treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / ethernet / sfc / farch.c
blobdbbb898adddb1b3e7eefbbf5697bc26ede28fed4
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2006-2013 Solarflare Communications Inc.
6 */
8 #include <linux/bitops.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/seq_file.h>
14 #include <linux/crc32.h>
15 #include "net_driver.h"
16 #include "bitfield.h"
17 #include "efx.h"
18 #include "rx_common.h"
19 #include "nic.h"
20 #include "farch_regs.h"
21 #include "sriov.h"
22 #include "siena_sriov.h"
23 #include "io.h"
24 #include "workarounds.h"
26 /* Falcon-architecture (SFC9000-family) support */
28 /**************************************************************************
30 * Configurable values
32 **************************************************************************
35 /* This is set to 16 for a good reason. In summary, if larger than
36 * 16, the descriptor cache holds more than a default socket
37 * buffer's worth of packets (for UDP we can only have at most one
38 * socket buffer's worth outstanding). This combined with the fact
39 * that we only get 1 TX event per descriptor cache means the NIC
40 * goes idle.
42 #define TX_DC_ENTRIES 16
43 #define TX_DC_ENTRIES_ORDER 1
45 #define RX_DC_ENTRIES 64
46 #define RX_DC_ENTRIES_ORDER 3
48 /* If EFX_MAX_INT_ERRORS internal errors occur within
49 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
50 * disable it.
52 #define EFX_INT_ERROR_EXPIRE 3600
53 #define EFX_MAX_INT_ERRORS 5
55 /* Depth of RX flush request fifo */
56 #define EFX_RX_FLUSH_COUNT 4
58 /* Driver generated events */
59 #define _EFX_CHANNEL_MAGIC_TEST 0x000101
60 #define _EFX_CHANNEL_MAGIC_FILL 0x000102
61 #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
62 #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
64 #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
65 #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
67 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
68 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
69 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
70 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
71 efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
73 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
74 efx_rx_queue_index(_rx_queue))
75 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
76 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
77 (_tx_queue)->queue)
79 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
81 /**************************************************************************
83 * Hardware access
85 **************************************************************************/
87 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
88 unsigned int index)
90 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
91 value, index);
94 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
95 const efx_oword_t *mask)
97 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
98 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
101 int efx_farch_test_registers(struct efx_nic *efx,
102 const struct efx_farch_register_test *regs,
103 size_t n_regs)
105 unsigned address = 0;
106 int i, j;
107 efx_oword_t mask, imask, original, reg, buf;
109 for (i = 0; i < n_regs; ++i) {
110 address = regs[i].address;
111 mask = imask = regs[i].mask;
112 EFX_INVERT_OWORD(imask);
114 efx_reado(efx, &original, address);
116 /* bit sweep on and off */
117 for (j = 0; j < 128; j++) {
118 if (!EFX_EXTRACT_OWORD32(mask, j, j))
119 continue;
121 /* Test this testable bit can be set in isolation */
122 EFX_AND_OWORD(reg, original, mask);
123 EFX_SET_OWORD32(reg, j, j, 1);
125 efx_writeo(efx, &reg, address);
126 efx_reado(efx, &buf, address);
128 if (efx_masked_compare_oword(&reg, &buf, &mask))
129 goto fail;
131 /* Test this testable bit can be cleared in isolation */
132 EFX_OR_OWORD(reg, original, mask);
133 EFX_SET_OWORD32(reg, j, j, 0);
135 efx_writeo(efx, &reg, address);
136 efx_reado(efx, &buf, address);
138 if (efx_masked_compare_oword(&reg, &buf, &mask))
139 goto fail;
142 efx_writeo(efx, &original, address);
145 return 0;
147 fail:
148 netif_err(efx, hw, efx->net_dev,
149 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
150 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
151 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
152 return -EIO;
155 /**************************************************************************
157 * Special buffer handling
158 * Special buffers are used for event queues and the TX and RX
159 * descriptor rings.
161 *************************************************************************/
164 * Initialise a special buffer
166 * This will define a buffer (previously allocated via
167 * efx_alloc_special_buffer()) in the buffer table, allowing
168 * it to be used for event queues, descriptor rings etc.
170 static void
171 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
173 efx_qword_t buf_desc;
174 unsigned int index;
175 dma_addr_t dma_addr;
176 int i;
178 EFX_WARN_ON_PARANOID(!buffer->buf.addr);
180 /* Write buffer descriptors to NIC */
181 for (i = 0; i < buffer->entries; i++) {
182 index = buffer->index + i;
183 dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
184 netif_dbg(efx, probe, efx->net_dev,
185 "mapping special buffer %d at %llx\n",
186 index, (unsigned long long)dma_addr);
187 EFX_POPULATE_QWORD_3(buf_desc,
188 FRF_AZ_BUF_ADR_REGION, 0,
189 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
190 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
191 efx_write_buf_tbl(efx, &buf_desc, index);
195 /* Unmaps a buffer and clears the buffer table entries */
196 static void
197 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
199 efx_oword_t buf_tbl_upd;
200 unsigned int start = buffer->index;
201 unsigned int end = (buffer->index + buffer->entries - 1);
203 if (!buffer->entries)
204 return;
206 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
207 buffer->index, buffer->index + buffer->entries - 1);
209 EFX_POPULATE_OWORD_4(buf_tbl_upd,
210 FRF_AZ_BUF_UPD_CMD, 0,
211 FRF_AZ_BUF_CLR_CMD, 1,
212 FRF_AZ_BUF_CLR_END_ID, end,
213 FRF_AZ_BUF_CLR_START_ID, start);
214 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
218 * Allocate a new special buffer
220 * This allocates memory for a new buffer, clears it and allocates a
221 * new buffer ID range. It does not write into the buffer table.
223 * This call will allocate 4KB buffers, since 8KB buffers can't be
224 * used for event queues and descriptor rings.
226 static int efx_alloc_special_buffer(struct efx_nic *efx,
227 struct efx_special_buffer *buffer,
228 unsigned int len)
230 #ifdef CONFIG_SFC_SRIOV
231 struct siena_nic_data *nic_data = efx->nic_data;
232 #endif
233 len = ALIGN(len, EFX_BUF_SIZE);
235 if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
236 return -ENOMEM;
237 buffer->entries = len / EFX_BUF_SIZE;
238 BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
240 /* Select new buffer ID */
241 buffer->index = efx->next_buffer_table;
242 efx->next_buffer_table += buffer->entries;
243 #ifdef CONFIG_SFC_SRIOV
244 BUG_ON(efx_siena_sriov_enabled(efx) &&
245 nic_data->vf_buftbl_base < efx->next_buffer_table);
246 #endif
248 netif_dbg(efx, probe, efx->net_dev,
249 "allocating special buffers %d-%d at %llx+%x "
250 "(virt %p phys %llx)\n", buffer->index,
251 buffer->index + buffer->entries - 1,
252 (u64)buffer->buf.dma_addr, len,
253 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
255 return 0;
258 static void
259 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
261 if (!buffer->buf.addr)
262 return;
264 netif_dbg(efx, hw, efx->net_dev,
265 "deallocating special buffers %d-%d at %llx+%x "
266 "(virt %p phys %llx)\n", buffer->index,
267 buffer->index + buffer->entries - 1,
268 (u64)buffer->buf.dma_addr, buffer->buf.len,
269 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
271 efx_nic_free_buffer(efx, &buffer->buf);
272 buffer->entries = 0;
275 /**************************************************************************
277 * TX path
279 **************************************************************************/
281 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
282 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
284 unsigned write_ptr;
285 efx_dword_t reg;
287 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
288 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
289 efx_writed_page(tx_queue->efx, &reg,
290 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
293 /* Write pointer and first descriptor for TX descriptor ring */
294 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
295 const efx_qword_t *txd)
297 unsigned write_ptr;
298 efx_oword_t reg;
300 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
301 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
303 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
304 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
305 FRF_AZ_TX_DESC_WPTR, write_ptr);
306 reg.qword[0] = *txd;
307 efx_writeo_page(tx_queue->efx, &reg,
308 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
312 /* For each entry inserted into the software descriptor ring, create a
313 * descriptor in the hardware TX descriptor ring (in host memory), and
314 * write a doorbell.
316 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
318 struct efx_tx_buffer *buffer;
319 efx_qword_t *txd;
320 unsigned write_ptr;
321 unsigned old_write_count = tx_queue->write_count;
323 tx_queue->xmit_more_available = false;
324 if (unlikely(tx_queue->write_count == tx_queue->insert_count))
325 return;
327 do {
328 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
329 buffer = &tx_queue->buffer[write_ptr];
330 txd = efx_tx_desc(tx_queue, write_ptr);
331 ++tx_queue->write_count;
333 EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
335 /* Create TX descriptor ring entry */
336 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
337 EFX_POPULATE_QWORD_4(*txd,
338 FSF_AZ_TX_KER_CONT,
339 buffer->flags & EFX_TX_BUF_CONT,
340 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
341 FSF_AZ_TX_KER_BUF_REGION, 0,
342 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
343 } while (tx_queue->write_count != tx_queue->insert_count);
345 wmb(); /* Ensure descriptors are written before they are fetched */
347 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
348 txd = efx_tx_desc(tx_queue,
349 old_write_count & tx_queue->ptr_mask);
350 efx_farch_push_tx_desc(tx_queue, txd);
351 ++tx_queue->pushes;
352 } else {
353 efx_farch_notify_tx_desc(tx_queue);
357 unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
358 dma_addr_t dma_addr, unsigned int len)
360 /* Don't cross 4K boundaries with descriptors. */
361 unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
363 len = min(limit, len);
365 return len;
369 /* Allocate hardware resources for a TX queue */
370 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
372 struct efx_nic *efx = tx_queue->efx;
373 unsigned entries;
375 entries = tx_queue->ptr_mask + 1;
376 return efx_alloc_special_buffer(efx, &tx_queue->txd,
377 entries * sizeof(efx_qword_t));
380 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
382 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
383 struct efx_nic *efx = tx_queue->efx;
384 efx_oword_t reg;
386 /* Pin TX descriptor ring */
387 efx_init_special_buffer(efx, &tx_queue->txd);
389 /* Push TX descriptor ring to card */
390 EFX_POPULATE_OWORD_10(reg,
391 FRF_AZ_TX_DESCQ_EN, 1,
392 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
393 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
394 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
395 FRF_AZ_TX_DESCQ_EVQ_ID,
396 tx_queue->channel->channel,
397 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
398 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
399 FRF_AZ_TX_DESCQ_SIZE,
400 __ffs(tx_queue->txd.entries),
401 FRF_AZ_TX_DESCQ_TYPE, 0,
402 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
404 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
405 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum);
407 efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
408 tx_queue->queue);
410 EFX_POPULATE_OWORD_1(reg,
411 FRF_BZ_TX_PACE,
412 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
413 FFE_BZ_TX_PACE_OFF :
414 FFE_BZ_TX_PACE_RESERVED);
415 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL, tx_queue->queue);
418 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
420 struct efx_nic *efx = tx_queue->efx;
421 efx_oword_t tx_flush_descq;
423 WARN_ON(atomic_read(&tx_queue->flush_outstanding));
424 atomic_set(&tx_queue->flush_outstanding, 1);
426 EFX_POPULATE_OWORD_2(tx_flush_descq,
427 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
428 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
429 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
432 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
434 struct efx_nic *efx = tx_queue->efx;
435 efx_oword_t tx_desc_ptr;
437 /* Remove TX descriptor ring from card */
438 EFX_ZERO_OWORD(tx_desc_ptr);
439 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
440 tx_queue->queue);
442 /* Unpin TX descriptor ring */
443 efx_fini_special_buffer(efx, &tx_queue->txd);
446 /* Free buffers backing TX queue */
447 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
449 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
452 /**************************************************************************
454 * RX path
456 **************************************************************************/
458 /* This creates an entry in the RX descriptor queue */
459 static inline void
460 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
462 struct efx_rx_buffer *rx_buf;
463 efx_qword_t *rxd;
465 rxd = efx_rx_desc(rx_queue, index);
466 rx_buf = efx_rx_buffer(rx_queue, index);
467 EFX_POPULATE_QWORD_3(*rxd,
468 FSF_AZ_RX_KER_BUF_SIZE,
469 rx_buf->len -
470 rx_queue->efx->type->rx_buffer_padding,
471 FSF_AZ_RX_KER_BUF_REGION, 0,
472 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
475 /* This writes to the RX_DESC_WPTR register for the specified receive
476 * descriptor ring.
478 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
480 struct efx_nic *efx = rx_queue->efx;
481 efx_dword_t reg;
482 unsigned write_ptr;
484 while (rx_queue->notified_count != rx_queue->added_count) {
485 efx_farch_build_rx_desc(
486 rx_queue,
487 rx_queue->notified_count & rx_queue->ptr_mask);
488 ++rx_queue->notified_count;
491 wmb();
492 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
493 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
494 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
495 efx_rx_queue_index(rx_queue));
498 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
500 struct efx_nic *efx = rx_queue->efx;
501 unsigned entries;
503 entries = rx_queue->ptr_mask + 1;
504 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
505 entries * sizeof(efx_qword_t));
508 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
510 efx_oword_t rx_desc_ptr;
511 struct efx_nic *efx = rx_queue->efx;
512 bool jumbo_en;
514 /* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
515 jumbo_en = efx->rx_scatter;
517 netif_dbg(efx, hw, efx->net_dev,
518 "RX queue %d ring in special buffers %d-%d\n",
519 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
520 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
522 rx_queue->scatter_n = 0;
524 /* Pin RX descriptor ring */
525 efx_init_special_buffer(efx, &rx_queue->rxd);
527 /* Push RX descriptor ring to card */
528 EFX_POPULATE_OWORD_10(rx_desc_ptr,
529 FRF_AZ_RX_ISCSI_DDIG_EN, true,
530 FRF_AZ_RX_ISCSI_HDIG_EN, true,
531 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
532 FRF_AZ_RX_DESCQ_EVQ_ID,
533 efx_rx_queue_channel(rx_queue)->channel,
534 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
535 FRF_AZ_RX_DESCQ_LABEL,
536 efx_rx_queue_index(rx_queue),
537 FRF_AZ_RX_DESCQ_SIZE,
538 __ffs(rx_queue->rxd.entries),
539 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
540 FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
541 FRF_AZ_RX_DESCQ_EN, 1);
542 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
543 efx_rx_queue_index(rx_queue));
546 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
548 struct efx_nic *efx = rx_queue->efx;
549 efx_oword_t rx_flush_descq;
551 EFX_POPULATE_OWORD_2(rx_flush_descq,
552 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
553 FRF_AZ_RX_FLUSH_DESCQ,
554 efx_rx_queue_index(rx_queue));
555 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
558 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
560 efx_oword_t rx_desc_ptr;
561 struct efx_nic *efx = rx_queue->efx;
563 /* Remove RX descriptor ring from card */
564 EFX_ZERO_OWORD(rx_desc_ptr);
565 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
566 efx_rx_queue_index(rx_queue));
568 /* Unpin RX descriptor ring */
569 efx_fini_special_buffer(efx, &rx_queue->rxd);
572 /* Free buffers backing RX queue */
573 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
575 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
578 /**************************************************************************
580 * Flush handling
582 **************************************************************************/
584 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
585 * or more RX flushes can be kicked off.
587 static bool efx_farch_flush_wake(struct efx_nic *efx)
589 /* Ensure that all updates are visible to efx_farch_flush_queues() */
590 smp_mb();
592 return (atomic_read(&efx->active_queues) == 0 ||
593 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
594 && atomic_read(&efx->rxq_flush_pending) > 0));
597 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
599 bool i = true;
600 efx_oword_t txd_ptr_tbl;
601 struct efx_channel *channel;
602 struct efx_tx_queue *tx_queue;
604 efx_for_each_channel(channel, efx) {
605 efx_for_each_channel_tx_queue(tx_queue, channel) {
606 efx_reado_table(efx, &txd_ptr_tbl,
607 FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
608 if (EFX_OWORD_FIELD(txd_ptr_tbl,
609 FRF_AZ_TX_DESCQ_FLUSH) ||
610 EFX_OWORD_FIELD(txd_ptr_tbl,
611 FRF_AZ_TX_DESCQ_EN)) {
612 netif_dbg(efx, hw, efx->net_dev,
613 "flush did not complete on TXQ %d\n",
614 tx_queue->queue);
615 i = false;
616 } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
617 1, 0)) {
618 /* The flush is complete, but we didn't
619 * receive a flush completion event
621 netif_dbg(efx, hw, efx->net_dev,
622 "flush complete on TXQ %d, so drain "
623 "the queue\n", tx_queue->queue);
624 /* Don't need to increment active_queues as it
625 * has already been incremented for the queues
626 * which did not drain
628 efx_farch_magic_event(channel,
629 EFX_CHANNEL_MAGIC_TX_DRAIN(
630 tx_queue));
635 return i;
638 /* Flush all the transmit queues, and continue flushing receive queues until
639 * they're all flushed. Wait for the DRAIN events to be received so that there
640 * are no more RX and TX events left on any channel. */
641 static int efx_farch_do_flush(struct efx_nic *efx)
643 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
644 struct efx_channel *channel;
645 struct efx_rx_queue *rx_queue;
646 struct efx_tx_queue *tx_queue;
647 int rc = 0;
649 efx_for_each_channel(channel, efx) {
650 efx_for_each_channel_tx_queue(tx_queue, channel) {
651 efx_farch_flush_tx_queue(tx_queue);
653 efx_for_each_channel_rx_queue(rx_queue, channel) {
654 rx_queue->flush_pending = true;
655 atomic_inc(&efx->rxq_flush_pending);
659 while (timeout && atomic_read(&efx->active_queues) > 0) {
660 /* If SRIOV is enabled, then offload receive queue flushing to
661 * the firmware (though we will still have to poll for
662 * completion). If that fails, fall back to the old scheme.
664 if (efx_siena_sriov_enabled(efx)) {
665 rc = efx_mcdi_flush_rxqs(efx);
666 if (!rc)
667 goto wait;
670 /* The hardware supports four concurrent rx flushes, each of
671 * which may need to be retried if there is an outstanding
672 * descriptor fetch
674 efx_for_each_channel(channel, efx) {
675 efx_for_each_channel_rx_queue(rx_queue, channel) {
676 if (atomic_read(&efx->rxq_flush_outstanding) >=
677 EFX_RX_FLUSH_COUNT)
678 break;
680 if (rx_queue->flush_pending) {
681 rx_queue->flush_pending = false;
682 atomic_dec(&efx->rxq_flush_pending);
683 atomic_inc(&efx->rxq_flush_outstanding);
684 efx_farch_flush_rx_queue(rx_queue);
689 wait:
690 timeout = wait_event_timeout(efx->flush_wq,
691 efx_farch_flush_wake(efx),
692 timeout);
695 if (atomic_read(&efx->active_queues) &&
696 !efx_check_tx_flush_complete(efx)) {
697 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
698 "(rx %d+%d)\n", atomic_read(&efx->active_queues),
699 atomic_read(&efx->rxq_flush_outstanding),
700 atomic_read(&efx->rxq_flush_pending));
701 rc = -ETIMEDOUT;
703 atomic_set(&efx->active_queues, 0);
704 atomic_set(&efx->rxq_flush_pending, 0);
705 atomic_set(&efx->rxq_flush_outstanding, 0);
708 return rc;
711 int efx_farch_fini_dmaq(struct efx_nic *efx)
713 struct efx_channel *channel;
714 struct efx_tx_queue *tx_queue;
715 struct efx_rx_queue *rx_queue;
716 int rc = 0;
718 /* Do not attempt to write to the NIC during EEH recovery */
719 if (efx->state != STATE_RECOVERY) {
720 /* Only perform flush if DMA is enabled */
721 if (efx->pci_dev->is_busmaster) {
722 efx->type->prepare_flush(efx);
723 rc = efx_farch_do_flush(efx);
724 efx->type->finish_flush(efx);
727 efx_for_each_channel(channel, efx) {
728 efx_for_each_channel_rx_queue(rx_queue, channel)
729 efx_farch_rx_fini(rx_queue);
730 efx_for_each_channel_tx_queue(tx_queue, channel)
731 efx_farch_tx_fini(tx_queue);
735 return rc;
738 /* Reset queue and flush accounting after FLR
740 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
741 * mastering was disabled), in which case we don't receive (RXQ) flush
742 * completion events. This means that efx->rxq_flush_outstanding remained at 4
743 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
744 * events were received, and we didn't go through efx_check_tx_flush_complete())
745 * If we don't fix this up, on the next call to efx_realloc_channels() we won't
746 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
747 * for batched flush requests; and the efx->active_queues gets messed up because
748 * we keep incrementing for the newly initialised queues, but it never went to
749 * zero previously. Then we get a timeout every time we try to restart the
750 * queues, as it doesn't go back to zero when we should be flushing the queues.
752 void efx_farch_finish_flr(struct efx_nic *efx)
754 atomic_set(&efx->rxq_flush_pending, 0);
755 atomic_set(&efx->rxq_flush_outstanding, 0);
756 atomic_set(&efx->active_queues, 0);
760 /**************************************************************************
762 * Event queue processing
763 * Event queues are processed by per-channel tasklets.
765 **************************************************************************/
767 /* Update a channel's event queue's read pointer (RPTR) register
769 * This writes the EVQ_RPTR_REG register for the specified channel's
770 * event queue.
772 void efx_farch_ev_read_ack(struct efx_channel *channel)
774 efx_dword_t reg;
775 struct efx_nic *efx = channel->efx;
777 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
778 channel->eventq_read_ptr & channel->eventq_mask);
780 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
781 * of 4 bytes, but it is really 16 bytes just like later revisions.
783 efx_writed(efx, &reg,
784 efx->type->evq_rptr_tbl_base +
785 FR_BZ_EVQ_RPTR_STEP * channel->channel);
788 /* Use HW to insert a SW defined event */
789 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
790 efx_qword_t *event)
792 efx_oword_t drv_ev_reg;
794 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
795 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
796 drv_ev_reg.u32[0] = event->u32[0];
797 drv_ev_reg.u32[1] = event->u32[1];
798 drv_ev_reg.u32[2] = 0;
799 drv_ev_reg.u32[3] = 0;
800 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
801 efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
804 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
806 efx_qword_t event;
808 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
809 FSE_AZ_EV_CODE_DRV_GEN_EV,
810 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
811 efx_farch_generate_event(channel->efx, channel->channel, &event);
814 /* Handle a transmit completion event
816 * The NIC batches TX completion events; the message we receive is of
817 * the form "complete all TX events up to this index".
819 static void
820 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
822 unsigned int tx_ev_desc_ptr;
823 unsigned int tx_ev_q_label;
824 struct efx_tx_queue *tx_queue;
825 struct efx_nic *efx = channel->efx;
827 if (unlikely(READ_ONCE(efx->reset_pending)))
828 return;
830 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
831 /* Transmit completion */
832 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
833 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
834 tx_queue = efx_channel_get_tx_queue(
835 channel, tx_ev_q_label % EFX_TXQ_TYPES);
836 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
837 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
838 /* Rewrite the FIFO write pointer */
839 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
840 tx_queue = efx_channel_get_tx_queue(
841 channel, tx_ev_q_label % EFX_TXQ_TYPES);
843 netif_tx_lock(efx->net_dev);
844 efx_farch_notify_tx_desc(tx_queue);
845 netif_tx_unlock(efx->net_dev);
846 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
847 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
848 } else {
849 netif_err(efx, tx_err, efx->net_dev,
850 "channel %d unexpected TX event "
851 EFX_QWORD_FMT"\n", channel->channel,
852 EFX_QWORD_VAL(*event));
856 /* Detect errors included in the rx_evt_pkt_ok bit. */
857 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
858 const efx_qword_t *event)
860 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
861 struct efx_nic *efx = rx_queue->efx;
862 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
863 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
864 bool rx_ev_frm_trunc, rx_ev_tobe_disc;
865 bool rx_ev_other_err, rx_ev_pause_frm;
866 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
867 unsigned rx_ev_pkt_type;
869 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
870 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
871 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
872 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
873 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
874 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
875 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
876 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
877 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
878 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
879 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
880 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
881 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
883 /* Every error apart from tobe_disc and pause_frm */
884 rx_ev_other_err = (rx_ev_tcp_udp_chksum_err |
885 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
886 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
888 /* Count errors that are not in MAC stats. Ignore expected
889 * checksum errors during self-test. */
890 if (rx_ev_frm_trunc)
891 ++channel->n_rx_frm_trunc;
892 else if (rx_ev_tobe_disc)
893 ++channel->n_rx_tobe_disc;
894 else if (!efx->loopback_selftest) {
895 if (rx_ev_ip_hdr_chksum_err)
896 ++channel->n_rx_ip_hdr_chksum_err;
897 else if (rx_ev_tcp_udp_chksum_err)
898 ++channel->n_rx_tcp_udp_chksum_err;
901 /* TOBE_DISC is expected on unicast mismatches; don't print out an
902 * error message. FRM_TRUNC indicates RXDP dropped the packet due
903 * to a FIFO overflow.
905 #ifdef DEBUG
906 if (rx_ev_other_err && net_ratelimit()) {
907 netif_dbg(efx, rx_err, efx->net_dev,
908 " RX queue %d unexpected RX event "
909 EFX_QWORD_FMT "%s%s%s%s%s%s%s\n",
910 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
911 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
912 rx_ev_ip_hdr_chksum_err ?
913 " [IP_HDR_CHKSUM_ERR]" : "",
914 rx_ev_tcp_udp_chksum_err ?
915 " [TCP_UDP_CHKSUM_ERR]" : "",
916 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
917 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
918 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
919 rx_ev_pause_frm ? " [PAUSE]" : "");
921 #endif
923 if (efx->net_dev->features & NETIF_F_RXALL)
924 /* don't discard frame for CRC error */
925 rx_ev_eth_crc_err = false;
927 /* The frame must be discarded if any of these are true. */
928 return (rx_ev_eth_crc_err | rx_ev_frm_trunc |
929 rx_ev_tobe_disc | rx_ev_pause_frm) ?
930 EFX_RX_PKT_DISCARD : 0;
933 /* Handle receive events that are not in-order. Return true if this
934 * can be handled as a partial packet discard, false if it's more
935 * serious.
937 static bool
938 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
940 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
941 struct efx_nic *efx = rx_queue->efx;
942 unsigned expected, dropped;
944 if (rx_queue->scatter_n &&
945 index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
946 rx_queue->ptr_mask)) {
947 ++channel->n_rx_nodesc_trunc;
948 return true;
951 expected = rx_queue->removed_count & rx_queue->ptr_mask;
952 dropped = (index - expected) & rx_queue->ptr_mask;
953 netif_info(efx, rx_err, efx->net_dev,
954 "dropped %d events (index=%d expected=%d)\n",
955 dropped, index, expected);
957 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
958 return false;
961 /* Handle a packet received event
963 * The NIC gives a "discard" flag if it's a unicast packet with the
964 * wrong destination address
965 * Also "is multicast" and "matches multicast filter" flags can be used to
966 * discard non-matching multicast packets.
968 static void
969 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
971 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
972 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
973 unsigned expected_ptr;
974 bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
975 u16 flags;
976 struct efx_rx_queue *rx_queue;
977 struct efx_nic *efx = channel->efx;
979 if (unlikely(READ_ONCE(efx->reset_pending)))
980 return;
982 rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
983 rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
984 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
985 channel->channel);
987 rx_queue = efx_channel_get_rx_queue(channel);
989 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
990 expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
991 rx_queue->ptr_mask);
993 /* Check for partial drops and other errors */
994 if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
995 unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
996 if (rx_ev_desc_ptr != expected_ptr &&
997 !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
998 return;
1000 /* Discard all pending fragments */
1001 if (rx_queue->scatter_n) {
1002 efx_rx_packet(
1003 rx_queue,
1004 rx_queue->removed_count & rx_queue->ptr_mask,
1005 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1006 rx_queue->removed_count += rx_queue->scatter_n;
1007 rx_queue->scatter_n = 0;
1010 /* Return if there is no new fragment */
1011 if (rx_ev_desc_ptr != expected_ptr)
1012 return;
1014 /* Discard new fragment if not SOP */
1015 if (!rx_ev_sop) {
1016 efx_rx_packet(
1017 rx_queue,
1018 rx_queue->removed_count & rx_queue->ptr_mask,
1019 1, 0, EFX_RX_PKT_DISCARD);
1020 ++rx_queue->removed_count;
1021 return;
1025 ++rx_queue->scatter_n;
1026 if (rx_ev_cont)
1027 return;
1029 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1030 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1031 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1033 if (likely(rx_ev_pkt_ok)) {
1034 /* If packet is marked as OK then we can rely on the
1035 * hardware checksum and classification.
1037 flags = 0;
1038 switch (rx_ev_hdr_type) {
1039 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1040 flags |= EFX_RX_PKT_TCP;
1041 /* fall through */
1042 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1043 flags |= EFX_RX_PKT_CSUMMED;
1044 /* fall through */
1045 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1046 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1047 break;
1049 } else {
1050 flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1053 /* Detect multicast packets that didn't match the filter */
1054 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1055 if (rx_ev_mcast_pkt) {
1056 unsigned int rx_ev_mcast_hash_match =
1057 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1059 if (unlikely(!rx_ev_mcast_hash_match)) {
1060 ++channel->n_rx_mcast_mismatch;
1061 flags |= EFX_RX_PKT_DISCARD;
1065 channel->irq_mod_score += 2;
1067 /* Handle received packet */
1068 efx_rx_packet(rx_queue,
1069 rx_queue->removed_count & rx_queue->ptr_mask,
1070 rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1071 rx_queue->removed_count += rx_queue->scatter_n;
1072 rx_queue->scatter_n = 0;
1075 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1076 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1077 * of all transmit completions.
1079 static void
1080 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1082 struct efx_tx_queue *tx_queue;
1083 int qid;
1085 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1086 if (qid < EFX_TXQ_TYPES * (efx->n_tx_channels + efx->n_extra_tx_channels)) {
1087 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1088 qid % EFX_TXQ_TYPES);
1089 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1090 efx_farch_magic_event(tx_queue->channel,
1091 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1096 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1097 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1098 * the RX queue back to the mask of RX queues in need of flushing.
1100 static void
1101 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1103 struct efx_channel *channel;
1104 struct efx_rx_queue *rx_queue;
1105 int qid;
1106 bool failed;
1108 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1109 failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1110 if (qid >= efx->n_channels)
1111 return;
1112 channel = efx_get_channel(efx, qid);
1113 if (!efx_channel_has_rx_queue(channel))
1114 return;
1115 rx_queue = efx_channel_get_rx_queue(channel);
1117 if (failed) {
1118 netif_info(efx, hw, efx->net_dev,
1119 "RXQ %d flush retry\n", qid);
1120 rx_queue->flush_pending = true;
1121 atomic_inc(&efx->rxq_flush_pending);
1122 } else {
1123 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1124 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1126 atomic_dec(&efx->rxq_flush_outstanding);
1127 if (efx_farch_flush_wake(efx))
1128 wake_up(&efx->flush_wq);
1131 static void
1132 efx_farch_handle_drain_event(struct efx_channel *channel)
1134 struct efx_nic *efx = channel->efx;
1136 WARN_ON(atomic_read(&efx->active_queues) == 0);
1137 atomic_dec(&efx->active_queues);
1138 if (efx_farch_flush_wake(efx))
1139 wake_up(&efx->flush_wq);
1142 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1143 efx_qword_t *event)
1145 struct efx_nic *efx = channel->efx;
1146 struct efx_rx_queue *rx_queue =
1147 efx_channel_has_rx_queue(channel) ?
1148 efx_channel_get_rx_queue(channel) : NULL;
1149 unsigned magic, code;
1151 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1152 code = _EFX_CHANNEL_MAGIC_CODE(magic);
1154 if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1155 channel->event_test_cpu = raw_smp_processor_id();
1156 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1157 /* The queue must be empty, so we won't receive any rx
1158 * events, so efx_process_channel() won't refill the
1159 * queue. Refill it here */
1160 efx_fast_push_rx_descriptors(rx_queue, true);
1161 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1162 efx_farch_handle_drain_event(channel);
1163 } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1164 efx_farch_handle_drain_event(channel);
1165 } else {
1166 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1167 "generated event "EFX_QWORD_FMT"\n",
1168 channel->channel, EFX_QWORD_VAL(*event));
1172 static void
1173 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1175 struct efx_nic *efx = channel->efx;
1176 unsigned int ev_sub_code;
1177 unsigned int ev_sub_data;
1179 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1180 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1182 switch (ev_sub_code) {
1183 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1184 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1185 channel->channel, ev_sub_data);
1186 efx_farch_handle_tx_flush_done(efx, event);
1187 #ifdef CONFIG_SFC_SRIOV
1188 efx_siena_sriov_tx_flush_done(efx, event);
1189 #endif
1190 break;
1191 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1192 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1193 channel->channel, ev_sub_data);
1194 efx_farch_handle_rx_flush_done(efx, event);
1195 #ifdef CONFIG_SFC_SRIOV
1196 efx_siena_sriov_rx_flush_done(efx, event);
1197 #endif
1198 break;
1199 case FSE_AZ_EVQ_INIT_DONE_EV:
1200 netif_dbg(efx, hw, efx->net_dev,
1201 "channel %d EVQ %d initialised\n",
1202 channel->channel, ev_sub_data);
1203 break;
1204 case FSE_AZ_SRM_UPD_DONE_EV:
1205 netif_vdbg(efx, hw, efx->net_dev,
1206 "channel %d SRAM update done\n", channel->channel);
1207 break;
1208 case FSE_AZ_WAKE_UP_EV:
1209 netif_vdbg(efx, hw, efx->net_dev,
1210 "channel %d RXQ %d wakeup event\n",
1211 channel->channel, ev_sub_data);
1212 break;
1213 case FSE_AZ_TIMER_EV:
1214 netif_vdbg(efx, hw, efx->net_dev,
1215 "channel %d RX queue %d timer expired\n",
1216 channel->channel, ev_sub_data);
1217 break;
1218 case FSE_AA_RX_RECOVER_EV:
1219 netif_err(efx, rx_err, efx->net_dev,
1220 "channel %d seen DRIVER RX_RESET event. "
1221 "Resetting.\n", channel->channel);
1222 atomic_inc(&efx->rx_reset);
1223 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1224 break;
1225 case FSE_BZ_RX_DSC_ERROR_EV:
1226 if (ev_sub_data < EFX_VI_BASE) {
1227 netif_err(efx, rx_err, efx->net_dev,
1228 "RX DMA Q %d reports descriptor fetch error."
1229 " RX Q %d is disabled.\n", ev_sub_data,
1230 ev_sub_data);
1231 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1233 #ifdef CONFIG_SFC_SRIOV
1234 else
1235 efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1236 #endif
1237 break;
1238 case FSE_BZ_TX_DSC_ERROR_EV:
1239 if (ev_sub_data < EFX_VI_BASE) {
1240 netif_err(efx, tx_err, efx->net_dev,
1241 "TX DMA Q %d reports descriptor fetch error."
1242 " TX Q %d is disabled.\n", ev_sub_data,
1243 ev_sub_data);
1244 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1246 #ifdef CONFIG_SFC_SRIOV
1247 else
1248 efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1249 #endif
1250 break;
1251 default:
1252 netif_vdbg(efx, hw, efx->net_dev,
1253 "channel %d unknown driver event code %d "
1254 "data %04x\n", channel->channel, ev_sub_code,
1255 ev_sub_data);
1256 break;
1260 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1262 struct efx_nic *efx = channel->efx;
1263 unsigned int read_ptr;
1264 efx_qword_t event, *p_event;
1265 int ev_code;
1266 int spent = 0;
1268 if (budget <= 0)
1269 return spent;
1271 read_ptr = channel->eventq_read_ptr;
1273 for (;;) {
1274 p_event = efx_event(channel, read_ptr);
1275 event = *p_event;
1277 if (!efx_event_present(&event))
1278 /* End of events */
1279 break;
1281 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1282 "channel %d event is "EFX_QWORD_FMT"\n",
1283 channel->channel, EFX_QWORD_VAL(event));
1285 /* Clear this event by marking it all ones */
1286 EFX_SET_QWORD(*p_event);
1288 ++read_ptr;
1290 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1292 switch (ev_code) {
1293 case FSE_AZ_EV_CODE_RX_EV:
1294 efx_farch_handle_rx_event(channel, &event);
1295 if (++spent == budget)
1296 goto out;
1297 break;
1298 case FSE_AZ_EV_CODE_TX_EV:
1299 efx_farch_handle_tx_event(channel, &event);
1300 break;
1301 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1302 efx_farch_handle_generated_event(channel, &event);
1303 break;
1304 case FSE_AZ_EV_CODE_DRIVER_EV:
1305 efx_farch_handle_driver_event(channel, &event);
1306 break;
1307 #ifdef CONFIG_SFC_SRIOV
1308 case FSE_CZ_EV_CODE_USER_EV:
1309 efx_siena_sriov_event(channel, &event);
1310 break;
1311 #endif
1312 case FSE_CZ_EV_CODE_MCDI_EV:
1313 efx_mcdi_process_event(channel, &event);
1314 break;
1315 case FSE_AZ_EV_CODE_GLOBAL_EV:
1316 if (efx->type->handle_global_event &&
1317 efx->type->handle_global_event(channel, &event))
1318 break;
1319 /* else fall through */
1320 default:
1321 netif_err(channel->efx, hw, channel->efx->net_dev,
1322 "channel %d unknown event type %d (data "
1323 EFX_QWORD_FMT ")\n", channel->channel,
1324 ev_code, EFX_QWORD_VAL(event));
1328 out:
1329 channel->eventq_read_ptr = read_ptr;
1330 return spent;
1333 /* Allocate buffer table entries for event queue */
1334 int efx_farch_ev_probe(struct efx_channel *channel)
1336 struct efx_nic *efx = channel->efx;
1337 unsigned entries;
1339 entries = channel->eventq_mask + 1;
1340 return efx_alloc_special_buffer(efx, &channel->eventq,
1341 entries * sizeof(efx_qword_t));
1344 int efx_farch_ev_init(struct efx_channel *channel)
1346 efx_oword_t reg;
1347 struct efx_nic *efx = channel->efx;
1349 netif_dbg(efx, hw, efx->net_dev,
1350 "channel %d event queue in special buffers %d-%d\n",
1351 channel->channel, channel->eventq.index,
1352 channel->eventq.index + channel->eventq.entries - 1);
1354 EFX_POPULATE_OWORD_3(reg,
1355 FRF_CZ_TIMER_Q_EN, 1,
1356 FRF_CZ_HOST_NOTIFY_MODE, 0,
1357 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1358 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1360 /* Pin event queue buffer */
1361 efx_init_special_buffer(efx, &channel->eventq);
1363 /* Fill event queue with all ones (i.e. empty events) */
1364 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1366 /* Push event queue to card */
1367 EFX_POPULATE_OWORD_3(reg,
1368 FRF_AZ_EVQ_EN, 1,
1369 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1370 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1371 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1372 channel->channel);
1374 return 0;
1377 void efx_farch_ev_fini(struct efx_channel *channel)
1379 efx_oword_t reg;
1380 struct efx_nic *efx = channel->efx;
1382 /* Remove event queue from card */
1383 EFX_ZERO_OWORD(reg);
1384 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1385 channel->channel);
1386 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1388 /* Unpin event queue */
1389 efx_fini_special_buffer(efx, &channel->eventq);
1392 /* Free buffers backing event queue */
1393 void efx_farch_ev_remove(struct efx_channel *channel)
1395 efx_free_special_buffer(channel->efx, &channel->eventq);
1399 void efx_farch_ev_test_generate(struct efx_channel *channel)
1401 efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1404 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1406 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1407 EFX_CHANNEL_MAGIC_FILL(rx_queue));
1410 /**************************************************************************
1412 * Hardware interrupts
1413 * The hardware interrupt handler does very little work; all the event
1414 * queue processing is carried out by per-channel tasklets.
1416 **************************************************************************/
1418 /* Enable/disable/generate interrupts */
1419 static inline void efx_farch_interrupts(struct efx_nic *efx,
1420 bool enabled, bool force)
1422 efx_oword_t int_en_reg_ker;
1424 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1425 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1426 FRF_AZ_KER_INT_KER, force,
1427 FRF_AZ_DRV_INT_EN_KER, enabled);
1428 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1431 void efx_farch_irq_enable_master(struct efx_nic *efx)
1433 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1434 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1436 efx_farch_interrupts(efx, true, false);
1439 void efx_farch_irq_disable_master(struct efx_nic *efx)
1441 /* Disable interrupts */
1442 efx_farch_interrupts(efx, false, false);
1445 /* Generate a test interrupt
1446 * Interrupt must already have been enabled, otherwise nasty things
1447 * may happen.
1449 int efx_farch_irq_test_generate(struct efx_nic *efx)
1451 efx_farch_interrupts(efx, true, true);
1452 return 0;
1455 /* Process a fatal interrupt
1456 * Disable bus mastering ASAP and schedule a reset
1458 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1460 efx_oword_t *int_ker = efx->irq_status.addr;
1461 efx_oword_t fatal_intr;
1462 int error, mem_perr;
1464 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1465 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1467 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1468 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1469 EFX_OWORD_VAL(fatal_intr),
1470 error ? "disabling bus mastering" : "no recognised error");
1472 /* If this is a memory parity error dump which blocks are offending */
1473 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1474 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1475 if (mem_perr) {
1476 efx_oword_t reg;
1477 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1478 netif_err(efx, hw, efx->net_dev,
1479 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1480 EFX_OWORD_VAL(reg));
1483 /* Disable both devices */
1484 pci_clear_master(efx->pci_dev);
1485 efx_farch_irq_disable_master(efx);
1487 /* Count errors and reset or disable the NIC accordingly */
1488 if (efx->int_error_count == 0 ||
1489 time_after(jiffies, efx->int_error_expire)) {
1490 efx->int_error_count = 0;
1491 efx->int_error_expire =
1492 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1494 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1495 netif_err(efx, hw, efx->net_dev,
1496 "SYSTEM ERROR - reset scheduled\n");
1497 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1498 } else {
1499 netif_err(efx, hw, efx->net_dev,
1500 "SYSTEM ERROR - max number of errors seen."
1501 "NIC will be disabled\n");
1502 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1505 return IRQ_HANDLED;
1508 /* Handle a legacy interrupt
1509 * Acknowledges the interrupt and schedule event queue processing.
1511 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1513 struct efx_nic *efx = dev_id;
1514 bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1515 efx_oword_t *int_ker = efx->irq_status.addr;
1516 irqreturn_t result = IRQ_NONE;
1517 struct efx_channel *channel;
1518 efx_dword_t reg;
1519 u32 queues;
1520 int syserr;
1522 /* Read the ISR which also ACKs the interrupts */
1523 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1524 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1526 /* Legacy interrupts are disabled too late by the EEH kernel
1527 * code. Disable them earlier.
1528 * If an EEH error occurred, the read will have returned all ones.
1530 if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1531 !efx->eeh_disabled_legacy_irq) {
1532 disable_irq_nosync(efx->legacy_irq);
1533 efx->eeh_disabled_legacy_irq = true;
1536 /* Handle non-event-queue sources */
1537 if (queues & (1U << efx->irq_level) && soft_enabled) {
1538 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1539 if (unlikely(syserr))
1540 return efx_farch_fatal_interrupt(efx);
1541 efx->last_irq_cpu = raw_smp_processor_id();
1544 if (queues != 0) {
1545 efx->irq_zero_count = 0;
1547 /* Schedule processing of any interrupting queues */
1548 if (likely(soft_enabled)) {
1549 efx_for_each_channel(channel, efx) {
1550 if (queues & 1)
1551 efx_schedule_channel_irq(channel);
1552 queues >>= 1;
1555 result = IRQ_HANDLED;
1557 } else {
1558 efx_qword_t *event;
1560 /* Legacy ISR read can return zero once (SF bug 15783) */
1562 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1563 * because this might be a shared interrupt. */
1564 if (efx->irq_zero_count++ == 0)
1565 result = IRQ_HANDLED;
1567 /* Ensure we schedule or rearm all event queues */
1568 if (likely(soft_enabled)) {
1569 efx_for_each_channel(channel, efx) {
1570 event = efx_event(channel,
1571 channel->eventq_read_ptr);
1572 if (efx_event_present(event))
1573 efx_schedule_channel_irq(channel);
1574 else
1575 efx_farch_ev_read_ack(channel);
1580 if (result == IRQ_HANDLED)
1581 netif_vdbg(efx, intr, efx->net_dev,
1582 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1583 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1585 return result;
1588 /* Handle an MSI interrupt
1590 * Handle an MSI hardware interrupt. This routine schedules event
1591 * queue processing. No interrupt acknowledgement cycle is necessary.
1592 * Also, we never need to check that the interrupt is for us, since
1593 * MSI interrupts cannot be shared.
1595 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1597 struct efx_msi_context *context = dev_id;
1598 struct efx_nic *efx = context->efx;
1599 efx_oword_t *int_ker = efx->irq_status.addr;
1600 int syserr;
1602 netif_vdbg(efx, intr, efx->net_dev,
1603 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1604 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1606 if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1607 return IRQ_HANDLED;
1609 /* Handle non-event-queue sources */
1610 if (context->index == efx->irq_level) {
1611 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1612 if (unlikely(syserr))
1613 return efx_farch_fatal_interrupt(efx);
1614 efx->last_irq_cpu = raw_smp_processor_id();
1617 /* Schedule processing of the channel */
1618 efx_schedule_channel_irq(efx->channel[context->index]);
1620 return IRQ_HANDLED;
1623 /* Setup RSS indirection table.
1624 * This maps from the hash value of the packet to RXQ
1626 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1628 size_t i = 0;
1629 efx_dword_t dword;
1631 BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1632 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1634 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1635 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1636 efx->rss_context.rx_indir_table[i]);
1637 efx_writed(efx, &dword,
1638 FR_BZ_RX_INDIRECTION_TBL +
1639 FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1643 void efx_farch_rx_pull_indir_table(struct efx_nic *efx)
1645 size_t i = 0;
1646 efx_dword_t dword;
1648 BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1649 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1651 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1652 efx_readd(efx, &dword,
1653 FR_BZ_RX_INDIRECTION_TBL +
1654 FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1655 efx->rss_context.rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE);
1659 /* Looks at available SRAM resources and works out how many queues we
1660 * can support, and where things like descriptor caches should live.
1662 * SRAM is split up as follows:
1663 * 0 buftbl entries for channels
1664 * efx->vf_buftbl_base buftbl entries for SR-IOV
1665 * efx->rx_dc_base RX descriptor caches
1666 * efx->tx_dc_base TX descriptor caches
1668 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1670 unsigned vi_count, buftbl_min, total_tx_channels;
1672 #ifdef CONFIG_SFC_SRIOV
1673 struct siena_nic_data *nic_data = efx->nic_data;
1674 #endif
1676 total_tx_channels = efx->n_tx_channels + efx->n_extra_tx_channels;
1677 /* Account for the buffer table entries backing the datapath channels
1678 * and the descriptor caches for those channels.
1680 buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1681 total_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1682 efx->n_channels * EFX_MAX_EVQ_SIZE)
1683 * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1684 vi_count = max(efx->n_channels, total_tx_channels * EFX_TXQ_TYPES);
1686 #ifdef CONFIG_SFC_SRIOV
1687 if (efx->type->sriov_wanted) {
1688 if (efx->type->sriov_wanted(efx)) {
1689 unsigned vi_dc_entries, buftbl_free;
1690 unsigned entries_per_vf, vf_limit;
1692 nic_data->vf_buftbl_base = buftbl_min;
1694 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1695 vi_count = max(vi_count, EFX_VI_BASE);
1696 buftbl_free = (sram_lim_qw - buftbl_min -
1697 vi_count * vi_dc_entries);
1699 entries_per_vf = ((vi_dc_entries +
1700 EFX_VF_BUFTBL_PER_VI) *
1701 efx_vf_size(efx));
1702 vf_limit = min(buftbl_free / entries_per_vf,
1703 (1024U - EFX_VI_BASE) >> efx->vi_scale);
1705 if (efx->vf_count > vf_limit) {
1706 netif_err(efx, probe, efx->net_dev,
1707 "Reducing VF count from from %d to %d\n",
1708 efx->vf_count, vf_limit);
1709 efx->vf_count = vf_limit;
1711 vi_count += efx->vf_count * efx_vf_size(efx);
1714 #endif
1716 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1717 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1720 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1722 efx_oword_t altera_build;
1723 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1724 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1727 void efx_farch_init_common(struct efx_nic *efx)
1729 efx_oword_t temp;
1731 /* Set positions of descriptor caches in SRAM. */
1732 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1733 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1734 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1735 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1737 /* Set TX descriptor cache size. */
1738 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1739 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1740 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1742 /* Set RX descriptor cache size. Set low watermark to size-8, as
1743 * this allows most efficient prefetching.
1745 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1746 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1747 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1748 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1749 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1751 /* Program INT_KER address */
1752 EFX_POPULATE_OWORD_2(temp,
1753 FRF_AZ_NORM_INT_VEC_DIS_KER,
1754 EFX_INT_MODE_USE_MSI(efx),
1755 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1756 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1758 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1759 /* Use an interrupt level unused by event queues */
1760 efx->irq_level = 0x1f;
1761 else
1762 /* Use a valid MSI-X vector */
1763 efx->irq_level = 0;
1765 /* Enable all the genuinely fatal interrupts. (They are still
1766 * masked by the overall interrupt mask, controlled by
1767 * falcon_interrupts()).
1769 * Note: All other fatal interrupts are enabled
1771 EFX_POPULATE_OWORD_3(temp,
1772 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1773 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1774 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1775 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1776 EFX_INVERT_OWORD(temp);
1777 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1779 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1780 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1782 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1783 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1784 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1785 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1786 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1787 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1788 /* Enable SW_EV to inherit in char driver - assume harmless here */
1789 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1790 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1791 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1792 /* Disable hardware watchdog which can misfire */
1793 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1794 /* Squash TX of packets of 16 bytes or less */
1795 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1796 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1798 EFX_POPULATE_OWORD_4(temp,
1799 /* Default values */
1800 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1801 FRF_BZ_TX_PACE_SB_AF, 0xb,
1802 FRF_BZ_TX_PACE_FB_BASE, 0,
1803 /* Allow large pace values in the fast bin. */
1804 FRF_BZ_TX_PACE_BIN_TH,
1805 FFE_BZ_TX_PACE_RESERVED);
1806 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1809 /**************************************************************************
1811 * Filter tables
1813 **************************************************************************
1816 /* "Fudge factors" - difference between programmed value and actual depth.
1817 * Due to pipelined implementation we need to program H/W with a value that
1818 * is larger than the hop limit we want.
1820 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1821 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1823 /* Hard maximum search limit. Hardware will time-out beyond 200-something.
1824 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1825 * table is full.
1827 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1829 /* Don't try very hard to find space for performance hints, as this is
1830 * counter-productive. */
1831 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1833 enum efx_farch_filter_type {
1834 EFX_FARCH_FILTER_TCP_FULL = 0,
1835 EFX_FARCH_FILTER_TCP_WILD,
1836 EFX_FARCH_FILTER_UDP_FULL,
1837 EFX_FARCH_FILTER_UDP_WILD,
1838 EFX_FARCH_FILTER_MAC_FULL = 4,
1839 EFX_FARCH_FILTER_MAC_WILD,
1840 EFX_FARCH_FILTER_UC_DEF = 8,
1841 EFX_FARCH_FILTER_MC_DEF,
1842 EFX_FARCH_FILTER_TYPE_COUNT, /* number of specific types */
1845 enum efx_farch_filter_table_id {
1846 EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1847 EFX_FARCH_FILTER_TABLE_RX_MAC,
1848 EFX_FARCH_FILTER_TABLE_RX_DEF,
1849 EFX_FARCH_FILTER_TABLE_TX_MAC,
1850 EFX_FARCH_FILTER_TABLE_COUNT,
1853 enum efx_farch_filter_index {
1854 EFX_FARCH_FILTER_INDEX_UC_DEF,
1855 EFX_FARCH_FILTER_INDEX_MC_DEF,
1856 EFX_FARCH_FILTER_SIZE_RX_DEF,
1859 struct efx_farch_filter_spec {
1860 u8 type:4;
1861 u8 priority:4;
1862 u8 flags;
1863 u16 dmaq_id;
1864 u32 data[3];
1867 struct efx_farch_filter_table {
1868 enum efx_farch_filter_table_id id;
1869 u32 offset; /* address of table relative to BAR */
1870 unsigned size; /* number of entries */
1871 unsigned step; /* step between entries */
1872 unsigned used; /* number currently used */
1873 unsigned long *used_bitmap;
1874 struct efx_farch_filter_spec *spec;
1875 unsigned search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1878 struct efx_farch_filter_state {
1879 struct rw_semaphore lock; /* Protects table contents */
1880 struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1883 static void
1884 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1885 struct efx_farch_filter_table *table,
1886 unsigned int filter_idx);
1888 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1889 * key derived from the n-tuple. The initial LFSR state is 0xffff. */
1890 static u16 efx_farch_filter_hash(u32 key)
1892 u16 tmp;
1894 /* First 16 rounds */
1895 tmp = 0x1fff ^ key >> 16;
1896 tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1897 tmp = tmp ^ tmp >> 9;
1898 /* Last 16 rounds */
1899 tmp = tmp ^ tmp << 13 ^ key;
1900 tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1901 return tmp ^ tmp >> 9;
1904 /* To allow for hash collisions, filter search continues at these
1905 * increments from the first possible entry selected by the hash. */
1906 static u16 efx_farch_filter_increment(u32 key)
1908 return key * 2 - 1;
1911 static enum efx_farch_filter_table_id
1912 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1914 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1915 (EFX_FARCH_FILTER_TCP_FULL >> 2));
1916 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1917 (EFX_FARCH_FILTER_TCP_WILD >> 2));
1918 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1919 (EFX_FARCH_FILTER_UDP_FULL >> 2));
1920 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1921 (EFX_FARCH_FILTER_UDP_WILD >> 2));
1922 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1923 (EFX_FARCH_FILTER_MAC_FULL >> 2));
1924 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1925 (EFX_FARCH_FILTER_MAC_WILD >> 2));
1926 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1927 EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1928 return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1931 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1933 struct efx_farch_filter_state *state = efx->filter_state;
1934 struct efx_farch_filter_table *table;
1935 efx_oword_t filter_ctl;
1937 efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1939 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1940 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1941 table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1942 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1943 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1944 table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1945 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1946 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1947 table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1948 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1949 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1950 table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1951 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1953 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1954 if (table->size) {
1955 EFX_SET_OWORD_FIELD(
1956 filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1957 table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1958 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1959 EFX_SET_OWORD_FIELD(
1960 filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1961 table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1962 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1965 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1966 if (table->size) {
1967 EFX_SET_OWORD_FIELD(
1968 filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1969 table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1970 EFX_SET_OWORD_FIELD(
1971 filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1972 !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1973 EFX_FILTER_FLAG_RX_RSS));
1974 EFX_SET_OWORD_FIELD(
1975 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1976 table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1977 EFX_SET_OWORD_FIELD(
1978 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1979 !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1980 EFX_FILTER_FLAG_RX_RSS));
1982 /* There is a single bit to enable RX scatter for all
1983 * unmatched packets. Only set it if scatter is
1984 * enabled in both filter specs.
1986 EFX_SET_OWORD_FIELD(
1987 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1988 !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1989 table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1990 EFX_FILTER_FLAG_RX_SCATTER));
1991 } else {
1992 /* We don't expose 'default' filters because unmatched
1993 * packets always go to the queue number found in the
1994 * RSS table. But we still need to set the RX scatter
1995 * bit here.
1997 EFX_SET_OWORD_FIELD(
1998 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1999 efx->rx_scatter);
2002 efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2005 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2007 struct efx_farch_filter_state *state = efx->filter_state;
2008 struct efx_farch_filter_table *table;
2009 efx_oword_t tx_cfg;
2011 efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2013 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2014 if (table->size) {
2015 EFX_SET_OWORD_FIELD(
2016 tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2017 table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2018 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2019 EFX_SET_OWORD_FIELD(
2020 tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2021 table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2022 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2025 efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2028 static int
2029 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2030 const struct efx_filter_spec *gen_spec)
2032 bool is_full = false;
2034 if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) && gen_spec->rss_context)
2035 return -EINVAL;
2037 spec->priority = gen_spec->priority;
2038 spec->flags = gen_spec->flags;
2039 spec->dmaq_id = gen_spec->dmaq_id;
2041 switch (gen_spec->match_flags) {
2042 case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2043 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2044 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2045 is_full = true;
2046 /* fall through */
2047 case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2048 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2049 __be32 rhost, host1, host2;
2050 __be16 rport, port1, port2;
2052 EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2054 if (gen_spec->ether_type != htons(ETH_P_IP))
2055 return -EPROTONOSUPPORT;
2056 if (gen_spec->loc_port == 0 ||
2057 (is_full && gen_spec->rem_port == 0))
2058 return -EADDRNOTAVAIL;
2059 switch (gen_spec->ip_proto) {
2060 case IPPROTO_TCP:
2061 spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2062 EFX_FARCH_FILTER_TCP_WILD);
2063 break;
2064 case IPPROTO_UDP:
2065 spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2066 EFX_FARCH_FILTER_UDP_WILD);
2067 break;
2068 default:
2069 return -EPROTONOSUPPORT;
2072 /* Filter is constructed in terms of source and destination,
2073 * with the odd wrinkle that the ports are swapped in a UDP
2074 * wildcard filter. We need to convert from local and remote
2075 * (= zero for wildcard) addresses.
2077 rhost = is_full ? gen_spec->rem_host[0] : 0;
2078 rport = is_full ? gen_spec->rem_port : 0;
2079 host1 = rhost;
2080 host2 = gen_spec->loc_host[0];
2081 if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2082 port1 = gen_spec->loc_port;
2083 port2 = rport;
2084 } else {
2085 port1 = rport;
2086 port2 = gen_spec->loc_port;
2088 spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2089 spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2090 spec->data[2] = ntohl(host2);
2092 break;
2095 case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2096 is_full = true;
2097 /* fall through */
2098 case EFX_FILTER_MATCH_LOC_MAC:
2099 spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2100 EFX_FARCH_FILTER_MAC_WILD);
2101 spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2102 spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2103 gen_spec->loc_mac[3] << 16 |
2104 gen_spec->loc_mac[4] << 8 |
2105 gen_spec->loc_mac[5]);
2106 spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2107 gen_spec->loc_mac[1]);
2108 break;
2110 case EFX_FILTER_MATCH_LOC_MAC_IG:
2111 spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2112 EFX_FARCH_FILTER_MC_DEF :
2113 EFX_FARCH_FILTER_UC_DEF);
2114 memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2115 break;
2117 default:
2118 return -EPROTONOSUPPORT;
2121 return 0;
2124 static void
2125 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2126 const struct efx_farch_filter_spec *spec)
2128 bool is_full = false;
2130 /* *gen_spec should be completely initialised, to be consistent
2131 * with efx_filter_init_{rx,tx}() and in case we want to copy
2132 * it back to userland.
2134 memset(gen_spec, 0, sizeof(*gen_spec));
2136 gen_spec->priority = spec->priority;
2137 gen_spec->flags = spec->flags;
2138 gen_spec->dmaq_id = spec->dmaq_id;
2140 switch (spec->type) {
2141 case EFX_FARCH_FILTER_TCP_FULL:
2142 case EFX_FARCH_FILTER_UDP_FULL:
2143 is_full = true;
2144 /* fall through */
2145 case EFX_FARCH_FILTER_TCP_WILD:
2146 case EFX_FARCH_FILTER_UDP_WILD: {
2147 __be32 host1, host2;
2148 __be16 port1, port2;
2150 gen_spec->match_flags =
2151 EFX_FILTER_MATCH_ETHER_TYPE |
2152 EFX_FILTER_MATCH_IP_PROTO |
2153 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2154 if (is_full)
2155 gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2156 EFX_FILTER_MATCH_REM_PORT);
2157 gen_spec->ether_type = htons(ETH_P_IP);
2158 gen_spec->ip_proto =
2159 (spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2160 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2161 IPPROTO_TCP : IPPROTO_UDP;
2163 host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2164 port1 = htons(spec->data[0]);
2165 host2 = htonl(spec->data[2]);
2166 port2 = htons(spec->data[1] >> 16);
2167 if (spec->flags & EFX_FILTER_FLAG_TX) {
2168 gen_spec->loc_host[0] = host1;
2169 gen_spec->rem_host[0] = host2;
2170 } else {
2171 gen_spec->loc_host[0] = host2;
2172 gen_spec->rem_host[0] = host1;
2174 if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2175 (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2176 gen_spec->loc_port = port1;
2177 gen_spec->rem_port = port2;
2178 } else {
2179 gen_spec->loc_port = port2;
2180 gen_spec->rem_port = port1;
2183 break;
2186 case EFX_FARCH_FILTER_MAC_FULL:
2187 is_full = true;
2188 /* fall through */
2189 case EFX_FARCH_FILTER_MAC_WILD:
2190 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2191 if (is_full)
2192 gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2193 gen_spec->loc_mac[0] = spec->data[2] >> 8;
2194 gen_spec->loc_mac[1] = spec->data[2];
2195 gen_spec->loc_mac[2] = spec->data[1] >> 24;
2196 gen_spec->loc_mac[3] = spec->data[1] >> 16;
2197 gen_spec->loc_mac[4] = spec->data[1] >> 8;
2198 gen_spec->loc_mac[5] = spec->data[1];
2199 gen_spec->outer_vid = htons(spec->data[0]);
2200 break;
2202 case EFX_FARCH_FILTER_UC_DEF:
2203 case EFX_FARCH_FILTER_MC_DEF:
2204 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2205 gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2206 break;
2208 default:
2209 WARN_ON(1);
2210 break;
2214 static void
2215 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2216 struct efx_farch_filter_spec *spec)
2218 /* If there's only one channel then disable RSS for non VF
2219 * traffic, thereby allowing VFs to use RSS when the PF can't.
2221 spec->priority = EFX_FILTER_PRI_AUTO;
2222 spec->flags = (EFX_FILTER_FLAG_RX |
2223 (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2224 (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2225 spec->dmaq_id = 0;
2228 /* Build a filter entry and return its n-tuple key. */
2229 static u32 efx_farch_filter_build(efx_oword_t *filter,
2230 struct efx_farch_filter_spec *spec)
2232 u32 data3;
2234 switch (efx_farch_filter_spec_table_id(spec)) {
2235 case EFX_FARCH_FILTER_TABLE_RX_IP: {
2236 bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2237 spec->type == EFX_FARCH_FILTER_UDP_WILD);
2238 EFX_POPULATE_OWORD_7(
2239 *filter,
2240 FRF_BZ_RSS_EN,
2241 !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2242 FRF_BZ_SCATTER_EN,
2243 !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2244 FRF_BZ_TCP_UDP, is_udp,
2245 FRF_BZ_RXQ_ID, spec->dmaq_id,
2246 EFX_DWORD_2, spec->data[2],
2247 EFX_DWORD_1, spec->data[1],
2248 EFX_DWORD_0, spec->data[0]);
2249 data3 = is_udp;
2250 break;
2253 case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2254 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2255 EFX_POPULATE_OWORD_7(
2256 *filter,
2257 FRF_CZ_RMFT_RSS_EN,
2258 !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2259 FRF_CZ_RMFT_SCATTER_EN,
2260 !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2261 FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2262 FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2263 FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2264 FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2265 FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2266 data3 = is_wild;
2267 break;
2270 case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2271 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2272 EFX_POPULATE_OWORD_5(*filter,
2273 FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2274 FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2275 FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2276 FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2277 FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2278 data3 = is_wild | spec->dmaq_id << 1;
2279 break;
2282 default:
2283 BUG();
2286 return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2289 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2290 const struct efx_farch_filter_spec *right)
2292 if (left->type != right->type ||
2293 memcmp(left->data, right->data, sizeof(left->data)))
2294 return false;
2296 if (left->flags & EFX_FILTER_FLAG_TX &&
2297 left->dmaq_id != right->dmaq_id)
2298 return false;
2300 return true;
2304 * Construct/deconstruct external filter IDs. At least the RX filter
2305 * IDs must be ordered by matching priority, for RX NFC semantics.
2307 * Deconstruction needs to be robust against invalid IDs so that
2308 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2309 * accept user-provided IDs.
2312 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT 5
2314 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2315 [EFX_FARCH_FILTER_TCP_FULL] = 0,
2316 [EFX_FARCH_FILTER_UDP_FULL] = 0,
2317 [EFX_FARCH_FILTER_TCP_WILD] = 1,
2318 [EFX_FARCH_FILTER_UDP_WILD] = 1,
2319 [EFX_FARCH_FILTER_MAC_FULL] = 2,
2320 [EFX_FARCH_FILTER_MAC_WILD] = 3,
2321 [EFX_FARCH_FILTER_UC_DEF] = 4,
2322 [EFX_FARCH_FILTER_MC_DEF] = 4,
2325 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2326 EFX_FARCH_FILTER_TABLE_RX_IP, /* RX match pri 0 */
2327 EFX_FARCH_FILTER_TABLE_RX_IP,
2328 EFX_FARCH_FILTER_TABLE_RX_MAC,
2329 EFX_FARCH_FILTER_TABLE_RX_MAC,
2330 EFX_FARCH_FILTER_TABLE_RX_DEF, /* RX match pri 4 */
2331 EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 0 */
2332 EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 1 */
2335 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2336 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2338 static inline u32
2339 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2340 unsigned int index)
2342 unsigned int range;
2344 range = efx_farch_filter_type_match_pri[spec->type];
2345 if (!(spec->flags & EFX_FILTER_FLAG_RX))
2346 range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2348 return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2351 static inline enum efx_farch_filter_table_id
2352 efx_farch_filter_id_table_id(u32 id)
2354 unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2356 if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2357 return efx_farch_filter_range_table[range];
2358 else
2359 return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2362 static inline unsigned int efx_farch_filter_id_index(u32 id)
2364 return id & EFX_FARCH_FILTER_INDEX_MASK;
2367 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2369 struct efx_farch_filter_state *state = efx->filter_state;
2370 unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2371 enum efx_farch_filter_table_id table_id;
2373 do {
2374 table_id = efx_farch_filter_range_table[range];
2375 if (state->table[table_id].size != 0)
2376 return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2377 state->table[table_id].size;
2378 } while (range--);
2380 return 0;
2383 s32 efx_farch_filter_insert(struct efx_nic *efx,
2384 struct efx_filter_spec *gen_spec,
2385 bool replace_equal)
2387 struct efx_farch_filter_state *state = efx->filter_state;
2388 struct efx_farch_filter_table *table;
2389 struct efx_farch_filter_spec spec;
2390 efx_oword_t filter;
2391 int rep_index, ins_index;
2392 unsigned int depth = 0;
2393 int rc;
2395 rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2396 if (rc)
2397 return rc;
2399 down_write(&state->lock);
2401 table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2402 if (table->size == 0) {
2403 rc = -EINVAL;
2404 goto out_unlock;
2407 netif_vdbg(efx, hw, efx->net_dev,
2408 "%s: type %d search_limit=%d", __func__, spec.type,
2409 table->search_limit[spec.type]);
2411 if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2412 /* One filter spec per type */
2413 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2414 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2415 EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2416 rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2417 ins_index = rep_index;
2418 } else {
2419 /* Search concurrently for
2420 * (1) a filter to be replaced (rep_index): any filter
2421 * with the same match values, up to the current
2422 * search depth for this type, and
2423 * (2) the insertion point (ins_index): (1) or any
2424 * free slot before it or up to the maximum search
2425 * depth for this priority
2426 * We fail if we cannot find (2).
2428 * We can stop once either
2429 * (a) we find (1), in which case we have definitely
2430 * found (2) as well; or
2431 * (b) we have searched exhaustively for (1), and have
2432 * either found (2) or searched exhaustively for it
2434 u32 key = efx_farch_filter_build(&filter, &spec);
2435 unsigned int hash = efx_farch_filter_hash(key);
2436 unsigned int incr = efx_farch_filter_increment(key);
2437 unsigned int max_rep_depth = table->search_limit[spec.type];
2438 unsigned int max_ins_depth =
2439 spec.priority <= EFX_FILTER_PRI_HINT ?
2440 EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2441 EFX_FARCH_FILTER_CTL_SRCH_MAX;
2442 unsigned int i = hash & (table->size - 1);
2444 ins_index = -1;
2445 depth = 1;
2447 for (;;) {
2448 if (!test_bit(i, table->used_bitmap)) {
2449 if (ins_index < 0)
2450 ins_index = i;
2451 } else if (efx_farch_filter_equal(&spec,
2452 &table->spec[i])) {
2453 /* Case (a) */
2454 if (ins_index < 0)
2455 ins_index = i;
2456 rep_index = i;
2457 break;
2460 if (depth >= max_rep_depth &&
2461 (ins_index >= 0 || depth >= max_ins_depth)) {
2462 /* Case (b) */
2463 if (ins_index < 0) {
2464 rc = -EBUSY;
2465 goto out_unlock;
2467 rep_index = -1;
2468 break;
2471 i = (i + incr) & (table->size - 1);
2472 ++depth;
2476 /* If we found a filter to be replaced, check whether we
2477 * should do so
2479 if (rep_index >= 0) {
2480 struct efx_farch_filter_spec *saved_spec =
2481 &table->spec[rep_index];
2483 if (spec.priority == saved_spec->priority && !replace_equal) {
2484 rc = -EEXIST;
2485 goto out_unlock;
2487 if (spec.priority < saved_spec->priority) {
2488 rc = -EPERM;
2489 goto out_unlock;
2491 if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2492 saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2493 spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2496 /* Insert the filter */
2497 if (ins_index != rep_index) {
2498 __set_bit(ins_index, table->used_bitmap);
2499 ++table->used;
2501 table->spec[ins_index] = spec;
2503 if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2504 efx_farch_filter_push_rx_config(efx);
2505 } else {
2506 if (table->search_limit[spec.type] < depth) {
2507 table->search_limit[spec.type] = depth;
2508 if (spec.flags & EFX_FILTER_FLAG_TX)
2509 efx_farch_filter_push_tx_limits(efx);
2510 else
2511 efx_farch_filter_push_rx_config(efx);
2514 efx_writeo(efx, &filter,
2515 table->offset + table->step * ins_index);
2517 /* If we were able to replace a filter by inserting
2518 * at a lower depth, clear the replaced filter
2520 if (ins_index != rep_index && rep_index >= 0)
2521 efx_farch_filter_table_clear_entry(efx, table,
2522 rep_index);
2525 netif_vdbg(efx, hw, efx->net_dev,
2526 "%s: filter type %d index %d rxq %u set",
2527 __func__, spec.type, ins_index, spec.dmaq_id);
2528 rc = efx_farch_filter_make_id(&spec, ins_index);
2530 out_unlock:
2531 up_write(&state->lock);
2532 return rc;
2535 static void
2536 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2537 struct efx_farch_filter_table *table,
2538 unsigned int filter_idx)
2540 static efx_oword_t filter;
2542 EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2543 BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2545 __clear_bit(filter_idx, table->used_bitmap);
2546 --table->used;
2547 memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2549 efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2551 /* If this filter required a greater search depth than
2552 * any other, the search limit for its type can now be
2553 * decreased. However, it is hard to determine that
2554 * unless the table has become completely empty - in
2555 * which case, all its search limits can be set to 0.
2557 if (unlikely(table->used == 0)) {
2558 memset(table->search_limit, 0, sizeof(table->search_limit));
2559 if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2560 efx_farch_filter_push_tx_limits(efx);
2561 else
2562 efx_farch_filter_push_rx_config(efx);
2566 static int efx_farch_filter_remove(struct efx_nic *efx,
2567 struct efx_farch_filter_table *table,
2568 unsigned int filter_idx,
2569 enum efx_filter_priority priority)
2571 struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2573 if (!test_bit(filter_idx, table->used_bitmap) ||
2574 spec->priority != priority)
2575 return -ENOENT;
2577 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2578 efx_farch_filter_init_rx_auto(efx, spec);
2579 efx_farch_filter_push_rx_config(efx);
2580 } else {
2581 efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2584 return 0;
2587 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2588 enum efx_filter_priority priority,
2589 u32 filter_id)
2591 struct efx_farch_filter_state *state = efx->filter_state;
2592 enum efx_farch_filter_table_id table_id;
2593 struct efx_farch_filter_table *table;
2594 unsigned int filter_idx;
2595 struct efx_farch_filter_spec *spec;
2596 int rc;
2598 table_id = efx_farch_filter_id_table_id(filter_id);
2599 if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2600 return -ENOENT;
2601 table = &state->table[table_id];
2603 filter_idx = efx_farch_filter_id_index(filter_id);
2604 if (filter_idx >= table->size)
2605 return -ENOENT;
2606 down_write(&state->lock);
2607 spec = &table->spec[filter_idx];
2609 rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2610 up_write(&state->lock);
2612 return rc;
2615 int efx_farch_filter_get_safe(struct efx_nic *efx,
2616 enum efx_filter_priority priority,
2617 u32 filter_id, struct efx_filter_spec *spec_buf)
2619 struct efx_farch_filter_state *state = efx->filter_state;
2620 enum efx_farch_filter_table_id table_id;
2621 struct efx_farch_filter_table *table;
2622 struct efx_farch_filter_spec *spec;
2623 unsigned int filter_idx;
2624 int rc = -ENOENT;
2626 down_read(&state->lock);
2628 table_id = efx_farch_filter_id_table_id(filter_id);
2629 if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2630 goto out_unlock;
2631 table = &state->table[table_id];
2633 filter_idx = efx_farch_filter_id_index(filter_id);
2634 if (filter_idx >= table->size)
2635 goto out_unlock;
2636 spec = &table->spec[filter_idx];
2638 if (test_bit(filter_idx, table->used_bitmap) &&
2639 spec->priority == priority) {
2640 efx_farch_filter_to_gen_spec(spec_buf, spec);
2641 rc = 0;
2644 out_unlock:
2645 up_read(&state->lock);
2646 return rc;
2649 static void
2650 efx_farch_filter_table_clear(struct efx_nic *efx,
2651 enum efx_farch_filter_table_id table_id,
2652 enum efx_filter_priority priority)
2654 struct efx_farch_filter_state *state = efx->filter_state;
2655 struct efx_farch_filter_table *table = &state->table[table_id];
2656 unsigned int filter_idx;
2658 down_write(&state->lock);
2659 for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2660 if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2661 efx_farch_filter_remove(efx, table,
2662 filter_idx, priority);
2664 up_write(&state->lock);
2667 int efx_farch_filter_clear_rx(struct efx_nic *efx,
2668 enum efx_filter_priority priority)
2670 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2671 priority);
2672 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2673 priority);
2674 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2675 priority);
2676 return 0;
2679 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2680 enum efx_filter_priority priority)
2682 struct efx_farch_filter_state *state = efx->filter_state;
2683 enum efx_farch_filter_table_id table_id;
2684 struct efx_farch_filter_table *table;
2685 unsigned int filter_idx;
2686 u32 count = 0;
2688 down_read(&state->lock);
2690 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2691 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2692 table_id++) {
2693 table = &state->table[table_id];
2694 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2695 if (test_bit(filter_idx, table->used_bitmap) &&
2696 table->spec[filter_idx].priority == priority)
2697 ++count;
2701 up_read(&state->lock);
2703 return count;
2706 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2707 enum efx_filter_priority priority,
2708 u32 *buf, u32 size)
2710 struct efx_farch_filter_state *state = efx->filter_state;
2711 enum efx_farch_filter_table_id table_id;
2712 struct efx_farch_filter_table *table;
2713 unsigned int filter_idx;
2714 s32 count = 0;
2716 down_read(&state->lock);
2718 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2719 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2720 table_id++) {
2721 table = &state->table[table_id];
2722 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2723 if (test_bit(filter_idx, table->used_bitmap) &&
2724 table->spec[filter_idx].priority == priority) {
2725 if (count == size) {
2726 count = -EMSGSIZE;
2727 goto out;
2729 buf[count++] = efx_farch_filter_make_id(
2730 &table->spec[filter_idx], filter_idx);
2734 out:
2735 up_read(&state->lock);
2737 return count;
2740 /* Restore filter stater after reset */
2741 void efx_farch_filter_table_restore(struct efx_nic *efx)
2743 struct efx_farch_filter_state *state = efx->filter_state;
2744 enum efx_farch_filter_table_id table_id;
2745 struct efx_farch_filter_table *table;
2746 efx_oword_t filter;
2747 unsigned int filter_idx;
2749 down_write(&state->lock);
2751 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2752 table = &state->table[table_id];
2754 /* Check whether this is a regular register table */
2755 if (table->step == 0)
2756 continue;
2758 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2759 if (!test_bit(filter_idx, table->used_bitmap))
2760 continue;
2761 efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2762 efx_writeo(efx, &filter,
2763 table->offset + table->step * filter_idx);
2767 efx_farch_filter_push_rx_config(efx);
2768 efx_farch_filter_push_tx_limits(efx);
2770 up_write(&state->lock);
2773 void efx_farch_filter_table_remove(struct efx_nic *efx)
2775 struct efx_farch_filter_state *state = efx->filter_state;
2776 enum efx_farch_filter_table_id table_id;
2778 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2779 kfree(state->table[table_id].used_bitmap);
2780 vfree(state->table[table_id].spec);
2782 kfree(state);
2785 int efx_farch_filter_table_probe(struct efx_nic *efx)
2787 struct efx_farch_filter_state *state;
2788 struct efx_farch_filter_table *table;
2789 unsigned table_id;
2791 state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2792 if (!state)
2793 return -ENOMEM;
2794 efx->filter_state = state;
2795 init_rwsem(&state->lock);
2797 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2798 table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2799 table->offset = FR_BZ_RX_FILTER_TBL0;
2800 table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2801 table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2803 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2804 table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2805 table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2806 table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2807 table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2809 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2810 table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2811 table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2813 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2814 table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2815 table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2816 table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2817 table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2819 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2820 table = &state->table[table_id];
2821 if (table->size == 0)
2822 continue;
2823 table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2824 sizeof(unsigned long),
2825 GFP_KERNEL);
2826 if (!table->used_bitmap)
2827 goto fail;
2828 table->spec = vzalloc(array_size(sizeof(*table->spec),
2829 table->size));
2830 if (!table->spec)
2831 goto fail;
2834 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2835 if (table->size) {
2836 /* RX default filters must always exist */
2837 struct efx_farch_filter_spec *spec;
2838 unsigned i;
2840 for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2841 spec = &table->spec[i];
2842 spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2843 efx_farch_filter_init_rx_auto(efx, spec);
2844 __set_bit(i, table->used_bitmap);
2848 efx_farch_filter_push_rx_config(efx);
2850 return 0;
2852 fail:
2853 efx_farch_filter_table_remove(efx);
2854 return -ENOMEM;
2857 /* Update scatter enable flags for filters pointing to our own RX queues */
2858 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2860 struct efx_farch_filter_state *state = efx->filter_state;
2861 enum efx_farch_filter_table_id table_id;
2862 struct efx_farch_filter_table *table;
2863 efx_oword_t filter;
2864 unsigned int filter_idx;
2866 down_write(&state->lock);
2868 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2869 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2870 table_id++) {
2871 table = &state->table[table_id];
2873 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2874 if (!test_bit(filter_idx, table->used_bitmap) ||
2875 table->spec[filter_idx].dmaq_id >=
2876 efx->n_rx_channels)
2877 continue;
2879 if (efx->rx_scatter)
2880 table->spec[filter_idx].flags |=
2881 EFX_FILTER_FLAG_RX_SCATTER;
2882 else
2883 table->spec[filter_idx].flags &=
2884 ~EFX_FILTER_FLAG_RX_SCATTER;
2886 if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2887 /* Pushed by efx_farch_filter_push_rx_config() */
2888 continue;
2890 efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2891 efx_writeo(efx, &filter,
2892 table->offset + table->step * filter_idx);
2896 efx_farch_filter_push_rx_config(efx);
2898 up_write(&state->lock);
2901 #ifdef CONFIG_RFS_ACCEL
2903 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2904 unsigned int index)
2906 struct efx_farch_filter_state *state = efx->filter_state;
2907 struct efx_farch_filter_table *table;
2908 bool ret = false, force = false;
2909 u16 arfs_id;
2911 down_write(&state->lock);
2912 spin_lock_bh(&efx->rps_hash_lock);
2913 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2914 if (test_bit(index, table->used_bitmap) &&
2915 table->spec[index].priority == EFX_FILTER_PRI_HINT) {
2916 struct efx_arfs_rule *rule = NULL;
2917 struct efx_filter_spec spec;
2919 efx_farch_filter_to_gen_spec(&spec, &table->spec[index]);
2920 if (!efx->rps_hash_table) {
2921 /* In the absence of the table, we always returned 0 to
2922 * ARFS, so use the same to query it.
2924 arfs_id = 0;
2925 } else {
2926 rule = efx_rps_hash_find(efx, &spec);
2927 if (!rule) {
2928 /* ARFS table doesn't know of this filter, remove it */
2929 force = true;
2930 } else {
2931 arfs_id = rule->arfs_id;
2932 if (!efx_rps_check_rule(rule, index, &force))
2933 goto out_unlock;
2936 if (force || rps_may_expire_flow(efx->net_dev, spec.dmaq_id,
2937 flow_id, arfs_id)) {
2938 if (rule)
2939 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
2940 efx_rps_hash_del(efx, &spec);
2941 efx_farch_filter_table_clear_entry(efx, table, index);
2942 ret = true;
2945 out_unlock:
2946 spin_unlock_bh(&efx->rps_hash_lock);
2947 up_write(&state->lock);
2948 return ret;
2951 #endif /* CONFIG_RFS_ACCEL */
2953 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2955 struct net_device *net_dev = efx->net_dev;
2956 struct netdev_hw_addr *ha;
2957 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2958 u32 crc;
2959 int bit;
2961 if (!efx_dev_registered(efx))
2962 return;
2964 netif_addr_lock_bh(net_dev);
2966 efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2968 /* Build multicast hash table */
2969 if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2970 memset(mc_hash, 0xff, sizeof(*mc_hash));
2971 } else {
2972 memset(mc_hash, 0x00, sizeof(*mc_hash));
2973 netdev_for_each_mc_addr(ha, net_dev) {
2974 crc = ether_crc_le(ETH_ALEN, ha->addr);
2975 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2976 __set_bit_le(bit, mc_hash);
2979 /* Broadcast packets go through the multicast hash filter.
2980 * ether_crc_le() of the broadcast address is 0xbe2612ff
2981 * so we always add bit 0xff to the mask.
2983 __set_bit_le(0xff, mc_hash);
2986 netif_addr_unlock_bh(net_dev);