treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / ethernet / sfc / falcon / farch.c
blob332183280a459dc8ebbda51069ad910ca6c39b3f
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2006-2013 Solarflare Communications Inc.
6 */
8 #include <linux/bitops.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/seq_file.h>
14 #include <linux/crc32.h>
15 #include "net_driver.h"
16 #include "bitfield.h"
17 #include "efx.h"
18 #include "nic.h"
19 #include "farch_regs.h"
20 #include "io.h"
21 #include "workarounds.h"
23 /* Falcon-architecture (SFC4000) support */
25 /**************************************************************************
27 * Configurable values
29 **************************************************************************
32 /* This is set to 16 for a good reason. In summary, if larger than
33 * 16, the descriptor cache holds more than a default socket
34 * buffer's worth of packets (for UDP we can only have at most one
35 * socket buffer's worth outstanding). This combined with the fact
36 * that we only get 1 TX event per descriptor cache means the NIC
37 * goes idle.
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
45 /* If EF4_MAX_INT_ERRORS internal errors occur within
46 * EF4_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47 * disable it.
49 #define EF4_INT_ERROR_EXPIRE 3600
50 #define EF4_MAX_INT_ERRORS 5
52 /* Depth of RX flush request fifo */
53 #define EF4_RX_FLUSH_COUNT 4
55 /* Driver generated events */
56 #define _EF4_CHANNEL_MAGIC_TEST 0x000101
57 #define _EF4_CHANNEL_MAGIC_FILL 0x000102
58 #define _EF4_CHANNEL_MAGIC_RX_DRAIN 0x000103
59 #define _EF4_CHANNEL_MAGIC_TX_DRAIN 0x000104
61 #define _EF4_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
62 #define _EF4_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
64 #define EF4_CHANNEL_MAGIC_TEST(_channel) \
65 _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TEST, (_channel)->channel)
66 #define EF4_CHANNEL_MAGIC_FILL(_rx_queue) \
67 _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_FILL, \
68 ef4_rx_queue_index(_rx_queue))
69 #define EF4_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
70 _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_RX_DRAIN, \
71 ef4_rx_queue_index(_rx_queue))
72 #define EF4_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
73 _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TX_DRAIN, \
74 (_tx_queue)->queue)
76 static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic);
78 /**************************************************************************
80 * Hardware access
82 **************************************************************************/
84 static inline void ef4_write_buf_tbl(struct ef4_nic *efx, ef4_qword_t *value,
85 unsigned int index)
87 ef4_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
88 value, index);
91 static bool ef4_masked_compare_oword(const ef4_oword_t *a, const ef4_oword_t *b,
92 const ef4_oword_t *mask)
94 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
95 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
98 int ef4_farch_test_registers(struct ef4_nic *efx,
99 const struct ef4_farch_register_test *regs,
100 size_t n_regs)
102 unsigned address = 0;
103 int i, j;
104 ef4_oword_t mask, imask, original, reg, buf;
106 for (i = 0; i < n_regs; ++i) {
107 address = regs[i].address;
108 mask = imask = regs[i].mask;
109 EF4_INVERT_OWORD(imask);
111 ef4_reado(efx, &original, address);
113 /* bit sweep on and off */
114 for (j = 0; j < 128; j++) {
115 if (!EF4_EXTRACT_OWORD32(mask, j, j))
116 continue;
118 /* Test this testable bit can be set in isolation */
119 EF4_AND_OWORD(reg, original, mask);
120 EF4_SET_OWORD32(reg, j, j, 1);
122 ef4_writeo(efx, &reg, address);
123 ef4_reado(efx, &buf, address);
125 if (ef4_masked_compare_oword(&reg, &buf, &mask))
126 goto fail;
128 /* Test this testable bit can be cleared in isolation */
129 EF4_OR_OWORD(reg, original, mask);
130 EF4_SET_OWORD32(reg, j, j, 0);
132 ef4_writeo(efx, &reg, address);
133 ef4_reado(efx, &buf, address);
135 if (ef4_masked_compare_oword(&reg, &buf, &mask))
136 goto fail;
139 ef4_writeo(efx, &original, address);
142 return 0;
144 fail:
145 netif_err(efx, hw, efx->net_dev,
146 "wrote "EF4_OWORD_FMT" read "EF4_OWORD_FMT
147 " at address 0x%x mask "EF4_OWORD_FMT"\n", EF4_OWORD_VAL(reg),
148 EF4_OWORD_VAL(buf), address, EF4_OWORD_VAL(mask));
149 return -EIO;
152 /**************************************************************************
154 * Special buffer handling
155 * Special buffers are used for event queues and the TX and RX
156 * descriptor rings.
158 *************************************************************************/
161 * Initialise a special buffer
163 * This will define a buffer (previously allocated via
164 * ef4_alloc_special_buffer()) in the buffer table, allowing
165 * it to be used for event queues, descriptor rings etc.
167 static void
168 ef4_init_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
170 ef4_qword_t buf_desc;
171 unsigned int index;
172 dma_addr_t dma_addr;
173 int i;
175 EF4_BUG_ON_PARANOID(!buffer->buf.addr);
177 /* Write buffer descriptors to NIC */
178 for (i = 0; i < buffer->entries; i++) {
179 index = buffer->index + i;
180 dma_addr = buffer->buf.dma_addr + (i * EF4_BUF_SIZE);
181 netif_dbg(efx, probe, efx->net_dev,
182 "mapping special buffer %d at %llx\n",
183 index, (unsigned long long)dma_addr);
184 EF4_POPULATE_QWORD_3(buf_desc,
185 FRF_AZ_BUF_ADR_REGION, 0,
186 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
187 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
188 ef4_write_buf_tbl(efx, &buf_desc, index);
192 /* Unmaps a buffer and clears the buffer table entries */
193 static void
194 ef4_fini_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
196 ef4_oword_t buf_tbl_upd;
197 unsigned int start = buffer->index;
198 unsigned int end = (buffer->index + buffer->entries - 1);
200 if (!buffer->entries)
201 return;
203 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
204 buffer->index, buffer->index + buffer->entries - 1);
206 EF4_POPULATE_OWORD_4(buf_tbl_upd,
207 FRF_AZ_BUF_UPD_CMD, 0,
208 FRF_AZ_BUF_CLR_CMD, 1,
209 FRF_AZ_BUF_CLR_END_ID, end,
210 FRF_AZ_BUF_CLR_START_ID, start);
211 ef4_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
215 * Allocate a new special buffer
217 * This allocates memory for a new buffer, clears it and allocates a
218 * new buffer ID range. It does not write into the buffer table.
220 * This call will allocate 4KB buffers, since 8KB buffers can't be
221 * used for event queues and descriptor rings.
223 static int ef4_alloc_special_buffer(struct ef4_nic *efx,
224 struct ef4_special_buffer *buffer,
225 unsigned int len)
227 len = ALIGN(len, EF4_BUF_SIZE);
229 if (ef4_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
230 return -ENOMEM;
231 buffer->entries = len / EF4_BUF_SIZE;
232 BUG_ON(buffer->buf.dma_addr & (EF4_BUF_SIZE - 1));
234 /* Select new buffer ID */
235 buffer->index = efx->next_buffer_table;
236 efx->next_buffer_table += buffer->entries;
238 netif_dbg(efx, probe, efx->net_dev,
239 "allocating special buffers %d-%d at %llx+%x "
240 "(virt %p phys %llx)\n", buffer->index,
241 buffer->index + buffer->entries - 1,
242 (u64)buffer->buf.dma_addr, len,
243 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
245 return 0;
248 static void
249 ef4_free_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
251 if (!buffer->buf.addr)
252 return;
254 netif_dbg(efx, hw, efx->net_dev,
255 "deallocating special buffers %d-%d at %llx+%x "
256 "(virt %p phys %llx)\n", buffer->index,
257 buffer->index + buffer->entries - 1,
258 (u64)buffer->buf.dma_addr, buffer->buf.len,
259 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
261 ef4_nic_free_buffer(efx, &buffer->buf);
262 buffer->entries = 0;
265 /**************************************************************************
267 * TX path
269 **************************************************************************/
271 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
272 static inline void ef4_farch_notify_tx_desc(struct ef4_tx_queue *tx_queue)
274 unsigned write_ptr;
275 ef4_dword_t reg;
277 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
278 EF4_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
279 ef4_writed_page(tx_queue->efx, &reg,
280 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
283 /* Write pointer and first descriptor for TX descriptor ring */
284 static inline void ef4_farch_push_tx_desc(struct ef4_tx_queue *tx_queue,
285 const ef4_qword_t *txd)
287 unsigned write_ptr;
288 ef4_oword_t reg;
290 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
291 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
293 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
294 EF4_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
295 FRF_AZ_TX_DESC_WPTR, write_ptr);
296 reg.qword[0] = *txd;
297 ef4_writeo_page(tx_queue->efx, &reg,
298 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
302 /* For each entry inserted into the software descriptor ring, create a
303 * descriptor in the hardware TX descriptor ring (in host memory), and
304 * write a doorbell.
306 void ef4_farch_tx_write(struct ef4_tx_queue *tx_queue)
308 struct ef4_tx_buffer *buffer;
309 ef4_qword_t *txd;
310 unsigned write_ptr;
311 unsigned old_write_count = tx_queue->write_count;
313 tx_queue->xmit_more_available = false;
314 if (unlikely(tx_queue->write_count == tx_queue->insert_count))
315 return;
317 do {
318 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
319 buffer = &tx_queue->buffer[write_ptr];
320 txd = ef4_tx_desc(tx_queue, write_ptr);
321 ++tx_queue->write_count;
323 EF4_BUG_ON_PARANOID(buffer->flags & EF4_TX_BUF_OPTION);
325 /* Create TX descriptor ring entry */
326 BUILD_BUG_ON(EF4_TX_BUF_CONT != 1);
327 EF4_POPULATE_QWORD_4(*txd,
328 FSF_AZ_TX_KER_CONT,
329 buffer->flags & EF4_TX_BUF_CONT,
330 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
331 FSF_AZ_TX_KER_BUF_REGION, 0,
332 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
333 } while (tx_queue->write_count != tx_queue->insert_count);
335 wmb(); /* Ensure descriptors are written before they are fetched */
337 if (ef4_nic_may_push_tx_desc(tx_queue, old_write_count)) {
338 txd = ef4_tx_desc(tx_queue,
339 old_write_count & tx_queue->ptr_mask);
340 ef4_farch_push_tx_desc(tx_queue, txd);
341 ++tx_queue->pushes;
342 } else {
343 ef4_farch_notify_tx_desc(tx_queue);
347 unsigned int ef4_farch_tx_limit_len(struct ef4_tx_queue *tx_queue,
348 dma_addr_t dma_addr, unsigned int len)
350 /* Don't cross 4K boundaries with descriptors. */
351 unsigned int limit = (~dma_addr & (EF4_PAGE_SIZE - 1)) + 1;
353 len = min(limit, len);
355 if (EF4_WORKAROUND_5391(tx_queue->efx) && (dma_addr & 0xf))
356 len = min_t(unsigned int, len, 512 - (dma_addr & 0xf));
358 return len;
362 /* Allocate hardware resources for a TX queue */
363 int ef4_farch_tx_probe(struct ef4_tx_queue *tx_queue)
365 struct ef4_nic *efx = tx_queue->efx;
366 unsigned entries;
368 entries = tx_queue->ptr_mask + 1;
369 return ef4_alloc_special_buffer(efx, &tx_queue->txd,
370 entries * sizeof(ef4_qword_t));
373 void ef4_farch_tx_init(struct ef4_tx_queue *tx_queue)
375 struct ef4_nic *efx = tx_queue->efx;
376 ef4_oword_t reg;
378 /* Pin TX descriptor ring */
379 ef4_init_special_buffer(efx, &tx_queue->txd);
381 /* Push TX descriptor ring to card */
382 EF4_POPULATE_OWORD_10(reg,
383 FRF_AZ_TX_DESCQ_EN, 1,
384 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
385 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
386 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
387 FRF_AZ_TX_DESCQ_EVQ_ID,
388 tx_queue->channel->channel,
389 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
390 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
391 FRF_AZ_TX_DESCQ_SIZE,
392 __ffs(tx_queue->txd.entries),
393 FRF_AZ_TX_DESCQ_TYPE, 0,
394 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
396 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
397 int csum = tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD;
398 EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
399 EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
400 !csum);
403 ef4_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
404 tx_queue->queue);
406 if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) {
407 /* Only 128 bits in this register */
408 BUILD_BUG_ON(EF4_MAX_TX_QUEUES > 128);
410 ef4_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
411 if (tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD)
412 __clear_bit_le(tx_queue->queue, &reg);
413 else
414 __set_bit_le(tx_queue->queue, &reg);
415 ef4_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
418 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
419 EF4_POPULATE_OWORD_1(reg,
420 FRF_BZ_TX_PACE,
421 (tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ?
422 FFE_BZ_TX_PACE_OFF :
423 FFE_BZ_TX_PACE_RESERVED);
424 ef4_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
425 tx_queue->queue);
429 static void ef4_farch_flush_tx_queue(struct ef4_tx_queue *tx_queue)
431 struct ef4_nic *efx = tx_queue->efx;
432 ef4_oword_t tx_flush_descq;
434 WARN_ON(atomic_read(&tx_queue->flush_outstanding));
435 atomic_set(&tx_queue->flush_outstanding, 1);
437 EF4_POPULATE_OWORD_2(tx_flush_descq,
438 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
439 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
440 ef4_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
443 void ef4_farch_tx_fini(struct ef4_tx_queue *tx_queue)
445 struct ef4_nic *efx = tx_queue->efx;
446 ef4_oword_t tx_desc_ptr;
448 /* Remove TX descriptor ring from card */
449 EF4_ZERO_OWORD(tx_desc_ptr);
450 ef4_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
451 tx_queue->queue);
453 /* Unpin TX descriptor ring */
454 ef4_fini_special_buffer(efx, &tx_queue->txd);
457 /* Free buffers backing TX queue */
458 void ef4_farch_tx_remove(struct ef4_tx_queue *tx_queue)
460 ef4_free_special_buffer(tx_queue->efx, &tx_queue->txd);
463 /**************************************************************************
465 * RX path
467 **************************************************************************/
469 /* This creates an entry in the RX descriptor queue */
470 static inline void
471 ef4_farch_build_rx_desc(struct ef4_rx_queue *rx_queue, unsigned index)
473 struct ef4_rx_buffer *rx_buf;
474 ef4_qword_t *rxd;
476 rxd = ef4_rx_desc(rx_queue, index);
477 rx_buf = ef4_rx_buffer(rx_queue, index);
478 EF4_POPULATE_QWORD_3(*rxd,
479 FSF_AZ_RX_KER_BUF_SIZE,
480 rx_buf->len -
481 rx_queue->efx->type->rx_buffer_padding,
482 FSF_AZ_RX_KER_BUF_REGION, 0,
483 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
486 /* This writes to the RX_DESC_WPTR register for the specified receive
487 * descriptor ring.
489 void ef4_farch_rx_write(struct ef4_rx_queue *rx_queue)
491 struct ef4_nic *efx = rx_queue->efx;
492 ef4_dword_t reg;
493 unsigned write_ptr;
495 while (rx_queue->notified_count != rx_queue->added_count) {
496 ef4_farch_build_rx_desc(
497 rx_queue,
498 rx_queue->notified_count & rx_queue->ptr_mask);
499 ++rx_queue->notified_count;
502 wmb();
503 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
504 EF4_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
505 ef4_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
506 ef4_rx_queue_index(rx_queue));
509 int ef4_farch_rx_probe(struct ef4_rx_queue *rx_queue)
511 struct ef4_nic *efx = rx_queue->efx;
512 unsigned entries;
514 entries = rx_queue->ptr_mask + 1;
515 return ef4_alloc_special_buffer(efx, &rx_queue->rxd,
516 entries * sizeof(ef4_qword_t));
519 void ef4_farch_rx_init(struct ef4_rx_queue *rx_queue)
521 ef4_oword_t rx_desc_ptr;
522 struct ef4_nic *efx = rx_queue->efx;
523 bool is_b0 = ef4_nic_rev(efx) >= EF4_REV_FALCON_B0;
524 bool iscsi_digest_en = is_b0;
525 bool jumbo_en;
527 /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
528 * DMA to continue after a PCIe page boundary (and scattering
529 * is not possible). In Falcon B0 and Siena, it enables
530 * scatter.
532 jumbo_en = !is_b0 || efx->rx_scatter;
534 netif_dbg(efx, hw, efx->net_dev,
535 "RX queue %d ring in special buffers %d-%d\n",
536 ef4_rx_queue_index(rx_queue), rx_queue->rxd.index,
537 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
539 rx_queue->scatter_n = 0;
541 /* Pin RX descriptor ring */
542 ef4_init_special_buffer(efx, &rx_queue->rxd);
544 /* Push RX descriptor ring to card */
545 EF4_POPULATE_OWORD_10(rx_desc_ptr,
546 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
547 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
548 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
549 FRF_AZ_RX_DESCQ_EVQ_ID,
550 ef4_rx_queue_channel(rx_queue)->channel,
551 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
552 FRF_AZ_RX_DESCQ_LABEL,
553 ef4_rx_queue_index(rx_queue),
554 FRF_AZ_RX_DESCQ_SIZE,
555 __ffs(rx_queue->rxd.entries),
556 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
557 FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
558 FRF_AZ_RX_DESCQ_EN, 1);
559 ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
560 ef4_rx_queue_index(rx_queue));
563 static void ef4_farch_flush_rx_queue(struct ef4_rx_queue *rx_queue)
565 struct ef4_nic *efx = rx_queue->efx;
566 ef4_oword_t rx_flush_descq;
568 EF4_POPULATE_OWORD_2(rx_flush_descq,
569 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
570 FRF_AZ_RX_FLUSH_DESCQ,
571 ef4_rx_queue_index(rx_queue));
572 ef4_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
575 void ef4_farch_rx_fini(struct ef4_rx_queue *rx_queue)
577 ef4_oword_t rx_desc_ptr;
578 struct ef4_nic *efx = rx_queue->efx;
580 /* Remove RX descriptor ring from card */
581 EF4_ZERO_OWORD(rx_desc_ptr);
582 ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
583 ef4_rx_queue_index(rx_queue));
585 /* Unpin RX descriptor ring */
586 ef4_fini_special_buffer(efx, &rx_queue->rxd);
589 /* Free buffers backing RX queue */
590 void ef4_farch_rx_remove(struct ef4_rx_queue *rx_queue)
592 ef4_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
595 /**************************************************************************
597 * Flush handling
599 **************************************************************************/
601 /* ef4_farch_flush_queues() must be woken up when all flushes are completed,
602 * or more RX flushes can be kicked off.
604 static bool ef4_farch_flush_wake(struct ef4_nic *efx)
606 /* Ensure that all updates are visible to ef4_farch_flush_queues() */
607 smp_mb();
609 return (atomic_read(&efx->active_queues) == 0 ||
610 (atomic_read(&efx->rxq_flush_outstanding) < EF4_RX_FLUSH_COUNT
611 && atomic_read(&efx->rxq_flush_pending) > 0));
614 static bool ef4_check_tx_flush_complete(struct ef4_nic *efx)
616 bool i = true;
617 ef4_oword_t txd_ptr_tbl;
618 struct ef4_channel *channel;
619 struct ef4_tx_queue *tx_queue;
621 ef4_for_each_channel(channel, efx) {
622 ef4_for_each_channel_tx_queue(tx_queue, channel) {
623 ef4_reado_table(efx, &txd_ptr_tbl,
624 FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
625 if (EF4_OWORD_FIELD(txd_ptr_tbl,
626 FRF_AZ_TX_DESCQ_FLUSH) ||
627 EF4_OWORD_FIELD(txd_ptr_tbl,
628 FRF_AZ_TX_DESCQ_EN)) {
629 netif_dbg(efx, hw, efx->net_dev,
630 "flush did not complete on TXQ %d\n",
631 tx_queue->queue);
632 i = false;
633 } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
634 1, 0)) {
635 /* The flush is complete, but we didn't
636 * receive a flush completion event
638 netif_dbg(efx, hw, efx->net_dev,
639 "flush complete on TXQ %d, so drain "
640 "the queue\n", tx_queue->queue);
641 /* Don't need to increment active_queues as it
642 * has already been incremented for the queues
643 * which did not drain
645 ef4_farch_magic_event(channel,
646 EF4_CHANNEL_MAGIC_TX_DRAIN(
647 tx_queue));
652 return i;
655 /* Flush all the transmit queues, and continue flushing receive queues until
656 * they're all flushed. Wait for the DRAIN events to be received so that there
657 * are no more RX and TX events left on any channel. */
658 static int ef4_farch_do_flush(struct ef4_nic *efx)
660 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
661 struct ef4_channel *channel;
662 struct ef4_rx_queue *rx_queue;
663 struct ef4_tx_queue *tx_queue;
664 int rc = 0;
666 ef4_for_each_channel(channel, efx) {
667 ef4_for_each_channel_tx_queue(tx_queue, channel) {
668 ef4_farch_flush_tx_queue(tx_queue);
670 ef4_for_each_channel_rx_queue(rx_queue, channel) {
671 rx_queue->flush_pending = true;
672 atomic_inc(&efx->rxq_flush_pending);
676 while (timeout && atomic_read(&efx->active_queues) > 0) {
677 /* The hardware supports four concurrent rx flushes, each of
678 * which may need to be retried if there is an outstanding
679 * descriptor fetch
681 ef4_for_each_channel(channel, efx) {
682 ef4_for_each_channel_rx_queue(rx_queue, channel) {
683 if (atomic_read(&efx->rxq_flush_outstanding) >=
684 EF4_RX_FLUSH_COUNT)
685 break;
687 if (rx_queue->flush_pending) {
688 rx_queue->flush_pending = false;
689 atomic_dec(&efx->rxq_flush_pending);
690 atomic_inc(&efx->rxq_flush_outstanding);
691 ef4_farch_flush_rx_queue(rx_queue);
696 timeout = wait_event_timeout(efx->flush_wq,
697 ef4_farch_flush_wake(efx),
698 timeout);
701 if (atomic_read(&efx->active_queues) &&
702 !ef4_check_tx_flush_complete(efx)) {
703 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
704 "(rx %d+%d)\n", atomic_read(&efx->active_queues),
705 atomic_read(&efx->rxq_flush_outstanding),
706 atomic_read(&efx->rxq_flush_pending));
707 rc = -ETIMEDOUT;
709 atomic_set(&efx->active_queues, 0);
710 atomic_set(&efx->rxq_flush_pending, 0);
711 atomic_set(&efx->rxq_flush_outstanding, 0);
714 return rc;
717 int ef4_farch_fini_dmaq(struct ef4_nic *efx)
719 struct ef4_channel *channel;
720 struct ef4_tx_queue *tx_queue;
721 struct ef4_rx_queue *rx_queue;
722 int rc = 0;
724 /* Do not attempt to write to the NIC during EEH recovery */
725 if (efx->state != STATE_RECOVERY) {
726 /* Only perform flush if DMA is enabled */
727 if (efx->pci_dev->is_busmaster) {
728 efx->type->prepare_flush(efx);
729 rc = ef4_farch_do_flush(efx);
730 efx->type->finish_flush(efx);
733 ef4_for_each_channel(channel, efx) {
734 ef4_for_each_channel_rx_queue(rx_queue, channel)
735 ef4_farch_rx_fini(rx_queue);
736 ef4_for_each_channel_tx_queue(tx_queue, channel)
737 ef4_farch_tx_fini(tx_queue);
741 return rc;
744 /* Reset queue and flush accounting after FLR
746 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
747 * mastering was disabled), in which case we don't receive (RXQ) flush
748 * completion events. This means that efx->rxq_flush_outstanding remained at 4
749 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
750 * events were received, and we didn't go through ef4_check_tx_flush_complete())
751 * If we don't fix this up, on the next call to ef4_realloc_channels() we won't
752 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
753 * for batched flush requests; and the efx->active_queues gets messed up because
754 * we keep incrementing for the newly initialised queues, but it never went to
755 * zero previously. Then we get a timeout every time we try to restart the
756 * queues, as it doesn't go back to zero when we should be flushing the queues.
758 void ef4_farch_finish_flr(struct ef4_nic *efx)
760 atomic_set(&efx->rxq_flush_pending, 0);
761 atomic_set(&efx->rxq_flush_outstanding, 0);
762 atomic_set(&efx->active_queues, 0);
766 /**************************************************************************
768 * Event queue processing
769 * Event queues are processed by per-channel tasklets.
771 **************************************************************************/
773 /* Update a channel's event queue's read pointer (RPTR) register
775 * This writes the EVQ_RPTR_REG register for the specified channel's
776 * event queue.
778 void ef4_farch_ev_read_ack(struct ef4_channel *channel)
780 ef4_dword_t reg;
781 struct ef4_nic *efx = channel->efx;
783 EF4_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
784 channel->eventq_read_ptr & channel->eventq_mask);
786 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
787 * of 4 bytes, but it is really 16 bytes just like later revisions.
789 ef4_writed(efx, &reg,
790 efx->type->evq_rptr_tbl_base +
791 FR_BZ_EVQ_RPTR_STEP * channel->channel);
794 /* Use HW to insert a SW defined event */
795 void ef4_farch_generate_event(struct ef4_nic *efx, unsigned int evq,
796 ef4_qword_t *event)
798 ef4_oword_t drv_ev_reg;
800 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
801 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
802 drv_ev_reg.u32[0] = event->u32[0];
803 drv_ev_reg.u32[1] = event->u32[1];
804 drv_ev_reg.u32[2] = 0;
805 drv_ev_reg.u32[3] = 0;
806 EF4_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
807 ef4_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
810 static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic)
812 ef4_qword_t event;
814 EF4_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
815 FSE_AZ_EV_CODE_DRV_GEN_EV,
816 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
817 ef4_farch_generate_event(channel->efx, channel->channel, &event);
820 /* Handle a transmit completion event
822 * The NIC batches TX completion events; the message we receive is of
823 * the form "complete all TX events up to this index".
825 static int
826 ef4_farch_handle_tx_event(struct ef4_channel *channel, ef4_qword_t *event)
828 unsigned int tx_ev_desc_ptr;
829 unsigned int tx_ev_q_label;
830 struct ef4_tx_queue *tx_queue;
831 struct ef4_nic *efx = channel->efx;
832 int tx_packets = 0;
834 if (unlikely(READ_ONCE(efx->reset_pending)))
835 return 0;
837 if (likely(EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
838 /* Transmit completion */
839 tx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
840 tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
841 tx_queue = ef4_channel_get_tx_queue(
842 channel, tx_ev_q_label % EF4_TXQ_TYPES);
843 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
844 tx_queue->ptr_mask);
845 ef4_xmit_done(tx_queue, tx_ev_desc_ptr);
846 } else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
847 /* Rewrite the FIFO write pointer */
848 tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
849 tx_queue = ef4_channel_get_tx_queue(
850 channel, tx_ev_q_label % EF4_TXQ_TYPES);
852 netif_tx_lock(efx->net_dev);
853 ef4_farch_notify_tx_desc(tx_queue);
854 netif_tx_unlock(efx->net_dev);
855 } else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
856 ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
857 } else {
858 netif_err(efx, tx_err, efx->net_dev,
859 "channel %d unexpected TX event "
860 EF4_QWORD_FMT"\n", channel->channel,
861 EF4_QWORD_VAL(*event));
864 return tx_packets;
867 /* Detect errors included in the rx_evt_pkt_ok bit. */
868 static u16 ef4_farch_handle_rx_not_ok(struct ef4_rx_queue *rx_queue,
869 const ef4_qword_t *event)
871 struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
872 struct ef4_nic *efx = rx_queue->efx;
873 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
874 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
875 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
876 bool rx_ev_other_err, rx_ev_pause_frm;
877 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
878 unsigned rx_ev_pkt_type;
880 rx_ev_hdr_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
881 rx_ev_mcast_pkt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
882 rx_ev_tobe_disc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
883 rx_ev_pkt_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
884 rx_ev_buf_owner_id_err = EF4_QWORD_FIELD(*event,
885 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
886 rx_ev_ip_hdr_chksum_err = EF4_QWORD_FIELD(*event,
887 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
888 rx_ev_tcp_udp_chksum_err = EF4_QWORD_FIELD(*event,
889 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
890 rx_ev_eth_crc_err = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
891 rx_ev_frm_trunc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
892 rx_ev_drib_nib = ((ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) ?
893 0 : EF4_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
894 rx_ev_pause_frm = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
896 /* Every error apart from tobe_disc and pause_frm */
897 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
898 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
899 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
901 /* Count errors that are not in MAC stats. Ignore expected
902 * checksum errors during self-test. */
903 if (rx_ev_frm_trunc)
904 ++channel->n_rx_frm_trunc;
905 else if (rx_ev_tobe_disc)
906 ++channel->n_rx_tobe_disc;
907 else if (!efx->loopback_selftest) {
908 if (rx_ev_ip_hdr_chksum_err)
909 ++channel->n_rx_ip_hdr_chksum_err;
910 else if (rx_ev_tcp_udp_chksum_err)
911 ++channel->n_rx_tcp_udp_chksum_err;
914 /* TOBE_DISC is expected on unicast mismatches; don't print out an
915 * error message. FRM_TRUNC indicates RXDP dropped the packet due
916 * to a FIFO overflow.
918 #ifdef DEBUG
919 if (rx_ev_other_err && net_ratelimit()) {
920 netif_dbg(efx, rx_err, efx->net_dev,
921 " RX queue %d unexpected RX event "
922 EF4_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
923 ef4_rx_queue_index(rx_queue), EF4_QWORD_VAL(*event),
924 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
925 rx_ev_ip_hdr_chksum_err ?
926 " [IP_HDR_CHKSUM_ERR]" : "",
927 rx_ev_tcp_udp_chksum_err ?
928 " [TCP_UDP_CHKSUM_ERR]" : "",
929 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
930 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
931 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
932 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
933 rx_ev_pause_frm ? " [PAUSE]" : "");
935 #endif
937 /* The frame must be discarded if any of these are true. */
938 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
939 rx_ev_tobe_disc | rx_ev_pause_frm) ?
940 EF4_RX_PKT_DISCARD : 0;
943 /* Handle receive events that are not in-order. Return true if this
944 * can be handled as a partial packet discard, false if it's more
945 * serious.
947 static bool
948 ef4_farch_handle_rx_bad_index(struct ef4_rx_queue *rx_queue, unsigned index)
950 struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
951 struct ef4_nic *efx = rx_queue->efx;
952 unsigned expected, dropped;
954 if (rx_queue->scatter_n &&
955 index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
956 rx_queue->ptr_mask)) {
957 ++channel->n_rx_nodesc_trunc;
958 return true;
961 expected = rx_queue->removed_count & rx_queue->ptr_mask;
962 dropped = (index - expected) & rx_queue->ptr_mask;
963 netif_info(efx, rx_err, efx->net_dev,
964 "dropped %d events (index=%d expected=%d)\n",
965 dropped, index, expected);
967 ef4_schedule_reset(efx, EF4_WORKAROUND_5676(efx) ?
968 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
969 return false;
972 /* Handle a packet received event
974 * The NIC gives a "discard" flag if it's a unicast packet with the
975 * wrong destination address
976 * Also "is multicast" and "matches multicast filter" flags can be used to
977 * discard non-matching multicast packets.
979 static void
980 ef4_farch_handle_rx_event(struct ef4_channel *channel, const ef4_qword_t *event)
982 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
983 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
984 unsigned expected_ptr;
985 bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
986 u16 flags;
987 struct ef4_rx_queue *rx_queue;
988 struct ef4_nic *efx = channel->efx;
990 if (unlikely(READ_ONCE(efx->reset_pending)))
991 return;
993 rx_ev_cont = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
994 rx_ev_sop = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
995 WARN_ON(EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
996 channel->channel);
998 rx_queue = ef4_channel_get_rx_queue(channel);
1000 rx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1001 expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1002 rx_queue->ptr_mask);
1004 /* Check for partial drops and other errors */
1005 if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1006 unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1007 if (rx_ev_desc_ptr != expected_ptr &&
1008 !ef4_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1009 return;
1011 /* Discard all pending fragments */
1012 if (rx_queue->scatter_n) {
1013 ef4_rx_packet(
1014 rx_queue,
1015 rx_queue->removed_count & rx_queue->ptr_mask,
1016 rx_queue->scatter_n, 0, EF4_RX_PKT_DISCARD);
1017 rx_queue->removed_count += rx_queue->scatter_n;
1018 rx_queue->scatter_n = 0;
1021 /* Return if there is no new fragment */
1022 if (rx_ev_desc_ptr != expected_ptr)
1023 return;
1025 /* Discard new fragment if not SOP */
1026 if (!rx_ev_sop) {
1027 ef4_rx_packet(
1028 rx_queue,
1029 rx_queue->removed_count & rx_queue->ptr_mask,
1030 1, 0, EF4_RX_PKT_DISCARD);
1031 ++rx_queue->removed_count;
1032 return;
1036 ++rx_queue->scatter_n;
1037 if (rx_ev_cont)
1038 return;
1040 rx_ev_byte_cnt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1041 rx_ev_pkt_ok = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1042 rx_ev_hdr_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1044 if (likely(rx_ev_pkt_ok)) {
1045 /* If packet is marked as OK then we can rely on the
1046 * hardware checksum and classification.
1048 flags = 0;
1049 switch (rx_ev_hdr_type) {
1050 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1051 flags |= EF4_RX_PKT_TCP;
1052 /* fall through */
1053 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1054 flags |= EF4_RX_PKT_CSUMMED;
1055 /* fall through */
1056 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1057 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1058 break;
1060 } else {
1061 flags = ef4_farch_handle_rx_not_ok(rx_queue, event);
1064 /* Detect multicast packets that didn't match the filter */
1065 rx_ev_mcast_pkt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1066 if (rx_ev_mcast_pkt) {
1067 unsigned int rx_ev_mcast_hash_match =
1068 EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1070 if (unlikely(!rx_ev_mcast_hash_match)) {
1071 ++channel->n_rx_mcast_mismatch;
1072 flags |= EF4_RX_PKT_DISCARD;
1076 channel->irq_mod_score += 2;
1078 /* Handle received packet */
1079 ef4_rx_packet(rx_queue,
1080 rx_queue->removed_count & rx_queue->ptr_mask,
1081 rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1082 rx_queue->removed_count += rx_queue->scatter_n;
1083 rx_queue->scatter_n = 0;
1086 /* If this flush done event corresponds to a &struct ef4_tx_queue, then
1087 * send an %EF4_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1088 * of all transmit completions.
1090 static void
1091 ef4_farch_handle_tx_flush_done(struct ef4_nic *efx, ef4_qword_t *event)
1093 struct ef4_tx_queue *tx_queue;
1094 int qid;
1096 qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1097 if (qid < EF4_TXQ_TYPES * efx->n_tx_channels) {
1098 tx_queue = ef4_get_tx_queue(efx, qid / EF4_TXQ_TYPES,
1099 qid % EF4_TXQ_TYPES);
1100 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1101 ef4_farch_magic_event(tx_queue->channel,
1102 EF4_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1107 /* If this flush done event corresponds to a &struct ef4_rx_queue: If the flush
1108 * was successful then send an %EF4_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1109 * the RX queue back to the mask of RX queues in need of flushing.
1111 static void
1112 ef4_farch_handle_rx_flush_done(struct ef4_nic *efx, ef4_qword_t *event)
1114 struct ef4_channel *channel;
1115 struct ef4_rx_queue *rx_queue;
1116 int qid;
1117 bool failed;
1119 qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1120 failed = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1121 if (qid >= efx->n_channels)
1122 return;
1123 channel = ef4_get_channel(efx, qid);
1124 if (!ef4_channel_has_rx_queue(channel))
1125 return;
1126 rx_queue = ef4_channel_get_rx_queue(channel);
1128 if (failed) {
1129 netif_info(efx, hw, efx->net_dev,
1130 "RXQ %d flush retry\n", qid);
1131 rx_queue->flush_pending = true;
1132 atomic_inc(&efx->rxq_flush_pending);
1133 } else {
1134 ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue),
1135 EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1137 atomic_dec(&efx->rxq_flush_outstanding);
1138 if (ef4_farch_flush_wake(efx))
1139 wake_up(&efx->flush_wq);
1142 static void
1143 ef4_farch_handle_drain_event(struct ef4_channel *channel)
1145 struct ef4_nic *efx = channel->efx;
1147 WARN_ON(atomic_read(&efx->active_queues) == 0);
1148 atomic_dec(&efx->active_queues);
1149 if (ef4_farch_flush_wake(efx))
1150 wake_up(&efx->flush_wq);
1153 static void ef4_farch_handle_generated_event(struct ef4_channel *channel,
1154 ef4_qword_t *event)
1156 struct ef4_nic *efx = channel->efx;
1157 struct ef4_rx_queue *rx_queue =
1158 ef4_channel_has_rx_queue(channel) ?
1159 ef4_channel_get_rx_queue(channel) : NULL;
1160 unsigned magic, code;
1162 magic = EF4_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1163 code = _EF4_CHANNEL_MAGIC_CODE(magic);
1165 if (magic == EF4_CHANNEL_MAGIC_TEST(channel)) {
1166 channel->event_test_cpu = raw_smp_processor_id();
1167 } else if (rx_queue && magic == EF4_CHANNEL_MAGIC_FILL(rx_queue)) {
1168 /* The queue must be empty, so we won't receive any rx
1169 * events, so ef4_process_channel() won't refill the
1170 * queue. Refill it here */
1171 ef4_fast_push_rx_descriptors(rx_queue, true);
1172 } else if (rx_queue && magic == EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1173 ef4_farch_handle_drain_event(channel);
1174 } else if (code == _EF4_CHANNEL_MAGIC_TX_DRAIN) {
1175 ef4_farch_handle_drain_event(channel);
1176 } else {
1177 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1178 "generated event "EF4_QWORD_FMT"\n",
1179 channel->channel, EF4_QWORD_VAL(*event));
1183 static void
1184 ef4_farch_handle_driver_event(struct ef4_channel *channel, ef4_qword_t *event)
1186 struct ef4_nic *efx = channel->efx;
1187 unsigned int ev_sub_code;
1188 unsigned int ev_sub_data;
1190 ev_sub_code = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1191 ev_sub_data = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1193 switch (ev_sub_code) {
1194 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1195 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1196 channel->channel, ev_sub_data);
1197 ef4_farch_handle_tx_flush_done(efx, event);
1198 break;
1199 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1200 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1201 channel->channel, ev_sub_data);
1202 ef4_farch_handle_rx_flush_done(efx, event);
1203 break;
1204 case FSE_AZ_EVQ_INIT_DONE_EV:
1205 netif_dbg(efx, hw, efx->net_dev,
1206 "channel %d EVQ %d initialised\n",
1207 channel->channel, ev_sub_data);
1208 break;
1209 case FSE_AZ_SRM_UPD_DONE_EV:
1210 netif_vdbg(efx, hw, efx->net_dev,
1211 "channel %d SRAM update done\n", channel->channel);
1212 break;
1213 case FSE_AZ_WAKE_UP_EV:
1214 netif_vdbg(efx, hw, efx->net_dev,
1215 "channel %d RXQ %d wakeup event\n",
1216 channel->channel, ev_sub_data);
1217 break;
1218 case FSE_AZ_TIMER_EV:
1219 netif_vdbg(efx, hw, efx->net_dev,
1220 "channel %d RX queue %d timer expired\n",
1221 channel->channel, ev_sub_data);
1222 break;
1223 case FSE_AA_RX_RECOVER_EV:
1224 netif_err(efx, rx_err, efx->net_dev,
1225 "channel %d seen DRIVER RX_RESET event. "
1226 "Resetting.\n", channel->channel);
1227 atomic_inc(&efx->rx_reset);
1228 ef4_schedule_reset(efx,
1229 EF4_WORKAROUND_6555(efx) ?
1230 RESET_TYPE_RX_RECOVERY :
1231 RESET_TYPE_DISABLE);
1232 break;
1233 case FSE_BZ_RX_DSC_ERROR_EV:
1234 netif_err(efx, rx_err, efx->net_dev,
1235 "RX DMA Q %d reports descriptor fetch error."
1236 " RX Q %d is disabled.\n", ev_sub_data,
1237 ev_sub_data);
1238 ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1239 break;
1240 case FSE_BZ_TX_DSC_ERROR_EV:
1241 netif_err(efx, tx_err, efx->net_dev,
1242 "TX DMA Q %d reports descriptor fetch error."
1243 " TX Q %d is disabled.\n", ev_sub_data,
1244 ev_sub_data);
1245 ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1246 break;
1247 default:
1248 netif_vdbg(efx, hw, efx->net_dev,
1249 "channel %d unknown driver event code %d "
1250 "data %04x\n", channel->channel, ev_sub_code,
1251 ev_sub_data);
1252 break;
1256 int ef4_farch_ev_process(struct ef4_channel *channel, int budget)
1258 struct ef4_nic *efx = channel->efx;
1259 unsigned int read_ptr;
1260 ef4_qword_t event, *p_event;
1261 int ev_code;
1262 int tx_packets = 0;
1263 int spent = 0;
1265 if (budget <= 0)
1266 return spent;
1268 read_ptr = channel->eventq_read_ptr;
1270 for (;;) {
1271 p_event = ef4_event(channel, read_ptr);
1272 event = *p_event;
1274 if (!ef4_event_present(&event))
1275 /* End of events */
1276 break;
1278 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1279 "channel %d event is "EF4_QWORD_FMT"\n",
1280 channel->channel, EF4_QWORD_VAL(event));
1282 /* Clear this event by marking it all ones */
1283 EF4_SET_QWORD(*p_event);
1285 ++read_ptr;
1287 ev_code = EF4_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1289 switch (ev_code) {
1290 case FSE_AZ_EV_CODE_RX_EV:
1291 ef4_farch_handle_rx_event(channel, &event);
1292 if (++spent == budget)
1293 goto out;
1294 break;
1295 case FSE_AZ_EV_CODE_TX_EV:
1296 tx_packets += ef4_farch_handle_tx_event(channel,
1297 &event);
1298 if (tx_packets > efx->txq_entries) {
1299 spent = budget;
1300 goto out;
1302 break;
1303 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1304 ef4_farch_handle_generated_event(channel, &event);
1305 break;
1306 case FSE_AZ_EV_CODE_DRIVER_EV:
1307 ef4_farch_handle_driver_event(channel, &event);
1308 break;
1309 case FSE_AZ_EV_CODE_GLOBAL_EV:
1310 if (efx->type->handle_global_event &&
1311 efx->type->handle_global_event(channel, &event))
1312 break;
1313 /* else fall through */
1314 default:
1315 netif_err(channel->efx, hw, channel->efx->net_dev,
1316 "channel %d unknown event type %d (data "
1317 EF4_QWORD_FMT ")\n", channel->channel,
1318 ev_code, EF4_QWORD_VAL(event));
1322 out:
1323 channel->eventq_read_ptr = read_ptr;
1324 return spent;
1327 /* Allocate buffer table entries for event queue */
1328 int ef4_farch_ev_probe(struct ef4_channel *channel)
1330 struct ef4_nic *efx = channel->efx;
1331 unsigned entries;
1333 entries = channel->eventq_mask + 1;
1334 return ef4_alloc_special_buffer(efx, &channel->eventq,
1335 entries * sizeof(ef4_qword_t));
1338 int ef4_farch_ev_init(struct ef4_channel *channel)
1340 ef4_oword_t reg;
1341 struct ef4_nic *efx = channel->efx;
1343 netif_dbg(efx, hw, efx->net_dev,
1344 "channel %d event queue in special buffers %d-%d\n",
1345 channel->channel, channel->eventq.index,
1346 channel->eventq.index + channel->eventq.entries - 1);
1348 /* Pin event queue buffer */
1349 ef4_init_special_buffer(efx, &channel->eventq);
1351 /* Fill event queue with all ones (i.e. empty events) */
1352 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1354 /* Push event queue to card */
1355 EF4_POPULATE_OWORD_3(reg,
1356 FRF_AZ_EVQ_EN, 1,
1357 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1358 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1359 ef4_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1360 channel->channel);
1362 return 0;
1365 void ef4_farch_ev_fini(struct ef4_channel *channel)
1367 ef4_oword_t reg;
1368 struct ef4_nic *efx = channel->efx;
1370 /* Remove event queue from card */
1371 EF4_ZERO_OWORD(reg);
1372 ef4_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1373 channel->channel);
1375 /* Unpin event queue */
1376 ef4_fini_special_buffer(efx, &channel->eventq);
1379 /* Free buffers backing event queue */
1380 void ef4_farch_ev_remove(struct ef4_channel *channel)
1382 ef4_free_special_buffer(channel->efx, &channel->eventq);
1386 void ef4_farch_ev_test_generate(struct ef4_channel *channel)
1388 ef4_farch_magic_event(channel, EF4_CHANNEL_MAGIC_TEST(channel));
1391 void ef4_farch_rx_defer_refill(struct ef4_rx_queue *rx_queue)
1393 ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue),
1394 EF4_CHANNEL_MAGIC_FILL(rx_queue));
1397 /**************************************************************************
1399 * Hardware interrupts
1400 * The hardware interrupt handler does very little work; all the event
1401 * queue processing is carried out by per-channel tasklets.
1403 **************************************************************************/
1405 /* Enable/disable/generate interrupts */
1406 static inline void ef4_farch_interrupts(struct ef4_nic *efx,
1407 bool enabled, bool force)
1409 ef4_oword_t int_en_reg_ker;
1411 EF4_POPULATE_OWORD_3(int_en_reg_ker,
1412 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1413 FRF_AZ_KER_INT_KER, force,
1414 FRF_AZ_DRV_INT_EN_KER, enabled);
1415 ef4_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1418 void ef4_farch_irq_enable_master(struct ef4_nic *efx)
1420 EF4_ZERO_OWORD(*((ef4_oword_t *) efx->irq_status.addr));
1421 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1423 ef4_farch_interrupts(efx, true, false);
1426 void ef4_farch_irq_disable_master(struct ef4_nic *efx)
1428 /* Disable interrupts */
1429 ef4_farch_interrupts(efx, false, false);
1432 /* Generate a test interrupt
1433 * Interrupt must already have been enabled, otherwise nasty things
1434 * may happen.
1436 int ef4_farch_irq_test_generate(struct ef4_nic *efx)
1438 ef4_farch_interrupts(efx, true, true);
1439 return 0;
1442 /* Process a fatal interrupt
1443 * Disable bus mastering ASAP and schedule a reset
1445 irqreturn_t ef4_farch_fatal_interrupt(struct ef4_nic *efx)
1447 struct falcon_nic_data *nic_data = efx->nic_data;
1448 ef4_oword_t *int_ker = efx->irq_status.addr;
1449 ef4_oword_t fatal_intr;
1450 int error, mem_perr;
1452 ef4_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1453 error = EF4_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1455 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EF4_OWORD_FMT" status "
1456 EF4_OWORD_FMT ": %s\n", EF4_OWORD_VAL(*int_ker),
1457 EF4_OWORD_VAL(fatal_intr),
1458 error ? "disabling bus mastering" : "no recognised error");
1460 /* If this is a memory parity error dump which blocks are offending */
1461 mem_perr = (EF4_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1462 EF4_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1463 if (mem_perr) {
1464 ef4_oword_t reg;
1465 ef4_reado(efx, &reg, FR_AZ_MEM_STAT);
1466 netif_err(efx, hw, efx->net_dev,
1467 "SYSTEM ERROR: memory parity error "EF4_OWORD_FMT"\n",
1468 EF4_OWORD_VAL(reg));
1471 /* Disable both devices */
1472 pci_clear_master(efx->pci_dev);
1473 if (ef4_nic_is_dual_func(efx))
1474 pci_clear_master(nic_data->pci_dev2);
1475 ef4_farch_irq_disable_master(efx);
1477 /* Count errors and reset or disable the NIC accordingly */
1478 if (efx->int_error_count == 0 ||
1479 time_after(jiffies, efx->int_error_expire)) {
1480 efx->int_error_count = 0;
1481 efx->int_error_expire =
1482 jiffies + EF4_INT_ERROR_EXPIRE * HZ;
1484 if (++efx->int_error_count < EF4_MAX_INT_ERRORS) {
1485 netif_err(efx, hw, efx->net_dev,
1486 "SYSTEM ERROR - reset scheduled\n");
1487 ef4_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1488 } else {
1489 netif_err(efx, hw, efx->net_dev,
1490 "SYSTEM ERROR - max number of errors seen."
1491 "NIC will be disabled\n");
1492 ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
1495 return IRQ_HANDLED;
1498 /* Handle a legacy interrupt
1499 * Acknowledges the interrupt and schedule event queue processing.
1501 irqreturn_t ef4_farch_legacy_interrupt(int irq, void *dev_id)
1503 struct ef4_nic *efx = dev_id;
1504 bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1505 ef4_oword_t *int_ker = efx->irq_status.addr;
1506 irqreturn_t result = IRQ_NONE;
1507 struct ef4_channel *channel;
1508 ef4_dword_t reg;
1509 u32 queues;
1510 int syserr;
1512 /* Read the ISR which also ACKs the interrupts */
1513 ef4_readd(efx, &reg, FR_BZ_INT_ISR0);
1514 queues = EF4_EXTRACT_DWORD(reg, 0, 31);
1516 /* Legacy interrupts are disabled too late by the EEH kernel
1517 * code. Disable them earlier.
1518 * If an EEH error occurred, the read will have returned all ones.
1520 if (EF4_DWORD_IS_ALL_ONES(reg) && ef4_try_recovery(efx) &&
1521 !efx->eeh_disabled_legacy_irq) {
1522 disable_irq_nosync(efx->legacy_irq);
1523 efx->eeh_disabled_legacy_irq = true;
1526 /* Handle non-event-queue sources */
1527 if (queues & (1U << efx->irq_level) && soft_enabled) {
1528 syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1529 if (unlikely(syserr))
1530 return ef4_farch_fatal_interrupt(efx);
1531 efx->last_irq_cpu = raw_smp_processor_id();
1534 if (queues != 0) {
1535 efx->irq_zero_count = 0;
1537 /* Schedule processing of any interrupting queues */
1538 if (likely(soft_enabled)) {
1539 ef4_for_each_channel(channel, efx) {
1540 if (queues & 1)
1541 ef4_schedule_channel_irq(channel);
1542 queues >>= 1;
1545 result = IRQ_HANDLED;
1547 } else {
1548 ef4_qword_t *event;
1550 /* Legacy ISR read can return zero once (SF bug 15783) */
1552 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1553 * because this might be a shared interrupt. */
1554 if (efx->irq_zero_count++ == 0)
1555 result = IRQ_HANDLED;
1557 /* Ensure we schedule or rearm all event queues */
1558 if (likely(soft_enabled)) {
1559 ef4_for_each_channel(channel, efx) {
1560 event = ef4_event(channel,
1561 channel->eventq_read_ptr);
1562 if (ef4_event_present(event))
1563 ef4_schedule_channel_irq(channel);
1564 else
1565 ef4_farch_ev_read_ack(channel);
1570 if (result == IRQ_HANDLED)
1571 netif_vdbg(efx, intr, efx->net_dev,
1572 "IRQ %d on CPU %d status " EF4_DWORD_FMT "\n",
1573 irq, raw_smp_processor_id(), EF4_DWORD_VAL(reg));
1575 return result;
1578 /* Handle an MSI interrupt
1580 * Handle an MSI hardware interrupt. This routine schedules event
1581 * queue processing. No interrupt acknowledgement cycle is necessary.
1582 * Also, we never need to check that the interrupt is for us, since
1583 * MSI interrupts cannot be shared.
1585 irqreturn_t ef4_farch_msi_interrupt(int irq, void *dev_id)
1587 struct ef4_msi_context *context = dev_id;
1588 struct ef4_nic *efx = context->efx;
1589 ef4_oword_t *int_ker = efx->irq_status.addr;
1590 int syserr;
1592 netif_vdbg(efx, intr, efx->net_dev,
1593 "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n",
1594 irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker));
1596 if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1597 return IRQ_HANDLED;
1599 /* Handle non-event-queue sources */
1600 if (context->index == efx->irq_level) {
1601 syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1602 if (unlikely(syserr))
1603 return ef4_farch_fatal_interrupt(efx);
1604 efx->last_irq_cpu = raw_smp_processor_id();
1607 /* Schedule processing of the channel */
1608 ef4_schedule_channel_irq(efx->channel[context->index]);
1610 return IRQ_HANDLED;
1613 /* Setup RSS indirection table.
1614 * This maps from the hash value of the packet to RXQ
1616 void ef4_farch_rx_push_indir_table(struct ef4_nic *efx)
1618 size_t i = 0;
1619 ef4_dword_t dword;
1621 BUG_ON(ef4_nic_rev(efx) < EF4_REV_FALCON_B0);
1623 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1624 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1626 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1627 EF4_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1628 efx->rx_indir_table[i]);
1629 ef4_writed(efx, &dword,
1630 FR_BZ_RX_INDIRECTION_TBL +
1631 FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1635 /* Looks at available SRAM resources and works out how many queues we
1636 * can support, and where things like descriptor caches should live.
1638 * SRAM is split up as follows:
1639 * 0 buftbl entries for channels
1640 * efx->vf_buftbl_base buftbl entries for SR-IOV
1641 * efx->rx_dc_base RX descriptor caches
1642 * efx->tx_dc_base TX descriptor caches
1644 void ef4_farch_dimension_resources(struct ef4_nic *efx, unsigned sram_lim_qw)
1646 unsigned vi_count, buftbl_min;
1648 /* Account for the buffer table entries backing the datapath channels
1649 * and the descriptor caches for those channels.
1651 buftbl_min = ((efx->n_rx_channels * EF4_MAX_DMAQ_SIZE +
1652 efx->n_tx_channels * EF4_TXQ_TYPES * EF4_MAX_DMAQ_SIZE +
1653 efx->n_channels * EF4_MAX_EVQ_SIZE)
1654 * sizeof(ef4_qword_t) / EF4_BUF_SIZE);
1655 vi_count = max(efx->n_channels, efx->n_tx_channels * EF4_TXQ_TYPES);
1657 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1658 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1661 u32 ef4_farch_fpga_ver(struct ef4_nic *efx)
1663 ef4_oword_t altera_build;
1664 ef4_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1665 return EF4_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1668 void ef4_farch_init_common(struct ef4_nic *efx)
1670 ef4_oword_t temp;
1672 /* Set positions of descriptor caches in SRAM. */
1673 EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1674 ef4_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1675 EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1676 ef4_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1678 /* Set TX descriptor cache size. */
1679 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1680 EF4_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1681 ef4_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1683 /* Set RX descriptor cache size. Set low watermark to size-8, as
1684 * this allows most efficient prefetching.
1686 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1687 EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1688 ef4_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1689 EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1690 ef4_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1692 /* Program INT_KER address */
1693 EF4_POPULATE_OWORD_2(temp,
1694 FRF_AZ_NORM_INT_VEC_DIS_KER,
1695 EF4_INT_MODE_USE_MSI(efx),
1696 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1697 ef4_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1699 /* Use a valid MSI-X vector */
1700 efx->irq_level = 0;
1702 /* Enable all the genuinely fatal interrupts. (They are still
1703 * masked by the overall interrupt mask, controlled by
1704 * falcon_interrupts()).
1706 * Note: All other fatal interrupts are enabled
1708 EF4_POPULATE_OWORD_3(temp,
1709 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1710 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1711 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1712 EF4_INVERT_OWORD(temp);
1713 ef4_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1715 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1716 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1718 ef4_reado(efx, &temp, FR_AZ_TX_RESERVED);
1719 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1720 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1721 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1722 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1723 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1724 /* Enable SW_EV to inherit in char driver - assume harmless here */
1725 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1726 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1727 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1728 /* Disable hardware watchdog which can misfire */
1729 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1730 /* Squash TX of packets of 16 bytes or less */
1731 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1732 EF4_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1733 ef4_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1735 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1736 EF4_POPULATE_OWORD_4(temp,
1737 /* Default values */
1738 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1739 FRF_BZ_TX_PACE_SB_AF, 0xb,
1740 FRF_BZ_TX_PACE_FB_BASE, 0,
1741 /* Allow large pace values in the
1742 * fast bin. */
1743 FRF_BZ_TX_PACE_BIN_TH,
1744 FFE_BZ_TX_PACE_RESERVED);
1745 ef4_writeo(efx, &temp, FR_BZ_TX_PACE);
1749 /**************************************************************************
1751 * Filter tables
1753 **************************************************************************
1756 /* "Fudge factors" - difference between programmed value and actual depth.
1757 * Due to pipelined implementation we need to program H/W with a value that
1758 * is larger than the hop limit we want.
1760 #define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1761 #define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1763 /* Hard maximum search limit. Hardware will time-out beyond 200-something.
1764 * We also need to avoid infinite loops in ef4_farch_filter_search() when the
1765 * table is full.
1767 #define EF4_FARCH_FILTER_CTL_SRCH_MAX 200
1769 /* Don't try very hard to find space for performance hints, as this is
1770 * counter-productive. */
1771 #define EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1773 enum ef4_farch_filter_type {
1774 EF4_FARCH_FILTER_TCP_FULL = 0,
1775 EF4_FARCH_FILTER_TCP_WILD,
1776 EF4_FARCH_FILTER_UDP_FULL,
1777 EF4_FARCH_FILTER_UDP_WILD,
1778 EF4_FARCH_FILTER_MAC_FULL = 4,
1779 EF4_FARCH_FILTER_MAC_WILD,
1780 EF4_FARCH_FILTER_UC_DEF = 8,
1781 EF4_FARCH_FILTER_MC_DEF,
1782 EF4_FARCH_FILTER_TYPE_COUNT, /* number of specific types */
1785 enum ef4_farch_filter_table_id {
1786 EF4_FARCH_FILTER_TABLE_RX_IP = 0,
1787 EF4_FARCH_FILTER_TABLE_RX_MAC,
1788 EF4_FARCH_FILTER_TABLE_RX_DEF,
1789 EF4_FARCH_FILTER_TABLE_TX_MAC,
1790 EF4_FARCH_FILTER_TABLE_COUNT,
1793 enum ef4_farch_filter_index {
1794 EF4_FARCH_FILTER_INDEX_UC_DEF,
1795 EF4_FARCH_FILTER_INDEX_MC_DEF,
1796 EF4_FARCH_FILTER_SIZE_RX_DEF,
1799 struct ef4_farch_filter_spec {
1800 u8 type:4;
1801 u8 priority:4;
1802 u8 flags;
1803 u16 dmaq_id;
1804 u32 data[3];
1807 struct ef4_farch_filter_table {
1808 enum ef4_farch_filter_table_id id;
1809 u32 offset; /* address of table relative to BAR */
1810 unsigned size; /* number of entries */
1811 unsigned step; /* step between entries */
1812 unsigned used; /* number currently used */
1813 unsigned long *used_bitmap;
1814 struct ef4_farch_filter_spec *spec;
1815 unsigned search_limit[EF4_FARCH_FILTER_TYPE_COUNT];
1818 struct ef4_farch_filter_state {
1819 struct ef4_farch_filter_table table[EF4_FARCH_FILTER_TABLE_COUNT];
1822 static void
1823 ef4_farch_filter_table_clear_entry(struct ef4_nic *efx,
1824 struct ef4_farch_filter_table *table,
1825 unsigned int filter_idx);
1827 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1828 * key derived from the n-tuple. The initial LFSR state is 0xffff. */
1829 static u16 ef4_farch_filter_hash(u32 key)
1831 u16 tmp;
1833 /* First 16 rounds */
1834 tmp = 0x1fff ^ key >> 16;
1835 tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1836 tmp = tmp ^ tmp >> 9;
1837 /* Last 16 rounds */
1838 tmp = tmp ^ tmp << 13 ^ key;
1839 tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1840 return tmp ^ tmp >> 9;
1843 /* To allow for hash collisions, filter search continues at these
1844 * increments from the first possible entry selected by the hash. */
1845 static u16 ef4_farch_filter_increment(u32 key)
1847 return key * 2 - 1;
1850 static enum ef4_farch_filter_table_id
1851 ef4_farch_filter_spec_table_id(const struct ef4_farch_filter_spec *spec)
1853 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1854 (EF4_FARCH_FILTER_TCP_FULL >> 2));
1855 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1856 (EF4_FARCH_FILTER_TCP_WILD >> 2));
1857 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1858 (EF4_FARCH_FILTER_UDP_FULL >> 2));
1859 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1860 (EF4_FARCH_FILTER_UDP_WILD >> 2));
1861 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC !=
1862 (EF4_FARCH_FILTER_MAC_FULL >> 2));
1863 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC !=
1864 (EF4_FARCH_FILTER_MAC_WILD >> 2));
1865 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_TX_MAC !=
1866 EF4_FARCH_FILTER_TABLE_RX_MAC + 2);
1867 return (spec->type >> 2) + ((spec->flags & EF4_FILTER_FLAG_TX) ? 2 : 0);
1870 static void ef4_farch_filter_push_rx_config(struct ef4_nic *efx)
1872 struct ef4_farch_filter_state *state = efx->filter_state;
1873 struct ef4_farch_filter_table *table;
1874 ef4_oword_t filter_ctl;
1876 ef4_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1878 table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
1879 EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1880 table->search_limit[EF4_FARCH_FILTER_TCP_FULL] +
1881 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1882 EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1883 table->search_limit[EF4_FARCH_FILTER_TCP_WILD] +
1884 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1885 EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1886 table->search_limit[EF4_FARCH_FILTER_UDP_FULL] +
1887 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1888 EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1889 table->search_limit[EF4_FARCH_FILTER_UDP_WILD] +
1890 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1892 table = &state->table[EF4_FARCH_FILTER_TABLE_RX_MAC];
1893 if (table->size) {
1894 EF4_SET_OWORD_FIELD(
1895 filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1896 table->search_limit[EF4_FARCH_FILTER_MAC_FULL] +
1897 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1898 EF4_SET_OWORD_FIELD(
1899 filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1900 table->search_limit[EF4_FARCH_FILTER_MAC_WILD] +
1901 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1904 table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF];
1905 if (table->size) {
1906 EF4_SET_OWORD_FIELD(
1907 filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1908 table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1909 EF4_SET_OWORD_FIELD(
1910 filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1911 !!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags &
1912 EF4_FILTER_FLAG_RX_RSS));
1913 EF4_SET_OWORD_FIELD(
1914 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1915 table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1916 EF4_SET_OWORD_FIELD(
1917 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1918 !!(table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags &
1919 EF4_FILTER_FLAG_RX_RSS));
1921 /* There is a single bit to enable RX scatter for all
1922 * unmatched packets. Only set it if scatter is
1923 * enabled in both filter specs.
1925 EF4_SET_OWORD_FIELD(
1926 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1927 !!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags &
1928 table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags &
1929 EF4_FILTER_FLAG_RX_SCATTER));
1930 } else if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1931 /* We don't expose 'default' filters because unmatched
1932 * packets always go to the queue number found in the
1933 * RSS table. But we still need to set the RX scatter
1934 * bit here.
1936 EF4_SET_OWORD_FIELD(
1937 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1938 efx->rx_scatter);
1941 ef4_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1944 static void ef4_farch_filter_push_tx_limits(struct ef4_nic *efx)
1946 struct ef4_farch_filter_state *state = efx->filter_state;
1947 struct ef4_farch_filter_table *table;
1948 ef4_oword_t tx_cfg;
1950 ef4_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
1952 table = &state->table[EF4_FARCH_FILTER_TABLE_TX_MAC];
1953 if (table->size) {
1954 EF4_SET_OWORD_FIELD(
1955 tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
1956 table->search_limit[EF4_FARCH_FILTER_MAC_FULL] +
1957 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1958 EF4_SET_OWORD_FIELD(
1959 tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
1960 table->search_limit[EF4_FARCH_FILTER_MAC_WILD] +
1961 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1964 ef4_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
1967 static int
1968 ef4_farch_filter_from_gen_spec(struct ef4_farch_filter_spec *spec,
1969 const struct ef4_filter_spec *gen_spec)
1971 bool is_full = false;
1973 if ((gen_spec->flags & EF4_FILTER_FLAG_RX_RSS) &&
1974 gen_spec->rss_context != EF4_FILTER_RSS_CONTEXT_DEFAULT)
1975 return -EINVAL;
1977 spec->priority = gen_spec->priority;
1978 spec->flags = gen_spec->flags;
1979 spec->dmaq_id = gen_spec->dmaq_id;
1981 switch (gen_spec->match_flags) {
1982 case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
1983 EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT |
1984 EF4_FILTER_MATCH_REM_HOST | EF4_FILTER_MATCH_REM_PORT):
1985 is_full = true;
1986 /* fall through */
1987 case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
1988 EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT): {
1989 __be32 rhost, host1, host2;
1990 __be16 rport, port1, port2;
1992 EF4_BUG_ON_PARANOID(!(gen_spec->flags & EF4_FILTER_FLAG_RX));
1994 if (gen_spec->ether_type != htons(ETH_P_IP))
1995 return -EPROTONOSUPPORT;
1996 if (gen_spec->loc_port == 0 ||
1997 (is_full && gen_spec->rem_port == 0))
1998 return -EADDRNOTAVAIL;
1999 switch (gen_spec->ip_proto) {
2000 case IPPROTO_TCP:
2001 spec->type = (is_full ? EF4_FARCH_FILTER_TCP_FULL :
2002 EF4_FARCH_FILTER_TCP_WILD);
2003 break;
2004 case IPPROTO_UDP:
2005 spec->type = (is_full ? EF4_FARCH_FILTER_UDP_FULL :
2006 EF4_FARCH_FILTER_UDP_WILD);
2007 break;
2008 default:
2009 return -EPROTONOSUPPORT;
2012 /* Filter is constructed in terms of source and destination,
2013 * with the odd wrinkle that the ports are swapped in a UDP
2014 * wildcard filter. We need to convert from local and remote
2015 * (= zero for wildcard) addresses.
2017 rhost = is_full ? gen_spec->rem_host[0] : 0;
2018 rport = is_full ? gen_spec->rem_port : 0;
2019 host1 = rhost;
2020 host2 = gen_spec->loc_host[0];
2021 if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2022 port1 = gen_spec->loc_port;
2023 port2 = rport;
2024 } else {
2025 port1 = rport;
2026 port2 = gen_spec->loc_port;
2028 spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2029 spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2030 spec->data[2] = ntohl(host2);
2032 break;
2035 case EF4_FILTER_MATCH_LOC_MAC | EF4_FILTER_MATCH_OUTER_VID:
2036 is_full = true;
2037 /* fall through */
2038 case EF4_FILTER_MATCH_LOC_MAC:
2039 spec->type = (is_full ? EF4_FARCH_FILTER_MAC_FULL :
2040 EF4_FARCH_FILTER_MAC_WILD);
2041 spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2042 spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2043 gen_spec->loc_mac[3] << 16 |
2044 gen_spec->loc_mac[4] << 8 |
2045 gen_spec->loc_mac[5]);
2046 spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2047 gen_spec->loc_mac[1]);
2048 break;
2050 case EF4_FILTER_MATCH_LOC_MAC_IG:
2051 spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2052 EF4_FARCH_FILTER_MC_DEF :
2053 EF4_FARCH_FILTER_UC_DEF);
2054 memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2055 break;
2057 default:
2058 return -EPROTONOSUPPORT;
2061 return 0;
2064 static void
2065 ef4_farch_filter_to_gen_spec(struct ef4_filter_spec *gen_spec,
2066 const struct ef4_farch_filter_spec *spec)
2068 bool is_full = false;
2070 /* *gen_spec should be completely initialised, to be consistent
2071 * with ef4_filter_init_{rx,tx}() and in case we want to copy
2072 * it back to userland.
2074 memset(gen_spec, 0, sizeof(*gen_spec));
2076 gen_spec->priority = spec->priority;
2077 gen_spec->flags = spec->flags;
2078 gen_spec->dmaq_id = spec->dmaq_id;
2080 switch (spec->type) {
2081 case EF4_FARCH_FILTER_TCP_FULL:
2082 case EF4_FARCH_FILTER_UDP_FULL:
2083 is_full = true;
2084 /* fall through */
2085 case EF4_FARCH_FILTER_TCP_WILD:
2086 case EF4_FARCH_FILTER_UDP_WILD: {
2087 __be32 host1, host2;
2088 __be16 port1, port2;
2090 gen_spec->match_flags =
2091 EF4_FILTER_MATCH_ETHER_TYPE |
2092 EF4_FILTER_MATCH_IP_PROTO |
2093 EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT;
2094 if (is_full)
2095 gen_spec->match_flags |= (EF4_FILTER_MATCH_REM_HOST |
2096 EF4_FILTER_MATCH_REM_PORT);
2097 gen_spec->ether_type = htons(ETH_P_IP);
2098 gen_spec->ip_proto =
2099 (spec->type == EF4_FARCH_FILTER_TCP_FULL ||
2100 spec->type == EF4_FARCH_FILTER_TCP_WILD) ?
2101 IPPROTO_TCP : IPPROTO_UDP;
2103 host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2104 port1 = htons(spec->data[0]);
2105 host2 = htonl(spec->data[2]);
2106 port2 = htons(spec->data[1] >> 16);
2107 if (spec->flags & EF4_FILTER_FLAG_TX) {
2108 gen_spec->loc_host[0] = host1;
2109 gen_spec->rem_host[0] = host2;
2110 } else {
2111 gen_spec->loc_host[0] = host2;
2112 gen_spec->rem_host[0] = host1;
2114 if (!!(gen_spec->flags & EF4_FILTER_FLAG_TX) ^
2115 (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2116 gen_spec->loc_port = port1;
2117 gen_spec->rem_port = port2;
2118 } else {
2119 gen_spec->loc_port = port2;
2120 gen_spec->rem_port = port1;
2123 break;
2126 case EF4_FARCH_FILTER_MAC_FULL:
2127 is_full = true;
2128 /* fall through */
2129 case EF4_FARCH_FILTER_MAC_WILD:
2130 gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC;
2131 if (is_full)
2132 gen_spec->match_flags |= EF4_FILTER_MATCH_OUTER_VID;
2133 gen_spec->loc_mac[0] = spec->data[2] >> 8;
2134 gen_spec->loc_mac[1] = spec->data[2];
2135 gen_spec->loc_mac[2] = spec->data[1] >> 24;
2136 gen_spec->loc_mac[3] = spec->data[1] >> 16;
2137 gen_spec->loc_mac[4] = spec->data[1] >> 8;
2138 gen_spec->loc_mac[5] = spec->data[1];
2139 gen_spec->outer_vid = htons(spec->data[0]);
2140 break;
2142 case EF4_FARCH_FILTER_UC_DEF:
2143 case EF4_FARCH_FILTER_MC_DEF:
2144 gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC_IG;
2145 gen_spec->loc_mac[0] = spec->type == EF4_FARCH_FILTER_MC_DEF;
2146 break;
2148 default:
2149 WARN_ON(1);
2150 break;
2154 static void
2155 ef4_farch_filter_init_rx_auto(struct ef4_nic *efx,
2156 struct ef4_farch_filter_spec *spec)
2158 /* If there's only one channel then disable RSS for non VF
2159 * traffic, thereby allowing VFs to use RSS when the PF can't.
2161 spec->priority = EF4_FILTER_PRI_AUTO;
2162 spec->flags = (EF4_FILTER_FLAG_RX |
2163 (ef4_rss_enabled(efx) ? EF4_FILTER_FLAG_RX_RSS : 0) |
2164 (efx->rx_scatter ? EF4_FILTER_FLAG_RX_SCATTER : 0));
2165 spec->dmaq_id = 0;
2168 /* Build a filter entry and return its n-tuple key. */
2169 static u32 ef4_farch_filter_build(ef4_oword_t *filter,
2170 struct ef4_farch_filter_spec *spec)
2172 u32 data3;
2174 switch (ef4_farch_filter_spec_table_id(spec)) {
2175 case EF4_FARCH_FILTER_TABLE_RX_IP: {
2176 bool is_udp = (spec->type == EF4_FARCH_FILTER_UDP_FULL ||
2177 spec->type == EF4_FARCH_FILTER_UDP_WILD);
2178 EF4_POPULATE_OWORD_7(
2179 *filter,
2180 FRF_BZ_RSS_EN,
2181 !!(spec->flags & EF4_FILTER_FLAG_RX_RSS),
2182 FRF_BZ_SCATTER_EN,
2183 !!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER),
2184 FRF_BZ_TCP_UDP, is_udp,
2185 FRF_BZ_RXQ_ID, spec->dmaq_id,
2186 EF4_DWORD_2, spec->data[2],
2187 EF4_DWORD_1, spec->data[1],
2188 EF4_DWORD_0, spec->data[0]);
2189 data3 = is_udp;
2190 break;
2193 case EF4_FARCH_FILTER_TABLE_RX_MAC: {
2194 bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD;
2195 EF4_POPULATE_OWORD_7(
2196 *filter,
2197 FRF_CZ_RMFT_RSS_EN,
2198 !!(spec->flags & EF4_FILTER_FLAG_RX_RSS),
2199 FRF_CZ_RMFT_SCATTER_EN,
2200 !!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER),
2201 FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2202 FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2203 FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2204 FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2205 FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2206 data3 = is_wild;
2207 break;
2210 case EF4_FARCH_FILTER_TABLE_TX_MAC: {
2211 bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD;
2212 EF4_POPULATE_OWORD_5(*filter,
2213 FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2214 FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2215 FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2216 FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2217 FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2218 data3 = is_wild | spec->dmaq_id << 1;
2219 break;
2222 default:
2223 BUG();
2226 return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2229 static bool ef4_farch_filter_equal(const struct ef4_farch_filter_spec *left,
2230 const struct ef4_farch_filter_spec *right)
2232 if (left->type != right->type ||
2233 memcmp(left->data, right->data, sizeof(left->data)))
2234 return false;
2236 if (left->flags & EF4_FILTER_FLAG_TX &&
2237 left->dmaq_id != right->dmaq_id)
2238 return false;
2240 return true;
2244 * Construct/deconstruct external filter IDs. At least the RX filter
2245 * IDs must be ordered by matching priority, for RX NFC semantics.
2247 * Deconstruction needs to be robust against invalid IDs so that
2248 * ef4_filter_remove_id_safe() and ef4_filter_get_filter_safe() can
2249 * accept user-provided IDs.
2252 #define EF4_FARCH_FILTER_MATCH_PRI_COUNT 5
2254 static const u8 ef4_farch_filter_type_match_pri[EF4_FARCH_FILTER_TYPE_COUNT] = {
2255 [EF4_FARCH_FILTER_TCP_FULL] = 0,
2256 [EF4_FARCH_FILTER_UDP_FULL] = 0,
2257 [EF4_FARCH_FILTER_TCP_WILD] = 1,
2258 [EF4_FARCH_FILTER_UDP_WILD] = 1,
2259 [EF4_FARCH_FILTER_MAC_FULL] = 2,
2260 [EF4_FARCH_FILTER_MAC_WILD] = 3,
2261 [EF4_FARCH_FILTER_UC_DEF] = 4,
2262 [EF4_FARCH_FILTER_MC_DEF] = 4,
2265 static const enum ef4_farch_filter_table_id ef4_farch_filter_range_table[] = {
2266 EF4_FARCH_FILTER_TABLE_RX_IP, /* RX match pri 0 */
2267 EF4_FARCH_FILTER_TABLE_RX_IP,
2268 EF4_FARCH_FILTER_TABLE_RX_MAC,
2269 EF4_FARCH_FILTER_TABLE_RX_MAC,
2270 EF4_FARCH_FILTER_TABLE_RX_DEF, /* RX match pri 4 */
2271 EF4_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 0 */
2272 EF4_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 1 */
2275 #define EF4_FARCH_FILTER_INDEX_WIDTH 13
2276 #define EF4_FARCH_FILTER_INDEX_MASK ((1 << EF4_FARCH_FILTER_INDEX_WIDTH) - 1)
2278 static inline u32
2279 ef4_farch_filter_make_id(const struct ef4_farch_filter_spec *spec,
2280 unsigned int index)
2282 unsigned int range;
2284 range = ef4_farch_filter_type_match_pri[spec->type];
2285 if (!(spec->flags & EF4_FILTER_FLAG_RX))
2286 range += EF4_FARCH_FILTER_MATCH_PRI_COUNT;
2288 return range << EF4_FARCH_FILTER_INDEX_WIDTH | index;
2291 static inline enum ef4_farch_filter_table_id
2292 ef4_farch_filter_id_table_id(u32 id)
2294 unsigned int range = id >> EF4_FARCH_FILTER_INDEX_WIDTH;
2296 if (range < ARRAY_SIZE(ef4_farch_filter_range_table))
2297 return ef4_farch_filter_range_table[range];
2298 else
2299 return EF4_FARCH_FILTER_TABLE_COUNT; /* invalid */
2302 static inline unsigned int ef4_farch_filter_id_index(u32 id)
2304 return id & EF4_FARCH_FILTER_INDEX_MASK;
2307 u32 ef4_farch_filter_get_rx_id_limit(struct ef4_nic *efx)
2309 struct ef4_farch_filter_state *state = efx->filter_state;
2310 unsigned int range = EF4_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2311 enum ef4_farch_filter_table_id table_id;
2313 do {
2314 table_id = ef4_farch_filter_range_table[range];
2315 if (state->table[table_id].size != 0)
2316 return range << EF4_FARCH_FILTER_INDEX_WIDTH |
2317 state->table[table_id].size;
2318 } while (range--);
2320 return 0;
2323 s32 ef4_farch_filter_insert(struct ef4_nic *efx,
2324 struct ef4_filter_spec *gen_spec,
2325 bool replace_equal)
2327 struct ef4_farch_filter_state *state = efx->filter_state;
2328 struct ef4_farch_filter_table *table;
2329 struct ef4_farch_filter_spec spec;
2330 ef4_oword_t filter;
2331 int rep_index, ins_index;
2332 unsigned int depth = 0;
2333 int rc;
2335 rc = ef4_farch_filter_from_gen_spec(&spec, gen_spec);
2336 if (rc)
2337 return rc;
2339 table = &state->table[ef4_farch_filter_spec_table_id(&spec)];
2340 if (table->size == 0)
2341 return -EINVAL;
2343 netif_vdbg(efx, hw, efx->net_dev,
2344 "%s: type %d search_limit=%d", __func__, spec.type,
2345 table->search_limit[spec.type]);
2347 if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) {
2348 /* One filter spec per type */
2349 BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_UC_DEF != 0);
2350 BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_MC_DEF !=
2351 EF4_FARCH_FILTER_MC_DEF - EF4_FARCH_FILTER_UC_DEF);
2352 rep_index = spec.type - EF4_FARCH_FILTER_UC_DEF;
2353 ins_index = rep_index;
2355 spin_lock_bh(&efx->filter_lock);
2356 } else {
2357 /* Search concurrently for
2358 * (1) a filter to be replaced (rep_index): any filter
2359 * with the same match values, up to the current
2360 * search depth for this type, and
2361 * (2) the insertion point (ins_index): (1) or any
2362 * free slot before it or up to the maximum search
2363 * depth for this priority
2364 * We fail if we cannot find (2).
2366 * We can stop once either
2367 * (a) we find (1), in which case we have definitely
2368 * found (2) as well; or
2369 * (b) we have searched exhaustively for (1), and have
2370 * either found (2) or searched exhaustively for it
2372 u32 key = ef4_farch_filter_build(&filter, &spec);
2373 unsigned int hash = ef4_farch_filter_hash(key);
2374 unsigned int incr = ef4_farch_filter_increment(key);
2375 unsigned int max_rep_depth = table->search_limit[spec.type];
2376 unsigned int max_ins_depth =
2377 spec.priority <= EF4_FILTER_PRI_HINT ?
2378 EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2379 EF4_FARCH_FILTER_CTL_SRCH_MAX;
2380 unsigned int i = hash & (table->size - 1);
2382 ins_index = -1;
2383 depth = 1;
2385 spin_lock_bh(&efx->filter_lock);
2387 for (;;) {
2388 if (!test_bit(i, table->used_bitmap)) {
2389 if (ins_index < 0)
2390 ins_index = i;
2391 } else if (ef4_farch_filter_equal(&spec,
2392 &table->spec[i])) {
2393 /* Case (a) */
2394 if (ins_index < 0)
2395 ins_index = i;
2396 rep_index = i;
2397 break;
2400 if (depth >= max_rep_depth &&
2401 (ins_index >= 0 || depth >= max_ins_depth)) {
2402 /* Case (b) */
2403 if (ins_index < 0) {
2404 rc = -EBUSY;
2405 goto out;
2407 rep_index = -1;
2408 break;
2411 i = (i + incr) & (table->size - 1);
2412 ++depth;
2416 /* If we found a filter to be replaced, check whether we
2417 * should do so
2419 if (rep_index >= 0) {
2420 struct ef4_farch_filter_spec *saved_spec =
2421 &table->spec[rep_index];
2423 if (spec.priority == saved_spec->priority && !replace_equal) {
2424 rc = -EEXIST;
2425 goto out;
2427 if (spec.priority < saved_spec->priority) {
2428 rc = -EPERM;
2429 goto out;
2431 if (saved_spec->priority == EF4_FILTER_PRI_AUTO ||
2432 saved_spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO)
2433 spec.flags |= EF4_FILTER_FLAG_RX_OVER_AUTO;
2436 /* Insert the filter */
2437 if (ins_index != rep_index) {
2438 __set_bit(ins_index, table->used_bitmap);
2439 ++table->used;
2441 table->spec[ins_index] = spec;
2443 if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) {
2444 ef4_farch_filter_push_rx_config(efx);
2445 } else {
2446 if (table->search_limit[spec.type] < depth) {
2447 table->search_limit[spec.type] = depth;
2448 if (spec.flags & EF4_FILTER_FLAG_TX)
2449 ef4_farch_filter_push_tx_limits(efx);
2450 else
2451 ef4_farch_filter_push_rx_config(efx);
2454 ef4_writeo(efx, &filter,
2455 table->offset + table->step * ins_index);
2457 /* If we were able to replace a filter by inserting
2458 * at a lower depth, clear the replaced filter
2460 if (ins_index != rep_index && rep_index >= 0)
2461 ef4_farch_filter_table_clear_entry(efx, table,
2462 rep_index);
2465 netif_vdbg(efx, hw, efx->net_dev,
2466 "%s: filter type %d index %d rxq %u set",
2467 __func__, spec.type, ins_index, spec.dmaq_id);
2468 rc = ef4_farch_filter_make_id(&spec, ins_index);
2470 out:
2471 spin_unlock_bh(&efx->filter_lock);
2472 return rc;
2475 static void
2476 ef4_farch_filter_table_clear_entry(struct ef4_nic *efx,
2477 struct ef4_farch_filter_table *table,
2478 unsigned int filter_idx)
2480 static ef4_oword_t filter;
2482 EF4_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2483 BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2485 __clear_bit(filter_idx, table->used_bitmap);
2486 --table->used;
2487 memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2489 ef4_writeo(efx, &filter, table->offset + table->step * filter_idx);
2491 /* If this filter required a greater search depth than
2492 * any other, the search limit for its type can now be
2493 * decreased. However, it is hard to determine that
2494 * unless the table has become completely empty - in
2495 * which case, all its search limits can be set to 0.
2497 if (unlikely(table->used == 0)) {
2498 memset(table->search_limit, 0, sizeof(table->search_limit));
2499 if (table->id == EF4_FARCH_FILTER_TABLE_TX_MAC)
2500 ef4_farch_filter_push_tx_limits(efx);
2501 else
2502 ef4_farch_filter_push_rx_config(efx);
2506 static int ef4_farch_filter_remove(struct ef4_nic *efx,
2507 struct ef4_farch_filter_table *table,
2508 unsigned int filter_idx,
2509 enum ef4_filter_priority priority)
2511 struct ef4_farch_filter_spec *spec = &table->spec[filter_idx];
2513 if (!test_bit(filter_idx, table->used_bitmap) ||
2514 spec->priority != priority)
2515 return -ENOENT;
2517 if (spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO) {
2518 ef4_farch_filter_init_rx_auto(efx, spec);
2519 ef4_farch_filter_push_rx_config(efx);
2520 } else {
2521 ef4_farch_filter_table_clear_entry(efx, table, filter_idx);
2524 return 0;
2527 int ef4_farch_filter_remove_safe(struct ef4_nic *efx,
2528 enum ef4_filter_priority priority,
2529 u32 filter_id)
2531 struct ef4_farch_filter_state *state = efx->filter_state;
2532 enum ef4_farch_filter_table_id table_id;
2533 struct ef4_farch_filter_table *table;
2534 unsigned int filter_idx;
2535 struct ef4_farch_filter_spec *spec;
2536 int rc;
2538 table_id = ef4_farch_filter_id_table_id(filter_id);
2539 if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT)
2540 return -ENOENT;
2541 table = &state->table[table_id];
2543 filter_idx = ef4_farch_filter_id_index(filter_id);
2544 if (filter_idx >= table->size)
2545 return -ENOENT;
2546 spec = &table->spec[filter_idx];
2548 spin_lock_bh(&efx->filter_lock);
2549 rc = ef4_farch_filter_remove(efx, table, filter_idx, priority);
2550 spin_unlock_bh(&efx->filter_lock);
2552 return rc;
2555 int ef4_farch_filter_get_safe(struct ef4_nic *efx,
2556 enum ef4_filter_priority priority,
2557 u32 filter_id, struct ef4_filter_spec *spec_buf)
2559 struct ef4_farch_filter_state *state = efx->filter_state;
2560 enum ef4_farch_filter_table_id table_id;
2561 struct ef4_farch_filter_table *table;
2562 struct ef4_farch_filter_spec *spec;
2563 unsigned int filter_idx;
2564 int rc;
2566 table_id = ef4_farch_filter_id_table_id(filter_id);
2567 if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT)
2568 return -ENOENT;
2569 table = &state->table[table_id];
2571 filter_idx = ef4_farch_filter_id_index(filter_id);
2572 if (filter_idx >= table->size)
2573 return -ENOENT;
2574 spec = &table->spec[filter_idx];
2576 spin_lock_bh(&efx->filter_lock);
2578 if (test_bit(filter_idx, table->used_bitmap) &&
2579 spec->priority == priority) {
2580 ef4_farch_filter_to_gen_spec(spec_buf, spec);
2581 rc = 0;
2582 } else {
2583 rc = -ENOENT;
2586 spin_unlock_bh(&efx->filter_lock);
2588 return rc;
2591 static void
2592 ef4_farch_filter_table_clear(struct ef4_nic *efx,
2593 enum ef4_farch_filter_table_id table_id,
2594 enum ef4_filter_priority priority)
2596 struct ef4_farch_filter_state *state = efx->filter_state;
2597 struct ef4_farch_filter_table *table = &state->table[table_id];
2598 unsigned int filter_idx;
2600 spin_lock_bh(&efx->filter_lock);
2601 for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2602 if (table->spec[filter_idx].priority != EF4_FILTER_PRI_AUTO)
2603 ef4_farch_filter_remove(efx, table,
2604 filter_idx, priority);
2606 spin_unlock_bh(&efx->filter_lock);
2609 int ef4_farch_filter_clear_rx(struct ef4_nic *efx,
2610 enum ef4_filter_priority priority)
2612 ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_IP,
2613 priority);
2614 ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_MAC,
2615 priority);
2616 ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_DEF,
2617 priority);
2618 return 0;
2621 u32 ef4_farch_filter_count_rx_used(struct ef4_nic *efx,
2622 enum ef4_filter_priority priority)
2624 struct ef4_farch_filter_state *state = efx->filter_state;
2625 enum ef4_farch_filter_table_id table_id;
2626 struct ef4_farch_filter_table *table;
2627 unsigned int filter_idx;
2628 u32 count = 0;
2630 spin_lock_bh(&efx->filter_lock);
2632 for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2633 table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2634 table_id++) {
2635 table = &state->table[table_id];
2636 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2637 if (test_bit(filter_idx, table->used_bitmap) &&
2638 table->spec[filter_idx].priority == priority)
2639 ++count;
2643 spin_unlock_bh(&efx->filter_lock);
2645 return count;
2648 s32 ef4_farch_filter_get_rx_ids(struct ef4_nic *efx,
2649 enum ef4_filter_priority priority,
2650 u32 *buf, u32 size)
2652 struct ef4_farch_filter_state *state = efx->filter_state;
2653 enum ef4_farch_filter_table_id table_id;
2654 struct ef4_farch_filter_table *table;
2655 unsigned int filter_idx;
2656 s32 count = 0;
2658 spin_lock_bh(&efx->filter_lock);
2660 for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2661 table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2662 table_id++) {
2663 table = &state->table[table_id];
2664 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2665 if (test_bit(filter_idx, table->used_bitmap) &&
2666 table->spec[filter_idx].priority == priority) {
2667 if (count == size) {
2668 count = -EMSGSIZE;
2669 goto out;
2671 buf[count++] = ef4_farch_filter_make_id(
2672 &table->spec[filter_idx], filter_idx);
2676 out:
2677 spin_unlock_bh(&efx->filter_lock);
2679 return count;
2682 /* Restore filter stater after reset */
2683 void ef4_farch_filter_table_restore(struct ef4_nic *efx)
2685 struct ef4_farch_filter_state *state = efx->filter_state;
2686 enum ef4_farch_filter_table_id table_id;
2687 struct ef4_farch_filter_table *table;
2688 ef4_oword_t filter;
2689 unsigned int filter_idx;
2691 spin_lock_bh(&efx->filter_lock);
2693 for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2694 table = &state->table[table_id];
2696 /* Check whether this is a regular register table */
2697 if (table->step == 0)
2698 continue;
2700 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2701 if (!test_bit(filter_idx, table->used_bitmap))
2702 continue;
2703 ef4_farch_filter_build(&filter, &table->spec[filter_idx]);
2704 ef4_writeo(efx, &filter,
2705 table->offset + table->step * filter_idx);
2709 ef4_farch_filter_push_rx_config(efx);
2710 ef4_farch_filter_push_tx_limits(efx);
2712 spin_unlock_bh(&efx->filter_lock);
2715 void ef4_farch_filter_table_remove(struct ef4_nic *efx)
2717 struct ef4_farch_filter_state *state = efx->filter_state;
2718 enum ef4_farch_filter_table_id table_id;
2720 for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2721 kfree(state->table[table_id].used_bitmap);
2722 vfree(state->table[table_id].spec);
2724 kfree(state);
2727 int ef4_farch_filter_table_probe(struct ef4_nic *efx)
2729 struct ef4_farch_filter_state *state;
2730 struct ef4_farch_filter_table *table;
2731 unsigned table_id;
2733 state = kzalloc(sizeof(struct ef4_farch_filter_state), GFP_KERNEL);
2734 if (!state)
2735 return -ENOMEM;
2736 efx->filter_state = state;
2738 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
2739 table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
2740 table->id = EF4_FARCH_FILTER_TABLE_RX_IP;
2741 table->offset = FR_BZ_RX_FILTER_TBL0;
2742 table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2743 table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2746 for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2747 table = &state->table[table_id];
2748 if (table->size == 0)
2749 continue;
2750 table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2751 sizeof(unsigned long),
2752 GFP_KERNEL);
2753 if (!table->used_bitmap)
2754 goto fail;
2755 table->spec = vzalloc(array_size(sizeof(*table->spec),
2756 table->size));
2757 if (!table->spec)
2758 goto fail;
2761 table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF];
2762 if (table->size) {
2763 /* RX default filters must always exist */
2764 struct ef4_farch_filter_spec *spec;
2765 unsigned i;
2767 for (i = 0; i < EF4_FARCH_FILTER_SIZE_RX_DEF; i++) {
2768 spec = &table->spec[i];
2769 spec->type = EF4_FARCH_FILTER_UC_DEF + i;
2770 ef4_farch_filter_init_rx_auto(efx, spec);
2771 __set_bit(i, table->used_bitmap);
2775 ef4_farch_filter_push_rx_config(efx);
2777 return 0;
2779 fail:
2780 ef4_farch_filter_table_remove(efx);
2781 return -ENOMEM;
2784 /* Update scatter enable flags for filters pointing to our own RX queues */
2785 void ef4_farch_filter_update_rx_scatter(struct ef4_nic *efx)
2787 struct ef4_farch_filter_state *state = efx->filter_state;
2788 enum ef4_farch_filter_table_id table_id;
2789 struct ef4_farch_filter_table *table;
2790 ef4_oword_t filter;
2791 unsigned int filter_idx;
2793 spin_lock_bh(&efx->filter_lock);
2795 for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2796 table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2797 table_id++) {
2798 table = &state->table[table_id];
2800 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2801 if (!test_bit(filter_idx, table->used_bitmap) ||
2802 table->spec[filter_idx].dmaq_id >=
2803 efx->n_rx_channels)
2804 continue;
2806 if (efx->rx_scatter)
2807 table->spec[filter_idx].flags |=
2808 EF4_FILTER_FLAG_RX_SCATTER;
2809 else
2810 table->spec[filter_idx].flags &=
2811 ~EF4_FILTER_FLAG_RX_SCATTER;
2813 if (table_id == EF4_FARCH_FILTER_TABLE_RX_DEF)
2814 /* Pushed by ef4_farch_filter_push_rx_config() */
2815 continue;
2817 ef4_farch_filter_build(&filter, &table->spec[filter_idx]);
2818 ef4_writeo(efx, &filter,
2819 table->offset + table->step * filter_idx);
2823 ef4_farch_filter_push_rx_config(efx);
2825 spin_unlock_bh(&efx->filter_lock);
2828 #ifdef CONFIG_RFS_ACCEL
2830 s32 ef4_farch_filter_rfs_insert(struct ef4_nic *efx,
2831 struct ef4_filter_spec *gen_spec)
2833 return ef4_farch_filter_insert(efx, gen_spec, true);
2836 bool ef4_farch_filter_rfs_expire_one(struct ef4_nic *efx, u32 flow_id,
2837 unsigned int index)
2839 struct ef4_farch_filter_state *state = efx->filter_state;
2840 struct ef4_farch_filter_table *table =
2841 &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
2843 if (test_bit(index, table->used_bitmap) &&
2844 table->spec[index].priority == EF4_FILTER_PRI_HINT &&
2845 rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2846 flow_id, index)) {
2847 ef4_farch_filter_table_clear_entry(efx, table, index);
2848 return true;
2851 return false;
2854 #endif /* CONFIG_RFS_ACCEL */
2856 void ef4_farch_filter_sync_rx_mode(struct ef4_nic *efx)
2858 struct net_device *net_dev = efx->net_dev;
2859 struct netdev_hw_addr *ha;
2860 union ef4_multicast_hash *mc_hash = &efx->multicast_hash;
2861 u32 crc;
2862 int bit;
2864 if (!ef4_dev_registered(efx))
2865 return;
2867 netif_addr_lock_bh(net_dev);
2869 efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2871 /* Build multicast hash table */
2872 if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2873 memset(mc_hash, 0xff, sizeof(*mc_hash));
2874 } else {
2875 memset(mc_hash, 0x00, sizeof(*mc_hash));
2876 netdev_for_each_mc_addr(ha, net_dev) {
2877 crc = ether_crc_le(ETH_ALEN, ha->addr);
2878 bit = crc & (EF4_MCAST_HASH_ENTRIES - 1);
2879 __set_bit_le(bit, mc_hash);
2882 /* Broadcast packets go through the multicast hash filter.
2883 * ether_crc_le() of the broadcast address is 0xbe2612ff
2884 * so we always add bit 0xff to the mask.
2886 __set_bit_le(0xff, mc_hash);
2889 netif_addr_unlock_bh(net_dev);