO_CHIP_CODE(CHELSIO_T6
, chipid
);
2180 adapter
->params
.arch
.sge_fl_db
= 0;
2181 adapter
->params
.arch
.mps_tcam_size
=
2182 NUM_MPS_T5_CLS_SRAM_L_INSTANCES
;
2190 * t4vf_get_vf_mac_acl - Get the MAC address to be set to
2191 * the VI of this VF.
2192 * @adapter: The adapter
2193 * @pf: The pf associated with vf
2194 * @naddr: the number of ACL MAC addresses returned in addr
2195 * @addr: Placeholder for MAC addresses
2197 * Find the MAC address to be set to the VF's VI. The requested MAC address
2198 * is from the host OS via callback in the PF driver.
2200 int t4vf_get_vf_mac_acl(struct adapter
*adapter
, unsigned int pf
,
2201 unsigned int *naddr
, u8
*addr
)
2203 struct fw_acl_mac_cmd cmd
;
2206 memset(&cmd
, 0, sizeof(cmd
));
2207 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD
) |
2210 cmd
.en_to_len16
= cpu_to_be32((unsigned int)FW_LEN16(cmd
));
2211 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &cmd
);
2215 if (cmd
.nmac
< *naddr
)
2220 memcpy(addr
, cmd
.macaddr3
, sizeof(cmd
.macaddr3
));
2223 memcpy(addr
, cmd
.macaddr2
, sizeof(cmd
.macaddr2
));
2226 memcpy(addr
, cmd
.macaddr1
, sizeof(cmd
.macaddr1
));
2229 memcpy(addr
, cmd
.macaddr0
, sizeof(cmd
.macaddr0
));
2237 * t4vf_get_vf_vlan_acl - Get the VLAN ID to be set to
2238 * the VI of this VF.
2239 * @adapter: The adapter
2241 * Find the VLAN ID to be set to the VF's VI. The requested VLAN ID
2242 * is from the host OS via callback in the PF driver.
2244 int t4vf_get_vf_vlan_acl(struct adapter
*adapter
)
2246 struct fw_acl_vlan_cmd cmd
;
2250 cmd
.op_to_vfn
= htonl(FW_CMD_OP_V(FW_ACL_VLAN_CMD
) |
2251 FW_CMD_REQUEST_F
| FW_CMD_READ_F
);
2253 /* Note: Do not enable the ACL */
2254 cmd
.en_to_len16
= cpu_to_be32((unsigned int)FW_LEN16(cmd
));
2256 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &cmd
);
2259 vlan
= be16_to_cpu(cmd
.vlanid
[0]);