treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / ethernet / sfc / bitfield.h
blob1b59e9fe58b44f5424316f2264465554ed735bb4
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2006-2013 Solarflare Communications Inc.
6 */
8 #ifndef EFX_BITFIELD_H
9 #define EFX_BITFIELD_H
12 * Efx bitfield access
14 * Efx NICs make extensive use of bitfields up to 128 bits
15 * wide. Since there is no native 128-bit datatype on most systems,
16 * and since 64-bit datatypes are inefficient on 32-bit systems and
17 * vice versa, we wrap accesses in a way that uses the most efficient
18 * datatype.
20 * The NICs are PCI devices and therefore little-endian. Since most
21 * of the quantities that we deal with are DMAed to/from host memory,
22 * we define our datatypes (efx_oword_t, efx_qword_t and
23 * efx_dword_t) to be little-endian.
26 /* Lowest bit numbers and widths */
27 #define EFX_DUMMY_FIELD_LBN 0
28 #define EFX_DUMMY_FIELD_WIDTH 0
29 #define EFX_WORD_0_LBN 0
30 #define EFX_WORD_0_WIDTH 16
31 #define EFX_WORD_1_LBN 16
32 #define EFX_WORD_1_WIDTH 16
33 #define EFX_DWORD_0_LBN 0
34 #define EFX_DWORD_0_WIDTH 32
35 #define EFX_DWORD_1_LBN 32
36 #define EFX_DWORD_1_WIDTH 32
37 #define EFX_DWORD_2_LBN 64
38 #define EFX_DWORD_2_WIDTH 32
39 #define EFX_DWORD_3_LBN 96
40 #define EFX_DWORD_3_WIDTH 32
41 #define EFX_QWORD_0_LBN 0
42 #define EFX_QWORD_0_WIDTH 64
44 /* Specified attribute (e.g. LBN) of the specified field */
45 #define EFX_VAL(field, attribute) field ## _ ## attribute
46 /* Low bit number of the specified field */
47 #define EFX_LOW_BIT(field) EFX_VAL(field, LBN)
48 /* Bit width of the specified field */
49 #define EFX_WIDTH(field) EFX_VAL(field, WIDTH)
50 /* High bit number of the specified field */
51 #define EFX_HIGH_BIT(field) (EFX_LOW_BIT(field) + EFX_WIDTH(field) - 1)
52 /* Mask equal in width to the specified field.
54 * For example, a field with width 5 would have a mask of 0x1f.
56 * The maximum width mask that can be generated is 64 bits.
58 #define EFX_MASK64(width) \
59 ((width) == 64 ? ~((u64) 0) : \
60 (((((u64) 1) << (width))) - 1))
62 /* Mask equal in width to the specified field.
64 * For example, a field with width 5 would have a mask of 0x1f.
66 * The maximum width mask that can be generated is 32 bits. Use
67 * EFX_MASK64 for higher width fields.
69 #define EFX_MASK32(width) \
70 ((width) == 32 ? ~((u32) 0) : \
71 (((((u32) 1) << (width))) - 1))
73 /* A doubleword (i.e. 4 byte) datatype - little-endian in HW */
74 typedef union efx_dword {
75 __le32 u32[1];
76 } efx_dword_t;
78 /* A quadword (i.e. 8 byte) datatype - little-endian in HW */
79 typedef union efx_qword {
80 __le64 u64[1];
81 __le32 u32[2];
82 efx_dword_t dword[2];
83 } efx_qword_t;
85 /* An octword (eight-word, i.e. 16 byte) datatype - little-endian in HW */
86 typedef union efx_oword {
87 __le64 u64[2];
88 efx_qword_t qword[2];
89 __le32 u32[4];
90 efx_dword_t dword[4];
91 } efx_oword_t;
93 /* Format string and value expanders for printk */
94 #define EFX_DWORD_FMT "%08x"
95 #define EFX_QWORD_FMT "%08x:%08x"
96 #define EFX_OWORD_FMT "%08x:%08x:%08x:%08x"
97 #define EFX_DWORD_VAL(dword) \
98 ((unsigned int) le32_to_cpu((dword).u32[0]))
99 #define EFX_QWORD_VAL(qword) \
100 ((unsigned int) le32_to_cpu((qword).u32[1])), \
101 ((unsigned int) le32_to_cpu((qword).u32[0]))
102 #define EFX_OWORD_VAL(oword) \
103 ((unsigned int) le32_to_cpu((oword).u32[3])), \
104 ((unsigned int) le32_to_cpu((oword).u32[2])), \
105 ((unsigned int) le32_to_cpu((oword).u32[1])), \
106 ((unsigned int) le32_to_cpu((oword).u32[0]))
109 * Extract bit field portion [low,high) from the native-endian element
110 * which contains bits [min,max).
112 * For example, suppose "element" represents the high 32 bits of a
113 * 64-bit value, and we wish to extract the bits belonging to the bit
114 * field occupying bits 28-45 of this 64-bit value.
116 * Then EFX_EXTRACT ( element, 32, 63, 28, 45 ) would give
118 * ( element ) << 4
120 * The result will contain the relevant bits filled in in the range
121 * [0,high-low), with garbage in bits [high-low+1,...).
123 #define EFX_EXTRACT_NATIVE(native_element, min, max, low, high) \
124 ((low) > (max) || (high) < (min) ? 0 : \
125 (low) > (min) ? \
126 (native_element) >> ((low) - (min)) : \
127 (native_element) << ((min) - (low)))
130 * Extract bit field portion [low,high) from the 64-bit little-endian
131 * element which contains bits [min,max)
133 #define EFX_EXTRACT64(element, min, max, low, high) \
134 EFX_EXTRACT_NATIVE(le64_to_cpu(element), min, max, low, high)
137 * Extract bit field portion [low,high) from the 32-bit little-endian
138 * element which contains bits [min,max)
140 #define EFX_EXTRACT32(element, min, max, low, high) \
141 EFX_EXTRACT_NATIVE(le32_to_cpu(element), min, max, low, high)
143 #define EFX_EXTRACT_OWORD64(oword, low, high) \
144 ((EFX_EXTRACT64((oword).u64[0], 0, 63, low, high) | \
145 EFX_EXTRACT64((oword).u64[1], 64, 127, low, high)) & \
146 EFX_MASK64((high) + 1 - (low)))
148 #define EFX_EXTRACT_QWORD64(qword, low, high) \
149 (EFX_EXTRACT64((qword).u64[0], 0, 63, low, high) & \
150 EFX_MASK64((high) + 1 - (low)))
152 #define EFX_EXTRACT_OWORD32(oword, low, high) \
153 ((EFX_EXTRACT32((oword).u32[0], 0, 31, low, high) | \
154 EFX_EXTRACT32((oword).u32[1], 32, 63, low, high) | \
155 EFX_EXTRACT32((oword).u32[2], 64, 95, low, high) | \
156 EFX_EXTRACT32((oword).u32[3], 96, 127, low, high)) & \
157 EFX_MASK32((high) + 1 - (low)))
159 #define EFX_EXTRACT_QWORD32(qword, low, high) \
160 ((EFX_EXTRACT32((qword).u32[0], 0, 31, low, high) | \
161 EFX_EXTRACT32((qword).u32[1], 32, 63, low, high)) & \
162 EFX_MASK32((high) + 1 - (low)))
164 #define EFX_EXTRACT_DWORD(dword, low, high) \
165 (EFX_EXTRACT32((dword).u32[0], 0, 31, low, high) & \
166 EFX_MASK32((high) + 1 - (low)))
168 #define EFX_OWORD_FIELD64(oword, field) \
169 EFX_EXTRACT_OWORD64(oword, EFX_LOW_BIT(field), \
170 EFX_HIGH_BIT(field))
172 #define EFX_QWORD_FIELD64(qword, field) \
173 EFX_EXTRACT_QWORD64(qword, EFX_LOW_BIT(field), \
174 EFX_HIGH_BIT(field))
176 #define EFX_OWORD_FIELD32(oword, field) \
177 EFX_EXTRACT_OWORD32(oword, EFX_LOW_BIT(field), \
178 EFX_HIGH_BIT(field))
180 #define EFX_QWORD_FIELD32(qword, field) \
181 EFX_EXTRACT_QWORD32(qword, EFX_LOW_BIT(field), \
182 EFX_HIGH_BIT(field))
184 #define EFX_DWORD_FIELD(dword, field) \
185 EFX_EXTRACT_DWORD(dword, EFX_LOW_BIT(field), \
186 EFX_HIGH_BIT(field))
188 #define EFX_OWORD_IS_ZERO64(oword) \
189 (((oword).u64[0] | (oword).u64[1]) == (__force __le64) 0)
191 #define EFX_QWORD_IS_ZERO64(qword) \
192 (((qword).u64[0]) == (__force __le64) 0)
194 #define EFX_OWORD_IS_ZERO32(oword) \
195 (((oword).u32[0] | (oword).u32[1] | (oword).u32[2] | (oword).u32[3]) \
196 == (__force __le32) 0)
198 #define EFX_QWORD_IS_ZERO32(qword) \
199 (((qword).u32[0] | (qword).u32[1]) == (__force __le32) 0)
201 #define EFX_DWORD_IS_ZERO(dword) \
202 (((dword).u32[0]) == (__force __le32) 0)
204 #define EFX_OWORD_IS_ALL_ONES64(oword) \
205 (((oword).u64[0] & (oword).u64[1]) == ~((__force __le64) 0))
207 #define EFX_QWORD_IS_ALL_ONES64(qword) \
208 ((qword).u64[0] == ~((__force __le64) 0))
210 #define EFX_OWORD_IS_ALL_ONES32(oword) \
211 (((oword).u32[0] & (oword).u32[1] & (oword).u32[2] & (oword).u32[3]) \
212 == ~((__force __le32) 0))
214 #define EFX_QWORD_IS_ALL_ONES32(qword) \
215 (((qword).u32[0] & (qword).u32[1]) == ~((__force __le32) 0))
217 #define EFX_DWORD_IS_ALL_ONES(dword) \
218 ((dword).u32[0] == ~((__force __le32) 0))
220 #if BITS_PER_LONG == 64
221 #define EFX_OWORD_FIELD EFX_OWORD_FIELD64
222 #define EFX_QWORD_FIELD EFX_QWORD_FIELD64
223 #define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO64
224 #define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO64
225 #define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES64
226 #define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES64
227 #else
228 #define EFX_OWORD_FIELD EFX_OWORD_FIELD32
229 #define EFX_QWORD_FIELD EFX_QWORD_FIELD32
230 #define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO32
231 #define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO32
232 #define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES32
233 #define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES32
234 #endif
237 * Construct bit field portion
239 * Creates the portion of the bit field [low,high) that lies within
240 * the range [min,max).
242 #define EFX_INSERT_NATIVE64(min, max, low, high, value) \
243 (((low > max) || (high < min)) ? 0 : \
244 ((low > min) ? \
245 (((u64) (value)) << (low - min)) : \
246 (((u64) (value)) >> (min - low))))
248 #define EFX_INSERT_NATIVE32(min, max, low, high, value) \
249 (((low > max) || (high < min)) ? 0 : \
250 ((low > min) ? \
251 (((u32) (value)) << (low - min)) : \
252 (((u32) (value)) >> (min - low))))
254 #define EFX_INSERT_NATIVE(min, max, low, high, value) \
255 ((((max - min) >= 32) || ((high - low) >= 32)) ? \
256 EFX_INSERT_NATIVE64(min, max, low, high, value) : \
257 EFX_INSERT_NATIVE32(min, max, low, high, value))
260 * Construct bit field portion
262 * Creates the portion of the named bit field that lies within the
263 * range [min,max).
265 #define EFX_INSERT_FIELD_NATIVE(min, max, field, value) \
266 EFX_INSERT_NATIVE(min, max, EFX_LOW_BIT(field), \
267 EFX_HIGH_BIT(field), value)
270 * Construct bit field
272 * Creates the portion of the named bit fields that lie within the
273 * range [min,max).
275 #define EFX_INSERT_FIELDS_NATIVE(min, max, \
276 field1, value1, \
277 field2, value2, \
278 field3, value3, \
279 field4, value4, \
280 field5, value5, \
281 field6, value6, \
282 field7, value7, \
283 field8, value8, \
284 field9, value9, \
285 field10, value10) \
286 (EFX_INSERT_FIELD_NATIVE((min), (max), field1, (value1)) | \
287 EFX_INSERT_FIELD_NATIVE((min), (max), field2, (value2)) | \
288 EFX_INSERT_FIELD_NATIVE((min), (max), field3, (value3)) | \
289 EFX_INSERT_FIELD_NATIVE((min), (max), field4, (value4)) | \
290 EFX_INSERT_FIELD_NATIVE((min), (max), field5, (value5)) | \
291 EFX_INSERT_FIELD_NATIVE((min), (max), field6, (value6)) | \
292 EFX_INSERT_FIELD_NATIVE((min), (max), field7, (value7)) | \
293 EFX_INSERT_FIELD_NATIVE((min), (max), field8, (value8)) | \
294 EFX_INSERT_FIELD_NATIVE((min), (max), field9, (value9)) | \
295 EFX_INSERT_FIELD_NATIVE((min), (max), field10, (value10)))
297 #define EFX_INSERT_FIELDS64(...) \
298 cpu_to_le64(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__))
300 #define EFX_INSERT_FIELDS32(...) \
301 cpu_to_le32(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__))
303 #define EFX_POPULATE_OWORD64(oword, ...) do { \
304 (oword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \
305 (oword).u64[1] = EFX_INSERT_FIELDS64(64, 127, __VA_ARGS__); \
306 } while (0)
308 #define EFX_POPULATE_QWORD64(qword, ...) do { \
309 (qword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \
310 } while (0)
312 #define EFX_POPULATE_OWORD32(oword, ...) do { \
313 (oword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
314 (oword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \
315 (oword).u32[2] = EFX_INSERT_FIELDS32(64, 95, __VA_ARGS__); \
316 (oword).u32[3] = EFX_INSERT_FIELDS32(96, 127, __VA_ARGS__); \
317 } while (0)
319 #define EFX_POPULATE_QWORD32(qword, ...) do { \
320 (qword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
321 (qword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \
322 } while (0)
324 #define EFX_POPULATE_DWORD(dword, ...) do { \
325 (dword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
326 } while (0)
328 #if BITS_PER_LONG == 64
329 #define EFX_POPULATE_OWORD EFX_POPULATE_OWORD64
330 #define EFX_POPULATE_QWORD EFX_POPULATE_QWORD64
331 #else
332 #define EFX_POPULATE_OWORD EFX_POPULATE_OWORD32
333 #define EFX_POPULATE_QWORD EFX_POPULATE_QWORD32
334 #endif
336 /* Populate an octword field with various numbers of arguments */
337 #define EFX_POPULATE_OWORD_10 EFX_POPULATE_OWORD
338 #define EFX_POPULATE_OWORD_9(oword, ...) \
339 EFX_POPULATE_OWORD_10(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
340 #define EFX_POPULATE_OWORD_8(oword, ...) \
341 EFX_POPULATE_OWORD_9(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
342 #define EFX_POPULATE_OWORD_7(oword, ...) \
343 EFX_POPULATE_OWORD_8(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
344 #define EFX_POPULATE_OWORD_6(oword, ...) \
345 EFX_POPULATE_OWORD_7(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
346 #define EFX_POPULATE_OWORD_5(oword, ...) \
347 EFX_POPULATE_OWORD_6(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
348 #define EFX_POPULATE_OWORD_4(oword, ...) \
349 EFX_POPULATE_OWORD_5(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
350 #define EFX_POPULATE_OWORD_3(oword, ...) \
351 EFX_POPULATE_OWORD_4(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
352 #define EFX_POPULATE_OWORD_2(oword, ...) \
353 EFX_POPULATE_OWORD_3(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
354 #define EFX_POPULATE_OWORD_1(oword, ...) \
355 EFX_POPULATE_OWORD_2(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
356 #define EFX_ZERO_OWORD(oword) \
357 EFX_POPULATE_OWORD_1(oword, EFX_DUMMY_FIELD, 0)
358 #define EFX_SET_OWORD(oword) \
359 EFX_POPULATE_OWORD_4(oword, \
360 EFX_DWORD_0, 0xffffffff, \
361 EFX_DWORD_1, 0xffffffff, \
362 EFX_DWORD_2, 0xffffffff, \
363 EFX_DWORD_3, 0xffffffff)
365 /* Populate a quadword field with various numbers of arguments */
366 #define EFX_POPULATE_QWORD_10 EFX_POPULATE_QWORD
367 #define EFX_POPULATE_QWORD_9(qword, ...) \
368 EFX_POPULATE_QWORD_10(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
369 #define EFX_POPULATE_QWORD_8(qword, ...) \
370 EFX_POPULATE_QWORD_9(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
371 #define EFX_POPULATE_QWORD_7(qword, ...) \
372 EFX_POPULATE_QWORD_8(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
373 #define EFX_POPULATE_QWORD_6(qword, ...) \
374 EFX_POPULATE_QWORD_7(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
375 #define EFX_POPULATE_QWORD_5(qword, ...) \
376 EFX_POPULATE_QWORD_6(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
377 #define EFX_POPULATE_QWORD_4(qword, ...) \
378 EFX_POPULATE_QWORD_5(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
379 #define EFX_POPULATE_QWORD_3(qword, ...) \
380 EFX_POPULATE_QWORD_4(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
381 #define EFX_POPULATE_QWORD_2(qword, ...) \
382 EFX_POPULATE_QWORD_3(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
383 #define EFX_POPULATE_QWORD_1(qword, ...) \
384 EFX_POPULATE_QWORD_2(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
385 #define EFX_ZERO_QWORD(qword) \
386 EFX_POPULATE_QWORD_1(qword, EFX_DUMMY_FIELD, 0)
387 #define EFX_SET_QWORD(qword) \
388 EFX_POPULATE_QWORD_2(qword, \
389 EFX_DWORD_0, 0xffffffff, \
390 EFX_DWORD_1, 0xffffffff)
392 /* Populate a dword field with various numbers of arguments */
393 #define EFX_POPULATE_DWORD_10 EFX_POPULATE_DWORD
394 #define EFX_POPULATE_DWORD_9(dword, ...) \
395 EFX_POPULATE_DWORD_10(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
396 #define EFX_POPULATE_DWORD_8(dword, ...) \
397 EFX_POPULATE_DWORD_9(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
398 #define EFX_POPULATE_DWORD_7(dword, ...) \
399 EFX_POPULATE_DWORD_8(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
400 #define EFX_POPULATE_DWORD_6(dword, ...) \
401 EFX_POPULATE_DWORD_7(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
402 #define EFX_POPULATE_DWORD_5(dword, ...) \
403 EFX_POPULATE_DWORD_6(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
404 #define EFX_POPULATE_DWORD_4(dword, ...) \
405 EFX_POPULATE_DWORD_5(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
406 #define EFX_POPULATE_DWORD_3(dword, ...) \
407 EFX_POPULATE_DWORD_4(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
408 #define EFX_POPULATE_DWORD_2(dword, ...) \
409 EFX_POPULATE_DWORD_3(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
410 #define EFX_POPULATE_DWORD_1(dword, ...) \
411 EFX_POPULATE_DWORD_2(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
412 #define EFX_ZERO_DWORD(dword) \
413 EFX_POPULATE_DWORD_1(dword, EFX_DUMMY_FIELD, 0)
414 #define EFX_SET_DWORD(dword) \
415 EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, 0xffffffff)
418 * Modify a named field within an already-populated structure. Used
419 * for read-modify-write operations.
422 #define EFX_INVERT_OWORD(oword) do { \
423 (oword).u64[0] = ~((oword).u64[0]); \
424 (oword).u64[1] = ~((oword).u64[1]); \
425 } while (0)
427 #define EFX_AND_OWORD(oword, from, mask) \
428 do { \
429 (oword).u64[0] = (from).u64[0] & (mask).u64[0]; \
430 (oword).u64[1] = (from).u64[1] & (mask).u64[1]; \
431 } while (0)
433 #define EFX_AND_QWORD(qword, from, mask) \
434 (qword).u64[0] = (from).u64[0] & (mask).u64[0]
436 #define EFX_OR_OWORD(oword, from, mask) \
437 do { \
438 (oword).u64[0] = (from).u64[0] | (mask).u64[0]; \
439 (oword).u64[1] = (from).u64[1] | (mask).u64[1]; \
440 } while (0)
442 #define EFX_INSERT64(min, max, low, high, value) \
443 cpu_to_le64(EFX_INSERT_NATIVE(min, max, low, high, value))
445 #define EFX_INSERT32(min, max, low, high, value) \
446 cpu_to_le32(EFX_INSERT_NATIVE(min, max, low, high, value))
448 #define EFX_INPLACE_MASK64(min, max, low, high) \
449 EFX_INSERT64(min, max, low, high, EFX_MASK64((high) + 1 - (low)))
451 #define EFX_INPLACE_MASK32(min, max, low, high) \
452 EFX_INSERT32(min, max, low, high, EFX_MASK32((high) + 1 - (low)))
454 #define EFX_SET_OWORD64(oword, low, high, value) do { \
455 (oword).u64[0] = (((oword).u64[0] \
456 & ~EFX_INPLACE_MASK64(0, 63, low, high)) \
457 | EFX_INSERT64(0, 63, low, high, value)); \
458 (oword).u64[1] = (((oword).u64[1] \
459 & ~EFX_INPLACE_MASK64(64, 127, low, high)) \
460 | EFX_INSERT64(64, 127, low, high, value)); \
461 } while (0)
463 #define EFX_SET_QWORD64(qword, low, high, value) do { \
464 (qword).u64[0] = (((qword).u64[0] \
465 & ~EFX_INPLACE_MASK64(0, 63, low, high)) \
466 | EFX_INSERT64(0, 63, low, high, value)); \
467 } while (0)
469 #define EFX_SET_OWORD32(oword, low, high, value) do { \
470 (oword).u32[0] = (((oword).u32[0] \
471 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \
472 | EFX_INSERT32(0, 31, low, high, value)); \
473 (oword).u32[1] = (((oword).u32[1] \
474 & ~EFX_INPLACE_MASK32(32, 63, low, high)) \
475 | EFX_INSERT32(32, 63, low, high, value)); \
476 (oword).u32[2] = (((oword).u32[2] \
477 & ~EFX_INPLACE_MASK32(64, 95, low, high)) \
478 | EFX_INSERT32(64, 95, low, high, value)); \
479 (oword).u32[3] = (((oword).u32[3] \
480 & ~EFX_INPLACE_MASK32(96, 127, low, high)) \
481 | EFX_INSERT32(96, 127, low, high, value)); \
482 } while (0)
484 #define EFX_SET_QWORD32(qword, low, high, value) do { \
485 (qword).u32[0] = (((qword).u32[0] \
486 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \
487 | EFX_INSERT32(0, 31, low, high, value)); \
488 (qword).u32[1] = (((qword).u32[1] \
489 & ~EFX_INPLACE_MASK32(32, 63, low, high)) \
490 | EFX_INSERT32(32, 63, low, high, value)); \
491 } while (0)
493 #define EFX_SET_DWORD32(dword, low, high, value) do { \
494 (dword).u32[0] = (((dword).u32[0] \
495 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \
496 | EFX_INSERT32(0, 31, low, high, value)); \
497 } while (0)
499 #define EFX_SET_OWORD_FIELD64(oword, field, value) \
500 EFX_SET_OWORD64(oword, EFX_LOW_BIT(field), \
501 EFX_HIGH_BIT(field), value)
503 #define EFX_SET_QWORD_FIELD64(qword, field, value) \
504 EFX_SET_QWORD64(qword, EFX_LOW_BIT(field), \
505 EFX_HIGH_BIT(field), value)
507 #define EFX_SET_OWORD_FIELD32(oword, field, value) \
508 EFX_SET_OWORD32(oword, EFX_LOW_BIT(field), \
509 EFX_HIGH_BIT(field), value)
511 #define EFX_SET_QWORD_FIELD32(qword, field, value) \
512 EFX_SET_QWORD32(qword, EFX_LOW_BIT(field), \
513 EFX_HIGH_BIT(field), value)
515 #define EFX_SET_DWORD_FIELD(dword, field, value) \
516 EFX_SET_DWORD32(dword, EFX_LOW_BIT(field), \
517 EFX_HIGH_BIT(field), value)
521 #if BITS_PER_LONG == 64
522 #define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD64
523 #define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD64
524 #else
525 #define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD32
526 #define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD32
527 #endif
529 /* Used to avoid compiler warnings about shift range exceeding width
530 * of the data types when dma_addr_t is only 32 bits wide.
532 #define DMA_ADDR_T_WIDTH (8 * sizeof(dma_addr_t))
533 #define EFX_DMA_TYPE_WIDTH(width) \
534 (((width) < DMA_ADDR_T_WIDTH) ? (width) : DMA_ADDR_T_WIDTH)
537 /* Static initialiser */
538 #define EFX_OWORD32(a, b, c, d) \
539 { .u32 = { cpu_to_le32(a), cpu_to_le32(b), \
540 cpu_to_le32(c), cpu_to_le32(d) } }
542 #endif /* EFX_BITFIELD_H */