1 // SPDX-License-Identifier: GPL-2.0-or-later
3 /* ns83820.c by Benjamin LaHaise with contributions.
5 * Questions/comments/discussion to linux-ns83820@kvack.org.
7 * $Revision: 1.34.2.23 $
9 * Copyright 2001 Benjamin LaHaise.
10 * Copyright 2001, 2002 Red Hat.
12 * Mmmm, chocolate vanilla mocha...
16 * 20010414 0.1 - created
17 * 20010622 0.2 - basic rx and tx.
18 * 20010711 0.3 - added duplex and link state detection support.
19 * 20010713 0.4 - zero copy, no hangs.
20 * 0.5 - 64 bit dma support (davem will hate me for this)
21 * - disable jumbo frames to avoid tx hangs
22 * - work around tx deadlocks on my 1.02 card via
24 * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64
25 * 20010816 0.7 - misc cleanups
26 * 20010826 0.8 - fix critical zero copy bugs
27 * 0.9 - internal experiment
28 * 20010827 0.10 - fix ia64 unaligned access.
29 * 20010906 0.11 - accept all packets with checksum errors as
30 * otherwise fragments get lost
32 * 0.12 - add statistics counters
33 * - add allmulti/promisc support
34 * 20011009 0.13 - hotplug support, other smaller pci api cleanups
35 * 20011204 0.13a - optical transceiver support added
36 * by Michael Clark <michael@metaparadigm.com>
37 * 20011205 0.13b - call register_netdev earlier in initialization
38 * suppress duplicate link status messages
39 * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik
40 * 20011204 0.15 get ppc (big endian) working
41 * 20011218 0.16 various cleanups
42 * 20020310 0.17 speedups
43 * 20020610 0.18 - actually use the pci dma api for highmem
44 * - remove pci latency register fiddling
45 * 0.19 - better bist support
46 * - add ihr and reset_phy parameters
48 * - fix missed txok introduced during performance
50 * 0.20 - fix stupid RFEN thinko. i am such a smurf.
51 * 20040828 0.21 - add hardware vlan accleration
52 * by Neil Horman <nhorman@redhat.com>
53 * 20050406 0.22 - improved DAC ifdefs from Andi Kleen
54 * - removal of dead code from Adrian Bunk
55 * - fix half duplex collision behaviour
59 * This driver was originally written for the National Semiconductor
60 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully
61 * this code will turn out to be a) clean, b) correct, and c) fast.
62 * With that in mind, I'm aiming to split the code up as much as
63 * reasonably possible. At present there are X major sections that
64 * break down into a) packet receive, b) packet transmit, c) link
65 * management, d) initialization and configuration. Where possible,
66 * these code paths are designed to run in parallel.
68 * This driver has been tested and found to work with the following
69 * cards (in no particular order):
71 * Cameo SOHO-GA2000T SOHO-GA2500T
73 * PureData PDP8023Z-TG
74 * SMC SMC9452TX SMC9462TX
77 * Special thanks to SMC for providing hardware to test this driver on.
79 * Reports of success or failure would be greatly appreciated.
81 //#define dprintk printk
82 #define dprintk(x...) do { } while (0)
84 #include <linux/module.h>
85 #include <linux/moduleparam.h>
86 #include <linux/types.h>
87 #include <linux/pci.h>
88 #include <linux/dma-mapping.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/delay.h>
92 #include <linux/workqueue.h>
93 #include <linux/init.h>
94 #include <linux/interrupt.h>
95 #include <linux/ip.h> /* for iph */
96 #include <linux/in.h> /* for IPPROTO_... */
97 #include <linux/compiler.h>
98 #include <linux/prefetch.h>
99 #include <linux/ethtool.h>
100 #include <linux/sched.h>
101 #include <linux/timer.h>
102 #include <linux/if_vlan.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/jiffies.h>
105 #include <linux/slab.h>
108 #include <linux/uaccess.h>
110 #define DRV_NAME "ns83820"
112 /* Global parameters. See module_param near the bottom. */
114 static int reset_phy
= 0;
115 static int lnksts
= 0; /* CFG_LNKSTS bit polarity */
117 /* Dprintk is used for more interesting debug events */
119 #define Dprintk dprintk
122 #define RX_BUF_SIZE 1500 /* 8192 */
123 #if IS_ENABLED(CONFIG_VLAN_8021Q)
124 #define NS83820_VLAN_ACCEL_SUPPORT
127 /* Must not exceed ~65000. */
128 #define NR_RX_DESC 64
129 #define NR_TX_DESC 128
132 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */
134 #define MIN_TX_DESC_FREE 8
136 /* register defines */
139 #define CR_TXE 0x00000001
140 #define CR_TXD 0x00000002
141 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
142 * The Receive engine skips one descriptor and moves
143 * onto the next one!! */
144 #define CR_RXE 0x00000004
145 #define CR_RXD 0x00000008
146 #define CR_TXR 0x00000010
147 #define CR_RXR 0x00000020
148 #define CR_SWI 0x00000080
149 #define CR_RST 0x00000100
151 #define PTSCR_EEBIST_FAIL 0x00000001
152 #define PTSCR_EEBIST_EN 0x00000002
153 #define PTSCR_EELOAD_EN 0x00000004
154 #define PTSCR_RBIST_FAIL 0x000001b8
155 #define PTSCR_RBIST_DONE 0x00000200
156 #define PTSCR_RBIST_EN 0x00000400
157 #define PTSCR_RBIST_RST 0x00002000
159 #define MEAR_EEDI 0x00000001
160 #define MEAR_EEDO 0x00000002
161 #define MEAR_EECLK 0x00000004
162 #define MEAR_EESEL 0x00000008
163 #define MEAR_MDIO 0x00000010
164 #define MEAR_MDDIR 0x00000020
165 #define MEAR_MDC 0x00000040
167 #define ISR_TXDESC3 0x40000000
168 #define ISR_TXDESC2 0x20000000
169 #define ISR_TXDESC1 0x10000000
170 #define ISR_TXDESC0 0x08000000
171 #define ISR_RXDESC3 0x04000000
172 #define ISR_RXDESC2 0x02000000
173 #define ISR_RXDESC1 0x01000000
174 #define ISR_RXDESC0 0x00800000
175 #define ISR_TXRCMP 0x00400000
176 #define ISR_RXRCMP 0x00200000
177 #define ISR_DPERR 0x00100000
178 #define ISR_SSERR 0x00080000
179 #define ISR_RMABT 0x00040000
180 #define ISR_RTABT 0x00020000
181 #define ISR_RXSOVR 0x00010000
182 #define ISR_HIBINT 0x00008000
183 #define ISR_PHY 0x00004000
184 #define ISR_PME 0x00002000
185 #define ISR_SWI 0x00001000
186 #define ISR_MIB 0x00000800
187 #define ISR_TXURN 0x00000400
188 #define ISR_TXIDLE 0x00000200
189 #define ISR_TXERR 0x00000100
190 #define ISR_TXDESC 0x00000080
191 #define ISR_TXOK 0x00000040
192 #define ISR_RXORN 0x00000020
193 #define ISR_RXIDLE 0x00000010
194 #define ISR_RXEARLY 0x00000008
195 #define ISR_RXERR 0x00000004
196 #define ISR_RXDESC 0x00000002
197 #define ISR_RXOK 0x00000001
199 #define TXCFG_CSI 0x80000000
200 #define TXCFG_HBI 0x40000000
201 #define TXCFG_MLB 0x20000000
202 #define TXCFG_ATP 0x10000000
203 #define TXCFG_ECRETRY 0x00800000
204 #define TXCFG_BRST_DIS 0x00080000
205 #define TXCFG_MXDMA1024 0x00000000
206 #define TXCFG_MXDMA512 0x00700000
207 #define TXCFG_MXDMA256 0x00600000
208 #define TXCFG_MXDMA128 0x00500000
209 #define TXCFG_MXDMA64 0x00400000
210 #define TXCFG_MXDMA32 0x00300000
211 #define TXCFG_MXDMA16 0x00200000
212 #define TXCFG_MXDMA8 0x00100000
214 #define CFG_LNKSTS 0x80000000
215 #define CFG_SPDSTS 0x60000000
216 #define CFG_SPDSTS1 0x40000000
217 #define CFG_SPDSTS0 0x20000000
218 #define CFG_DUPSTS 0x10000000
219 #define CFG_TBI_EN 0x01000000
220 #define CFG_MODE_1000 0x00400000
221 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
222 * Read the Phy response and then configure the MAC accordingly */
223 #define CFG_AUTO_1000 0x00200000
224 #define CFG_PINT_CTL 0x001c0000
225 #define CFG_PINT_DUPSTS 0x00100000
226 #define CFG_PINT_LNKSTS 0x00080000
227 #define CFG_PINT_SPDSTS 0x00040000
228 #define CFG_TMRTEST 0x00020000
229 #define CFG_MRM_DIS 0x00010000
230 #define CFG_MWI_DIS 0x00008000
231 #define CFG_T64ADDR 0x00004000
232 #define CFG_PCI64_DET 0x00002000
233 #define CFG_DATA64_EN 0x00001000
234 #define CFG_M64ADDR 0x00000800
235 #define CFG_PHY_RST 0x00000400
236 #define CFG_PHY_DIS 0x00000200
237 #define CFG_EXTSTS_EN 0x00000100
238 #define CFG_REQALG 0x00000080
239 #define CFG_SB 0x00000040
240 #define CFG_POW 0x00000020
241 #define CFG_EXD 0x00000010
242 #define CFG_PESEL 0x00000008
243 #define CFG_BROM_DIS 0x00000004
244 #define CFG_EXT_125 0x00000002
245 #define CFG_BEM 0x00000001
247 #define EXTSTS_UDPPKT 0x00200000
248 #define EXTSTS_TCPPKT 0x00080000
249 #define EXTSTS_IPPKT 0x00020000
250 #define EXTSTS_VPKT 0x00010000
251 #define EXTSTS_VTG_MASK 0x0000ffff
253 #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
255 #define MIBC_MIBS 0x00000008
256 #define MIBC_ACLR 0x00000004
257 #define MIBC_FRZ 0x00000002
258 #define MIBC_WRN 0x00000001
260 #define PCR_PSEN (1 << 31)
261 #define PCR_PS_MCAST (1 << 30)
262 #define PCR_PS_DA (1 << 29)
263 #define PCR_STHI_8 (3 << 23)
264 #define PCR_STLO_4 (1 << 23)
265 #define PCR_FFHI_8K (3 << 21)
266 #define PCR_FFLO_4K (1 << 21)
267 #define PCR_PAUSE_CNT 0xFFFE
269 #define RXCFG_AEP 0x80000000
270 #define RXCFG_ARP 0x40000000
271 #define RXCFG_STRIPCRC 0x20000000
272 #define RXCFG_RX_FD 0x10000000
273 #define RXCFG_ALP 0x08000000
274 #define RXCFG_AIRL 0x04000000
275 #define RXCFG_MXDMA512 0x00700000
276 #define RXCFG_DRTH 0x0000003e
277 #define RXCFG_DRTH0 0x00000002
279 #define RFCR_RFEN 0x80000000
280 #define RFCR_AAB 0x40000000
281 #define RFCR_AAM 0x20000000
282 #define RFCR_AAU 0x10000000
283 #define RFCR_APM 0x08000000
284 #define RFCR_APAT 0x07800000
285 #define RFCR_APAT3 0x04000000
286 #define RFCR_APAT2 0x02000000
287 #define RFCR_APAT1 0x01000000
288 #define RFCR_APAT0 0x00800000
289 #define RFCR_AARP 0x00400000
290 #define RFCR_MHEN 0x00200000
291 #define RFCR_UHEN 0x00100000
292 #define RFCR_ULM 0x00080000
294 #define VRCR_RUDPE 0x00000080
295 #define VRCR_RTCPE 0x00000040
296 #define VRCR_RIPE 0x00000020
297 #define VRCR_IPEN 0x00000010
298 #define VRCR_DUTF 0x00000008
299 #define VRCR_DVTF 0x00000004
300 #define VRCR_VTREN 0x00000002
301 #define VRCR_VTDEN 0x00000001
303 #define VTCR_PPCHK 0x00000008
304 #define VTCR_GCHK 0x00000004
305 #define VTCR_VPPTI 0x00000002
306 #define VTCR_VGTI 0x00000001
343 #define TBICR_MR_AN_ENABLE 0x00001000
344 #define TBICR_MR_RESTART_AN 0x00000200
346 #define TBISR_MR_LINK_STATUS 0x00000020
347 #define TBISR_MR_AN_COMPLETE 0x00000004
349 #define TANAR_PS2 0x00000100
350 #define TANAR_PS1 0x00000080
351 #define TANAR_HALF_DUP 0x00000040
352 #define TANAR_FULL_DUP 0x00000020
354 #define GPIOR_GP5_OE 0x00000200
355 #define GPIOR_GP4_OE 0x00000100
356 #define GPIOR_GP3_OE 0x00000080
357 #define GPIOR_GP2_OE 0x00000040
358 #define GPIOR_GP1_OE 0x00000020
359 #define GPIOR_GP3_OUT 0x00000004
360 #define GPIOR_GP1_OUT 0x00000001
362 #define LINK_AUTONEGOTIATE 0x01
363 #define LINK_DOWN 0x02
366 #define HW_ADDR_LEN sizeof(dma_addr_t)
367 #define desc_addr_set(desc, addr) \
369 ((desc)[0] = cpu_to_le32(addr)); \
370 if (HW_ADDR_LEN == 8) \
371 (desc)[1] = cpu_to_le32(((u64)addr) >> 32); \
373 #define desc_addr_get(desc) \
374 (le32_to_cpu((desc)[0]) | \
375 (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
378 #define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4)
379 #define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4)
380 #define DESC_EXTSTS (DESC_CMDSTS + 4/4)
382 #define CMDSTS_OWN 0x80000000
383 #define CMDSTS_MORE 0x40000000
384 #define CMDSTS_INTR 0x20000000
385 #define CMDSTS_ERR 0x10000000
386 #define CMDSTS_OK 0x08000000
387 #define CMDSTS_RUNT 0x00200000
388 #define CMDSTS_LEN_MASK 0x0000ffff
390 #define CMDSTS_DEST_MASK 0x01800000
391 #define CMDSTS_DEST_SELF 0x00800000
392 #define CMDSTS_DEST_MULTI 0x01000000
394 #define DESC_SIZE 8 /* Should be cache line sized */
401 struct sk_buff
*skbs
[NR_RX_DESC
];
403 __le32
*next_rx_desc
;
404 u16 next_rx
, next_empty
;
407 dma_addr_t phy_descs
;
414 struct pci_dev
*pci_dev
;
415 struct net_device
*ndev
;
417 struct rx_info rx_info
;
418 struct tasklet_struct rx_tasklet
;
421 struct work_struct tq_refill
;
423 /* protects everything below. irqsave when using. */
424 spinlock_t misc_lock
;
437 volatile u16 tx_free_idx
; /* idx of free desc chain */
441 struct sk_buff
*tx_skbs
[NR_TX_DESC
];
443 char pad
[16] __attribute__((aligned(16)));
445 dma_addr_t tx_phy_descs
;
447 struct timer_list tx_watchdog
;
450 static inline struct ns83820
*PRIV(struct net_device
*dev
)
452 return netdev_priv(dev
);
455 #define __kick_rx(dev) writel(CR_RXE, dev->base + CR)
457 static inline void kick_rx(struct net_device
*ndev
)
459 struct ns83820
*dev
= PRIV(ndev
);
460 dprintk("kick_rx: maybe kicking\n");
461 if (test_and_clear_bit(0, &dev
->rx_info
.idle
)) {
462 dprintk("actually kicking\n");
463 writel(dev
->rx_info
.phy_descs
+
464 (4 * DESC_SIZE
* dev
->rx_info
.next_rx
),
466 if (dev
->rx_info
.next_rx
== dev
->rx_info
.next_empty
)
467 printk(KERN_DEBUG
"%s: uh-oh: next_rx == next_empty???\n",
473 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
474 #define start_tx_okay(dev) \
475 (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
479 * The hardware supports linked lists of receive descriptors for
480 * which ownership is transferred back and forth by means of an
481 * ownership bit. While the hardware does support the use of a
482 * ring for receive descriptors, we only make use of a chain in
483 * an attempt to reduce bus traffic under heavy load scenarios.
484 * This will also make bugs a bit more obvious. The current code
485 * only makes use of a single rx chain; I hope to implement
486 * priority based rx for version 1.0. Goal: even under overload
487 * conditions, still route realtime traffic with as low jitter as
490 static inline void build_rx_desc(struct ns83820
*dev
, __le32
*desc
, dma_addr_t link
, dma_addr_t buf
, u32 cmdsts
, u32 extsts
)
492 desc_addr_set(desc
+ DESC_LINK
, link
);
493 desc_addr_set(desc
+ DESC_BUFPTR
, buf
);
494 desc
[DESC_EXTSTS
] = cpu_to_le32(extsts
);
496 desc
[DESC_CMDSTS
] = cpu_to_le32(cmdsts
);
499 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
500 static inline int ns83820_add_rx_skb(struct ns83820
*dev
, struct sk_buff
*skb
)
507 next_empty
= dev
->rx_info
.next_empty
;
509 /* don't overrun last rx marker */
510 if (unlikely(nr_rx_empty(dev
) <= 2)) {
516 dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
517 dev
->rx_info
.next_empty
,
518 dev
->rx_info
.nr_used
,
523 sg
= dev
->rx_info
.descs
+ (next_empty
* DESC_SIZE
);
524 BUG_ON(NULL
!= dev
->rx_info
.skbs
[next_empty
]);
525 dev
->rx_info
.skbs
[next_empty
] = skb
;
527 dev
->rx_info
.next_empty
= (next_empty
+ 1) % NR_RX_DESC
;
528 cmdsts
= REAL_RX_BUF_SIZE
| CMDSTS_INTR
;
529 buf
= pci_map_single(dev
->pci_dev
, skb
->data
,
530 REAL_RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
531 build_rx_desc(dev
, sg
, 0, buf
, cmdsts
, 0);
532 /* update link of previous rx */
533 if (likely(next_empty
!= dev
->rx_info
.next_rx
))
534 dev
->rx_info
.descs
[((NR_RX_DESC
+ next_empty
- 1) % NR_RX_DESC
) * DESC_SIZE
] = cpu_to_le32(dev
->rx_info
.phy_descs
+ (next_empty
* DESC_SIZE
* 4));
539 static inline int rx_refill(struct net_device
*ndev
, gfp_t gfp
)
541 struct ns83820
*dev
= PRIV(ndev
);
543 unsigned long flags
= 0;
545 if (unlikely(nr_rx_empty(dev
) <= 2))
548 dprintk("rx_refill(%p)\n", ndev
);
549 if (gfp
== GFP_ATOMIC
)
550 spin_lock_irqsave(&dev
->rx_info
.lock
, flags
);
551 for (i
=0; i
<NR_RX_DESC
; i
++) {
555 /* extra 16 bytes for alignment */
556 skb
= __netdev_alloc_skb(ndev
, REAL_RX_BUF_SIZE
+16, gfp
);
560 skb_reserve(skb
, skb
->data
- PTR_ALIGN(skb
->data
, 16));
561 if (gfp
!= GFP_ATOMIC
)
562 spin_lock_irqsave(&dev
->rx_info
.lock
, flags
);
563 res
= ns83820_add_rx_skb(dev
, skb
);
564 if (gfp
!= GFP_ATOMIC
)
565 spin_unlock_irqrestore(&dev
->rx_info
.lock
, flags
);
571 if (gfp
== GFP_ATOMIC
)
572 spin_unlock_irqrestore(&dev
->rx_info
.lock
, flags
);
574 return i
? 0 : -ENOMEM
;
577 static void rx_refill_atomic(struct net_device
*ndev
)
579 rx_refill(ndev
, GFP_ATOMIC
);
583 static inline void queue_refill(struct work_struct
*work
)
585 struct ns83820
*dev
= container_of(work
, struct ns83820
, tq_refill
);
586 struct net_device
*ndev
= dev
->ndev
;
588 rx_refill(ndev
, GFP_KERNEL
);
593 static inline void clear_rx_desc(struct ns83820
*dev
, unsigned i
)
595 build_rx_desc(dev
, dev
->rx_info
.descs
+ (DESC_SIZE
* i
), 0, 0, CMDSTS_OWN
, 0);
598 static void phy_intr(struct net_device
*ndev
)
600 struct ns83820
*dev
= PRIV(ndev
);
601 static const char *speeds
[] = { "10", "100", "1000", "1000(?)", "1000F" };
603 u32 tbisr
, tanar
, tanlpar
;
604 int speed
, fullduplex
, newlinkstate
;
606 cfg
= readl(dev
->base
+ CFG
) ^ SPDSTS_POLARITY
;
608 if (dev
->CFG_cache
& CFG_TBI_EN
) {
609 /* we have an optical transceiver */
610 tbisr
= readl(dev
->base
+ TBISR
);
611 tanar
= readl(dev
->base
+ TANAR
);
612 tanlpar
= readl(dev
->base
+ TANLPAR
);
613 dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
614 tbisr
, tanar
, tanlpar
);
616 if ( (fullduplex
= (tanlpar
& TANAR_FULL_DUP
) &&
617 (tanar
& TANAR_FULL_DUP
)) ) {
619 /* both of us are full duplex */
620 writel(readl(dev
->base
+ TXCFG
)
621 | TXCFG_CSI
| TXCFG_HBI
| TXCFG_ATP
,
623 writel(readl(dev
->base
+ RXCFG
) | RXCFG_RX_FD
,
625 /* Light up full duplex LED */
626 writel(readl(dev
->base
+ GPIOR
) | GPIOR_GP1_OUT
,
629 } else if (((tanlpar
& TANAR_HALF_DUP
) &&
630 (tanar
& TANAR_HALF_DUP
)) ||
631 ((tanlpar
& TANAR_FULL_DUP
) &&
632 (tanar
& TANAR_HALF_DUP
)) ||
633 ((tanlpar
& TANAR_HALF_DUP
) &&
634 (tanar
& TANAR_FULL_DUP
))) {
636 /* one or both of us are half duplex */
637 writel((readl(dev
->base
+ TXCFG
)
638 & ~(TXCFG_CSI
| TXCFG_HBI
)) | TXCFG_ATP
,
640 writel(readl(dev
->base
+ RXCFG
) & ~RXCFG_RX_FD
,
642 /* Turn off full duplex LED */
643 writel(readl(dev
->base
+ GPIOR
) & ~GPIOR_GP1_OUT
,
647 speed
= 4; /* 1000F */
650 /* we have a copper transceiver */
651 new_cfg
= dev
->CFG_cache
& ~(CFG_SB
| CFG_MODE_1000
| CFG_SPDSTS
);
653 if (cfg
& CFG_SPDSTS1
)
654 new_cfg
|= CFG_MODE_1000
;
656 new_cfg
&= ~CFG_MODE_1000
;
658 speed
= ((cfg
/ CFG_SPDSTS0
) & 3);
659 fullduplex
= (cfg
& CFG_DUPSTS
);
663 writel(readl(dev
->base
+ TXCFG
)
664 | TXCFG_CSI
| TXCFG_HBI
,
666 writel(readl(dev
->base
+ RXCFG
) | RXCFG_RX_FD
,
669 writel(readl(dev
->base
+ TXCFG
)
670 & ~(TXCFG_CSI
| TXCFG_HBI
),
672 writel(readl(dev
->base
+ RXCFG
) & ~(RXCFG_RX_FD
),
676 if ((cfg
& CFG_LNKSTS
) &&
677 ((new_cfg
^ dev
->CFG_cache
) != 0)) {
678 writel(new_cfg
, dev
->base
+ CFG
);
679 dev
->CFG_cache
= new_cfg
;
682 dev
->CFG_cache
&= ~CFG_SPDSTS
;
683 dev
->CFG_cache
|= cfg
& CFG_SPDSTS
;
686 newlinkstate
= (cfg
& CFG_LNKSTS
) ? LINK_UP
: LINK_DOWN
;
688 if (newlinkstate
& LINK_UP
&&
689 dev
->linkstate
!= newlinkstate
) {
690 netif_start_queue(ndev
);
691 netif_wake_queue(ndev
);
692 printk(KERN_INFO
"%s: link now %s mbps, %s duplex and up.\n",
695 fullduplex
? "full" : "half");
696 } else if (newlinkstate
& LINK_DOWN
&&
697 dev
->linkstate
!= newlinkstate
) {
698 netif_stop_queue(ndev
);
699 printk(KERN_INFO
"%s: link now down.\n", ndev
->name
);
702 dev
->linkstate
= newlinkstate
;
705 static int ns83820_setup_rx(struct net_device
*ndev
)
707 struct ns83820
*dev
= PRIV(ndev
);
711 dprintk("ns83820_setup_rx(%p)\n", ndev
);
713 dev
->rx_info
.idle
= 1;
714 dev
->rx_info
.next_rx
= 0;
715 dev
->rx_info
.next_rx_desc
= dev
->rx_info
.descs
;
716 dev
->rx_info
.next_empty
= 0;
718 for (i
=0; i
<NR_RX_DESC
; i
++)
719 clear_rx_desc(dev
, i
);
721 writel(0, dev
->base
+ RXDP_HI
);
722 writel(dev
->rx_info
.phy_descs
, dev
->base
+ RXDP
);
724 ret
= rx_refill(ndev
, GFP_KERNEL
);
726 dprintk("starting receiver\n");
727 /* prevent the interrupt handler from stomping on us */
728 spin_lock_irq(&dev
->rx_info
.lock
);
730 writel(0x0001, dev
->base
+ CCSR
);
731 writel(0, dev
->base
+ RFCR
);
732 writel(0x7fc00000, dev
->base
+ RFCR
);
733 writel(0xffc00000, dev
->base
+ RFCR
);
739 /* Okay, let it rip */
740 spin_lock(&dev
->misc_lock
);
741 dev
->IMR_cache
|= ISR_PHY
;
742 dev
->IMR_cache
|= ISR_RXRCMP
;
743 //dev->IMR_cache |= ISR_RXERR;
744 //dev->IMR_cache |= ISR_RXOK;
745 dev
->IMR_cache
|= ISR_RXORN
;
746 dev
->IMR_cache
|= ISR_RXSOVR
;
747 dev
->IMR_cache
|= ISR_RXDESC
;
748 dev
->IMR_cache
|= ISR_RXIDLE
;
749 dev
->IMR_cache
|= ISR_TXDESC
;
750 dev
->IMR_cache
|= ISR_TXIDLE
;
752 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
753 writel(1, dev
->base
+ IER
);
754 spin_unlock(&dev
->misc_lock
);
758 spin_unlock_irq(&dev
->rx_info
.lock
);
763 static void ns83820_cleanup_rx(struct ns83820
*dev
)
768 dprintk("ns83820_cleanup_rx(%p)\n", dev
);
770 /* disable receive interrupts */
771 spin_lock_irqsave(&dev
->misc_lock
, flags
);
772 dev
->IMR_cache
&= ~(ISR_RXOK
| ISR_RXDESC
| ISR_RXERR
| ISR_RXEARLY
| ISR_RXIDLE
);
773 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
774 spin_unlock_irqrestore(&dev
->misc_lock
, flags
);
776 /* synchronize with the interrupt handler and kill it */
778 synchronize_irq(dev
->pci_dev
->irq
);
780 /* touch the pci bus... */
781 readl(dev
->base
+ IMR
);
783 /* assumes the transmitter is already disabled and reset */
784 writel(0, dev
->base
+ RXDP_HI
);
785 writel(0, dev
->base
+ RXDP
);
787 for (i
=0; i
<NR_RX_DESC
; i
++) {
788 struct sk_buff
*skb
= dev
->rx_info
.skbs
[i
];
789 dev
->rx_info
.skbs
[i
] = NULL
;
790 clear_rx_desc(dev
, i
);
795 static void ns83820_rx_kick(struct net_device
*ndev
)
797 struct ns83820
*dev
= PRIV(ndev
);
798 /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
799 if (dev
->rx_info
.up
) {
800 rx_refill_atomic(ndev
);
805 if (dev
->rx_info
.up
&& nr_rx_empty(dev
) > NR_RX_DESC
*3/4)
806 schedule_work(&dev
->tq_refill
);
809 if (dev
->rx_info
.idle
)
810 printk(KERN_DEBUG
"%s: BAD\n", ndev
->name
);
816 static void rx_irq(struct net_device
*ndev
)
818 struct ns83820
*dev
= PRIV(ndev
);
819 struct rx_info
*info
= &dev
->rx_info
;
827 dprintk("rx_irq(%p)\n", ndev
);
828 dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
829 readl(dev
->base
+ RXDP
),
830 (long)(dev
->rx_info
.phy_descs
),
831 (int)dev
->rx_info
.next_rx
,
832 (dev
->rx_info
.descs
+ (DESC_SIZE
* dev
->rx_info
.next_rx
)),
833 (int)dev
->rx_info
.next_empty
,
834 (dev
->rx_info
.descs
+ (DESC_SIZE
* dev
->rx_info
.next_empty
))
837 spin_lock_irqsave(&info
->lock
, flags
);
841 dprintk("walking descs\n");
842 next_rx
= info
->next_rx
;
843 desc
= info
->next_rx_desc
;
844 while ((CMDSTS_OWN
& (cmdsts
= le32_to_cpu(desc
[DESC_CMDSTS
]))) &&
845 (cmdsts
!= CMDSTS_OWN
)) {
847 u32 extsts
= le32_to_cpu(desc
[DESC_EXTSTS
]);
848 dma_addr_t bufptr
= desc_addr_get(desc
+ DESC_BUFPTR
);
850 dprintk("cmdsts: %08x\n", cmdsts
);
851 dprintk("link: %08x\n", cpu_to_le32(desc
[DESC_LINK
]));
852 dprintk("extsts: %08x\n", extsts
);
854 skb
= info
->skbs
[next_rx
];
855 info
->skbs
[next_rx
] = NULL
;
856 info
->next_rx
= (next_rx
+ 1) % NR_RX_DESC
;
859 clear_rx_desc(dev
, next_rx
);
861 pci_unmap_single(dev
->pci_dev
, bufptr
,
862 RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
863 len
= cmdsts
& CMDSTS_LEN_MASK
;
864 #ifdef NS83820_VLAN_ACCEL_SUPPORT
865 /* NH: As was mentioned below, this chip is kinda
866 * brain dead about vlan tag stripping. Frames
867 * that are 64 bytes with a vlan header appended
868 * like arp frames, or pings, are flagged as Runts
869 * when the tag is stripped and hardware. This
870 * also means that the OK bit in the descriptor
871 * is cleared when the frame comes in so we have
872 * to do a specific length check here to make sure
873 * the frame would have been ok, had we not stripped
876 if (likely((CMDSTS_OK
& cmdsts
) ||
877 ((cmdsts
& CMDSTS_RUNT
) && len
>= 56))) {
879 if (likely(CMDSTS_OK
& cmdsts
)) {
883 goto netdev_mangle_me_harder_failed
;
884 if (cmdsts
& CMDSTS_DEST_MULTI
)
885 ndev
->stats
.multicast
++;
886 ndev
->stats
.rx_packets
++;
887 ndev
->stats
.rx_bytes
+= len
;
888 if ((extsts
& 0x002a0000) && !(extsts
& 0x00540000)) {
889 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
891 skb_checksum_none_assert(skb
);
893 skb
->protocol
= eth_type_trans(skb
, ndev
);
894 #ifdef NS83820_VLAN_ACCEL_SUPPORT
895 if(extsts
& EXTSTS_VPKT
) {
898 tag
= ntohs(extsts
& EXTSTS_VTG_MASK
);
899 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_IPV6
), tag
);
902 rx_rc
= netif_rx(skb
);
903 if (NET_RX_DROP
== rx_rc
) {
904 netdev_mangle_me_harder_failed
:
905 ndev
->stats
.rx_dropped
++;
908 dev_kfree_skb_irq(skb
);
912 next_rx
= info
->next_rx
;
913 desc
= info
->descs
+ (DESC_SIZE
* next_rx
);
915 info
->next_rx
= next_rx
;
916 info
->next_rx_desc
= info
->descs
+ (DESC_SIZE
* next_rx
);
920 Dprintk("dazed: cmdsts_f: %08x\n", cmdsts
);
923 spin_unlock_irqrestore(&info
->lock
, flags
);
926 static void rx_action(unsigned long _dev
)
928 struct net_device
*ndev
= (void *)_dev
;
929 struct ns83820
*dev
= PRIV(ndev
);
931 writel(ihr
, dev
->base
+ IHR
);
933 spin_lock_irq(&dev
->misc_lock
);
934 dev
->IMR_cache
|= ISR_RXDESC
;
935 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
936 spin_unlock_irq(&dev
->misc_lock
);
939 ns83820_rx_kick(ndev
);
942 /* Packet Transmit code
944 static inline void kick_tx(struct ns83820
*dev
)
946 dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
947 dev
, dev
->tx_idx
, dev
->tx_free_idx
);
948 writel(CR_TXE
, dev
->base
+ CR
);
951 /* No spinlock needed on the transmit irq path as the interrupt handler is
954 static void do_tx_done(struct net_device
*ndev
)
956 struct ns83820
*dev
= PRIV(ndev
);
957 u32 cmdsts
, tx_done_idx
;
960 dprintk("do_tx_done(%p)\n", ndev
);
961 tx_done_idx
= dev
->tx_done_idx
;
962 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
964 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
965 tx_done_idx
, dev
->tx_free_idx
, le32_to_cpu(desc
[DESC_CMDSTS
]));
966 while ((tx_done_idx
!= dev
->tx_free_idx
) &&
967 !(CMDSTS_OWN
& (cmdsts
= le32_to_cpu(desc
[DESC_CMDSTS
]))) ) {
972 if (cmdsts
& CMDSTS_ERR
)
973 ndev
->stats
.tx_errors
++;
974 if (cmdsts
& CMDSTS_OK
)
975 ndev
->stats
.tx_packets
++;
976 if (cmdsts
& CMDSTS_OK
)
977 ndev
->stats
.tx_bytes
+= cmdsts
& 0xffff;
979 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
980 tx_done_idx
, dev
->tx_free_idx
, cmdsts
);
981 skb
= dev
->tx_skbs
[tx_done_idx
];
982 dev
->tx_skbs
[tx_done_idx
] = NULL
;
983 dprintk("done(%p)\n", skb
);
985 len
= cmdsts
& CMDSTS_LEN_MASK
;
986 addr
= desc_addr_get(desc
+ DESC_BUFPTR
);
988 pci_unmap_single(dev
->pci_dev
,
992 dev_consume_skb_irq(skb
);
993 atomic_dec(&dev
->nr_tx_skbs
);
995 pci_unmap_page(dev
->pci_dev
,
1000 tx_done_idx
= (tx_done_idx
+ 1) % NR_TX_DESC
;
1001 dev
->tx_done_idx
= tx_done_idx
;
1002 desc
[DESC_CMDSTS
] = cpu_to_le32(0);
1004 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
1007 /* Allow network stack to resume queueing packets after we've
1008 * finished transmitting at least 1/4 of the packets in the queue.
1010 if (netif_queue_stopped(ndev
) && start_tx_okay(dev
)) {
1011 dprintk("start_queue(%p)\n", ndev
);
1012 netif_start_queue(ndev
);
1013 netif_wake_queue(ndev
);
1017 static void ns83820_cleanup_tx(struct ns83820
*dev
)
1021 for (i
=0; i
<NR_TX_DESC
; i
++) {
1022 struct sk_buff
*skb
= dev
->tx_skbs
[i
];
1023 dev
->tx_skbs
[i
] = NULL
;
1025 __le32
*desc
= dev
->tx_descs
+ (i
* DESC_SIZE
);
1026 pci_unmap_single(dev
->pci_dev
,
1027 desc_addr_get(desc
+ DESC_BUFPTR
),
1028 le32_to_cpu(desc
[DESC_CMDSTS
]) & CMDSTS_LEN_MASK
,
1030 dev_kfree_skb_irq(skb
);
1031 atomic_dec(&dev
->nr_tx_skbs
);
1035 memset(dev
->tx_descs
, 0, NR_TX_DESC
* DESC_SIZE
* 4);
1038 /* transmit routine. This code relies on the network layer serializing
1039 * its calls in, but will run happily in parallel with the interrupt
1040 * handler. This code currently has provisions for fragmenting tx buffers
1041 * while trying to track down a bug in either the zero copy code or
1042 * the tx fifo (hence the MAX_FRAG_LEN).
1044 static netdev_tx_t
ns83820_hard_start_xmit(struct sk_buff
*skb
,
1045 struct net_device
*ndev
)
1047 struct ns83820
*dev
= PRIV(ndev
);
1048 u32 free_idx
, cmdsts
, extsts
;
1049 int nr_free
, nr_frags
;
1050 unsigned tx_done_idx
, last_idx
;
1056 volatile __le32
*first_desc
;
1058 dprintk("ns83820_hard_start_xmit\n");
1060 nr_frags
= skb_shinfo(skb
)->nr_frags
;
1062 if (unlikely(dev
->CFG_cache
& CFG_LNKSTS
)) {
1063 netif_stop_queue(ndev
);
1064 if (unlikely(dev
->CFG_cache
& CFG_LNKSTS
))
1065 return NETDEV_TX_BUSY
;
1066 netif_start_queue(ndev
);
1069 last_idx
= free_idx
= dev
->tx_free_idx
;
1070 tx_done_idx
= dev
->tx_done_idx
;
1071 nr_free
= (tx_done_idx
+ NR_TX_DESC
-2 - free_idx
) % NR_TX_DESC
;
1073 if (nr_free
<= nr_frags
) {
1074 dprintk("stop_queue - not enough(%p)\n", ndev
);
1075 netif_stop_queue(ndev
);
1077 /* Check again: we may have raced with a tx done irq */
1078 if (dev
->tx_done_idx
!= tx_done_idx
) {
1079 dprintk("restart queue(%p)\n", ndev
);
1080 netif_start_queue(ndev
);
1083 return NETDEV_TX_BUSY
;
1086 if (free_idx
== dev
->tx_intr_idx
) {
1088 dev
->tx_intr_idx
= (dev
->tx_intr_idx
+ NR_TX_DESC
/4) % NR_TX_DESC
;
1091 nr_free
-= nr_frags
;
1092 if (nr_free
< MIN_TX_DESC_FREE
) {
1093 dprintk("stop_queue - last entry(%p)\n", ndev
);
1094 netif_stop_queue(ndev
);
1098 frag
= skb_shinfo(skb
)->frags
;
1102 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1103 extsts
|= EXTSTS_IPPKT
;
1104 if (IPPROTO_TCP
== ip_hdr(skb
)->protocol
)
1105 extsts
|= EXTSTS_TCPPKT
;
1106 else if (IPPROTO_UDP
== ip_hdr(skb
)->protocol
)
1107 extsts
|= EXTSTS_UDPPKT
;
1110 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1111 if (skb_vlan_tag_present(skb
)) {
1112 /* fetch the vlan tag info out of the
1113 * ancillary data if the vlan code
1114 * is using hw vlan acceleration
1116 short tag
= skb_vlan_tag_get(skb
);
1117 extsts
|= (EXTSTS_VPKT
| htons(tag
));
1123 len
-= skb
->data_len
;
1124 buf
= pci_map_single(dev
->pci_dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
1126 first_desc
= dev
->tx_descs
+ (free_idx
* DESC_SIZE
);
1129 volatile __le32
*desc
= dev
->tx_descs
+ (free_idx
* DESC_SIZE
);
1131 dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx
, len
,
1132 (unsigned long long)buf
);
1133 last_idx
= free_idx
;
1134 free_idx
= (free_idx
+ 1) % NR_TX_DESC
;
1135 desc
[DESC_LINK
] = cpu_to_le32(dev
->tx_phy_descs
+ (free_idx
* DESC_SIZE
* 4));
1136 desc_addr_set(desc
+ DESC_BUFPTR
, buf
);
1137 desc
[DESC_EXTSTS
] = cpu_to_le32(extsts
);
1139 cmdsts
= ((nr_frags
) ? CMDSTS_MORE
: do_intr
? CMDSTS_INTR
: 0);
1140 cmdsts
|= (desc
== first_desc
) ? 0 : CMDSTS_OWN
;
1142 desc
[DESC_CMDSTS
] = cpu_to_le32(cmdsts
);
1147 buf
= skb_frag_dma_map(&dev
->pci_dev
->dev
, frag
, 0,
1148 skb_frag_size(frag
), DMA_TO_DEVICE
);
1149 dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n",
1150 (long long)buf
, (long) page_to_pfn(frag
->page
),
1152 len
= skb_frag_size(frag
);
1156 dprintk("done pkt\n");
1158 spin_lock_irq(&dev
->tx_lock
);
1159 dev
->tx_skbs
[last_idx
] = skb
;
1160 first_desc
[DESC_CMDSTS
] |= cpu_to_le32(CMDSTS_OWN
);
1161 dev
->tx_free_idx
= free_idx
;
1162 atomic_inc(&dev
->nr_tx_skbs
);
1163 spin_unlock_irq(&dev
->tx_lock
);
1167 /* Check again: we may have raced with a tx done irq */
1168 if (stopped
&& (dev
->tx_done_idx
!= tx_done_idx
) && start_tx_okay(dev
))
1169 netif_start_queue(ndev
);
1171 return NETDEV_TX_OK
;
1174 static void ns83820_update_stats(struct ns83820
*dev
)
1176 struct net_device
*ndev
= dev
->ndev
;
1177 u8 __iomem
*base
= dev
->base
;
1179 /* the DP83820 will freeze counters, so we need to read all of them */
1180 ndev
->stats
.rx_errors
+= readl(base
+ 0x60) & 0xffff;
1181 ndev
->stats
.rx_crc_errors
+= readl(base
+ 0x64) & 0xffff;
1182 ndev
->stats
.rx_missed_errors
+= readl(base
+ 0x68) & 0xffff;
1183 ndev
->stats
.rx_frame_errors
+= readl(base
+ 0x6c) & 0xffff;
1184 /*ndev->stats.rx_symbol_errors +=*/ readl(base
+ 0x70);
1185 ndev
->stats
.rx_length_errors
+= readl(base
+ 0x74) & 0xffff;
1186 ndev
->stats
.rx_length_errors
+= readl(base
+ 0x78) & 0xffff;
1187 /*ndev->stats.rx_badopcode_errors += */ readl(base
+ 0x7c);
1188 /*ndev->stats.rx_pause_count += */ readl(base
+ 0x80);
1189 /*ndev->stats.tx_pause_count += */ readl(base
+ 0x84);
1190 ndev
->stats
.tx_carrier_errors
+= readl(base
+ 0x88) & 0xff;
1193 static struct net_device_stats
*ns83820_get_stats(struct net_device
*ndev
)
1195 struct ns83820
*dev
= PRIV(ndev
);
1197 /* somewhat overkill */
1198 spin_lock_irq(&dev
->misc_lock
);
1199 ns83820_update_stats(dev
);
1200 spin_unlock_irq(&dev
->misc_lock
);
1202 return &ndev
->stats
;
1205 /* Let ethtool retrieve info */
1206 static int ns83820_get_link_ksettings(struct net_device
*ndev
,
1207 struct ethtool_link_ksettings
*cmd
)
1209 struct ns83820
*dev
= PRIV(ndev
);
1210 u32 cfg
, tanar
, tbicr
;
1215 * Here's the list of available ethtool commands from other drivers:
1216 * cmd->advertising =
1217 * ethtool_cmd_speed_set(cmd, ...)
1220 * cmd->phy_address =
1221 * cmd->transceiver = 0;
1223 * cmd->maxtxpkt = 0;
1224 * cmd->maxrxpkt = 0;
1227 /* read current configuration */
1228 cfg
= readl(dev
->base
+ CFG
) ^ SPDSTS_POLARITY
;
1229 tanar
= readl(dev
->base
+ TANAR
);
1230 tbicr
= readl(dev
->base
+ TBICR
);
1232 fullduplex
= (cfg
& CFG_DUPSTS
) ? 1 : 0;
1234 supported
= SUPPORTED_Autoneg
;
1236 if (dev
->CFG_cache
& CFG_TBI_EN
) {
1237 /* we have optical interface */
1238 supported
|= SUPPORTED_1000baseT_Half
|
1239 SUPPORTED_1000baseT_Full
|
1241 cmd
->base
.port
= PORT_FIBRE
;
1243 /* we have copper */
1244 supported
|= SUPPORTED_10baseT_Half
|
1245 SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
|
1246 SUPPORTED_100baseT_Full
| SUPPORTED_1000baseT_Half
|
1247 SUPPORTED_1000baseT_Full
|
1249 cmd
->base
.port
= PORT_MII
;
1252 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.supported
,
1255 cmd
->base
.duplex
= fullduplex
? DUPLEX_FULL
: DUPLEX_HALF
;
1256 switch (cfg
/ CFG_SPDSTS0
& 3) {
1258 cmd
->base
.speed
= SPEED_1000
;
1261 cmd
->base
.speed
= SPEED_100
;
1264 cmd
->base
.speed
= SPEED_10
;
1267 cmd
->base
.autoneg
= (tbicr
& TBICR_MR_AN_ENABLE
)
1268 ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
1272 /* Let ethool change settings*/
1273 static int ns83820_set_link_ksettings(struct net_device
*ndev
,
1274 const struct ethtool_link_ksettings
*cmd
)
1276 struct ns83820
*dev
= PRIV(ndev
);
1278 int have_optical
= 0;
1281 /* read current configuration */
1282 cfg
= readl(dev
->base
+ CFG
) ^ SPDSTS_POLARITY
;
1283 tanar
= readl(dev
->base
+ TANAR
);
1285 if (dev
->CFG_cache
& CFG_TBI_EN
) {
1286 /* we have optical */
1288 fullduplex
= (tanar
& TANAR_FULL_DUP
);
1291 /* we have copper */
1292 fullduplex
= cfg
& CFG_DUPSTS
;
1295 spin_lock_irq(&dev
->misc_lock
);
1296 spin_lock(&dev
->tx_lock
);
1299 if (cmd
->base
.duplex
!= fullduplex
) {
1302 if (cmd
->base
.duplex
== DUPLEX_FULL
) {
1303 /* force full duplex */
1304 writel(readl(dev
->base
+ TXCFG
)
1305 | TXCFG_CSI
| TXCFG_HBI
| TXCFG_ATP
,
1307 writel(readl(dev
->base
+ RXCFG
) | RXCFG_RX_FD
,
1309 /* Light up full duplex LED */
1310 writel(readl(dev
->base
+ GPIOR
) | GPIOR_GP1_OUT
,
1313 /*TODO: set half duplex */
1318 /* TODO: Set duplex for copper cards */
1320 printk(KERN_INFO
"%s: Duplex set via ethtool\n",
1324 /* Set autonegotiation */
1326 if (cmd
->base
.autoneg
== AUTONEG_ENABLE
) {
1327 /* restart auto negotiation */
1328 writel(TBICR_MR_AN_ENABLE
| TBICR_MR_RESTART_AN
,
1330 writel(TBICR_MR_AN_ENABLE
, dev
->base
+ TBICR
);
1331 dev
->linkstate
= LINK_AUTONEGOTIATE
;
1333 printk(KERN_INFO
"%s: autoneg enabled via ethtool\n",
1336 /* disable auto negotiation */
1337 writel(0x00000000, dev
->base
+ TBICR
);
1340 printk(KERN_INFO
"%s: autoneg %s via ethtool\n", ndev
->name
,
1341 cmd
->base
.autoneg
? "ENABLED" : "DISABLED");
1345 spin_unlock(&dev
->tx_lock
);
1346 spin_unlock_irq(&dev
->misc_lock
);
1350 /* end ethtool get/set support -df */
1352 static void ns83820_get_drvinfo(struct net_device
*ndev
, struct ethtool_drvinfo
*info
)
1354 struct ns83820
*dev
= PRIV(ndev
);
1355 strlcpy(info
->driver
, "ns83820", sizeof(info
->driver
));
1356 strlcpy(info
->version
, VERSION
, sizeof(info
->version
));
1357 strlcpy(info
->bus_info
, pci_name(dev
->pci_dev
), sizeof(info
->bus_info
));
1360 static u32
ns83820_get_link(struct net_device
*ndev
)
1362 struct ns83820
*dev
= PRIV(ndev
);
1363 u32 cfg
= readl(dev
->base
+ CFG
) ^ SPDSTS_POLARITY
;
1364 return cfg
& CFG_LNKSTS
? 1 : 0;
1367 static const struct ethtool_ops ops
= {
1368 .get_drvinfo
= ns83820_get_drvinfo
,
1369 .get_link
= ns83820_get_link
,
1370 .get_link_ksettings
= ns83820_get_link_ksettings
,
1371 .set_link_ksettings
= ns83820_set_link_ksettings
,
1374 static inline void ns83820_disable_interrupts(struct ns83820
*dev
)
1376 writel(0, dev
->base
+ IMR
);
1377 writel(0, dev
->base
+ IER
);
1378 readl(dev
->base
+ IER
);
1381 /* this function is called in irq context from the ISR */
1382 static void ns83820_mib_isr(struct ns83820
*dev
)
1384 unsigned long flags
;
1385 spin_lock_irqsave(&dev
->misc_lock
, flags
);
1386 ns83820_update_stats(dev
);
1387 spin_unlock_irqrestore(&dev
->misc_lock
, flags
);
1390 static void ns83820_do_isr(struct net_device
*ndev
, u32 isr
);
1391 static irqreturn_t
ns83820_irq(int foo
, void *data
)
1393 struct net_device
*ndev
= data
;
1394 struct ns83820
*dev
= PRIV(ndev
);
1396 dprintk("ns83820_irq(%p)\n", ndev
);
1400 isr
= readl(dev
->base
+ ISR
);
1401 dprintk("irq: %08x\n", isr
);
1402 ns83820_do_isr(ndev
, isr
);
1406 static void ns83820_do_isr(struct net_device
*ndev
, u32 isr
)
1408 struct ns83820
*dev
= PRIV(ndev
);
1409 unsigned long flags
;
1412 if (isr
& ~(ISR_PHY
| ISR_RXDESC
| ISR_RXEARLY
| ISR_RXOK
| ISR_RXERR
| ISR_TXIDLE
| ISR_TXOK
| ISR_TXDESC
))
1413 Dprintk("odd isr? 0x%08x\n", isr
);
1416 if (ISR_RXIDLE
& isr
) {
1417 dev
->rx_info
.idle
= 1;
1418 Dprintk("oh dear, we are idle\n");
1419 ns83820_rx_kick(ndev
);
1422 if ((ISR_RXDESC
| ISR_RXOK
) & isr
) {
1423 prefetch(dev
->rx_info
.next_rx_desc
);
1425 spin_lock_irqsave(&dev
->misc_lock
, flags
);
1426 dev
->IMR_cache
&= ~(ISR_RXDESC
| ISR_RXOK
);
1427 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
1428 spin_unlock_irqrestore(&dev
->misc_lock
, flags
);
1430 tasklet_schedule(&dev
->rx_tasklet
);
1432 //writel(4, dev->base + IHR);
1435 if ((ISR_RXIDLE
| ISR_RXORN
| ISR_RXDESC
| ISR_RXOK
| ISR_RXERR
) & isr
)
1436 ns83820_rx_kick(ndev
);
1438 if (unlikely(ISR_RXSOVR
& isr
)) {
1439 //printk("overrun: rxsovr\n");
1440 ndev
->stats
.rx_fifo_errors
++;
1443 if (unlikely(ISR_RXORN
& isr
)) {
1444 //printk("overrun: rxorn\n");
1445 ndev
->stats
.rx_fifo_errors
++;
1448 if ((ISR_RXRCMP
& isr
) && dev
->rx_info
.up
)
1449 writel(CR_RXE
, dev
->base
+ CR
);
1451 if (ISR_TXIDLE
& isr
) {
1453 txdp
= readl(dev
->base
+ TXDP
);
1454 dprintk("txdp: %08x\n", txdp
);
1455 txdp
-= dev
->tx_phy_descs
;
1456 dev
->tx_idx
= txdp
/ (DESC_SIZE
* 4);
1457 if (dev
->tx_idx
>= NR_TX_DESC
) {
1458 printk(KERN_ALERT
"%s: BUG -- txdp out of range\n", ndev
->name
);
1461 /* The may have been a race between a pci originated read
1462 * and the descriptor update from the cpu. Just in case,
1463 * kick the transmitter if the hardware thinks it is on a
1464 * different descriptor than we are.
1466 if (dev
->tx_idx
!= dev
->tx_free_idx
)
1470 /* Defer tx ring processing until more than a minimum amount of
1471 * work has accumulated
1473 if ((ISR_TXDESC
| ISR_TXIDLE
| ISR_TXOK
| ISR_TXERR
) & isr
) {
1474 spin_lock_irqsave(&dev
->tx_lock
, flags
);
1476 spin_unlock_irqrestore(&dev
->tx_lock
, flags
);
1478 /* Disable TxOk if there are no outstanding tx packets.
1480 if ((dev
->tx_done_idx
== dev
->tx_free_idx
) &&
1481 (dev
->IMR_cache
& ISR_TXOK
)) {
1482 spin_lock_irqsave(&dev
->misc_lock
, flags
);
1483 dev
->IMR_cache
&= ~ISR_TXOK
;
1484 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
1485 spin_unlock_irqrestore(&dev
->misc_lock
, flags
);
1489 /* The TxIdle interrupt can come in before the transmit has
1490 * completed. Normally we reap packets off of the combination
1491 * of TxDesc and TxIdle and leave TxOk disabled (since it
1492 * occurs on every packet), but when no further irqs of this
1493 * nature are expected, we must enable TxOk.
1495 if ((ISR_TXIDLE
& isr
) && (dev
->tx_done_idx
!= dev
->tx_free_idx
)) {
1496 spin_lock_irqsave(&dev
->misc_lock
, flags
);
1497 dev
->IMR_cache
|= ISR_TXOK
;
1498 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
1499 spin_unlock_irqrestore(&dev
->misc_lock
, flags
);
1502 /* MIB interrupt: one of the statistics counters is about to overflow */
1503 if (unlikely(ISR_MIB
& isr
))
1504 ns83820_mib_isr(dev
);
1506 /* PHY: Link up/down/negotiation state change */
1507 if (unlikely(ISR_PHY
& isr
))
1510 #if 0 /* Still working on the interrupt mitigation strategy */
1512 writel(dev
->ihr
, dev
->base
+ IHR
);
1516 static void ns83820_do_reset(struct ns83820
*dev
, u32 which
)
1518 Dprintk("resetting chip...\n");
1519 writel(which
, dev
->base
+ CR
);
1522 } while (readl(dev
->base
+ CR
) & which
);
1526 static int ns83820_stop(struct net_device
*ndev
)
1528 struct ns83820
*dev
= PRIV(ndev
);
1530 /* FIXME: protect against interrupt handler? */
1531 del_timer_sync(&dev
->tx_watchdog
);
1533 ns83820_disable_interrupts(dev
);
1535 dev
->rx_info
.up
= 0;
1536 synchronize_irq(dev
->pci_dev
->irq
);
1538 ns83820_do_reset(dev
, CR_RST
);
1540 synchronize_irq(dev
->pci_dev
->irq
);
1542 spin_lock_irq(&dev
->misc_lock
);
1543 dev
->IMR_cache
&= ~(ISR_TXURN
| ISR_TXIDLE
| ISR_TXERR
| ISR_TXDESC
| ISR_TXOK
);
1544 spin_unlock_irq(&dev
->misc_lock
);
1546 ns83820_cleanup_rx(dev
);
1547 ns83820_cleanup_tx(dev
);
1552 static void ns83820_tx_timeout(struct net_device
*ndev
, unsigned int txqueue
)
1554 struct ns83820
*dev
= PRIV(ndev
);
1557 unsigned long flags
;
1559 spin_lock_irqsave(&dev
->tx_lock
, flags
);
1561 tx_done_idx
= dev
->tx_done_idx
;
1562 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
1564 printk(KERN_INFO
"%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1566 tx_done_idx
, dev
->tx_free_idx
, le32_to_cpu(desc
[DESC_CMDSTS
]));
1571 isr
= readl(dev
->base
+ ISR
);
1572 printk("irq: %08x imr: %08x\n", isr
, dev
->IMR_cache
);
1573 ns83820_do_isr(ndev
, isr
);
1579 tx_done_idx
= dev
->tx_done_idx
;
1580 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
1582 printk(KERN_INFO
"%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1584 tx_done_idx
, dev
->tx_free_idx
, le32_to_cpu(desc
[DESC_CMDSTS
]));
1586 spin_unlock_irqrestore(&dev
->tx_lock
, flags
);
1589 static void ns83820_tx_watch(struct timer_list
*t
)
1591 struct ns83820
*dev
= from_timer(dev
, t
, tx_watchdog
);
1592 struct net_device
*ndev
= dev
->ndev
;
1595 printk("ns83820_tx_watch: %u %u %d\n",
1596 dev
->tx_done_idx
, dev
->tx_free_idx
, atomic_read(&dev
->nr_tx_skbs
)
1600 if (time_after(jiffies
, dev_trans_start(ndev
) + 1*HZ
) &&
1601 dev
->tx_done_idx
!= dev
->tx_free_idx
) {
1602 printk(KERN_DEBUG
"%s: ns83820_tx_watch: %u %u %d\n",
1604 dev
->tx_done_idx
, dev
->tx_free_idx
,
1605 atomic_read(&dev
->nr_tx_skbs
));
1606 ns83820_tx_timeout(ndev
, UINT_MAX
);
1609 mod_timer(&dev
->tx_watchdog
, jiffies
+ 2*HZ
);
1612 static int ns83820_open(struct net_device
*ndev
)
1614 struct ns83820
*dev
= PRIV(ndev
);
1619 dprintk("ns83820_open\n");
1621 writel(0, dev
->base
+ PQCR
);
1623 ret
= ns83820_setup_rx(ndev
);
1627 memset(dev
->tx_descs
, 0, 4 * NR_TX_DESC
* DESC_SIZE
);
1628 for (i
=0; i
<NR_TX_DESC
; i
++) {
1629 dev
->tx_descs
[(i
* DESC_SIZE
) + DESC_LINK
]
1632 + ((i
+1) % NR_TX_DESC
) * DESC_SIZE
* 4);
1636 dev
->tx_done_idx
= 0;
1637 desc
= dev
->tx_phy_descs
;
1638 writel(0, dev
->base
+ TXDP_HI
);
1639 writel(desc
, dev
->base
+ TXDP
);
1641 timer_setup(&dev
->tx_watchdog
, ns83820_tx_watch
, 0);
1642 mod_timer(&dev
->tx_watchdog
, jiffies
+ 2*HZ
);
1644 netif_start_queue(ndev
); /* FIXME: wait for phy to come up */
1653 static void ns83820_getmac(struct ns83820
*dev
, u8
*mac
)
1656 for (i
=0; i
<3; i
++) {
1659 /* Read from the perfect match memory: this is loaded by
1660 * the chip from the EEPROM via the EELOAD self test.
1662 writel(i
*2, dev
->base
+ RFCR
);
1663 data
= readl(dev
->base
+ RFDR
);
1670 static void ns83820_set_multicast(struct net_device
*ndev
)
1672 struct ns83820
*dev
= PRIV(ndev
);
1673 u8 __iomem
*rfcr
= dev
->base
+ RFCR
;
1674 u32 and_mask
= 0xffffffff;
1678 if (ndev
->flags
& IFF_PROMISC
)
1679 or_mask
|= RFCR_AAU
| RFCR_AAM
;
1681 and_mask
&= ~(RFCR_AAU
| RFCR_AAM
);
1683 if (ndev
->flags
& IFF_ALLMULTI
|| netdev_mc_count(ndev
))
1684 or_mask
|= RFCR_AAM
;
1686 and_mask
&= ~RFCR_AAM
;
1688 spin_lock_irq(&dev
->misc_lock
);
1689 val
= (readl(rfcr
) & and_mask
) | or_mask
;
1690 /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1691 writel(val
& ~RFCR_RFEN
, rfcr
);
1693 spin_unlock_irq(&dev
->misc_lock
);
1696 static void ns83820_run_bist(struct net_device
*ndev
, const char *name
, u32 enable
, u32 done
, u32 fail
)
1698 struct ns83820
*dev
= PRIV(ndev
);
1700 unsigned long start
;
1704 dprintk("%s: start %s\n", ndev
->name
, name
);
1708 writel(enable
, dev
->base
+ PTSCR
);
1711 status
= readl(dev
->base
+ PTSCR
);
1712 if (!(status
& enable
))
1718 if (time_after_eq(jiffies
, start
+ HZ
)) {
1722 schedule_timeout_uninterruptible(1);
1726 printk(KERN_INFO
"%s: %s failed! (0x%08x & 0x%08x)\n",
1727 ndev
->name
, name
, status
, fail
);
1729 printk(KERN_INFO
"%s: run_bist %s timed out! (%08x)\n",
1730 ndev
->name
, name
, status
);
1732 dprintk("%s: done %s in %d loops\n", ndev
->name
, name
, loops
);
1735 #ifdef PHY_CODE_IS_FINISHED
1736 static void ns83820_mii_write_bit(struct ns83820
*dev
, int bit
)
1739 dev
->MEAR_cache
&= ~MEAR_MDC
;
1740 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1741 readl(dev
->base
+ MEAR
);
1743 /* enable output, set bit */
1744 dev
->MEAR_cache
|= MEAR_MDDIR
;
1746 dev
->MEAR_cache
|= MEAR_MDIO
;
1748 dev
->MEAR_cache
&= ~MEAR_MDIO
;
1750 /* set the output bit */
1751 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1752 readl(dev
->base
+ MEAR
);
1754 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1757 /* drive MDC high causing the data bit to be latched */
1758 dev
->MEAR_cache
|= MEAR_MDC
;
1759 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1760 readl(dev
->base
+ MEAR
);
1766 static int ns83820_mii_read_bit(struct ns83820
*dev
)
1770 /* drive MDC low, disable output */
1771 dev
->MEAR_cache
&= ~MEAR_MDC
;
1772 dev
->MEAR_cache
&= ~MEAR_MDDIR
;
1773 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1774 readl(dev
->base
+ MEAR
);
1776 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1779 /* drive MDC high causing the data bit to be latched */
1780 bit
= (readl(dev
->base
+ MEAR
) & MEAR_MDIO
) ? 1 : 0;
1781 dev
->MEAR_cache
|= MEAR_MDC
;
1782 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1790 static unsigned ns83820_mii_read_reg(struct ns83820
*dev
, unsigned phy
, unsigned reg
)
1795 /* read some garbage so that we eventually sync up */
1796 for (i
=0; i
<64; i
++)
1797 ns83820_mii_read_bit(dev
);
1799 ns83820_mii_write_bit(dev
, 0); /* start */
1800 ns83820_mii_write_bit(dev
, 1);
1801 ns83820_mii_write_bit(dev
, 1); /* opcode read */
1802 ns83820_mii_write_bit(dev
, 0);
1804 /* write out the phy address: 5 bits, msb first */
1806 ns83820_mii_write_bit(dev
, phy
& (0x10 >> i
));
1808 /* write out the register address, 5 bits, msb first */
1810 ns83820_mii_write_bit(dev
, reg
& (0x10 >> i
));
1812 ns83820_mii_read_bit(dev
); /* turn around cycles */
1813 ns83820_mii_read_bit(dev
);
1815 /* read in the register data, 16 bits msb first */
1816 for (i
=0; i
<16; i
++) {
1818 data
|= ns83820_mii_read_bit(dev
);
1824 static unsigned ns83820_mii_write_reg(struct ns83820
*dev
, unsigned phy
, unsigned reg
, unsigned data
)
1828 /* read some garbage so that we eventually sync up */
1829 for (i
=0; i
<64; i
++)
1830 ns83820_mii_read_bit(dev
);
1832 ns83820_mii_write_bit(dev
, 0); /* start */
1833 ns83820_mii_write_bit(dev
, 1);
1834 ns83820_mii_write_bit(dev
, 0); /* opcode read */
1835 ns83820_mii_write_bit(dev
, 1);
1837 /* write out the phy address: 5 bits, msb first */
1839 ns83820_mii_write_bit(dev
, phy
& (0x10 >> i
));
1841 /* write out the register address, 5 bits, msb first */
1843 ns83820_mii_write_bit(dev
, reg
& (0x10 >> i
));
1845 ns83820_mii_read_bit(dev
); /* turn around cycles */
1846 ns83820_mii_read_bit(dev
);
1848 /* read in the register data, 16 bits msb first */
1849 for (i
=0; i
<16; i
++)
1850 ns83820_mii_write_bit(dev
, (data
>> (15 - i
)) & 1);
1855 static void ns83820_probe_phy(struct net_device
*ndev
)
1857 struct ns83820
*dev
= PRIV(ndev
);
1861 for (j
= 0; j
< 0x16; j
+= 4) {
1862 dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1864 ns83820_mii_read_reg(dev
, 1, 0 + j
),
1865 ns83820_mii_read_reg(dev
, 1, 1 + j
),
1866 ns83820_mii_read_reg(dev
, 1, 2 + j
),
1867 ns83820_mii_read_reg(dev
, 1, 3 + j
)
1871 /* read firmware version: memory addr is 0x8402 and 0x8403 */
1872 ns83820_mii_write_reg(dev
, 1, 0x16, 0x000d);
1873 ns83820_mii_write_reg(dev
, 1, 0x1e, 0x810e);
1874 a
= ns83820_mii_read_reg(dev
, 1, 0x1d);
1876 ns83820_mii_write_reg(dev
, 1, 0x16, 0x000d);
1877 ns83820_mii_write_reg(dev
, 1, 0x1e, 0x810e);
1878 b
= ns83820_mii_read_reg(dev
, 1, 0x1d);
1879 dprintk("version: 0x%04x 0x%04x\n", a
, b
);
1883 static const struct net_device_ops netdev_ops
= {
1884 .ndo_open
= ns83820_open
,
1885 .ndo_stop
= ns83820_stop
,
1886 .ndo_start_xmit
= ns83820_hard_start_xmit
,
1887 .ndo_get_stats
= ns83820_get_stats
,
1888 .ndo_set_rx_mode
= ns83820_set_multicast
,
1889 .ndo_validate_addr
= eth_validate_addr
,
1890 .ndo_set_mac_address
= eth_mac_addr
,
1891 .ndo_tx_timeout
= ns83820_tx_timeout
,
1894 static int ns83820_init_one(struct pci_dev
*pci_dev
,
1895 const struct pci_device_id
*id
)
1897 struct net_device
*ndev
;
1898 struct ns83820
*dev
;
1903 /* See if we can set the dma mask early on; failure is fatal. */
1904 if (sizeof(dma_addr_t
) == 8 &&
1905 !pci_set_dma_mask(pci_dev
, DMA_BIT_MASK(64))) {
1907 } else if (!pci_set_dma_mask(pci_dev
, DMA_BIT_MASK(32))) {
1910 dev_warn(&pci_dev
->dev
, "pci_set_dma_mask failed!\n");
1914 ndev
= alloc_etherdev(sizeof(struct ns83820
));
1922 spin_lock_init(&dev
->rx_info
.lock
);
1923 spin_lock_init(&dev
->tx_lock
);
1924 spin_lock_init(&dev
->misc_lock
);
1925 dev
->pci_dev
= pci_dev
;
1927 SET_NETDEV_DEV(ndev
, &pci_dev
->dev
);
1929 INIT_WORK(&dev
->tq_refill
, queue_refill
);
1930 tasklet_init(&dev
->rx_tasklet
, rx_action
, (unsigned long)ndev
);
1932 err
= pci_enable_device(pci_dev
);
1934 dev_info(&pci_dev
->dev
, "pci_enable_dev failed: %d\n", err
);
1938 pci_set_master(pci_dev
);
1939 addr
= pci_resource_start(pci_dev
, 1);
1940 dev
->base
= ioremap(addr
, PAGE_SIZE
);
1941 dev
->tx_descs
= pci_alloc_consistent(pci_dev
,
1942 4 * DESC_SIZE
* NR_TX_DESC
, &dev
->tx_phy_descs
);
1943 dev
->rx_info
.descs
= pci_alloc_consistent(pci_dev
,
1944 4 * DESC_SIZE
* NR_RX_DESC
, &dev
->rx_info
.phy_descs
);
1946 if (!dev
->base
|| !dev
->tx_descs
|| !dev
->rx_info
.descs
)
1949 dprintk("%p: %08lx %p: %08lx\n",
1950 dev
->tx_descs
, (long)dev
->tx_phy_descs
,
1951 dev
->rx_info
.descs
, (long)dev
->rx_info
.phy_descs
);
1953 ns83820_disable_interrupts(dev
);
1957 err
= request_irq(pci_dev
->irq
, ns83820_irq
, IRQF_SHARED
,
1960 dev_info(&pci_dev
->dev
, "unable to register irq %d, err %d\n",
1966 * FIXME: we are holding rtnl_lock() over obscenely long area only
1967 * because some of the setup code uses dev->name. It's Wrong(tm) -
1968 * we should be using driver-specific names for all that stuff.
1969 * For now that will do, but we really need to come back and kill
1970 * most of the dev_alloc_name() users later.
1973 err
= dev_alloc_name(ndev
, ndev
->name
);
1975 dev_info(&pci_dev
->dev
, "unable to get netdev name: %d\n", err
);
1979 printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
1980 ndev
->name
, le32_to_cpu(readl(dev
->base
+ 0x22c)),
1981 pci_dev
->subsystem_vendor
, pci_dev
->subsystem_device
);
1983 ndev
->netdev_ops
= &netdev_ops
;
1984 ndev
->ethtool_ops
= &ops
;
1985 ndev
->watchdog_timeo
= 5 * HZ
;
1986 pci_set_drvdata(pci_dev
, ndev
);
1988 ns83820_do_reset(dev
, CR_RST
);
1990 /* Must reset the ram bist before running it */
1991 writel(PTSCR_RBIST_RST
, dev
->base
+ PTSCR
);
1992 ns83820_run_bist(ndev
, "sram bist", PTSCR_RBIST_EN
,
1993 PTSCR_RBIST_DONE
, PTSCR_RBIST_FAIL
);
1994 ns83820_run_bist(ndev
, "eeprom bist", PTSCR_EEBIST_EN
, 0,
1996 ns83820_run_bist(ndev
, "eeprom load", PTSCR_EELOAD_EN
, 0, 0);
1998 /* I love config registers */
1999 dev
->CFG_cache
= readl(dev
->base
+ CFG
);
2001 if ((dev
->CFG_cache
& CFG_PCI64_DET
)) {
2002 printk(KERN_INFO
"%s: detected 64 bit PCI data bus.\n",
2004 /*dev->CFG_cache |= CFG_DATA64_EN;*/
2005 if (!(dev
->CFG_cache
& CFG_DATA64_EN
))
2006 printk(KERN_INFO
"%s: EEPROM did not enable 64 bit bus. Disabled.\n",
2009 dev
->CFG_cache
&= ~(CFG_DATA64_EN
);
2011 dev
->CFG_cache
&= (CFG_TBI_EN
| CFG_MRM_DIS
| CFG_MWI_DIS
|
2012 CFG_T64ADDR
| CFG_DATA64_EN
| CFG_EXT_125
|
2014 dev
->CFG_cache
|= CFG_PINT_DUPSTS
| CFG_PINT_LNKSTS
| CFG_PINT_SPDSTS
|
2015 CFG_EXTSTS_EN
| CFG_EXD
| CFG_PESEL
;
2016 dev
->CFG_cache
|= CFG_REQALG
;
2017 dev
->CFG_cache
|= CFG_POW
;
2018 dev
->CFG_cache
|= CFG_TMRTEST
;
2020 /* When compiled with 64 bit addressing, we must always enable
2021 * the 64 bit descriptor format.
2023 if (sizeof(dma_addr_t
) == 8)
2024 dev
->CFG_cache
|= CFG_M64ADDR
;
2026 dev
->CFG_cache
|= CFG_T64ADDR
;
2028 /* Big endian mode does not seem to do what the docs suggest */
2029 dev
->CFG_cache
&= ~CFG_BEM
;
2031 /* setup optical transceiver if we have one */
2032 if (dev
->CFG_cache
& CFG_TBI_EN
) {
2033 printk(KERN_INFO
"%s: enabling optical transceiver\n",
2035 writel(readl(dev
->base
+ GPIOR
) | 0x3e8, dev
->base
+ GPIOR
);
2037 /* setup auto negotiation feature advertisement */
2038 writel(readl(dev
->base
+ TANAR
)
2039 | TANAR_HALF_DUP
| TANAR_FULL_DUP
,
2042 /* start auto negotiation */
2043 writel(TBICR_MR_AN_ENABLE
| TBICR_MR_RESTART_AN
,
2045 writel(TBICR_MR_AN_ENABLE
, dev
->base
+ TBICR
);
2046 dev
->linkstate
= LINK_AUTONEGOTIATE
;
2048 dev
->CFG_cache
|= CFG_MODE_1000
;
2051 writel(dev
->CFG_cache
, dev
->base
+ CFG
);
2052 dprintk("CFG: %08x\n", dev
->CFG_cache
);
2055 printk(KERN_INFO
"%s: resetting phy\n", ndev
->name
);
2056 writel(dev
->CFG_cache
| CFG_PHY_RST
, dev
->base
+ CFG
);
2058 writel(dev
->CFG_cache
, dev
->base
+ CFG
);
2061 #if 0 /* Huh? This sets the PCI latency register. Should be done via
2062 * the PCI layer. FIXME.
2064 if (readl(dev
->base
+ SRR
))
2065 writel(readl(dev
->base
+0x20c) | 0xfe00, dev
->base
+ 0x20c);
2068 /* Note! The DMA burst size interacts with packet
2069 * transmission, such that the largest packet that
2070 * can be transmitted is 8192 - FLTH - burst size.
2071 * If only the transmit fifo was larger...
2073 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2074 * some DELL and COMPAQ SMP systems */
2075 writel(TXCFG_CSI
| TXCFG_HBI
| TXCFG_ATP
| TXCFG_MXDMA512
2076 | ((1600 / 32) * 0x100),
2079 /* Flush the interrupt holdoff timer */
2080 writel(0x000, dev
->base
+ IHR
);
2081 writel(0x100, dev
->base
+ IHR
);
2082 writel(0x000, dev
->base
+ IHR
);
2084 /* Set Rx to full duplex, don't accept runt, errored, long or length
2085 * range errored packets. Use 512 byte DMA.
2087 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2088 * some DELL and COMPAQ SMP systems
2089 * Turn on ALP, only we are accpeting Jumbo Packets */
2090 writel(RXCFG_AEP
| RXCFG_ARP
| RXCFG_AIRL
| RXCFG_RX_FD
2093 | (RXCFG_MXDMA512
) | 0, dev
->base
+ RXCFG
);
2095 /* Disable priority queueing */
2096 writel(0, dev
->base
+ PQCR
);
2098 /* Enable IP checksum validation and detetion of VLAN headers.
2099 * Note: do not set the reject options as at least the 0x102
2100 * revision of the chip does not properly accept IP fragments
2103 /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2104 * the MAC it calculates the packetsize AFTER stripping the VLAN
2105 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2106 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2107 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2108 * it discrards it!. These guys......
2109 * also turn on tag stripping if hardware acceleration is enabled
2111 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2112 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2114 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2116 writel(VRCR_INIT_VALUE
, dev
->base
+ VRCR
);
2118 /* Enable per-packet TCP/UDP/IP checksumming
2119 * and per packet vlan tag insertion if
2120 * vlan hardware acceleration is enabled
2122 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2123 #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2125 #define VTCR_INIT_VALUE VTCR_PPCHK
2127 writel(VTCR_INIT_VALUE
, dev
->base
+ VTCR
);
2129 /* Ramit : Enable async and sync pause frames */
2130 /* writel(0, dev->base + PCR); */
2131 writel((PCR_PS_MCAST
| PCR_PS_DA
| PCR_PSEN
| PCR_FFLO_4K
|
2132 PCR_FFHI_8K
| PCR_STLO_4
| PCR_STHI_8
| PCR_PAUSE_CNT
),
2135 /* Disable Wake On Lan */
2136 writel(0, dev
->base
+ WCSR
);
2138 ns83820_getmac(dev
, ndev
->dev_addr
);
2140 /* Yes, we support dumb IP checksum on transmit */
2141 ndev
->features
|= NETIF_F_SG
;
2142 ndev
->features
|= NETIF_F_IP_CSUM
;
2146 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2147 /* We also support hardware vlan acceleration */
2148 ndev
->features
|= NETIF_F_HW_VLAN_CTAG_TX
| NETIF_F_HW_VLAN_CTAG_RX
;
2152 printk(KERN_INFO
"%s: using 64 bit addressing.\n",
2154 ndev
->features
|= NETIF_F_HIGHDMA
;
2157 printk(KERN_INFO
"%s: ns83820 v" VERSION
": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2159 (unsigned)readl(dev
->base
+ SRR
) >> 8,
2160 (unsigned)readl(dev
->base
+ SRR
) & 0xff,
2161 ndev
->dev_addr
, addr
, pci_dev
->irq
,
2162 (ndev
->features
& NETIF_F_HIGHDMA
) ? "h,sg" : "sg"
2165 #ifdef PHY_CODE_IS_FINISHED
2166 ns83820_probe_phy(ndev
);
2169 err
= register_netdevice(ndev
);
2171 printk(KERN_INFO
"ns83820: unable to register netdev: %d\n", err
);
2179 ns83820_disable_interrupts(dev
); /* paranoia */
2182 free_irq(pci_dev
->irq
, ndev
);
2186 pci_free_consistent(pci_dev
, 4 * DESC_SIZE
* NR_TX_DESC
, dev
->tx_descs
, dev
->tx_phy_descs
);
2187 pci_free_consistent(pci_dev
, 4 * DESC_SIZE
* NR_RX_DESC
, dev
->rx_info
.descs
, dev
->rx_info
.phy_descs
);
2188 pci_disable_device(pci_dev
);
2195 static void ns83820_remove_one(struct pci_dev
*pci_dev
)
2197 struct net_device
*ndev
= pci_get_drvdata(pci_dev
);
2198 struct ns83820
*dev
= PRIV(ndev
); /* ok even if NULL */
2200 if (!ndev
) /* paranoia */
2203 ns83820_disable_interrupts(dev
); /* paranoia */
2205 unregister_netdev(ndev
);
2206 free_irq(dev
->pci_dev
->irq
, ndev
);
2208 pci_free_consistent(dev
->pci_dev
, 4 * DESC_SIZE
* NR_TX_DESC
,
2209 dev
->tx_descs
, dev
->tx_phy_descs
);
2210 pci_free_consistent(dev
->pci_dev
, 4 * DESC_SIZE
* NR_RX_DESC
,
2211 dev
->rx_info
.descs
, dev
->rx_info
.phy_descs
);
2212 pci_disable_device(dev
->pci_dev
);
2216 static const struct pci_device_id ns83820_pci_tbl
[] = {
2217 { 0x100b, 0x0022, PCI_ANY_ID
, PCI_ANY_ID
, 0, .driver_data
= 0, },
2221 static struct pci_driver driver
= {
2223 .id_table
= ns83820_pci_tbl
,
2224 .probe
= ns83820_init_one
,
2225 .remove
= ns83820_remove_one
,
2226 #if 0 /* FIXME: implement */
2233 static int __init
ns83820_init(void)
2235 printk(KERN_INFO
"ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2236 return pci_register_driver(&driver
);
2239 static void __exit
ns83820_exit(void)
2241 pci_unregister_driver(&driver
);
2244 MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2245 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2246 MODULE_LICENSE("GPL");
2248 MODULE_DEVICE_TABLE(pci
, ns83820_pci_tbl
);
2250 module_param(lnksts
, int, 0);
2251 MODULE_PARM_DESC(lnksts
, "Polarity of LNKSTS bit");
2253 module_param(ihr
, int, 0);
2254 MODULE_PARM_DESC(ihr
, "Time in 100 us increments to delay interrupts (range 0-127)");
2256 module_param(reset_phy
, int, 0);
2257 MODULE_PARM_DESC(reset_phy
, "Set to 1 to reset the PHY on startup");
2259 module_init(ns83820_init
);
2260 module_exit(ns83820_exit
);