1 /* QLogic qed NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/types.h>
35 #include <linux/delay.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/errno.h>
38 #include <linux/kernel.h>
39 #include <linux/list.h>
40 #include <linux/mutex.h>
41 #include <linux/pci.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/string.h>
45 #include <linux/qed/qed_chain.h>
49 #include "qed_reg_addr.h"
50 #include "qed_sriov.h"
52 #define QED_BAR_ACQUIRE_TIMEOUT 1000
55 #define QED_BAR_INVALID_OFFSET (cpu_to_le32(-1))
58 struct list_head list_entry
;
60 struct pxp_ptt_entry pxp
;
65 struct list_head free_list
;
66 spinlock_t lock
; /* ptt synchronized access */
67 struct qed_ptt ptts
[PXP_EXTERNAL_BAR_PF_WINDOW_NUM
];
70 int qed_ptt_pool_alloc(struct qed_hwfn
*p_hwfn
)
72 struct qed_ptt_pool
*p_pool
= kmalloc(sizeof(*p_pool
), GFP_KERNEL
);
78 INIT_LIST_HEAD(&p_pool
->free_list
);
79 for (i
= 0; i
< PXP_EXTERNAL_BAR_PF_WINDOW_NUM
; i
++) {
80 p_pool
->ptts
[i
].idx
= i
;
81 p_pool
->ptts
[i
].pxp
.offset
= QED_BAR_INVALID_OFFSET
;
82 p_pool
->ptts
[i
].pxp
.pretend
.control
= 0;
83 p_pool
->ptts
[i
].hwfn_id
= p_hwfn
->my_id
;
84 if (i
>= RESERVED_PTT_MAX
)
85 list_add(&p_pool
->ptts
[i
].list_entry
,
89 p_hwfn
->p_ptt_pool
= p_pool
;
90 spin_lock_init(&p_pool
->lock
);
95 void qed_ptt_invalidate(struct qed_hwfn
*p_hwfn
)
97 struct qed_ptt
*p_ptt
;
100 for (i
= 0; i
< PXP_EXTERNAL_BAR_PF_WINDOW_NUM
; i
++) {
101 p_ptt
= &p_hwfn
->p_ptt_pool
->ptts
[i
];
102 p_ptt
->pxp
.offset
= QED_BAR_INVALID_OFFSET
;
106 void qed_ptt_pool_free(struct qed_hwfn
*p_hwfn
)
108 kfree(p_hwfn
->p_ptt_pool
);
109 p_hwfn
->p_ptt_pool
= NULL
;
112 struct qed_ptt
*qed_ptt_acquire(struct qed_hwfn
*p_hwfn
)
114 struct qed_ptt
*p_ptt
;
117 /* Take the free PTT from the list */
118 for (i
= 0; i
< QED_BAR_ACQUIRE_TIMEOUT
; i
++) {
119 spin_lock_bh(&p_hwfn
->p_ptt_pool
->lock
);
121 if (!list_empty(&p_hwfn
->p_ptt_pool
->free_list
)) {
122 p_ptt
= list_first_entry(&p_hwfn
->p_ptt_pool
->free_list
,
123 struct qed_ptt
, list_entry
);
124 list_del(&p_ptt
->list_entry
);
126 spin_unlock_bh(&p_hwfn
->p_ptt_pool
->lock
);
128 DP_VERBOSE(p_hwfn
, NETIF_MSG_HW
,
129 "allocated ptt %d\n", p_ptt
->idx
);
133 spin_unlock_bh(&p_hwfn
->p_ptt_pool
->lock
);
134 usleep_range(1000, 2000);
137 DP_NOTICE(p_hwfn
, "PTT acquire timeout - failed to allocate PTT\n");
141 void qed_ptt_release(struct qed_hwfn
*p_hwfn
, struct qed_ptt
*p_ptt
)
143 spin_lock_bh(&p_hwfn
->p_ptt_pool
->lock
);
144 list_add(&p_ptt
->list_entry
, &p_hwfn
->p_ptt_pool
->free_list
);
145 spin_unlock_bh(&p_hwfn
->p_ptt_pool
->lock
);
148 u32
qed_ptt_get_hw_addr(struct qed_hwfn
*p_hwfn
, struct qed_ptt
*p_ptt
)
150 /* The HW is using DWORDS and we need to translate it to Bytes */
151 return le32_to_cpu(p_ptt
->pxp
.offset
) << 2;
154 static u32
qed_ptt_config_addr(struct qed_ptt
*p_ptt
)
156 return PXP_PF_WINDOW_ADMIN_PER_PF_START
+
157 p_ptt
->idx
* sizeof(struct pxp_ptt_entry
);
160 u32
qed_ptt_get_bar_addr(struct qed_ptt
*p_ptt
)
162 return PXP_EXTERNAL_BAR_PF_WINDOW_START
+
163 p_ptt
->idx
* PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE
;
166 void qed_ptt_set_win(struct qed_hwfn
*p_hwfn
,
167 struct qed_ptt
*p_ptt
, u32 new_hw_addr
)
171 prev_hw_addr
= qed_ptt_get_hw_addr(p_hwfn
, p_ptt
);
173 if (new_hw_addr
== prev_hw_addr
)
176 /* Update PTT entery in admin window */
177 DP_VERBOSE(p_hwfn
, NETIF_MSG_HW
,
178 "Updating PTT entry %d to offset 0x%x\n",
179 p_ptt
->idx
, new_hw_addr
);
181 /* The HW is using DWORDS and the address is in Bytes */
182 p_ptt
->pxp
.offset
= cpu_to_le32(new_hw_addr
>> 2);
185 qed_ptt_config_addr(p_ptt
) +
186 offsetof(struct pxp_ptt_entry
, offset
),
187 le32_to_cpu(p_ptt
->pxp
.offset
));
190 static u32
qed_set_ptt(struct qed_hwfn
*p_hwfn
,
191 struct qed_ptt
*p_ptt
, u32 hw_addr
)
193 u32 win_hw_addr
= qed_ptt_get_hw_addr(p_hwfn
, p_ptt
);
196 offset
= hw_addr
- win_hw_addr
;
198 if (p_ptt
->hwfn_id
!= p_hwfn
->my_id
)
200 "ptt[%d] of hwfn[%02x] is used by hwfn[%02x]!\n",
201 p_ptt
->idx
, p_ptt
->hwfn_id
, p_hwfn
->my_id
);
203 /* Verify the address is within the window */
204 if (hw_addr
< win_hw_addr
||
205 offset
>= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE
) {
206 qed_ptt_set_win(p_hwfn
, p_ptt
, hw_addr
);
210 return qed_ptt_get_bar_addr(p_ptt
) + offset
;
213 struct qed_ptt
*qed_get_reserved_ptt(struct qed_hwfn
*p_hwfn
,
214 enum reserved_ptts ptt_idx
)
216 if (ptt_idx
>= RESERVED_PTT_MAX
) {
218 "Requested PTT %d is out of range\n", ptt_idx
);
222 return &p_hwfn
->p_ptt_pool
->ptts
[ptt_idx
];
225 void qed_wr(struct qed_hwfn
*p_hwfn
,
226 struct qed_ptt
*p_ptt
,
227 u32 hw_addr
, u32 val
)
229 u32 bar_addr
= qed_set_ptt(p_hwfn
, p_ptt
, hw_addr
);
231 REG_WR(p_hwfn
, bar_addr
, val
);
232 DP_VERBOSE(p_hwfn
, NETIF_MSG_HW
,
233 "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
234 bar_addr
, hw_addr
, val
);
237 u32
qed_rd(struct qed_hwfn
*p_hwfn
,
238 struct qed_ptt
*p_ptt
,
241 u32 bar_addr
= qed_set_ptt(p_hwfn
, p_ptt
, hw_addr
);
242 u32 val
= REG_RD(p_hwfn
, bar_addr
);
244 DP_VERBOSE(p_hwfn
, NETIF_MSG_HW
,
245 "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
246 bar_addr
, hw_addr
, val
);
251 static void qed_memcpy_hw(struct qed_hwfn
*p_hwfn
,
252 struct qed_ptt
*p_ptt
,
253 void *addr
, u32 hw_addr
, size_t n
, bool to_device
)
255 u32 dw_count
, *host_addr
, hw_offset
;
256 size_t quota
, done
= 0;
257 u32 __iomem
*reg_addr
;
260 quota
= min_t(size_t, n
- done
,
261 PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE
);
263 if (IS_PF(p_hwfn
->cdev
)) {
264 qed_ptt_set_win(p_hwfn
, p_ptt
, hw_addr
+ done
);
265 hw_offset
= qed_ptt_get_bar_addr(p_ptt
);
267 hw_offset
= hw_addr
+ done
;
270 dw_count
= quota
/ 4;
271 host_addr
= (u32
*)((u8
*)addr
+ done
);
272 reg_addr
= (u32 __iomem
*)REG_ADDR(p_hwfn
, hw_offset
);
275 DIRECT_REG_WR(reg_addr
++, *host_addr
++);
278 *host_addr
++ = DIRECT_REG_RD(reg_addr
++);
284 void qed_memcpy_from(struct qed_hwfn
*p_hwfn
,
285 struct qed_ptt
*p_ptt
, void *dest
, u32 hw_addr
, size_t n
)
287 DP_VERBOSE(p_hwfn
, NETIF_MSG_HW
,
288 "hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n",
289 hw_addr
, dest
, hw_addr
, (unsigned long)n
);
291 qed_memcpy_hw(p_hwfn
, p_ptt
, dest
, hw_addr
, n
, false);
294 void qed_memcpy_to(struct qed_hwfn
*p_hwfn
,
295 struct qed_ptt
*p_ptt
, u32 hw_addr
, void *src
, size_t n
)
297 DP_VERBOSE(p_hwfn
, NETIF_MSG_HW
,
298 "hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n",
299 hw_addr
, hw_addr
, src
, (unsigned long)n
);
301 qed_memcpy_hw(p_hwfn
, p_ptt
, src
, hw_addr
, n
, true);
304 void qed_fid_pretend(struct qed_hwfn
*p_hwfn
, struct qed_ptt
*p_ptt
, u16 fid
)
308 SET_FIELD(control
, PXP_PRETEND_CMD_IS_CONCRETE
, 1);
309 SET_FIELD(control
, PXP_PRETEND_CMD_PRETEND_FUNCTION
, 1);
311 /* Every pretend undos previous pretends, including
312 * previous port pretend.
314 SET_FIELD(control
, PXP_PRETEND_CMD_PORT
, 0);
315 SET_FIELD(control
, PXP_PRETEND_CMD_USE_PORT
, 0);
316 SET_FIELD(control
, PXP_PRETEND_CMD_PRETEND_PORT
, 1);
318 if (!GET_FIELD(fid
, PXP_CONCRETE_FID_VFVALID
))
319 fid
= GET_FIELD(fid
, PXP_CONCRETE_FID_PFID
);
321 p_ptt
->pxp
.pretend
.control
= cpu_to_le16(control
);
322 p_ptt
->pxp
.pretend
.fid
.concrete_fid
.fid
= cpu_to_le16(fid
);
325 qed_ptt_config_addr(p_ptt
) +
326 offsetof(struct pxp_ptt_entry
, pretend
),
327 *(u32
*)&p_ptt
->pxp
.pretend
);
330 void qed_port_pretend(struct qed_hwfn
*p_hwfn
,
331 struct qed_ptt
*p_ptt
, u8 port_id
)
335 SET_FIELD(control
, PXP_PRETEND_CMD_PORT
, port_id
);
336 SET_FIELD(control
, PXP_PRETEND_CMD_USE_PORT
, 1);
337 SET_FIELD(control
, PXP_PRETEND_CMD_PRETEND_PORT
, 1);
339 p_ptt
->pxp
.pretend
.control
= cpu_to_le16(control
);
342 qed_ptt_config_addr(p_ptt
) +
343 offsetof(struct pxp_ptt_entry
, pretend
),
344 *(u32
*)&p_ptt
->pxp
.pretend
);
347 void qed_port_unpretend(struct qed_hwfn
*p_hwfn
, struct qed_ptt
*p_ptt
)
351 SET_FIELD(control
, PXP_PRETEND_CMD_PORT
, 0);
352 SET_FIELD(control
, PXP_PRETEND_CMD_USE_PORT
, 0);
353 SET_FIELD(control
, PXP_PRETEND_CMD_PRETEND_PORT
, 1);
355 p_ptt
->pxp
.pretend
.control
= cpu_to_le16(control
);
358 qed_ptt_config_addr(p_ptt
) +
359 offsetof(struct pxp_ptt_entry
, pretend
),
360 *(u32
*)&p_ptt
->pxp
.pretend
);
363 void qed_port_fid_pretend(struct qed_hwfn
*p_hwfn
,
364 struct qed_ptt
*p_ptt
, u8 port_id
, u16 fid
)
368 SET_FIELD(control
, PXP_PRETEND_CMD_PORT
, port_id
);
369 SET_FIELD(control
, PXP_PRETEND_CMD_USE_PORT
, 1);
370 SET_FIELD(control
, PXP_PRETEND_CMD_PRETEND_PORT
, 1);
371 SET_FIELD(control
, PXP_PRETEND_CMD_IS_CONCRETE
, 1);
372 SET_FIELD(control
, PXP_PRETEND_CMD_PRETEND_FUNCTION
, 1);
373 if (!GET_FIELD(fid
, PXP_CONCRETE_FID_VFVALID
))
374 fid
= GET_FIELD(fid
, PXP_CONCRETE_FID_PFID
);
375 p_ptt
->pxp
.pretend
.control
= cpu_to_le16(control
);
376 p_ptt
->pxp
.pretend
.fid
.concrete_fid
.fid
= cpu_to_le16(fid
);
378 qed_ptt_config_addr(p_ptt
) +
379 offsetof(struct pxp_ptt_entry
, pretend
),
380 *(u32
*)&p_ptt
->pxp
.pretend
);
383 u32
qed_vfid_to_concrete(struct qed_hwfn
*p_hwfn
, u8 vfid
)
385 u32 concrete_fid
= 0;
387 SET_FIELD(concrete_fid
, PXP_CONCRETE_FID_PFID
, p_hwfn
->rel_pf_id
);
388 SET_FIELD(concrete_fid
, PXP_CONCRETE_FID_VFID
, vfid
);
389 SET_FIELD(concrete_fid
, PXP_CONCRETE_FID_VFVALID
, 1);
395 #define QED_DMAE_FLAGS_IS_SET(params, flag) \
396 ((params) != NULL && GET_FIELD((params)->flags, QED_DMAE_PARAMS_##flag))
398 static void qed_dmae_opcode(struct qed_hwfn
*p_hwfn
,
399 const u8 is_src_type_grc
,
400 const u8 is_dst_type_grc
,
401 struct qed_dmae_params
*p_params
)
403 u8 src_pfid
, dst_pfid
, port_id
;
407 /* Whether the source is the PCIe or the GRC.
408 * 0- The source is the PCIe
409 * 1- The source is the GRC.
411 SET_FIELD(opcode
, DMAE_CMD_SRC
,
412 (is_src_type_grc
? dmae_cmd_src_grc
: dmae_cmd_src_pcie
));
413 src_pfid
= QED_DMAE_FLAGS_IS_SET(p_params
, SRC_PF_VALID
) ?
414 p_params
->src_pfid
: p_hwfn
->rel_pf_id
;
415 SET_FIELD(opcode
, DMAE_CMD_SRC_PF_ID
, src_pfid
);
417 /* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */
418 SET_FIELD(opcode
, DMAE_CMD_DST
,
419 (is_dst_type_grc
? dmae_cmd_dst_grc
: dmae_cmd_dst_pcie
));
420 dst_pfid
= QED_DMAE_FLAGS_IS_SET(p_params
, DST_PF_VALID
) ?
421 p_params
->dst_pfid
: p_hwfn
->rel_pf_id
;
422 SET_FIELD(opcode
, DMAE_CMD_DST_PF_ID
, dst_pfid
);
425 /* Whether to write a completion word to the completion destination:
426 * 0-Do not write a completion word
427 * 1-Write the completion word
429 SET_FIELD(opcode
, DMAE_CMD_COMP_WORD_EN
, 1);
430 SET_FIELD(opcode
, DMAE_CMD_SRC_ADDR_RESET
, 1);
432 if (QED_DMAE_FLAGS_IS_SET(p_params
, COMPLETION_DST
))
433 SET_FIELD(opcode
, DMAE_CMD_COMP_FUNC
, 1);
435 /* swapping mode 3 - big endian */
436 SET_FIELD(opcode
, DMAE_CMD_ENDIANITY_MODE
, DMAE_CMD_ENDIANITY
);
438 port_id
= (QED_DMAE_FLAGS_IS_SET(p_params
, PORT_VALID
)) ?
439 p_params
->port_id
: p_hwfn
->port_id
;
440 SET_FIELD(opcode
, DMAE_CMD_PORT_ID
, port_id
);
442 /* reset source address in next go */
443 SET_FIELD(opcode
, DMAE_CMD_SRC_ADDR_RESET
, 1);
445 /* reset dest address in next go */
446 SET_FIELD(opcode
, DMAE_CMD_DST_ADDR_RESET
, 1);
448 /* SRC/DST VFID: all 1's - pf, otherwise VF id */
449 if (QED_DMAE_FLAGS_IS_SET(p_params
, SRC_VF_VALID
)) {
450 SET_FIELD(opcode
, DMAE_CMD_SRC_VF_ID_VALID
, 1);
451 SET_FIELD(opcode_b
, DMAE_CMD_SRC_VF_ID
, p_params
->src_vfid
);
453 SET_FIELD(opcode_b
, DMAE_CMD_SRC_VF_ID
, 0xFF);
455 if (QED_DMAE_FLAGS_IS_SET(p_params
, DST_VF_VALID
)) {
456 SET_FIELD(opcode
, DMAE_CMD_DST_VF_ID_VALID
, 1);
457 SET_FIELD(opcode_b
, DMAE_CMD_DST_VF_ID
, p_params
->dst_vfid
);
459 SET_FIELD(opcode_b
, DMAE_CMD_DST_VF_ID
, 0xFF);
462 p_hwfn
->dmae_info
.p_dmae_cmd
->opcode
= cpu_to_le32(opcode
);
463 p_hwfn
->dmae_info
.p_dmae_cmd
->opcode_b
= cpu_to_le16(opcode_b
);
466 u32
qed_dmae_idx_to_go_cmd(u8 idx
)
468 /* All the DMAE 'go' registers form an array in internal memory */
469 return DMAE_REG_GO_C0
+ (idx
<< 2);
472 static int qed_dmae_post_command(struct qed_hwfn
*p_hwfn
,
473 struct qed_ptt
*p_ptt
)
475 struct dmae_cmd
*p_command
= p_hwfn
->dmae_info
.p_dmae_cmd
;
476 u8 idx_cmd
= p_hwfn
->dmae_info
.channel
, i
;
479 /* verify address is not NULL */
480 if ((((!p_command
->dst_addr_lo
) && (!p_command
->dst_addr_hi
)) ||
481 ((!p_command
->src_addr_lo
) && (!p_command
->src_addr_hi
)))) {
483 "source or destination address 0 idx_cmd=%d\n"
484 "opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
486 le32_to_cpu(p_command
->opcode
),
487 le16_to_cpu(p_command
->opcode_b
),
488 le16_to_cpu(p_command
->length_dw
),
489 le32_to_cpu(p_command
->src_addr_hi
),
490 le32_to_cpu(p_command
->src_addr_lo
),
491 le32_to_cpu(p_command
->dst_addr_hi
),
492 le32_to_cpu(p_command
->dst_addr_lo
));
499 "Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
501 le32_to_cpu(p_command
->opcode
),
502 le16_to_cpu(p_command
->opcode_b
),
503 le16_to_cpu(p_command
->length_dw
),
504 le32_to_cpu(p_command
->src_addr_hi
),
505 le32_to_cpu(p_command
->src_addr_lo
),
506 le32_to_cpu(p_command
->dst_addr_hi
),
507 le32_to_cpu(p_command
->dst_addr_lo
));
509 /* Copy the command to DMAE - need to do it before every call
510 * for source/dest address no reset.
511 * The first 9 DWs are the command registers, the 10 DW is the
512 * GO register, and the rest are result registers
513 * (which are read only by the client).
515 for (i
= 0; i
< DMAE_CMD_SIZE
; i
++) {
516 u32 data
= (i
< DMAE_CMD_SIZE_TO_FILL
) ?
517 *(((u32
*)p_command
) + i
) : 0;
519 qed_wr(p_hwfn
, p_ptt
,
521 (idx_cmd
* DMAE_CMD_SIZE
* sizeof(u32
)) +
522 (i
* sizeof(u32
)), data
);
525 qed_wr(p_hwfn
, p_ptt
, qed_dmae_idx_to_go_cmd(idx_cmd
), DMAE_GO_VALUE
);
530 int qed_dmae_info_alloc(struct qed_hwfn
*p_hwfn
)
532 dma_addr_t
*p_addr
= &p_hwfn
->dmae_info
.completion_word_phys_addr
;
533 struct dmae_cmd
**p_cmd
= &p_hwfn
->dmae_info
.p_dmae_cmd
;
534 u32
**p_buff
= &p_hwfn
->dmae_info
.p_intermediate_buffer
;
535 u32
**p_comp
= &p_hwfn
->dmae_info
.p_completion_word
;
537 *p_comp
= dma_alloc_coherent(&p_hwfn
->cdev
->pdev
->dev
,
538 sizeof(u32
), p_addr
, GFP_KERNEL
);
542 p_addr
= &p_hwfn
->dmae_info
.dmae_cmd_phys_addr
;
543 *p_cmd
= dma_alloc_coherent(&p_hwfn
->cdev
->pdev
->dev
,
544 sizeof(struct dmae_cmd
),
549 p_addr
= &p_hwfn
->dmae_info
.intermediate_buffer_phys_addr
;
550 *p_buff
= dma_alloc_coherent(&p_hwfn
->cdev
->pdev
->dev
,
551 sizeof(u32
) * DMAE_MAX_RW_SIZE
,
556 p_hwfn
->dmae_info
.channel
= p_hwfn
->rel_pf_id
;
560 qed_dmae_info_free(p_hwfn
);
564 void qed_dmae_info_free(struct qed_hwfn
*p_hwfn
)
568 /* Just make sure no one is in the middle */
569 mutex_lock(&p_hwfn
->dmae_info
.mutex
);
571 if (p_hwfn
->dmae_info
.p_completion_word
) {
572 p_phys
= p_hwfn
->dmae_info
.completion_word_phys_addr
;
573 dma_free_coherent(&p_hwfn
->cdev
->pdev
->dev
,
575 p_hwfn
->dmae_info
.p_completion_word
, p_phys
);
576 p_hwfn
->dmae_info
.p_completion_word
= NULL
;
579 if (p_hwfn
->dmae_info
.p_dmae_cmd
) {
580 p_phys
= p_hwfn
->dmae_info
.dmae_cmd_phys_addr
;
581 dma_free_coherent(&p_hwfn
->cdev
->pdev
->dev
,
582 sizeof(struct dmae_cmd
),
583 p_hwfn
->dmae_info
.p_dmae_cmd
, p_phys
);
584 p_hwfn
->dmae_info
.p_dmae_cmd
= NULL
;
587 if (p_hwfn
->dmae_info
.p_intermediate_buffer
) {
588 p_phys
= p_hwfn
->dmae_info
.intermediate_buffer_phys_addr
;
589 dma_free_coherent(&p_hwfn
->cdev
->pdev
->dev
,
590 sizeof(u32
) * DMAE_MAX_RW_SIZE
,
591 p_hwfn
->dmae_info
.p_intermediate_buffer
,
593 p_hwfn
->dmae_info
.p_intermediate_buffer
= NULL
;
596 mutex_unlock(&p_hwfn
->dmae_info
.mutex
);
599 static int qed_dmae_operation_wait(struct qed_hwfn
*p_hwfn
)
601 u32 wait_cnt_limit
= 10000, wait_cnt
= 0;
605 while (*p_hwfn
->dmae_info
.p_completion_word
!= DMAE_COMPLETION_VAL
) {
606 udelay(DMAE_MIN_WAIT_TIME
);
607 if (++wait_cnt
> wait_cnt_limit
) {
608 DP_NOTICE(p_hwfn
->cdev
,
609 "Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n",
610 *p_hwfn
->dmae_info
.p_completion_word
,
611 DMAE_COMPLETION_VAL
);
616 /* to sync the completion_word since we are not
617 * using the volatile keyword for p_completion_word
623 *p_hwfn
->dmae_info
.p_completion_word
= 0;
628 static int qed_dmae_execute_sub_operation(struct qed_hwfn
*p_hwfn
,
629 struct qed_ptt
*p_ptt
,
636 dma_addr_t phys
= p_hwfn
->dmae_info
.intermediate_buffer_phys_addr
;
637 struct dmae_cmd
*cmd
= p_hwfn
->dmae_info
.p_dmae_cmd
;
641 case QED_DMAE_ADDRESS_GRC
:
642 case QED_DMAE_ADDRESS_HOST_PHYS
:
643 cmd
->src_addr_hi
= cpu_to_le32(upper_32_bits(src_addr
));
644 cmd
->src_addr_lo
= cpu_to_le32(lower_32_bits(src_addr
));
646 /* for virtual source addresses we use the intermediate buffer. */
647 case QED_DMAE_ADDRESS_HOST_VIRT
:
648 cmd
->src_addr_hi
= cpu_to_le32(upper_32_bits(phys
));
649 cmd
->src_addr_lo
= cpu_to_le32(lower_32_bits(phys
));
650 memcpy(&p_hwfn
->dmae_info
.p_intermediate_buffer
[0],
651 (void *)(uintptr_t)src_addr
,
652 length_dw
* sizeof(u32
));
659 case QED_DMAE_ADDRESS_GRC
:
660 case QED_DMAE_ADDRESS_HOST_PHYS
:
661 cmd
->dst_addr_hi
= cpu_to_le32(upper_32_bits(dst_addr
));
662 cmd
->dst_addr_lo
= cpu_to_le32(lower_32_bits(dst_addr
));
664 /* for virtual source addresses we use the intermediate buffer. */
665 case QED_DMAE_ADDRESS_HOST_VIRT
:
666 cmd
->dst_addr_hi
= cpu_to_le32(upper_32_bits(phys
));
667 cmd
->dst_addr_lo
= cpu_to_le32(lower_32_bits(phys
));
673 cmd
->length_dw
= cpu_to_le16((u16
)length_dw
);
675 qed_dmae_post_command(p_hwfn
, p_ptt
);
677 qed_status
= qed_dmae_operation_wait(p_hwfn
);
681 "qed_dmae_host2grc: Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x\n",
682 src_addr
, dst_addr
, length_dw
);
686 if (dst_type
== QED_DMAE_ADDRESS_HOST_VIRT
)
687 memcpy((void *)(uintptr_t)(dst_addr
),
688 &p_hwfn
->dmae_info
.p_intermediate_buffer
[0],
689 length_dw
* sizeof(u32
));
694 static int qed_dmae_execute_command(struct qed_hwfn
*p_hwfn
,
695 struct qed_ptt
*p_ptt
,
696 u64 src_addr
, u64 dst_addr
,
697 u8 src_type
, u8 dst_type
,
699 struct qed_dmae_params
*p_params
)
701 dma_addr_t phys
= p_hwfn
->dmae_info
.completion_word_phys_addr
;
702 u16 length_cur
= 0, i
= 0, cnt_split
= 0, length_mod
= 0;
703 struct dmae_cmd
*cmd
= p_hwfn
->dmae_info
.p_dmae_cmd
;
704 u64 src_addr_split
= 0, dst_addr_split
= 0;
705 u16 length_limit
= DMAE_MAX_RW_SIZE
;
709 if (p_hwfn
->cdev
->recov_in_prog
) {
712 "Recovery is in progress. Avoid DMAE transaction [{src: addr 0x%llx, type %d}, {dst: addr 0x%llx, type %d}, size %d].\n",
713 src_addr
, src_type
, dst_addr
, dst_type
,
716 /* Let the flow complete w/o any error handling */
720 qed_dmae_opcode(p_hwfn
,
721 (src_type
== QED_DMAE_ADDRESS_GRC
),
722 (dst_type
== QED_DMAE_ADDRESS_GRC
),
725 cmd
->comp_addr_lo
= cpu_to_le32(lower_32_bits(phys
));
726 cmd
->comp_addr_hi
= cpu_to_le32(upper_32_bits(phys
));
727 cmd
->comp_val
= cpu_to_le32(DMAE_COMPLETION_VAL
);
729 /* Check if the grc_addr is valid like < MAX_GRC_OFFSET */
730 cnt_split
= size_in_dwords
/ length_limit
;
731 length_mod
= size_in_dwords
% length_limit
;
733 src_addr_split
= src_addr
;
734 dst_addr_split
= dst_addr
;
736 for (i
= 0; i
<= cnt_split
; i
++) {
737 offset
= length_limit
* i
;
739 if (!QED_DMAE_FLAGS_IS_SET(p_params
, RW_REPL_SRC
)) {
740 if (src_type
== QED_DMAE_ADDRESS_GRC
)
741 src_addr_split
= src_addr
+ offset
;
743 src_addr_split
= src_addr
+ (offset
* 4);
746 if (dst_type
== QED_DMAE_ADDRESS_GRC
)
747 dst_addr_split
= dst_addr
+ offset
;
749 dst_addr_split
= dst_addr
+ (offset
* 4);
751 length_cur
= (cnt_split
== i
) ? length_mod
: length_limit
;
753 /* might be zero on last iteration */
757 qed_status
= qed_dmae_execute_sub_operation(p_hwfn
,
766 "qed_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
767 qed_status
, src_addr
, dst_addr
, length_cur
);
775 int qed_dmae_host2grc(struct qed_hwfn
*p_hwfn
,
776 struct qed_ptt
*p_ptt
,
777 u64 source_addr
, u32 grc_addr
, u32 size_in_dwords
,
778 struct qed_dmae_params
*p_params
)
780 u32 grc_addr_in_dw
= grc_addr
/ sizeof(u32
);
784 mutex_lock(&p_hwfn
->dmae_info
.mutex
);
786 rc
= qed_dmae_execute_command(p_hwfn
, p_ptt
, source_addr
,
788 QED_DMAE_ADDRESS_HOST_VIRT
,
789 QED_DMAE_ADDRESS_GRC
,
790 size_in_dwords
, p_params
);
792 mutex_unlock(&p_hwfn
->dmae_info
.mutex
);
797 int qed_dmae_grc2host(struct qed_hwfn
*p_hwfn
,
798 struct qed_ptt
*p_ptt
,
800 dma_addr_t dest_addr
, u32 size_in_dwords
,
801 struct qed_dmae_params
*p_params
)
803 u32 grc_addr_in_dw
= grc_addr
/ sizeof(u32
);
807 mutex_lock(&p_hwfn
->dmae_info
.mutex
);
809 rc
= qed_dmae_execute_command(p_hwfn
, p_ptt
, grc_addr_in_dw
,
810 dest_addr
, QED_DMAE_ADDRESS_GRC
,
811 QED_DMAE_ADDRESS_HOST_VIRT
,
812 size_in_dwords
, p_params
);
814 mutex_unlock(&p_hwfn
->dmae_info
.mutex
);
819 int qed_dmae_host2host(struct qed_hwfn
*p_hwfn
,
820 struct qed_ptt
*p_ptt
,
821 dma_addr_t source_addr
,
822 dma_addr_t dest_addr
,
823 u32 size_in_dwords
, struct qed_dmae_params
*p_params
)
827 mutex_lock(&(p_hwfn
->dmae_info
.mutex
));
829 rc
= qed_dmae_execute_command(p_hwfn
, p_ptt
, source_addr
,
831 QED_DMAE_ADDRESS_HOST_PHYS
,
832 QED_DMAE_ADDRESS_HOST_PHYS
,
833 size_in_dwords
, p_params
);
835 mutex_unlock(&(p_hwfn
->dmae_info
.mutex
));
840 int qed_dmae_sanity(struct qed_hwfn
*p_hwfn
,
841 struct qed_ptt
*p_ptt
, const char *phase
)
843 u32 size
= PAGE_SIZE
/ 2, val
;
849 p_virt
= dma_alloc_coherent(&p_hwfn
->cdev
->pdev
->dev
,
850 2 * size
, &p_phys
, GFP_KERNEL
);
853 "DMAE sanity [%s]: failed to allocate memory\n",
858 /* Fill the bottom half of the allocated memory with a known pattern */
859 for (p_tmp
= (u32
*)p_virt
;
860 p_tmp
< (u32
*)((u8
*)p_virt
+ size
); p_tmp
++) {
861 /* Save the address itself as the value */
862 val
= (u32
)(uintptr_t)p_tmp
;
866 /* Zero the top half of the allocated memory */
867 memset((u8
*)p_virt
+ size
, 0, size
);
871 "DMAE sanity [%s]: src_addr={phys 0x%llx, virt %p}, dst_addr={phys 0x%llx, virt %p}, size 0x%x\n",
874 p_virt
, (u64
)(p_phys
+ size
), (u8
*)p_virt
+ size
, size
);
876 rc
= qed_dmae_host2host(p_hwfn
, p_ptt
, p_phys
, p_phys
+ size
,
880 "DMAE sanity [%s]: qed_dmae_host2host() failed. rc = %d.\n",
885 /* Verify that the top half of the allocated memory has the pattern */
886 for (p_tmp
= (u32
*)((u8
*)p_virt
+ size
);
887 p_tmp
< (u32
*)((u8
*)p_virt
+ (2 * size
)); p_tmp
++) {
888 /* The corresponding address in the bottom half */
889 val
= (u32
)(uintptr_t)p_tmp
- size
;
893 "DMAE sanity [%s]: addr={phys 0x%llx, virt %p}, read_val 0x%08x, expected_val 0x%08x\n",
895 (u64
)p_phys
+ ((u8
*)p_tmp
- (u8
*)p_virt
),
903 dma_free_coherent(&p_hwfn
->cdev
->pdev
->dev
, 2 * size
, p_virt
, p_phys
);