1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2006-2013 Solarflare Communications Inc.
8 #include <linux/bitops.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/seq_file.h>
14 #include <linux/crc32.h>
15 #include "net_driver.h"
18 #include "rx_common.h"
20 #include "farch_regs.h"
22 #include "siena_sriov.h"
24 #include "workarounds.h"
26 /* Falcon-architecture (SFC9000-family) support */
28 /**************************************************************************
32 **************************************************************************
35 /* This is set to 16 for a good reason. In summary, if larger than
36 * 16, the descriptor cache holds more than a default socket
37 * buffer's worth of packets (for UDP we can only have at most one
38 * socket buffer's worth outstanding). This combined with the fact
39 * that we only get 1 TX event per descriptor cache means the NIC
42 #define TX_DC_ENTRIES 16
43 #define TX_DC_ENTRIES_ORDER 1
45 #define RX_DC_ENTRIES 64
46 #define RX_DC_ENTRIES_ORDER 3
48 /* If EFX_MAX_INT_ERRORS internal errors occur within
49 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
52 #define EFX_INT_ERROR_EXPIRE 3600
53 #define EFX_MAX_INT_ERRORS 5
55 /* Depth of RX flush request fifo */
56 #define EFX_RX_FLUSH_COUNT 4
58 /* Driver generated events */
59 #define _EFX_CHANNEL_MAGIC_TEST 0x000101
60 #define _EFX_CHANNEL_MAGIC_FILL 0x000102
61 #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
62 #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
64 #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
65 #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
67 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
68 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
69 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
70 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
71 efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
73 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
74 efx_rx_queue_index(_rx_queue))
75 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
76 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
79 static void efx_farch_magic_event(struct efx_channel
*channel
, u32 magic
);
81 /**************************************************************************
85 **************************************************************************/
87 static inline void efx_write_buf_tbl(struct efx_nic
*efx
, efx_qword_t
*value
,
90 efx_sram_writeq(efx
, efx
->membase
+ efx
->type
->buf_tbl_base
,
94 static bool efx_masked_compare_oword(const efx_oword_t
*a
, const efx_oword_t
*b
,
95 const efx_oword_t
*mask
)
97 return ((a
->u64
[0] ^ b
->u64
[0]) & mask
->u64
[0]) ||
98 ((a
->u64
[1] ^ b
->u64
[1]) & mask
->u64
[1]);
101 int efx_farch_test_registers(struct efx_nic
*efx
,
102 const struct efx_farch_register_test
*regs
,
105 unsigned address
= 0;
107 efx_oword_t mask
, imask
, original
, reg
, buf
;
109 for (i
= 0; i
< n_regs
; ++i
) {
110 address
= regs
[i
].address
;
111 mask
= imask
= regs
[i
].mask
;
112 EFX_INVERT_OWORD(imask
);
114 efx_reado(efx
, &original
, address
);
116 /* bit sweep on and off */
117 for (j
= 0; j
< 128; j
++) {
118 if (!EFX_EXTRACT_OWORD32(mask
, j
, j
))
121 /* Test this testable bit can be set in isolation */
122 EFX_AND_OWORD(reg
, original
, mask
);
123 EFX_SET_OWORD32(reg
, j
, j
, 1);
125 efx_writeo(efx
, ®
, address
);
126 efx_reado(efx
, &buf
, address
);
128 if (efx_masked_compare_oword(®
, &buf
, &mask
))
131 /* Test this testable bit can be cleared in isolation */
132 EFX_OR_OWORD(reg
, original
, mask
);
133 EFX_SET_OWORD32(reg
, j
, j
, 0);
135 efx_writeo(efx
, ®
, address
);
136 efx_reado(efx
, &buf
, address
);
138 if (efx_masked_compare_oword(®
, &buf
, &mask
))
142 efx_writeo(efx
, &original
, address
);
148 netif_err(efx
, hw
, efx
->net_dev
,
149 "wrote "EFX_OWORD_FMT
" read "EFX_OWORD_FMT
150 " at address 0x%x mask "EFX_OWORD_FMT
"\n", EFX_OWORD_VAL(reg
),
151 EFX_OWORD_VAL(buf
), address
, EFX_OWORD_VAL(mask
));
155 /**************************************************************************
157 * Special buffer handling
158 * Special buffers are used for event queues and the TX and RX
161 *************************************************************************/
164 * Initialise a special buffer
166 * This will define a buffer (previously allocated via
167 * efx_alloc_special_buffer()) in the buffer table, allowing
168 * it to be used for event queues, descriptor rings etc.
171 efx_init_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
173 efx_qword_t buf_desc
;
178 EFX_WARN_ON_PARANOID(!buffer
->buf
.addr
);
180 /* Write buffer descriptors to NIC */
181 for (i
= 0; i
< buffer
->entries
; i
++) {
182 index
= buffer
->index
+ i
;
183 dma_addr
= buffer
->buf
.dma_addr
+ (i
* EFX_BUF_SIZE
);
184 netif_dbg(efx
, probe
, efx
->net_dev
,
185 "mapping special buffer %d at %llx\n",
186 index
, (unsigned long long)dma_addr
);
187 EFX_POPULATE_QWORD_3(buf_desc
,
188 FRF_AZ_BUF_ADR_REGION
, 0,
189 FRF_AZ_BUF_ADR_FBUF
, dma_addr
>> 12,
190 FRF_AZ_BUF_OWNER_ID_FBUF
, 0);
191 efx_write_buf_tbl(efx
, &buf_desc
, index
);
195 /* Unmaps a buffer and clears the buffer table entries */
197 efx_fini_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
199 efx_oword_t buf_tbl_upd
;
200 unsigned int start
= buffer
->index
;
201 unsigned int end
= (buffer
->index
+ buffer
->entries
- 1);
203 if (!buffer
->entries
)
206 netif_dbg(efx
, hw
, efx
->net_dev
, "unmapping special buffers %d-%d\n",
207 buffer
->index
, buffer
->index
+ buffer
->entries
- 1);
209 EFX_POPULATE_OWORD_4(buf_tbl_upd
,
210 FRF_AZ_BUF_UPD_CMD
, 0,
211 FRF_AZ_BUF_CLR_CMD
, 1,
212 FRF_AZ_BUF_CLR_END_ID
, end
,
213 FRF_AZ_BUF_CLR_START_ID
, start
);
214 efx_writeo(efx
, &buf_tbl_upd
, FR_AZ_BUF_TBL_UPD
);
218 * Allocate a new special buffer
220 * This allocates memory for a new buffer, clears it and allocates a
221 * new buffer ID range. It does not write into the buffer table.
223 * This call will allocate 4KB buffers, since 8KB buffers can't be
224 * used for event queues and descriptor rings.
226 static int efx_alloc_special_buffer(struct efx_nic
*efx
,
227 struct efx_special_buffer
*buffer
,
230 #ifdef CONFIG_SFC_SRIOV
231 struct siena_nic_data
*nic_data
= efx
->nic_data
;
233 len
= ALIGN(len
, EFX_BUF_SIZE
);
235 if (efx_nic_alloc_buffer(efx
, &buffer
->buf
, len
, GFP_KERNEL
))
237 buffer
->entries
= len
/ EFX_BUF_SIZE
;
238 BUG_ON(buffer
->buf
.dma_addr
& (EFX_BUF_SIZE
- 1));
240 /* Select new buffer ID */
241 buffer
->index
= efx
->next_buffer_table
;
242 efx
->next_buffer_table
+= buffer
->entries
;
243 #ifdef CONFIG_SFC_SRIOV
244 BUG_ON(efx_siena_sriov_enabled(efx
) &&
245 nic_data
->vf_buftbl_base
< efx
->next_buffer_table
);
248 netif_dbg(efx
, probe
, efx
->net_dev
,
249 "allocating special buffers %d-%d at %llx+%x "
250 "(virt %p phys %llx)\n", buffer
->index
,
251 buffer
->index
+ buffer
->entries
- 1,
252 (u64
)buffer
->buf
.dma_addr
, len
,
253 buffer
->buf
.addr
, (u64
)virt_to_phys(buffer
->buf
.addr
));
259 efx_free_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
261 if (!buffer
->buf
.addr
)
264 netif_dbg(efx
, hw
, efx
->net_dev
,
265 "deallocating special buffers %d-%d at %llx+%x "
266 "(virt %p phys %llx)\n", buffer
->index
,
267 buffer
->index
+ buffer
->entries
- 1,
268 (u64
)buffer
->buf
.dma_addr
, buffer
->buf
.len
,
269 buffer
->buf
.addr
, (u64
)virt_to_phys(buffer
->buf
.addr
));
271 efx_nic_free_buffer(efx
, &buffer
->buf
);
275 /**************************************************************************
279 **************************************************************************/
281 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
282 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue
*tx_queue
)
287 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
288 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_TX_DESC_WPTR_DWORD
, write_ptr
);
289 efx_writed_page(tx_queue
->efx
, ®
,
290 FR_AZ_TX_DESC_UPD_DWORD_P0
, tx_queue
->queue
);
293 /* Write pointer and first descriptor for TX descriptor ring */
294 static inline void efx_farch_push_tx_desc(struct efx_tx_queue
*tx_queue
,
295 const efx_qword_t
*txd
)
300 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN
!= 0);
301 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER
!= FR_BZ_TX_DESC_UPD_P0
);
303 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
304 EFX_POPULATE_OWORD_2(reg
, FRF_AZ_TX_DESC_PUSH_CMD
, true,
305 FRF_AZ_TX_DESC_WPTR
, write_ptr
);
307 efx_writeo_page(tx_queue
->efx
, ®
,
308 FR_BZ_TX_DESC_UPD_P0
, tx_queue
->queue
);
312 /* For each entry inserted into the software descriptor ring, create a
313 * descriptor in the hardware TX descriptor ring (in host memory), and
316 void efx_farch_tx_write(struct efx_tx_queue
*tx_queue
)
318 struct efx_tx_buffer
*buffer
;
321 unsigned old_write_count
= tx_queue
->write_count
;
323 tx_queue
->xmit_more_available
= false;
324 if (unlikely(tx_queue
->write_count
== tx_queue
->insert_count
))
328 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
329 buffer
= &tx_queue
->buffer
[write_ptr
];
330 txd
= efx_tx_desc(tx_queue
, write_ptr
);
331 ++tx_queue
->write_count
;
333 EFX_WARN_ON_ONCE_PARANOID(buffer
->flags
& EFX_TX_BUF_OPTION
);
335 /* Create TX descriptor ring entry */
336 BUILD_BUG_ON(EFX_TX_BUF_CONT
!= 1);
337 EFX_POPULATE_QWORD_4(*txd
,
339 buffer
->flags
& EFX_TX_BUF_CONT
,
340 FSF_AZ_TX_KER_BYTE_COUNT
, buffer
->len
,
341 FSF_AZ_TX_KER_BUF_REGION
, 0,
342 FSF_AZ_TX_KER_BUF_ADDR
, buffer
->dma_addr
);
343 } while (tx_queue
->write_count
!= tx_queue
->insert_count
);
345 wmb(); /* Ensure descriptors are written before they are fetched */
347 if (efx_nic_may_push_tx_desc(tx_queue
, old_write_count
)) {
348 txd
= efx_tx_desc(tx_queue
,
349 old_write_count
& tx_queue
->ptr_mask
);
350 efx_farch_push_tx_desc(tx_queue
, txd
);
353 efx_farch_notify_tx_desc(tx_queue
);
357 unsigned int efx_farch_tx_limit_len(struct efx_tx_queue
*tx_queue
,
358 dma_addr_t dma_addr
, unsigned int len
)
360 /* Don't cross 4K boundaries with descriptors. */
361 unsigned int limit
= (~dma_addr
& (EFX_PAGE_SIZE
- 1)) + 1;
363 len
= min(limit
, len
);
369 /* Allocate hardware resources for a TX queue */
370 int efx_farch_tx_probe(struct efx_tx_queue
*tx_queue
)
372 struct efx_nic
*efx
= tx_queue
->efx
;
375 entries
= tx_queue
->ptr_mask
+ 1;
376 return efx_alloc_special_buffer(efx
, &tx_queue
->txd
,
377 entries
* sizeof(efx_qword_t
));
380 void efx_farch_tx_init(struct efx_tx_queue
*tx_queue
)
382 int csum
= tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
;
383 struct efx_nic
*efx
= tx_queue
->efx
;
386 /* Pin TX descriptor ring */
387 efx_init_special_buffer(efx
, &tx_queue
->txd
);
389 /* Push TX descriptor ring to card */
390 EFX_POPULATE_OWORD_10(reg
,
391 FRF_AZ_TX_DESCQ_EN
, 1,
392 FRF_AZ_TX_ISCSI_DDIG_EN
, 0,
393 FRF_AZ_TX_ISCSI_HDIG_EN
, 0,
394 FRF_AZ_TX_DESCQ_BUF_BASE_ID
, tx_queue
->txd
.index
,
395 FRF_AZ_TX_DESCQ_EVQ_ID
,
396 tx_queue
->channel
->channel
,
397 FRF_AZ_TX_DESCQ_OWNER_ID
, 0,
398 FRF_AZ_TX_DESCQ_LABEL
, tx_queue
->queue
,
399 FRF_AZ_TX_DESCQ_SIZE
,
400 __ffs(tx_queue
->txd
.entries
),
401 FRF_AZ_TX_DESCQ_TYPE
, 0,
402 FRF_BZ_TX_NON_IP_DROP_DIS
, 1);
404 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_TX_IP_CHKSM_DIS
, !csum
);
405 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_TX_TCP_CHKSM_DIS
, !csum
);
407 efx_writeo_table(efx
, ®
, efx
->type
->txd_ptr_tbl_base
,
410 EFX_POPULATE_OWORD_1(reg
,
412 (tx_queue
->queue
& EFX_TXQ_TYPE_HIGHPRI
) ?
414 FFE_BZ_TX_PACE_RESERVED
);
415 efx_writeo_table(efx
, ®
, FR_BZ_TX_PACE_TBL
, tx_queue
->queue
);
418 static void efx_farch_flush_tx_queue(struct efx_tx_queue
*tx_queue
)
420 struct efx_nic
*efx
= tx_queue
->efx
;
421 efx_oword_t tx_flush_descq
;
423 WARN_ON(atomic_read(&tx_queue
->flush_outstanding
));
424 atomic_set(&tx_queue
->flush_outstanding
, 1);
426 EFX_POPULATE_OWORD_2(tx_flush_descq
,
427 FRF_AZ_TX_FLUSH_DESCQ_CMD
, 1,
428 FRF_AZ_TX_FLUSH_DESCQ
, tx_queue
->queue
);
429 efx_writeo(efx
, &tx_flush_descq
, FR_AZ_TX_FLUSH_DESCQ
);
432 void efx_farch_tx_fini(struct efx_tx_queue
*tx_queue
)
434 struct efx_nic
*efx
= tx_queue
->efx
;
435 efx_oword_t tx_desc_ptr
;
437 /* Remove TX descriptor ring from card */
438 EFX_ZERO_OWORD(tx_desc_ptr
);
439 efx_writeo_table(efx
, &tx_desc_ptr
, efx
->type
->txd_ptr_tbl_base
,
442 /* Unpin TX descriptor ring */
443 efx_fini_special_buffer(efx
, &tx_queue
->txd
);
446 /* Free buffers backing TX queue */
447 void efx_farch_tx_remove(struct efx_tx_queue
*tx_queue
)
449 efx_free_special_buffer(tx_queue
->efx
, &tx_queue
->txd
);
452 /**************************************************************************
456 **************************************************************************/
458 /* This creates an entry in the RX descriptor queue */
460 efx_farch_build_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned index
)
462 struct efx_rx_buffer
*rx_buf
;
465 rxd
= efx_rx_desc(rx_queue
, index
);
466 rx_buf
= efx_rx_buffer(rx_queue
, index
);
467 EFX_POPULATE_QWORD_3(*rxd
,
468 FSF_AZ_RX_KER_BUF_SIZE
,
470 rx_queue
->efx
->type
->rx_buffer_padding
,
471 FSF_AZ_RX_KER_BUF_REGION
, 0,
472 FSF_AZ_RX_KER_BUF_ADDR
, rx_buf
->dma_addr
);
475 /* This writes to the RX_DESC_WPTR register for the specified receive
478 void efx_farch_rx_write(struct efx_rx_queue
*rx_queue
)
480 struct efx_nic
*efx
= rx_queue
->efx
;
484 while (rx_queue
->notified_count
!= rx_queue
->added_count
) {
485 efx_farch_build_rx_desc(
487 rx_queue
->notified_count
& rx_queue
->ptr_mask
);
488 ++rx_queue
->notified_count
;
492 write_ptr
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
493 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_RX_DESC_WPTR_DWORD
, write_ptr
);
494 efx_writed_page(efx
, ®
, FR_AZ_RX_DESC_UPD_DWORD_P0
,
495 efx_rx_queue_index(rx_queue
));
498 int efx_farch_rx_probe(struct efx_rx_queue
*rx_queue
)
500 struct efx_nic
*efx
= rx_queue
->efx
;
503 entries
= rx_queue
->ptr_mask
+ 1;
504 return efx_alloc_special_buffer(efx
, &rx_queue
->rxd
,
505 entries
* sizeof(efx_qword_t
));
508 void efx_farch_rx_init(struct efx_rx_queue
*rx_queue
)
510 efx_oword_t rx_desc_ptr
;
511 struct efx_nic
*efx
= rx_queue
->efx
;
514 /* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
515 jumbo_en
= efx
->rx_scatter
;
517 netif_dbg(efx
, hw
, efx
->net_dev
,
518 "RX queue %d ring in special buffers %d-%d\n",
519 efx_rx_queue_index(rx_queue
), rx_queue
->rxd
.index
,
520 rx_queue
->rxd
.index
+ rx_queue
->rxd
.entries
- 1);
522 rx_queue
->scatter_n
= 0;
524 /* Pin RX descriptor ring */
525 efx_init_special_buffer(efx
, &rx_queue
->rxd
);
527 /* Push RX descriptor ring to card */
528 EFX_POPULATE_OWORD_10(rx_desc_ptr
,
529 FRF_AZ_RX_ISCSI_DDIG_EN
, true,
530 FRF_AZ_RX_ISCSI_HDIG_EN
, true,
531 FRF_AZ_RX_DESCQ_BUF_BASE_ID
, rx_queue
->rxd
.index
,
532 FRF_AZ_RX_DESCQ_EVQ_ID
,
533 efx_rx_queue_channel(rx_queue
)->channel
,
534 FRF_AZ_RX_DESCQ_OWNER_ID
, 0,
535 FRF_AZ_RX_DESCQ_LABEL
,
536 efx_rx_queue_index(rx_queue
),
537 FRF_AZ_RX_DESCQ_SIZE
,
538 __ffs(rx_queue
->rxd
.entries
),
539 FRF_AZ_RX_DESCQ_TYPE
, 0 /* kernel queue */ ,
540 FRF_AZ_RX_DESCQ_JUMBO
, jumbo_en
,
541 FRF_AZ_RX_DESCQ_EN
, 1);
542 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
543 efx_rx_queue_index(rx_queue
));
546 static void efx_farch_flush_rx_queue(struct efx_rx_queue
*rx_queue
)
548 struct efx_nic
*efx
= rx_queue
->efx
;
549 efx_oword_t rx_flush_descq
;
551 EFX_POPULATE_OWORD_2(rx_flush_descq
,
552 FRF_AZ_RX_FLUSH_DESCQ_CMD
, 1,
553 FRF_AZ_RX_FLUSH_DESCQ
,
554 efx_rx_queue_index(rx_queue
));
555 efx_writeo(efx
, &rx_flush_descq
, FR_AZ_RX_FLUSH_DESCQ
);
558 void efx_farch_rx_fini(struct efx_rx_queue
*rx_queue
)
560 efx_oword_t rx_desc_ptr
;
561 struct efx_nic
*efx
= rx_queue
->efx
;
563 /* Remove RX descriptor ring from card */
564 EFX_ZERO_OWORD(rx_desc_ptr
);
565 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
566 efx_rx_queue_index(rx_queue
));
568 /* Unpin RX descriptor ring */
569 efx_fini_special_buffer(efx
, &rx_queue
->rxd
);
572 /* Free buffers backing RX queue */
573 void efx_farch_rx_remove(struct efx_rx_queue
*rx_queue
)
575 efx_free_special_buffer(rx_queue
->efx
, &rx_queue
->rxd
);
578 /**************************************************************************
582 **************************************************************************/
584 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
585 * or more RX flushes can be kicked off.
587 static bool efx_farch_flush_wake(struct efx_nic
*efx
)
589 /* Ensure that all updates are visible to efx_farch_flush_queues() */
592 return (atomic_read(&efx
->active_queues
) == 0 ||
593 (atomic_read(&efx
->rxq_flush_outstanding
) < EFX_RX_FLUSH_COUNT
594 && atomic_read(&efx
->rxq_flush_pending
) > 0));
597 static bool efx_check_tx_flush_complete(struct efx_nic
*efx
)
600 efx_oword_t txd_ptr_tbl
;
601 struct efx_channel
*channel
;
602 struct efx_tx_queue
*tx_queue
;
604 efx_for_each_channel(channel
, efx
) {
605 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
606 efx_reado_table(efx
, &txd_ptr_tbl
,
607 FR_BZ_TX_DESC_PTR_TBL
, tx_queue
->queue
);
608 if (EFX_OWORD_FIELD(txd_ptr_tbl
,
609 FRF_AZ_TX_DESCQ_FLUSH
) ||
610 EFX_OWORD_FIELD(txd_ptr_tbl
,
611 FRF_AZ_TX_DESCQ_EN
)) {
612 netif_dbg(efx
, hw
, efx
->net_dev
,
613 "flush did not complete on TXQ %d\n",
616 } else if (atomic_cmpxchg(&tx_queue
->flush_outstanding
,
618 /* The flush is complete, but we didn't
619 * receive a flush completion event
621 netif_dbg(efx
, hw
, efx
->net_dev
,
622 "flush complete on TXQ %d, so drain "
623 "the queue\n", tx_queue
->queue
);
624 /* Don't need to increment active_queues as it
625 * has already been incremented for the queues
626 * which did not drain
628 efx_farch_magic_event(channel
,
629 EFX_CHANNEL_MAGIC_TX_DRAIN(
638 /* Flush all the transmit queues, and continue flushing receive queues until
639 * they're all flushed. Wait for the DRAIN events to be received so that there
640 * are no more RX and TX events left on any channel. */
641 static int efx_farch_do_flush(struct efx_nic
*efx
)
643 unsigned timeout
= msecs_to_jiffies(5000); /* 5s for all flushes and drains */
644 struct efx_channel
*channel
;
645 struct efx_rx_queue
*rx_queue
;
646 struct efx_tx_queue
*tx_queue
;
649 efx_for_each_channel(channel
, efx
) {
650 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
651 efx_farch_flush_tx_queue(tx_queue
);
653 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
654 rx_queue
->flush_pending
= true;
655 atomic_inc(&efx
->rxq_flush_pending
);
659 while (timeout
&& atomic_read(&efx
->active_queues
) > 0) {
660 /* If SRIOV is enabled, then offload receive queue flushing to
661 * the firmware (though we will still have to poll for
662 * completion). If that fails, fall back to the old scheme.
664 if (efx_siena_sriov_enabled(efx
)) {
665 rc
= efx_mcdi_flush_rxqs(efx
);
670 /* The hardware supports four concurrent rx flushes, each of
671 * which may need to be retried if there is an outstanding
674 efx_for_each_channel(channel
, efx
) {
675 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
676 if (atomic_read(&efx
->rxq_flush_outstanding
) >=
680 if (rx_queue
->flush_pending
) {
681 rx_queue
->flush_pending
= false;
682 atomic_dec(&efx
->rxq_flush_pending
);
683 atomic_inc(&efx
->rxq_flush_outstanding
);
684 efx_farch_flush_rx_queue(rx_queue
);
690 timeout
= wait_event_timeout(efx
->flush_wq
,
691 efx_farch_flush_wake(efx
),
695 if (atomic_read(&efx
->active_queues
) &&
696 !efx_check_tx_flush_complete(efx
)) {
697 netif_err(efx
, hw
, efx
->net_dev
, "failed to flush %d queues "
698 "(rx %d+%d)\n", atomic_read(&efx
->active_queues
),
699 atomic_read(&efx
->rxq_flush_outstanding
),
700 atomic_read(&efx
->rxq_flush_pending
));
703 atomic_set(&efx
->active_queues
, 0);
704 atomic_set(&efx
->rxq_flush_pending
, 0);
705 atomic_set(&efx
->rxq_flush_outstanding
, 0);
711 int efx_farch_fini_dmaq(struct efx_nic
*efx
)
713 struct efx_channel
*channel
;
714 struct efx_tx_queue
*tx_queue
;
715 struct efx_rx_queue
*rx_queue
;
718 /* Do not attempt to write to the NIC during EEH recovery */
719 if (efx
->state
!= STATE_RECOVERY
) {
720 /* Only perform flush if DMA is enabled */
721 if (efx
->pci_dev
->is_busmaster
) {
722 efx
->type
->prepare_flush(efx
);
723 rc
= efx_farch_do_flush(efx
);
724 efx
->type
->finish_flush(efx
);
727 efx_for_each_channel(channel
, efx
) {
728 efx_for_each_channel_rx_queue(rx_queue
, channel
)
729 efx_farch_rx_fini(rx_queue
);
730 efx_for_each_channel_tx_queue(tx_queue
, channel
)
731 efx_farch_tx_fini(tx_queue
);
738 /* Reset queue and flush accounting after FLR
740 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
741 * mastering was disabled), in which case we don't receive (RXQ) flush
742 * completion events. This means that efx->rxq_flush_outstanding remained at 4
743 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
744 * events were received, and we didn't go through efx_check_tx_flush_complete())
745 * If we don't fix this up, on the next call to efx_realloc_channels() we won't
746 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
747 * for batched flush requests; and the efx->active_queues gets messed up because
748 * we keep incrementing for the newly initialised queues, but it never went to
749 * zero previously. Then we get a timeout every time we try to restart the
750 * queues, as it doesn't go back to zero when we should be flushing the queues.
752 void efx_farch_finish_flr(struct efx_nic
*efx
)
754 atomic_set(&efx
->rxq_flush_pending
, 0);
755 atomic_set(&efx
->rxq_flush_outstanding
, 0);
756 atomic_set(&efx
->active_queues
, 0);
760 /**************************************************************************
762 * Event queue processing
763 * Event queues are processed by per-channel tasklets.
765 **************************************************************************/
767 /* Update a channel's event queue's read pointer (RPTR) register
769 * This writes the EVQ_RPTR_REG register for the specified channel's
772 void efx_farch_ev_read_ack(struct efx_channel
*channel
)
775 struct efx_nic
*efx
= channel
->efx
;
777 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_EVQ_RPTR
,
778 channel
->eventq_read_ptr
& channel
->eventq_mask
);
780 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
781 * of 4 bytes, but it is really 16 bytes just like later revisions.
783 efx_writed(efx
, ®
,
784 efx
->type
->evq_rptr_tbl_base
+
785 FR_BZ_EVQ_RPTR_STEP
* channel
->channel
);
788 /* Use HW to insert a SW defined event */
789 void efx_farch_generate_event(struct efx_nic
*efx
, unsigned int evq
,
792 efx_oword_t drv_ev_reg
;
794 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN
!= 0 ||
795 FRF_AZ_DRV_EV_DATA_WIDTH
!= 64);
796 drv_ev_reg
.u32
[0] = event
->u32
[0];
797 drv_ev_reg
.u32
[1] = event
->u32
[1];
798 drv_ev_reg
.u32
[2] = 0;
799 drv_ev_reg
.u32
[3] = 0;
800 EFX_SET_OWORD_FIELD(drv_ev_reg
, FRF_AZ_DRV_EV_QID
, evq
);
801 efx_writeo(efx
, &drv_ev_reg
, FR_AZ_DRV_EV
);
804 static void efx_farch_magic_event(struct efx_channel
*channel
, u32 magic
)
808 EFX_POPULATE_QWORD_2(event
, FSF_AZ_EV_CODE
,
809 FSE_AZ_EV_CODE_DRV_GEN_EV
,
810 FSF_AZ_DRV_GEN_EV_MAGIC
, magic
);
811 efx_farch_generate_event(channel
->efx
, channel
->channel
, &event
);
814 /* Handle a transmit completion event
816 * The NIC batches TX completion events; the message we receive is of
817 * the form "complete all TX events up to this index".
820 efx_farch_handle_tx_event(struct efx_channel
*channel
, efx_qword_t
*event
)
822 unsigned int tx_ev_desc_ptr
;
823 unsigned int tx_ev_q_label
;
824 struct efx_tx_queue
*tx_queue
;
825 struct efx_nic
*efx
= channel
->efx
;
827 if (unlikely(READ_ONCE(efx
->reset_pending
)))
830 if (likely(EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_COMP
))) {
831 /* Transmit completion */
832 tx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_DESC_PTR
);
833 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
834 tx_queue
= efx_channel_get_tx_queue(
835 channel
, tx_ev_q_label
% EFX_TXQ_TYPES
);
836 efx_xmit_done(tx_queue
, tx_ev_desc_ptr
);
837 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_WQ_FF_FULL
)) {
838 /* Rewrite the FIFO write pointer */
839 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
840 tx_queue
= efx_channel_get_tx_queue(
841 channel
, tx_ev_q_label
% EFX_TXQ_TYPES
);
843 netif_tx_lock(efx
->net_dev
);
844 efx_farch_notify_tx_desc(tx_queue
);
845 netif_tx_unlock(efx
->net_dev
);
846 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_PKT_ERR
)) {
847 efx_schedule_reset(efx
, RESET_TYPE_DMA_ERROR
);
849 netif_err(efx
, tx_err
, efx
->net_dev
,
850 "channel %d unexpected TX event "
851 EFX_QWORD_FMT
"\n", channel
->channel
,
852 EFX_QWORD_VAL(*event
));
856 /* Detect errors included in the rx_evt_pkt_ok bit. */
857 static u16
efx_farch_handle_rx_not_ok(struct efx_rx_queue
*rx_queue
,
858 const efx_qword_t
*event
)
860 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
861 struct efx_nic
*efx
= rx_queue
->efx
;
862 bool rx_ev_buf_owner_id_err
, rx_ev_ip_hdr_chksum_err
;
863 bool rx_ev_tcp_udp_chksum_err
, rx_ev_eth_crc_err
;
864 bool rx_ev_frm_trunc
, rx_ev_tobe_disc
;
865 bool rx_ev_other_err
, rx_ev_pause_frm
;
866 bool rx_ev_hdr_type
, rx_ev_mcast_pkt
;
867 unsigned rx_ev_pkt_type
;
869 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
870 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
871 rx_ev_tobe_disc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_TOBE_DISC
);
872 rx_ev_pkt_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_TYPE
);
873 rx_ev_buf_owner_id_err
= EFX_QWORD_FIELD(*event
,
874 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR
);
875 rx_ev_ip_hdr_chksum_err
= EFX_QWORD_FIELD(*event
,
876 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR
);
877 rx_ev_tcp_udp_chksum_err
= EFX_QWORD_FIELD(*event
,
878 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR
);
879 rx_ev_eth_crc_err
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_ETH_CRC_ERR
);
880 rx_ev_frm_trunc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_FRM_TRUNC
);
881 rx_ev_pause_frm
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PAUSE_FRM_ERR
);
883 /* Every error apart from tobe_disc and pause_frm */
884 rx_ev_other_err
= (rx_ev_tcp_udp_chksum_err
|
885 rx_ev_buf_owner_id_err
| rx_ev_eth_crc_err
|
886 rx_ev_frm_trunc
| rx_ev_ip_hdr_chksum_err
);
888 /* Count errors that are not in MAC stats. Ignore expected
889 * checksum errors during self-test. */
891 ++channel
->n_rx_frm_trunc
;
892 else if (rx_ev_tobe_disc
)
893 ++channel
->n_rx_tobe_disc
;
894 else if (!efx
->loopback_selftest
) {
895 if (rx_ev_ip_hdr_chksum_err
)
896 ++channel
->n_rx_ip_hdr_chksum_err
;
897 else if (rx_ev_tcp_udp_chksum_err
)
898 ++channel
->n_rx_tcp_udp_chksum_err
;
901 /* TOBE_DISC is expected on unicast mismatches; don't print out an
902 * error message. FRM_TRUNC indicates RXDP dropped the packet due
903 * to a FIFO overflow.
906 if (rx_ev_other_err
&& net_ratelimit()) {
907 netif_dbg(efx
, rx_err
, efx
->net_dev
,
908 " RX queue %d unexpected RX event "
909 EFX_QWORD_FMT
"%s%s%s%s%s%s%s\n",
910 efx_rx_queue_index(rx_queue
), EFX_QWORD_VAL(*event
),
911 rx_ev_buf_owner_id_err
? " [OWNER_ID_ERR]" : "",
912 rx_ev_ip_hdr_chksum_err
?
913 " [IP_HDR_CHKSUM_ERR]" : "",
914 rx_ev_tcp_udp_chksum_err
?
915 " [TCP_UDP_CHKSUM_ERR]" : "",
916 rx_ev_eth_crc_err
? " [ETH_CRC_ERR]" : "",
917 rx_ev_frm_trunc
? " [FRM_TRUNC]" : "",
918 rx_ev_tobe_disc
? " [TOBE_DISC]" : "",
919 rx_ev_pause_frm
? " [PAUSE]" : "");
923 if (efx
->net_dev
->features
& NETIF_F_RXALL
)
924 /* don't discard frame for CRC error */
925 rx_ev_eth_crc_err
= false;
927 /* The frame must be discarded if any of these are true. */
928 return (rx_ev_eth_crc_err
| rx_ev_frm_trunc
|
929 rx_ev_tobe_disc
| rx_ev_pause_frm
) ?
930 EFX_RX_PKT_DISCARD
: 0;
933 /* Handle receive events that are not in-order. Return true if this
934 * can be handled as a partial packet discard, false if it's more
938 efx_farch_handle_rx_bad_index(struct efx_rx_queue
*rx_queue
, unsigned index
)
940 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
941 struct efx_nic
*efx
= rx_queue
->efx
;
942 unsigned expected
, dropped
;
944 if (rx_queue
->scatter_n
&&
945 index
== ((rx_queue
->removed_count
+ rx_queue
->scatter_n
- 1) &
946 rx_queue
->ptr_mask
)) {
947 ++channel
->n_rx_nodesc_trunc
;
951 expected
= rx_queue
->removed_count
& rx_queue
->ptr_mask
;
952 dropped
= (index
- expected
) & rx_queue
->ptr_mask
;
953 netif_info(efx
, rx_err
, efx
->net_dev
,
954 "dropped %d events (index=%d expected=%d)\n",
955 dropped
, index
, expected
);
957 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
961 /* Handle a packet received event
963 * The NIC gives a "discard" flag if it's a unicast packet with the
964 * wrong destination address
965 * Also "is multicast" and "matches multicast filter" flags can be used to
966 * discard non-matching multicast packets.
969 efx_farch_handle_rx_event(struct efx_channel
*channel
, const efx_qword_t
*event
)
971 unsigned int rx_ev_desc_ptr
, rx_ev_byte_cnt
;
972 unsigned int rx_ev_hdr_type
, rx_ev_mcast_pkt
;
973 unsigned expected_ptr
;
974 bool rx_ev_pkt_ok
, rx_ev_sop
, rx_ev_cont
;
976 struct efx_rx_queue
*rx_queue
;
977 struct efx_nic
*efx
= channel
->efx
;
979 if (unlikely(READ_ONCE(efx
->reset_pending
)))
982 rx_ev_cont
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_JUMBO_CONT
);
983 rx_ev_sop
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_SOP
);
984 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_Q_LABEL
) !=
987 rx_queue
= efx_channel_get_rx_queue(channel
);
989 rx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_DESC_PTR
);
990 expected_ptr
= ((rx_queue
->removed_count
+ rx_queue
->scatter_n
) &
993 /* Check for partial drops and other errors */
994 if (unlikely(rx_ev_desc_ptr
!= expected_ptr
) ||
995 unlikely(rx_ev_sop
!= (rx_queue
->scatter_n
== 0))) {
996 if (rx_ev_desc_ptr
!= expected_ptr
&&
997 !efx_farch_handle_rx_bad_index(rx_queue
, rx_ev_desc_ptr
))
1000 /* Discard all pending fragments */
1001 if (rx_queue
->scatter_n
) {
1004 rx_queue
->removed_count
& rx_queue
->ptr_mask
,
1005 rx_queue
->scatter_n
, 0, EFX_RX_PKT_DISCARD
);
1006 rx_queue
->removed_count
+= rx_queue
->scatter_n
;
1007 rx_queue
->scatter_n
= 0;
1010 /* Return if there is no new fragment */
1011 if (rx_ev_desc_ptr
!= expected_ptr
)
1014 /* Discard new fragment if not SOP */
1018 rx_queue
->removed_count
& rx_queue
->ptr_mask
,
1019 1, 0, EFX_RX_PKT_DISCARD
);
1020 ++rx_queue
->removed_count
;
1025 ++rx_queue
->scatter_n
;
1029 rx_ev_byte_cnt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_BYTE_CNT
);
1030 rx_ev_pkt_ok
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_OK
);
1031 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
1033 if (likely(rx_ev_pkt_ok
)) {
1034 /* If packet is marked as OK then we can rely on the
1035 * hardware checksum and classification.
1038 switch (rx_ev_hdr_type
) {
1039 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP
:
1040 flags
|= EFX_RX_PKT_TCP
;
1042 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP
:
1043 flags
|= EFX_RX_PKT_CSUMMED
;
1045 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER
:
1046 case FSE_AZ_RX_EV_HDR_TYPE_OTHER
:
1050 flags
= efx_farch_handle_rx_not_ok(rx_queue
, event
);
1053 /* Detect multicast packets that didn't match the filter */
1054 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
1055 if (rx_ev_mcast_pkt
) {
1056 unsigned int rx_ev_mcast_hash_match
=
1057 EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_HASH_MATCH
);
1059 if (unlikely(!rx_ev_mcast_hash_match
)) {
1060 ++channel
->n_rx_mcast_mismatch
;
1061 flags
|= EFX_RX_PKT_DISCARD
;
1065 channel
->irq_mod_score
+= 2;
1067 /* Handle received packet */
1068 efx_rx_packet(rx_queue
,
1069 rx_queue
->removed_count
& rx_queue
->ptr_mask
,
1070 rx_queue
->scatter_n
, rx_ev_byte_cnt
, flags
);
1071 rx_queue
->removed_count
+= rx_queue
->scatter_n
;
1072 rx_queue
->scatter_n
= 0;
1075 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1076 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1077 * of all transmit completions.
1080 efx_farch_handle_tx_flush_done(struct efx_nic
*efx
, efx_qword_t
*event
)
1082 struct efx_tx_queue
*tx_queue
;
1085 qid
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBDATA
);
1086 if (qid
< EFX_TXQ_TYPES
* (efx
->n_tx_channels
+ efx
->n_extra_tx_channels
)) {
1087 tx_queue
= efx_get_tx_queue(efx
, qid
/ EFX_TXQ_TYPES
,
1088 qid
% EFX_TXQ_TYPES
);
1089 if (atomic_cmpxchg(&tx_queue
->flush_outstanding
, 1, 0)) {
1090 efx_farch_magic_event(tx_queue
->channel
,
1091 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue
));
1096 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1097 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1098 * the RX queue back to the mask of RX queues in need of flushing.
1101 efx_farch_handle_rx_flush_done(struct efx_nic
*efx
, efx_qword_t
*event
)
1103 struct efx_channel
*channel
;
1104 struct efx_rx_queue
*rx_queue
;
1108 qid
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_RX_DESCQ_ID
);
1109 failed
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL
);
1110 if (qid
>= efx
->n_channels
)
1112 channel
= efx_get_channel(efx
, qid
);
1113 if (!efx_channel_has_rx_queue(channel
))
1115 rx_queue
= efx_channel_get_rx_queue(channel
);
1118 netif_info(efx
, hw
, efx
->net_dev
,
1119 "RXQ %d flush retry\n", qid
);
1120 rx_queue
->flush_pending
= true;
1121 atomic_inc(&efx
->rxq_flush_pending
);
1123 efx_farch_magic_event(efx_rx_queue_channel(rx_queue
),
1124 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue
));
1126 atomic_dec(&efx
->rxq_flush_outstanding
);
1127 if (efx_farch_flush_wake(efx
))
1128 wake_up(&efx
->flush_wq
);
1132 efx_farch_handle_drain_event(struct efx_channel
*channel
)
1134 struct efx_nic
*efx
= channel
->efx
;
1136 WARN_ON(atomic_read(&efx
->active_queues
) == 0);
1137 atomic_dec(&efx
->active_queues
);
1138 if (efx_farch_flush_wake(efx
))
1139 wake_up(&efx
->flush_wq
);
1142 static void efx_farch_handle_generated_event(struct efx_channel
*channel
,
1145 struct efx_nic
*efx
= channel
->efx
;
1146 struct efx_rx_queue
*rx_queue
=
1147 efx_channel_has_rx_queue(channel
) ?
1148 efx_channel_get_rx_queue(channel
) : NULL
;
1149 unsigned magic
, code
;
1151 magic
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRV_GEN_EV_MAGIC
);
1152 code
= _EFX_CHANNEL_MAGIC_CODE(magic
);
1154 if (magic
== EFX_CHANNEL_MAGIC_TEST(channel
)) {
1155 channel
->event_test_cpu
= raw_smp_processor_id();
1156 } else if (rx_queue
&& magic
== EFX_CHANNEL_MAGIC_FILL(rx_queue
)) {
1157 /* The queue must be empty, so we won't receive any rx
1158 * events, so efx_process_channel() won't refill the
1159 * queue. Refill it here */
1160 efx_fast_push_rx_descriptors(rx_queue
, true);
1161 } else if (rx_queue
&& magic
== EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue
)) {
1162 efx_farch_handle_drain_event(channel
);
1163 } else if (code
== _EFX_CHANNEL_MAGIC_TX_DRAIN
) {
1164 efx_farch_handle_drain_event(channel
);
1166 netif_dbg(efx
, hw
, efx
->net_dev
, "channel %d received "
1167 "generated event "EFX_QWORD_FMT
"\n",
1168 channel
->channel
, EFX_QWORD_VAL(*event
));
1173 efx_farch_handle_driver_event(struct efx_channel
*channel
, efx_qword_t
*event
)
1175 struct efx_nic
*efx
= channel
->efx
;
1176 unsigned int ev_sub_code
;
1177 unsigned int ev_sub_data
;
1179 ev_sub_code
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBCODE
);
1180 ev_sub_data
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBDATA
);
1182 switch (ev_sub_code
) {
1183 case FSE_AZ_TX_DESCQ_FLS_DONE_EV
:
1184 netif_vdbg(efx
, hw
, efx
->net_dev
, "channel %d TXQ %d flushed\n",
1185 channel
->channel
, ev_sub_data
);
1186 efx_farch_handle_tx_flush_done(efx
, event
);
1187 #ifdef CONFIG_SFC_SRIOV
1188 efx_siena_sriov_tx_flush_done(efx
, event
);
1191 case FSE_AZ_RX_DESCQ_FLS_DONE_EV
:
1192 netif_vdbg(efx
, hw
, efx
->net_dev
, "channel %d RXQ %d flushed\n",
1193 channel
->channel
, ev_sub_data
);
1194 efx_farch_handle_rx_flush_done(efx
, event
);
1195 #ifdef CONFIG_SFC_SRIOV
1196 efx_siena_sriov_rx_flush_done(efx
, event
);
1199 case FSE_AZ_EVQ_INIT_DONE_EV
:
1200 netif_dbg(efx
, hw
, efx
->net_dev
,
1201 "channel %d EVQ %d initialised\n",
1202 channel
->channel
, ev_sub_data
);
1204 case FSE_AZ_SRM_UPD_DONE_EV
:
1205 netif_vdbg(efx
, hw
, efx
->net_dev
,
1206 "channel %d SRAM update done\n", channel
->channel
);
1208 case FSE_AZ_WAKE_UP_EV
:
1209 netif_vdbg(efx
, hw
, efx
->net_dev
,
1210 "channel %d RXQ %d wakeup event\n",
1211 channel
->channel
, ev_sub_data
);
1213 case FSE_AZ_TIMER_EV
:
1214 netif_vdbg(efx
, hw
, efx
->net_dev
,
1215 "channel %d RX queue %d timer expired\n",
1216 channel
->channel
, ev_sub_data
);
1218 case FSE_AA_RX_RECOVER_EV
:
1219 netif_err(efx
, rx_err
, efx
->net_dev
,
1220 "channel %d seen DRIVER RX_RESET event. "
1221 "Resetting.\n", channel
->channel
);
1222 atomic_inc(&efx
->rx_reset
);
1223 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1225 case FSE_BZ_RX_DSC_ERROR_EV
:
1226 if (ev_sub_data
< EFX_VI_BASE
) {
1227 netif_err(efx
, rx_err
, efx
->net_dev
,
1228 "RX DMA Q %d reports descriptor fetch error."
1229 " RX Q %d is disabled.\n", ev_sub_data
,
1231 efx_schedule_reset(efx
, RESET_TYPE_DMA_ERROR
);
1233 #ifdef CONFIG_SFC_SRIOV
1235 efx_siena_sriov_desc_fetch_err(efx
, ev_sub_data
);
1238 case FSE_BZ_TX_DSC_ERROR_EV
:
1239 if (ev_sub_data
< EFX_VI_BASE
) {
1240 netif_err(efx
, tx_err
, efx
->net_dev
,
1241 "TX DMA Q %d reports descriptor fetch error."
1242 " TX Q %d is disabled.\n", ev_sub_data
,
1244 efx_schedule_reset(efx
, RESET_TYPE_DMA_ERROR
);
1246 #ifdef CONFIG_SFC_SRIOV
1248 efx_siena_sriov_desc_fetch_err(efx
, ev_sub_data
);
1252 netif_vdbg(efx
, hw
, efx
->net_dev
,
1253 "channel %d unknown driver event code %d "
1254 "data %04x\n", channel
->channel
, ev_sub_code
,
1260 int efx_farch_ev_process(struct efx_channel
*channel
, int budget
)
1262 struct efx_nic
*efx
= channel
->efx
;
1263 unsigned int read_ptr
;
1264 efx_qword_t event
, *p_event
;
1271 read_ptr
= channel
->eventq_read_ptr
;
1274 p_event
= efx_event(channel
, read_ptr
);
1277 if (!efx_event_present(&event
))
1281 netif_vdbg(channel
->efx
, intr
, channel
->efx
->net_dev
,
1282 "channel %d event is "EFX_QWORD_FMT
"\n",
1283 channel
->channel
, EFX_QWORD_VAL(event
));
1285 /* Clear this event by marking it all ones */
1286 EFX_SET_QWORD(*p_event
);
1290 ev_code
= EFX_QWORD_FIELD(event
, FSF_AZ_EV_CODE
);
1293 case FSE_AZ_EV_CODE_RX_EV
:
1294 efx_farch_handle_rx_event(channel
, &event
);
1295 if (++spent
== budget
)
1298 case FSE_AZ_EV_CODE_TX_EV
:
1299 efx_farch_handle_tx_event(channel
, &event
);
1301 case FSE_AZ_EV_CODE_DRV_GEN_EV
:
1302 efx_farch_handle_generated_event(channel
, &event
);
1304 case FSE_AZ_EV_CODE_DRIVER_EV
:
1305 efx_farch_handle_driver_event(channel
, &event
);
1307 #ifdef CONFIG_SFC_SRIOV
1308 case FSE_CZ_EV_CODE_USER_EV
:
1309 efx_siena_sriov_event(channel
, &event
);
1312 case FSE_CZ_EV_CODE_MCDI_EV
:
1313 efx_mcdi_process_event(channel
, &event
);
1315 case FSE_AZ_EV_CODE_GLOBAL_EV
:
1316 if (efx
->type
->handle_global_event
&&
1317 efx
->type
->handle_global_event(channel
, &event
))
1319 /* else fall through */
1321 netif_err(channel
->efx
, hw
, channel
->efx
->net_dev
,
1322 "channel %d unknown event type %d (data "
1323 EFX_QWORD_FMT
")\n", channel
->channel
,
1324 ev_code
, EFX_QWORD_VAL(event
));
1329 channel
->eventq_read_ptr
= read_ptr
;
1333 /* Allocate buffer table entries for event queue */
1334 int efx_farch_ev_probe(struct efx_channel
*channel
)
1336 struct efx_nic
*efx
= channel
->efx
;
1339 entries
= channel
->eventq_mask
+ 1;
1340 return efx_alloc_special_buffer(efx
, &channel
->eventq
,
1341 entries
* sizeof(efx_qword_t
));
1344 int efx_farch_ev_init(struct efx_channel
*channel
)
1347 struct efx_nic
*efx
= channel
->efx
;
1349 netif_dbg(efx
, hw
, efx
->net_dev
,
1350 "channel %d event queue in special buffers %d-%d\n",
1351 channel
->channel
, channel
->eventq
.index
,
1352 channel
->eventq
.index
+ channel
->eventq
.entries
- 1);
1354 EFX_POPULATE_OWORD_3(reg
,
1355 FRF_CZ_TIMER_Q_EN
, 1,
1356 FRF_CZ_HOST_NOTIFY_MODE
, 0,
1357 FRF_CZ_TIMER_MODE
, FFE_CZ_TIMER_MODE_DIS
);
1358 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, channel
->channel
);
1360 /* Pin event queue buffer */
1361 efx_init_special_buffer(efx
, &channel
->eventq
);
1363 /* Fill event queue with all ones (i.e. empty events) */
1364 memset(channel
->eventq
.buf
.addr
, 0xff, channel
->eventq
.buf
.len
);
1366 /* Push event queue to card */
1367 EFX_POPULATE_OWORD_3(reg
,
1369 FRF_AZ_EVQ_SIZE
, __ffs(channel
->eventq
.entries
),
1370 FRF_AZ_EVQ_BUF_BASE_ID
, channel
->eventq
.index
);
1371 efx_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1377 void efx_farch_ev_fini(struct efx_channel
*channel
)
1380 struct efx_nic
*efx
= channel
->efx
;
1382 /* Remove event queue from card */
1383 EFX_ZERO_OWORD(reg
);
1384 efx_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1386 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, channel
->channel
);
1388 /* Unpin event queue */
1389 efx_fini_special_buffer(efx
, &channel
->eventq
);
1392 /* Free buffers backing event queue */
1393 void efx_farch_ev_remove(struct efx_channel
*channel
)
1395 efx_free_special_buffer(channel
->efx
, &channel
->eventq
);
1399 void efx_farch_ev_test_generate(struct efx_channel
*channel
)
1401 efx_farch_magic_event(channel
, EFX_CHANNEL_MAGIC_TEST(channel
));
1404 void efx_farch_rx_defer_refill(struct efx_rx_queue
*rx_queue
)
1406 efx_farch_magic_event(efx_rx_queue_channel(rx_queue
),
1407 EFX_CHANNEL_MAGIC_FILL(rx_queue
));
1410 /**************************************************************************
1412 * Hardware interrupts
1413 * The hardware interrupt handler does very little work; all the event
1414 * queue processing is carried out by per-channel tasklets.
1416 **************************************************************************/
1418 /* Enable/disable/generate interrupts */
1419 static inline void efx_farch_interrupts(struct efx_nic
*efx
,
1420 bool enabled
, bool force
)
1422 efx_oword_t int_en_reg_ker
;
1424 EFX_POPULATE_OWORD_3(int_en_reg_ker
,
1425 FRF_AZ_KER_INT_LEVE_SEL
, efx
->irq_level
,
1426 FRF_AZ_KER_INT_KER
, force
,
1427 FRF_AZ_DRV_INT_EN_KER
, enabled
);
1428 efx_writeo(efx
, &int_en_reg_ker
, FR_AZ_INT_EN_KER
);
1431 void efx_farch_irq_enable_master(struct efx_nic
*efx
)
1433 EFX_ZERO_OWORD(*((efx_oword_t
*) efx
->irq_status
.addr
));
1434 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1436 efx_farch_interrupts(efx
, true, false);
1439 void efx_farch_irq_disable_master(struct efx_nic
*efx
)
1441 /* Disable interrupts */
1442 efx_farch_interrupts(efx
, false, false);
1445 /* Generate a test interrupt
1446 * Interrupt must already have been enabled, otherwise nasty things
1449 int efx_farch_irq_test_generate(struct efx_nic
*efx
)
1451 efx_farch_interrupts(efx
, true, true);
1455 /* Process a fatal interrupt
1456 * Disable bus mastering ASAP and schedule a reset
1458 irqreturn_t
efx_farch_fatal_interrupt(struct efx_nic
*efx
)
1460 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1461 efx_oword_t fatal_intr
;
1462 int error
, mem_perr
;
1464 efx_reado(efx
, &fatal_intr
, FR_AZ_FATAL_INTR_KER
);
1465 error
= EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_FATAL_INTR
);
1467 netif_err(efx
, hw
, efx
->net_dev
, "SYSTEM ERROR "EFX_OWORD_FMT
" status "
1468 EFX_OWORD_FMT
": %s\n", EFX_OWORD_VAL(*int_ker
),
1469 EFX_OWORD_VAL(fatal_intr
),
1470 error
? "disabling bus mastering" : "no recognised error");
1472 /* If this is a memory parity error dump which blocks are offending */
1473 mem_perr
= (EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_MEM_PERR_INT_KER
) ||
1474 EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_SRM_PERR_INT_KER
));
1477 efx_reado(efx
, ®
, FR_AZ_MEM_STAT
);
1478 netif_err(efx
, hw
, efx
->net_dev
,
1479 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT
"\n",
1480 EFX_OWORD_VAL(reg
));
1483 /* Disable both devices */
1484 pci_clear_master(efx
->pci_dev
);
1485 efx_farch_irq_disable_master(efx
);
1487 /* Count errors and reset or disable the NIC accordingly */
1488 if (efx
->int_error_count
== 0 ||
1489 time_after(jiffies
, efx
->int_error_expire
)) {
1490 efx
->int_error_count
= 0;
1491 efx
->int_error_expire
=
1492 jiffies
+ EFX_INT_ERROR_EXPIRE
* HZ
;
1494 if (++efx
->int_error_count
< EFX_MAX_INT_ERRORS
) {
1495 netif_err(efx
, hw
, efx
->net_dev
,
1496 "SYSTEM ERROR - reset scheduled\n");
1497 efx_schedule_reset(efx
, RESET_TYPE_INT_ERROR
);
1499 netif_err(efx
, hw
, efx
->net_dev
,
1500 "SYSTEM ERROR - max number of errors seen."
1501 "NIC will be disabled\n");
1502 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1508 /* Handle a legacy interrupt
1509 * Acknowledges the interrupt and schedule event queue processing.
1511 irqreturn_t
efx_farch_legacy_interrupt(int irq
, void *dev_id
)
1513 struct efx_nic
*efx
= dev_id
;
1514 bool soft_enabled
= READ_ONCE(efx
->irq_soft_enabled
);
1515 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1516 irqreturn_t result
= IRQ_NONE
;
1517 struct efx_channel
*channel
;
1522 /* Read the ISR which also ACKs the interrupts */
1523 efx_readd(efx
, ®
, FR_BZ_INT_ISR0
);
1524 queues
= EFX_EXTRACT_DWORD(reg
, 0, 31);
1526 /* Legacy interrupts are disabled too late by the EEH kernel
1527 * code. Disable them earlier.
1528 * If an EEH error occurred, the read will have returned all ones.
1530 if (EFX_DWORD_IS_ALL_ONES(reg
) && efx_try_recovery(efx
) &&
1531 !efx
->eeh_disabled_legacy_irq
) {
1532 disable_irq_nosync(efx
->legacy_irq
);
1533 efx
->eeh_disabled_legacy_irq
= true;
1536 /* Handle non-event-queue sources */
1537 if (queues
& (1U << efx
->irq_level
) && soft_enabled
) {
1538 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1539 if (unlikely(syserr
))
1540 return efx_farch_fatal_interrupt(efx
);
1541 efx
->last_irq_cpu
= raw_smp_processor_id();
1545 efx
->irq_zero_count
= 0;
1547 /* Schedule processing of any interrupting queues */
1548 if (likely(soft_enabled
)) {
1549 efx_for_each_channel(channel
, efx
) {
1551 efx_schedule_channel_irq(channel
);
1555 result
= IRQ_HANDLED
;
1560 /* Legacy ISR read can return zero once (SF bug 15783) */
1562 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1563 * because this might be a shared interrupt. */
1564 if (efx
->irq_zero_count
++ == 0)
1565 result
= IRQ_HANDLED
;
1567 /* Ensure we schedule or rearm all event queues */
1568 if (likely(soft_enabled
)) {
1569 efx_for_each_channel(channel
, efx
) {
1570 event
= efx_event(channel
,
1571 channel
->eventq_read_ptr
);
1572 if (efx_event_present(event
))
1573 efx_schedule_channel_irq(channel
);
1575 efx_farch_ev_read_ack(channel
);
1580 if (result
== IRQ_HANDLED
)
1581 netif_vdbg(efx
, intr
, efx
->net_dev
,
1582 "IRQ %d on CPU %d status " EFX_DWORD_FMT
"\n",
1583 irq
, raw_smp_processor_id(), EFX_DWORD_VAL(reg
));
1588 /* Handle an MSI interrupt
1590 * Handle an MSI hardware interrupt. This routine schedules event
1591 * queue processing. No interrupt acknowledgement cycle is necessary.
1592 * Also, we never need to check that the interrupt is for us, since
1593 * MSI interrupts cannot be shared.
1595 irqreturn_t
efx_farch_msi_interrupt(int irq
, void *dev_id
)
1597 struct efx_msi_context
*context
= dev_id
;
1598 struct efx_nic
*efx
= context
->efx
;
1599 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1602 netif_vdbg(efx
, intr
, efx
->net_dev
,
1603 "IRQ %d on CPU %d status " EFX_OWORD_FMT
"\n",
1604 irq
, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker
));
1606 if (!likely(READ_ONCE(efx
->irq_soft_enabled
)))
1609 /* Handle non-event-queue sources */
1610 if (context
->index
== efx
->irq_level
) {
1611 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1612 if (unlikely(syserr
))
1613 return efx_farch_fatal_interrupt(efx
);
1614 efx
->last_irq_cpu
= raw_smp_processor_id();
1617 /* Schedule processing of the channel */
1618 efx_schedule_channel_irq(efx
->channel
[context
->index
]);
1623 /* Setup RSS indirection table.
1624 * This maps from the hash value of the packet to RXQ
1626 void efx_farch_rx_push_indir_table(struct efx_nic
*efx
)
1631 BUILD_BUG_ON(ARRAY_SIZE(efx
->rss_context
.rx_indir_table
) !=
1632 FR_BZ_RX_INDIRECTION_TBL_ROWS
);
1634 for (i
= 0; i
< FR_BZ_RX_INDIRECTION_TBL_ROWS
; i
++) {
1635 EFX_POPULATE_DWORD_1(dword
, FRF_BZ_IT_QUEUE
,
1636 efx
->rss_context
.rx_indir_table
[i
]);
1637 efx_writed(efx
, &dword
,
1638 FR_BZ_RX_INDIRECTION_TBL
+
1639 FR_BZ_RX_INDIRECTION_TBL_STEP
* i
);
1643 void efx_farch_rx_pull_indir_table(struct efx_nic
*efx
)
1648 BUILD_BUG_ON(ARRAY_SIZE(efx
->rss_context
.rx_indir_table
) !=
1649 FR_BZ_RX_INDIRECTION_TBL_ROWS
);
1651 for (i
= 0; i
< FR_BZ_RX_INDIRECTION_TBL_ROWS
; i
++) {
1652 efx_readd(efx
, &dword
,
1653 FR_BZ_RX_INDIRECTION_TBL
+
1654 FR_BZ_RX_INDIRECTION_TBL_STEP
* i
);
1655 efx
->rss_context
.rx_indir_table
[i
] = EFX_DWORD_FIELD(dword
, FRF_BZ_IT_QUEUE
);
1659 /* Looks at available SRAM resources and works out how many queues we
1660 * can support, and where things like descriptor caches should live.
1662 * SRAM is split up as follows:
1663 * 0 buftbl entries for channels
1664 * efx->vf_buftbl_base buftbl entries for SR-IOV
1665 * efx->rx_dc_base RX descriptor caches
1666 * efx->tx_dc_base TX descriptor caches
1668 void efx_farch_dimension_resources(struct efx_nic
*efx
, unsigned sram_lim_qw
)
1670 unsigned vi_count
, buftbl_min
, total_tx_channels
;
1672 #ifdef CONFIG_SFC_SRIOV
1673 struct siena_nic_data
*nic_data
= efx
->nic_data
;
1676 total_tx_channels
= efx
->n_tx_channels
+ efx
->n_extra_tx_channels
;
1677 /* Account for the buffer table entries backing the datapath channels
1678 * and the descriptor caches for those channels.
1680 buftbl_min
= ((efx
->n_rx_channels
* EFX_MAX_DMAQ_SIZE
+
1681 total_tx_channels
* EFX_TXQ_TYPES
* EFX_MAX_DMAQ_SIZE
+
1682 efx
->n_channels
* EFX_MAX_EVQ_SIZE
)
1683 * sizeof(efx_qword_t
) / EFX_BUF_SIZE
);
1684 vi_count
= max(efx
->n_channels
, total_tx_channels
* EFX_TXQ_TYPES
);
1686 #ifdef CONFIG_SFC_SRIOV
1687 if (efx
->type
->sriov_wanted
) {
1688 if (efx
->type
->sriov_wanted(efx
)) {
1689 unsigned vi_dc_entries
, buftbl_free
;
1690 unsigned entries_per_vf
, vf_limit
;
1692 nic_data
->vf_buftbl_base
= buftbl_min
;
1694 vi_dc_entries
= RX_DC_ENTRIES
+ TX_DC_ENTRIES
;
1695 vi_count
= max(vi_count
, EFX_VI_BASE
);
1696 buftbl_free
= (sram_lim_qw
- buftbl_min
-
1697 vi_count
* vi_dc_entries
);
1699 entries_per_vf
= ((vi_dc_entries
+
1700 EFX_VF_BUFTBL_PER_VI
) *
1702 vf_limit
= min(buftbl_free
/ entries_per_vf
,
1703 (1024U - EFX_VI_BASE
) >> efx
->vi_scale
);
1705 if (efx
->vf_count
> vf_limit
) {
1706 netif_err(efx
, probe
, efx
->net_dev
,
1707 "Reducing VF count from from %d to %d\n",
1708 efx
->vf_count
, vf_limit
);
1709 efx
->vf_count
= vf_limit
;
1711 vi_count
+= efx
->vf_count
* efx_vf_size(efx
);
1716 efx
->tx_dc_base
= sram_lim_qw
- vi_count
* TX_DC_ENTRIES
;
1717 efx
->rx_dc_base
= efx
->tx_dc_base
- vi_count
* RX_DC_ENTRIES
;
1720 u32
efx_farch_fpga_ver(struct efx_nic
*efx
)
1722 efx_oword_t altera_build
;
1723 efx_reado(efx
, &altera_build
, FR_AZ_ALTERA_BUILD
);
1724 return EFX_OWORD_FIELD(altera_build
, FRF_AZ_ALTERA_BUILD_VER
);
1727 void efx_farch_init_common(struct efx_nic
*efx
)
1731 /* Set positions of descriptor caches in SRAM. */
1732 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_TX_DC_BASE_ADR
, efx
->tx_dc_base
);
1733 efx_writeo(efx
, &temp
, FR_AZ_SRM_TX_DC_CFG
);
1734 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_RX_DC_BASE_ADR
, efx
->rx_dc_base
);
1735 efx_writeo(efx
, &temp
, FR_AZ_SRM_RX_DC_CFG
);
1737 /* Set TX descriptor cache size. */
1738 BUILD_BUG_ON(TX_DC_ENTRIES
!= (8 << TX_DC_ENTRIES_ORDER
));
1739 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_TX_DC_SIZE
, TX_DC_ENTRIES_ORDER
);
1740 efx_writeo(efx
, &temp
, FR_AZ_TX_DC_CFG
);
1742 /* Set RX descriptor cache size. Set low watermark to size-8, as
1743 * this allows most efficient prefetching.
1745 BUILD_BUG_ON(RX_DC_ENTRIES
!= (8 << RX_DC_ENTRIES_ORDER
));
1746 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_SIZE
, RX_DC_ENTRIES_ORDER
);
1747 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_CFG
);
1748 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_PF_LWM
, RX_DC_ENTRIES
- 8);
1749 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_PF_WM
);
1751 /* Program INT_KER address */
1752 EFX_POPULATE_OWORD_2(temp
,
1753 FRF_AZ_NORM_INT_VEC_DIS_KER
,
1754 EFX_INT_MODE_USE_MSI(efx
),
1755 FRF_AZ_INT_ADR_KER
, efx
->irq_status
.dma_addr
);
1756 efx_writeo(efx
, &temp
, FR_AZ_INT_ADR_KER
);
1758 if (EFX_WORKAROUND_17213(efx
) && !EFX_INT_MODE_USE_MSI(efx
))
1759 /* Use an interrupt level unused by event queues */
1760 efx
->irq_level
= 0x1f;
1762 /* Use a valid MSI-X vector */
1765 /* Enable all the genuinely fatal interrupts. (They are still
1766 * masked by the overall interrupt mask, controlled by
1767 * falcon_interrupts()).
1769 * Note: All other fatal interrupts are enabled
1771 EFX_POPULATE_OWORD_3(temp
,
1772 FRF_AZ_ILL_ADR_INT_KER_EN
, 1,
1773 FRF_AZ_RBUF_OWN_INT_KER_EN
, 1,
1774 FRF_AZ_TBUF_OWN_INT_KER_EN
, 1);
1775 EFX_SET_OWORD_FIELD(temp
, FRF_CZ_SRAM_PERR_INT_P_KER_EN
, 1);
1776 EFX_INVERT_OWORD(temp
);
1777 efx_writeo(efx
, &temp
, FR_AZ_FATAL_INTR_KER
);
1779 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1780 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1782 efx_reado(efx
, &temp
, FR_AZ_TX_RESERVED
);
1783 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER
, 0xfe);
1784 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER_EN
, 1);
1785 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_ONE_PKT_PER_Q
, 1);
1786 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PUSH_EN
, 1);
1787 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_DIS_NON_IP_EV
, 1);
1788 /* Enable SW_EV to inherit in char driver - assume harmless here */
1789 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_SOFT_EVT_EN
, 1);
1790 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1791 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_THRESHOLD
, 2);
1792 /* Disable hardware watchdog which can misfire */
1793 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_WD_TMR
, 0x3fffff);
1794 /* Squash TX of packets of 16 bytes or less */
1795 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TX_FLUSH_MIN_LEN_EN
, 1);
1796 efx_writeo(efx
, &temp
, FR_AZ_TX_RESERVED
);
1798 EFX_POPULATE_OWORD_4(temp
,
1799 /* Default values */
1800 FRF_BZ_TX_PACE_SB_NOT_AF
, 0x15,
1801 FRF_BZ_TX_PACE_SB_AF
, 0xb,
1802 FRF_BZ_TX_PACE_FB_BASE
, 0,
1803 /* Allow large pace values in the fast bin. */
1804 FRF_BZ_TX_PACE_BIN_TH
,
1805 FFE_BZ_TX_PACE_RESERVED
);
1806 efx_writeo(efx
, &temp
, FR_BZ_TX_PACE
);
1809 /**************************************************************************
1813 **************************************************************************
1816 /* "Fudge factors" - difference between programmed value and actual depth.
1817 * Due to pipelined implementation we need to program H/W with a value that
1818 * is larger than the hop limit we want.
1820 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1821 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1823 /* Hard maximum search limit. Hardware will time-out beyond 200-something.
1824 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1827 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1829 /* Don't try very hard to find space for performance hints, as this is
1830 * counter-productive. */
1831 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1833 enum efx_farch_filter_type
{
1834 EFX_FARCH_FILTER_TCP_FULL
= 0,
1835 EFX_FARCH_FILTER_TCP_WILD
,
1836 EFX_FARCH_FILTER_UDP_FULL
,
1837 EFX_FARCH_FILTER_UDP_WILD
,
1838 EFX_FARCH_FILTER_MAC_FULL
= 4,
1839 EFX_FARCH_FILTER_MAC_WILD
,
1840 EFX_FARCH_FILTER_UC_DEF
= 8,
1841 EFX_FARCH_FILTER_MC_DEF
,
1842 EFX_FARCH_FILTER_TYPE_COUNT
, /* number of specific types */
1845 enum efx_farch_filter_table_id
{
1846 EFX_FARCH_FILTER_TABLE_RX_IP
= 0,
1847 EFX_FARCH_FILTER_TABLE_RX_MAC
,
1848 EFX_FARCH_FILTER_TABLE_RX_DEF
,
1849 EFX_FARCH_FILTER_TABLE_TX_MAC
,
1850 EFX_FARCH_FILTER_TABLE_COUNT
,
1853 enum efx_farch_filter_index
{
1854 EFX_FARCH_FILTER_INDEX_UC_DEF
,
1855 EFX_FARCH_FILTER_INDEX_MC_DEF
,
1856 EFX_FARCH_FILTER_SIZE_RX_DEF
,
1859 struct efx_farch_filter_spec
{
1867 struct efx_farch_filter_table
{
1868 enum efx_farch_filter_table_id id
;
1869 u32 offset
; /* address of table relative to BAR */
1870 unsigned size
; /* number of entries */
1871 unsigned step
; /* step between entries */
1872 unsigned used
; /* number currently used */
1873 unsigned long *used_bitmap
;
1874 struct efx_farch_filter_spec
*spec
;
1875 unsigned search_limit
[EFX_FARCH_FILTER_TYPE_COUNT
];
1878 struct efx_farch_filter_state
{
1879 struct rw_semaphore lock
; /* Protects table contents */
1880 struct efx_farch_filter_table table
[EFX_FARCH_FILTER_TABLE_COUNT
];
1884 efx_farch_filter_table_clear_entry(struct efx_nic
*efx
,
1885 struct efx_farch_filter_table
*table
,
1886 unsigned int filter_idx
);
1888 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1889 * key derived from the n-tuple. The initial LFSR state is 0xffff. */
1890 static u16
efx_farch_filter_hash(u32 key
)
1894 /* First 16 rounds */
1895 tmp
= 0x1fff ^ key
>> 16;
1896 tmp
= tmp
^ tmp
>> 3 ^ tmp
>> 6;
1897 tmp
= tmp
^ tmp
>> 9;
1898 /* Last 16 rounds */
1899 tmp
= tmp
^ tmp
<< 13 ^ key
;
1900 tmp
= tmp
^ tmp
>> 3 ^ tmp
>> 6;
1901 return tmp
^ tmp
>> 9;
1904 /* To allow for hash collisions, filter search continues at these
1905 * increments from the first possible entry selected by the hash. */
1906 static u16
efx_farch_filter_increment(u32 key
)
1911 static enum efx_farch_filter_table_id
1912 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec
*spec
)
1914 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP
!=
1915 (EFX_FARCH_FILTER_TCP_FULL
>> 2));
1916 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP
!=
1917 (EFX_FARCH_FILTER_TCP_WILD
>> 2));
1918 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP
!=
1919 (EFX_FARCH_FILTER_UDP_FULL
>> 2));
1920 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP
!=
1921 (EFX_FARCH_FILTER_UDP_WILD
>> 2));
1922 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC
!=
1923 (EFX_FARCH_FILTER_MAC_FULL
>> 2));
1924 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC
!=
1925 (EFX_FARCH_FILTER_MAC_WILD
>> 2));
1926 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC
!=
1927 EFX_FARCH_FILTER_TABLE_RX_MAC
+ 2);
1928 return (spec
->type
>> 2) + ((spec
->flags
& EFX_FILTER_FLAG_TX
) ? 2 : 0);
1931 static void efx_farch_filter_push_rx_config(struct efx_nic
*efx
)
1933 struct efx_farch_filter_state
*state
= efx
->filter_state
;
1934 struct efx_farch_filter_table
*table
;
1935 efx_oword_t filter_ctl
;
1937 efx_reado(efx
, &filter_ctl
, FR_BZ_RX_FILTER_CTL
);
1939 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_IP
];
1940 EFX_SET_OWORD_FIELD(filter_ctl
, FRF_BZ_TCP_FULL_SRCH_LIMIT
,
1941 table
->search_limit
[EFX_FARCH_FILTER_TCP_FULL
] +
1942 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL
);
1943 EFX_SET_OWORD_FIELD(filter_ctl
, FRF_BZ_TCP_WILD_SRCH_LIMIT
,
1944 table
->search_limit
[EFX_FARCH_FILTER_TCP_WILD
] +
1945 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD
);
1946 EFX_SET_OWORD_FIELD(filter_ctl
, FRF_BZ_UDP_FULL_SRCH_LIMIT
,
1947 table
->search_limit
[EFX_FARCH_FILTER_UDP_FULL
] +
1948 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL
);
1949 EFX_SET_OWORD_FIELD(filter_ctl
, FRF_BZ_UDP_WILD_SRCH_LIMIT
,
1950 table
->search_limit
[EFX_FARCH_FILTER_UDP_WILD
] +
1951 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD
);
1953 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_MAC
];
1955 EFX_SET_OWORD_FIELD(
1956 filter_ctl
, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT
,
1957 table
->search_limit
[EFX_FARCH_FILTER_MAC_FULL
] +
1958 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL
);
1959 EFX_SET_OWORD_FIELD(
1960 filter_ctl
, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT
,
1961 table
->search_limit
[EFX_FARCH_FILTER_MAC_WILD
] +
1962 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD
);
1965 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_DEF
];
1967 EFX_SET_OWORD_FIELD(
1968 filter_ctl
, FRF_CZ_UNICAST_NOMATCH_Q_ID
,
1969 table
->spec
[EFX_FARCH_FILTER_INDEX_UC_DEF
].dmaq_id
);
1970 EFX_SET_OWORD_FIELD(
1971 filter_ctl
, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED
,
1972 !!(table
->spec
[EFX_FARCH_FILTER_INDEX_UC_DEF
].flags
&
1973 EFX_FILTER_FLAG_RX_RSS
));
1974 EFX_SET_OWORD_FIELD(
1975 filter_ctl
, FRF_CZ_MULTICAST_NOMATCH_Q_ID
,
1976 table
->spec
[EFX_FARCH_FILTER_INDEX_MC_DEF
].dmaq_id
);
1977 EFX_SET_OWORD_FIELD(
1978 filter_ctl
, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED
,
1979 !!(table
->spec
[EFX_FARCH_FILTER_INDEX_MC_DEF
].flags
&
1980 EFX_FILTER_FLAG_RX_RSS
));
1982 /* There is a single bit to enable RX scatter for all
1983 * unmatched packets. Only set it if scatter is
1984 * enabled in both filter specs.
1986 EFX_SET_OWORD_FIELD(
1987 filter_ctl
, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q
,
1988 !!(table
->spec
[EFX_FARCH_FILTER_INDEX_UC_DEF
].flags
&
1989 table
->spec
[EFX_FARCH_FILTER_INDEX_MC_DEF
].flags
&
1990 EFX_FILTER_FLAG_RX_SCATTER
));
1992 /* We don't expose 'default' filters because unmatched
1993 * packets always go to the queue number found in the
1994 * RSS table. But we still need to set the RX scatter
1997 EFX_SET_OWORD_FIELD(
1998 filter_ctl
, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q
,
2002 efx_writeo(efx
, &filter_ctl
, FR_BZ_RX_FILTER_CTL
);
2005 static void efx_farch_filter_push_tx_limits(struct efx_nic
*efx
)
2007 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2008 struct efx_farch_filter_table
*table
;
2011 efx_reado(efx
, &tx_cfg
, FR_AZ_TX_CFG
);
2013 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_TX_MAC
];
2015 EFX_SET_OWORD_FIELD(
2016 tx_cfg
, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE
,
2017 table
->search_limit
[EFX_FARCH_FILTER_MAC_FULL
] +
2018 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL
);
2019 EFX_SET_OWORD_FIELD(
2020 tx_cfg
, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE
,
2021 table
->search_limit
[EFX_FARCH_FILTER_MAC_WILD
] +
2022 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD
);
2025 efx_writeo(efx
, &tx_cfg
, FR_AZ_TX_CFG
);
2029 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec
*spec
,
2030 const struct efx_filter_spec
*gen_spec
)
2032 bool is_full
= false;
2034 if ((gen_spec
->flags
& EFX_FILTER_FLAG_RX_RSS
) && gen_spec
->rss_context
)
2037 spec
->priority
= gen_spec
->priority
;
2038 spec
->flags
= gen_spec
->flags
;
2039 spec
->dmaq_id
= gen_spec
->dmaq_id
;
2041 switch (gen_spec
->match_flags
) {
2042 case (EFX_FILTER_MATCH_ETHER_TYPE
| EFX_FILTER_MATCH_IP_PROTO
|
2043 EFX_FILTER_MATCH_LOC_HOST
| EFX_FILTER_MATCH_LOC_PORT
|
2044 EFX_FILTER_MATCH_REM_HOST
| EFX_FILTER_MATCH_REM_PORT
):
2047 case (EFX_FILTER_MATCH_ETHER_TYPE
| EFX_FILTER_MATCH_IP_PROTO
|
2048 EFX_FILTER_MATCH_LOC_HOST
| EFX_FILTER_MATCH_LOC_PORT
): {
2049 __be32 rhost
, host1
, host2
;
2050 __be16 rport
, port1
, port2
;
2052 EFX_WARN_ON_PARANOID(!(gen_spec
->flags
& EFX_FILTER_FLAG_RX
));
2054 if (gen_spec
->ether_type
!= htons(ETH_P_IP
))
2055 return -EPROTONOSUPPORT
;
2056 if (gen_spec
->loc_port
== 0 ||
2057 (is_full
&& gen_spec
->rem_port
== 0))
2058 return -EADDRNOTAVAIL
;
2059 switch (gen_spec
->ip_proto
) {
2061 spec
->type
= (is_full
? EFX_FARCH_FILTER_TCP_FULL
:
2062 EFX_FARCH_FILTER_TCP_WILD
);
2065 spec
->type
= (is_full
? EFX_FARCH_FILTER_UDP_FULL
:
2066 EFX_FARCH_FILTER_UDP_WILD
);
2069 return -EPROTONOSUPPORT
;
2072 /* Filter is constructed in terms of source and destination,
2073 * with the odd wrinkle that the ports are swapped in a UDP
2074 * wildcard filter. We need to convert from local and remote
2075 * (= zero for wildcard) addresses.
2077 rhost
= is_full
? gen_spec
->rem_host
[0] : 0;
2078 rport
= is_full
? gen_spec
->rem_port
: 0;
2080 host2
= gen_spec
->loc_host
[0];
2081 if (!is_full
&& gen_spec
->ip_proto
== IPPROTO_UDP
) {
2082 port1
= gen_spec
->loc_port
;
2086 port2
= gen_spec
->loc_port
;
2088 spec
->data
[0] = ntohl(host1
) << 16 | ntohs(port1
);
2089 spec
->data
[1] = ntohs(port2
) << 16 | ntohl(host1
) >> 16;
2090 spec
->data
[2] = ntohl(host2
);
2095 case EFX_FILTER_MATCH_LOC_MAC
| EFX_FILTER_MATCH_OUTER_VID
:
2098 case EFX_FILTER_MATCH_LOC_MAC
:
2099 spec
->type
= (is_full
? EFX_FARCH_FILTER_MAC_FULL
:
2100 EFX_FARCH_FILTER_MAC_WILD
);
2101 spec
->data
[0] = is_full
? ntohs(gen_spec
->outer_vid
) : 0;
2102 spec
->data
[1] = (gen_spec
->loc_mac
[2] << 24 |
2103 gen_spec
->loc_mac
[3] << 16 |
2104 gen_spec
->loc_mac
[4] << 8 |
2105 gen_spec
->loc_mac
[5]);
2106 spec
->data
[2] = (gen_spec
->loc_mac
[0] << 8 |
2107 gen_spec
->loc_mac
[1]);
2110 case EFX_FILTER_MATCH_LOC_MAC_IG
:
2111 spec
->type
= (is_multicast_ether_addr(gen_spec
->loc_mac
) ?
2112 EFX_FARCH_FILTER_MC_DEF
:
2113 EFX_FARCH_FILTER_UC_DEF
);
2114 memset(spec
->data
, 0, sizeof(spec
->data
)); /* ensure equality */
2118 return -EPROTONOSUPPORT
;
2125 efx_farch_filter_to_gen_spec(struct efx_filter_spec
*gen_spec
,
2126 const struct efx_farch_filter_spec
*spec
)
2128 bool is_full
= false;
2130 /* *gen_spec should be completely initialised, to be consistent
2131 * with efx_filter_init_{rx,tx}() and in case we want to copy
2132 * it back to userland.
2134 memset(gen_spec
, 0, sizeof(*gen_spec
));
2136 gen_spec
->priority
= spec
->priority
;
2137 gen_spec
->flags
= spec
->flags
;
2138 gen_spec
->dmaq_id
= spec
->dmaq_id
;
2140 switch (spec
->type
) {
2141 case EFX_FARCH_FILTER_TCP_FULL
:
2142 case EFX_FARCH_FILTER_UDP_FULL
:
2145 case EFX_FARCH_FILTER_TCP_WILD
:
2146 case EFX_FARCH_FILTER_UDP_WILD
: {
2147 __be32 host1
, host2
;
2148 __be16 port1
, port2
;
2150 gen_spec
->match_flags
=
2151 EFX_FILTER_MATCH_ETHER_TYPE
|
2152 EFX_FILTER_MATCH_IP_PROTO
|
2153 EFX_FILTER_MATCH_LOC_HOST
| EFX_FILTER_MATCH_LOC_PORT
;
2155 gen_spec
->match_flags
|= (EFX_FILTER_MATCH_REM_HOST
|
2156 EFX_FILTER_MATCH_REM_PORT
);
2157 gen_spec
->ether_type
= htons(ETH_P_IP
);
2158 gen_spec
->ip_proto
=
2159 (spec
->type
== EFX_FARCH_FILTER_TCP_FULL
||
2160 spec
->type
== EFX_FARCH_FILTER_TCP_WILD
) ?
2161 IPPROTO_TCP
: IPPROTO_UDP
;
2163 host1
= htonl(spec
->data
[0] >> 16 | spec
->data
[1] << 16);
2164 port1
= htons(spec
->data
[0]);
2165 host2
= htonl(spec
->data
[2]);
2166 port2
= htons(spec
->data
[1] >> 16);
2167 if (spec
->flags
& EFX_FILTER_FLAG_TX
) {
2168 gen_spec
->loc_host
[0] = host1
;
2169 gen_spec
->rem_host
[0] = host2
;
2171 gen_spec
->loc_host
[0] = host2
;
2172 gen_spec
->rem_host
[0] = host1
;
2174 if (!!(gen_spec
->flags
& EFX_FILTER_FLAG_TX
) ^
2175 (!is_full
&& gen_spec
->ip_proto
== IPPROTO_UDP
)) {
2176 gen_spec
->loc_port
= port1
;
2177 gen_spec
->rem_port
= port2
;
2179 gen_spec
->loc_port
= port2
;
2180 gen_spec
->rem_port
= port1
;
2186 case EFX_FARCH_FILTER_MAC_FULL
:
2189 case EFX_FARCH_FILTER_MAC_WILD
:
2190 gen_spec
->match_flags
= EFX_FILTER_MATCH_LOC_MAC
;
2192 gen_spec
->match_flags
|= EFX_FILTER_MATCH_OUTER_VID
;
2193 gen_spec
->loc_mac
[0] = spec
->data
[2] >> 8;
2194 gen_spec
->loc_mac
[1] = spec
->data
[2];
2195 gen_spec
->loc_mac
[2] = spec
->data
[1] >> 24;
2196 gen_spec
->loc_mac
[3] = spec
->data
[1] >> 16;
2197 gen_spec
->loc_mac
[4] = spec
->data
[1] >> 8;
2198 gen_spec
->loc_mac
[5] = spec
->data
[1];
2199 gen_spec
->outer_vid
= htons(spec
->data
[0]);
2202 case EFX_FARCH_FILTER_UC_DEF
:
2203 case EFX_FARCH_FILTER_MC_DEF
:
2204 gen_spec
->match_flags
= EFX_FILTER_MATCH_LOC_MAC_IG
;
2205 gen_spec
->loc_mac
[0] = spec
->type
== EFX_FARCH_FILTER_MC_DEF
;
2215 efx_farch_filter_init_rx_auto(struct efx_nic
*efx
,
2216 struct efx_farch_filter_spec
*spec
)
2218 /* If there's only one channel then disable RSS for non VF
2219 * traffic, thereby allowing VFs to use RSS when the PF can't.
2221 spec
->priority
= EFX_FILTER_PRI_AUTO
;
2222 spec
->flags
= (EFX_FILTER_FLAG_RX
|
2223 (efx_rss_enabled(efx
) ? EFX_FILTER_FLAG_RX_RSS
: 0) |
2224 (efx
->rx_scatter
? EFX_FILTER_FLAG_RX_SCATTER
: 0));
2228 /* Build a filter entry and return its n-tuple key. */
2229 static u32
efx_farch_filter_build(efx_oword_t
*filter
,
2230 struct efx_farch_filter_spec
*spec
)
2234 switch (efx_farch_filter_spec_table_id(spec
)) {
2235 case EFX_FARCH_FILTER_TABLE_RX_IP
: {
2236 bool is_udp
= (spec
->type
== EFX_FARCH_FILTER_UDP_FULL
||
2237 spec
->type
== EFX_FARCH_FILTER_UDP_WILD
);
2238 EFX_POPULATE_OWORD_7(
2241 !!(spec
->flags
& EFX_FILTER_FLAG_RX_RSS
),
2243 !!(spec
->flags
& EFX_FILTER_FLAG_RX_SCATTER
),
2244 FRF_BZ_TCP_UDP
, is_udp
,
2245 FRF_BZ_RXQ_ID
, spec
->dmaq_id
,
2246 EFX_DWORD_2
, spec
->data
[2],
2247 EFX_DWORD_1
, spec
->data
[1],
2248 EFX_DWORD_0
, spec
->data
[0]);
2253 case EFX_FARCH_FILTER_TABLE_RX_MAC
: {
2254 bool is_wild
= spec
->type
== EFX_FARCH_FILTER_MAC_WILD
;
2255 EFX_POPULATE_OWORD_7(
2258 !!(spec
->flags
& EFX_FILTER_FLAG_RX_RSS
),
2259 FRF_CZ_RMFT_SCATTER_EN
,
2260 !!(spec
->flags
& EFX_FILTER_FLAG_RX_SCATTER
),
2261 FRF_CZ_RMFT_RXQ_ID
, spec
->dmaq_id
,
2262 FRF_CZ_RMFT_WILDCARD_MATCH
, is_wild
,
2263 FRF_CZ_RMFT_DEST_MAC_HI
, spec
->data
[2],
2264 FRF_CZ_RMFT_DEST_MAC_LO
, spec
->data
[1],
2265 FRF_CZ_RMFT_VLAN_ID
, spec
->data
[0]);
2270 case EFX_FARCH_FILTER_TABLE_TX_MAC
: {
2271 bool is_wild
= spec
->type
== EFX_FARCH_FILTER_MAC_WILD
;
2272 EFX_POPULATE_OWORD_5(*filter
,
2273 FRF_CZ_TMFT_TXQ_ID
, spec
->dmaq_id
,
2274 FRF_CZ_TMFT_WILDCARD_MATCH
, is_wild
,
2275 FRF_CZ_TMFT_SRC_MAC_HI
, spec
->data
[2],
2276 FRF_CZ_TMFT_SRC_MAC_LO
, spec
->data
[1],
2277 FRF_CZ_TMFT_VLAN_ID
, spec
->data
[0]);
2278 data3
= is_wild
| spec
->dmaq_id
<< 1;
2286 return spec
->data
[0] ^ spec
->data
[1] ^ spec
->data
[2] ^ data3
;
2289 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec
*left
,
2290 const struct efx_farch_filter_spec
*right
)
2292 if (left
->type
!= right
->type
||
2293 memcmp(left
->data
, right
->data
, sizeof(left
->data
)))
2296 if (left
->flags
& EFX_FILTER_FLAG_TX
&&
2297 left
->dmaq_id
!= right
->dmaq_id
)
2304 * Construct/deconstruct external filter IDs. At least the RX filter
2305 * IDs must be ordered by matching priority, for RX NFC semantics.
2307 * Deconstruction needs to be robust against invalid IDs so that
2308 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2309 * accept user-provided IDs.
2312 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT 5
2314 static const u8 efx_farch_filter_type_match_pri
[EFX_FARCH_FILTER_TYPE_COUNT
] = {
2315 [EFX_FARCH_FILTER_TCP_FULL
] = 0,
2316 [EFX_FARCH_FILTER_UDP_FULL
] = 0,
2317 [EFX_FARCH_FILTER_TCP_WILD
] = 1,
2318 [EFX_FARCH_FILTER_UDP_WILD
] = 1,
2319 [EFX_FARCH_FILTER_MAC_FULL
] = 2,
2320 [EFX_FARCH_FILTER_MAC_WILD
] = 3,
2321 [EFX_FARCH_FILTER_UC_DEF
] = 4,
2322 [EFX_FARCH_FILTER_MC_DEF
] = 4,
2325 static const enum efx_farch_filter_table_id efx_farch_filter_range_table
[] = {
2326 EFX_FARCH_FILTER_TABLE_RX_IP
, /* RX match pri 0 */
2327 EFX_FARCH_FILTER_TABLE_RX_IP
,
2328 EFX_FARCH_FILTER_TABLE_RX_MAC
,
2329 EFX_FARCH_FILTER_TABLE_RX_MAC
,
2330 EFX_FARCH_FILTER_TABLE_RX_DEF
, /* RX match pri 4 */
2331 EFX_FARCH_FILTER_TABLE_TX_MAC
, /* TX match pri 0 */
2332 EFX_FARCH_FILTER_TABLE_TX_MAC
, /* TX match pri 1 */
2335 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2336 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2339 efx_farch_filter_make_id(const struct efx_farch_filter_spec
*spec
,
2344 range
= efx_farch_filter_type_match_pri
[spec
->type
];
2345 if (!(spec
->flags
& EFX_FILTER_FLAG_RX
))
2346 range
+= EFX_FARCH_FILTER_MATCH_PRI_COUNT
;
2348 return range
<< EFX_FARCH_FILTER_INDEX_WIDTH
| index
;
2351 static inline enum efx_farch_filter_table_id
2352 efx_farch_filter_id_table_id(u32 id
)
2354 unsigned int range
= id
>> EFX_FARCH_FILTER_INDEX_WIDTH
;
2356 if (range
< ARRAY_SIZE(efx_farch_filter_range_table
))
2357 return efx_farch_filter_range_table
[range
];
2359 return EFX_FARCH_FILTER_TABLE_COUNT
; /* invalid */
2362 static inline unsigned int efx_farch_filter_id_index(u32 id
)
2364 return id
& EFX_FARCH_FILTER_INDEX_MASK
;
2367 u32
efx_farch_filter_get_rx_id_limit(struct efx_nic
*efx
)
2369 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2370 unsigned int range
= EFX_FARCH_FILTER_MATCH_PRI_COUNT
- 1;
2371 enum efx_farch_filter_table_id table_id
;
2374 table_id
= efx_farch_filter_range_table
[range
];
2375 if (state
->table
[table_id
].size
!= 0)
2376 return range
<< EFX_FARCH_FILTER_INDEX_WIDTH
|
2377 state
->table
[table_id
].size
;
2383 s32
efx_farch_filter_insert(struct efx_nic
*efx
,
2384 struct efx_filter_spec
*gen_spec
,
2387 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2388 struct efx_farch_filter_table
*table
;
2389 struct efx_farch_filter_spec spec
;
2391 int rep_index
, ins_index
;
2392 unsigned int depth
= 0;
2395 rc
= efx_farch_filter_from_gen_spec(&spec
, gen_spec
);
2399 down_write(&state
->lock
);
2401 table
= &state
->table
[efx_farch_filter_spec_table_id(&spec
)];
2402 if (table
->size
== 0) {
2407 netif_vdbg(efx
, hw
, efx
->net_dev
,
2408 "%s: type %d search_limit=%d", __func__
, spec
.type
,
2409 table
->search_limit
[spec
.type
]);
2411 if (table
->id
== EFX_FARCH_FILTER_TABLE_RX_DEF
) {
2412 /* One filter spec per type */
2413 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF
!= 0);
2414 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF
!=
2415 EFX_FARCH_FILTER_MC_DEF
- EFX_FARCH_FILTER_UC_DEF
);
2416 rep_index
= spec
.type
- EFX_FARCH_FILTER_UC_DEF
;
2417 ins_index
= rep_index
;
2419 /* Search concurrently for
2420 * (1) a filter to be replaced (rep_index): any filter
2421 * with the same match values, up to the current
2422 * search depth for this type, and
2423 * (2) the insertion point (ins_index): (1) or any
2424 * free slot before it or up to the maximum search
2425 * depth for this priority
2426 * We fail if we cannot find (2).
2428 * We can stop once either
2429 * (a) we find (1), in which case we have definitely
2430 * found (2) as well; or
2431 * (b) we have searched exhaustively for (1), and have
2432 * either found (2) or searched exhaustively for it
2434 u32 key
= efx_farch_filter_build(&filter
, &spec
);
2435 unsigned int hash
= efx_farch_filter_hash(key
);
2436 unsigned int incr
= efx_farch_filter_increment(key
);
2437 unsigned int max_rep_depth
= table
->search_limit
[spec
.type
];
2438 unsigned int max_ins_depth
=
2439 spec
.priority
<= EFX_FILTER_PRI_HINT
?
2440 EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX
:
2441 EFX_FARCH_FILTER_CTL_SRCH_MAX
;
2442 unsigned int i
= hash
& (table
->size
- 1);
2448 if (!test_bit(i
, table
->used_bitmap
)) {
2451 } else if (efx_farch_filter_equal(&spec
,
2460 if (depth
>= max_rep_depth
&&
2461 (ins_index
>= 0 || depth
>= max_ins_depth
)) {
2463 if (ins_index
< 0) {
2471 i
= (i
+ incr
) & (table
->size
- 1);
2476 /* If we found a filter to be replaced, check whether we
2479 if (rep_index
>= 0) {
2480 struct efx_farch_filter_spec
*saved_spec
=
2481 &table
->spec
[rep_index
];
2483 if (spec
.priority
== saved_spec
->priority
&& !replace_equal
) {
2487 if (spec
.priority
< saved_spec
->priority
) {
2491 if (saved_spec
->priority
== EFX_FILTER_PRI_AUTO
||
2492 saved_spec
->flags
& EFX_FILTER_FLAG_RX_OVER_AUTO
)
2493 spec
.flags
|= EFX_FILTER_FLAG_RX_OVER_AUTO
;
2496 /* Insert the filter */
2497 if (ins_index
!= rep_index
) {
2498 __set_bit(ins_index
, table
->used_bitmap
);
2501 table
->spec
[ins_index
] = spec
;
2503 if (table
->id
== EFX_FARCH_FILTER_TABLE_RX_DEF
) {
2504 efx_farch_filter_push_rx_config(efx
);
2506 if (table
->search_limit
[spec
.type
] < depth
) {
2507 table
->search_limit
[spec
.type
] = depth
;
2508 if (spec
.flags
& EFX_FILTER_FLAG_TX
)
2509 efx_farch_filter_push_tx_limits(efx
);
2511 efx_farch_filter_push_rx_config(efx
);
2514 efx_writeo(efx
, &filter
,
2515 table
->offset
+ table
->step
* ins_index
);
2517 /* If we were able to replace a filter by inserting
2518 * at a lower depth, clear the replaced filter
2520 if (ins_index
!= rep_index
&& rep_index
>= 0)
2521 efx_farch_filter_table_clear_entry(efx
, table
,
2525 netif_vdbg(efx
, hw
, efx
->net_dev
,
2526 "%s: filter type %d index %d rxq %u set",
2527 __func__
, spec
.type
, ins_index
, spec
.dmaq_id
);
2528 rc
= efx_farch_filter_make_id(&spec
, ins_index
);
2531 up_write(&state
->lock
);
2536 efx_farch_filter_table_clear_entry(struct efx_nic
*efx
,
2537 struct efx_farch_filter_table
*table
,
2538 unsigned int filter_idx
)
2540 static efx_oword_t filter
;
2542 EFX_WARN_ON_PARANOID(!test_bit(filter_idx
, table
->used_bitmap
));
2543 BUG_ON(table
->offset
== 0); /* can't clear MAC default filters */
2545 __clear_bit(filter_idx
, table
->used_bitmap
);
2547 memset(&table
->spec
[filter_idx
], 0, sizeof(table
->spec
[0]));
2549 efx_writeo(efx
, &filter
, table
->offset
+ table
->step
* filter_idx
);
2551 /* If this filter required a greater search depth than
2552 * any other, the search limit for its type can now be
2553 * decreased. However, it is hard to determine that
2554 * unless the table has become completely empty - in
2555 * which case, all its search limits can be set to 0.
2557 if (unlikely(table
->used
== 0)) {
2558 memset(table
->search_limit
, 0, sizeof(table
->search_limit
));
2559 if (table
->id
== EFX_FARCH_FILTER_TABLE_TX_MAC
)
2560 efx_farch_filter_push_tx_limits(efx
);
2562 efx_farch_filter_push_rx_config(efx
);
2566 static int efx_farch_filter_remove(struct efx_nic
*efx
,
2567 struct efx_farch_filter_table
*table
,
2568 unsigned int filter_idx
,
2569 enum efx_filter_priority priority
)
2571 struct efx_farch_filter_spec
*spec
= &table
->spec
[filter_idx
];
2573 if (!test_bit(filter_idx
, table
->used_bitmap
) ||
2574 spec
->priority
!= priority
)
2577 if (spec
->flags
& EFX_FILTER_FLAG_RX_OVER_AUTO
) {
2578 efx_farch_filter_init_rx_auto(efx
, spec
);
2579 efx_farch_filter_push_rx_config(efx
);
2581 efx_farch_filter_table_clear_entry(efx
, table
, filter_idx
);
2587 int efx_farch_filter_remove_safe(struct efx_nic
*efx
,
2588 enum efx_filter_priority priority
,
2591 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2592 enum efx_farch_filter_table_id table_id
;
2593 struct efx_farch_filter_table
*table
;
2594 unsigned int filter_idx
;
2595 struct efx_farch_filter_spec
*spec
;
2598 table_id
= efx_farch_filter_id_table_id(filter_id
);
2599 if ((unsigned int)table_id
>= EFX_FARCH_FILTER_TABLE_COUNT
)
2601 table
= &state
->table
[table_id
];
2603 filter_idx
= efx_farch_filter_id_index(filter_id
);
2604 if (filter_idx
>= table
->size
)
2606 down_write(&state
->lock
);
2607 spec
= &table
->spec
[filter_idx
];
2609 rc
= efx_farch_filter_remove(efx
, table
, filter_idx
, priority
);
2610 up_write(&state
->lock
);
2615 int efx_farch_filter_get_safe(struct efx_nic
*efx
,
2616 enum efx_filter_priority priority
,
2617 u32 filter_id
, struct efx_filter_spec
*spec_buf
)
2619 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2620 enum efx_farch_filter_table_id table_id
;
2621 struct efx_farch_filter_table
*table
;
2622 struct efx_farch_filter_spec
*spec
;
2623 unsigned int filter_idx
;
2626 down_read(&state
->lock
);
2628 table_id
= efx_farch_filter_id_table_id(filter_id
);
2629 if ((unsigned int)table_id
>= EFX_FARCH_FILTER_TABLE_COUNT
)
2631 table
= &state
->table
[table_id
];
2633 filter_idx
= efx_farch_filter_id_index(filter_id
);
2634 if (filter_idx
>= table
->size
)
2636 spec
= &table
->spec
[filter_idx
];
2638 if (test_bit(filter_idx
, table
->used_bitmap
) &&
2639 spec
->priority
== priority
) {
2640 efx_farch_filter_to_gen_spec(spec_buf
, spec
);
2645 up_read(&state
->lock
);
2650 efx_farch_filter_table_clear(struct efx_nic
*efx
,
2651 enum efx_farch_filter_table_id table_id
,
2652 enum efx_filter_priority priority
)
2654 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2655 struct efx_farch_filter_table
*table
= &state
->table
[table_id
];
2656 unsigned int filter_idx
;
2658 down_write(&state
->lock
);
2659 for (filter_idx
= 0; filter_idx
< table
->size
; ++filter_idx
) {
2660 if (table
->spec
[filter_idx
].priority
!= EFX_FILTER_PRI_AUTO
)
2661 efx_farch_filter_remove(efx
, table
,
2662 filter_idx
, priority
);
2664 up_write(&state
->lock
);
2667 int efx_farch_filter_clear_rx(struct efx_nic
*efx
,
2668 enum efx_filter_priority priority
)
2670 efx_farch_filter_table_clear(efx
, EFX_FARCH_FILTER_TABLE_RX_IP
,
2672 efx_farch_filter_table_clear(efx
, EFX_FARCH_FILTER_TABLE_RX_MAC
,
2674 efx_farch_filter_table_clear(efx
, EFX_FARCH_FILTER_TABLE_RX_DEF
,
2679 u32
efx_farch_filter_count_rx_used(struct efx_nic
*efx
,
2680 enum efx_filter_priority priority
)
2682 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2683 enum efx_farch_filter_table_id table_id
;
2684 struct efx_farch_filter_table
*table
;
2685 unsigned int filter_idx
;
2688 down_read(&state
->lock
);
2690 for (table_id
= EFX_FARCH_FILTER_TABLE_RX_IP
;
2691 table_id
<= EFX_FARCH_FILTER_TABLE_RX_DEF
;
2693 table
= &state
->table
[table_id
];
2694 for (filter_idx
= 0; filter_idx
< table
->size
; filter_idx
++) {
2695 if (test_bit(filter_idx
, table
->used_bitmap
) &&
2696 table
->spec
[filter_idx
].priority
== priority
)
2701 up_read(&state
->lock
);
2706 s32
efx_farch_filter_get_rx_ids(struct efx_nic
*efx
,
2707 enum efx_filter_priority priority
,
2710 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2711 enum efx_farch_filter_table_id table_id
;
2712 struct efx_farch_filter_table
*table
;
2713 unsigned int filter_idx
;
2716 down_read(&state
->lock
);
2718 for (table_id
= EFX_FARCH_FILTER_TABLE_RX_IP
;
2719 table_id
<= EFX_FARCH_FILTER_TABLE_RX_DEF
;
2721 table
= &state
->table
[table_id
];
2722 for (filter_idx
= 0; filter_idx
< table
->size
; filter_idx
++) {
2723 if (test_bit(filter_idx
, table
->used_bitmap
) &&
2724 table
->spec
[filter_idx
].priority
== priority
) {
2725 if (count
== size
) {
2729 buf
[count
++] = efx_farch_filter_make_id(
2730 &table
->spec
[filter_idx
], filter_idx
);
2735 up_read(&state
->lock
);
2740 /* Restore filter stater after reset */
2741 void efx_farch_filter_table_restore(struct efx_nic
*efx
)
2743 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2744 enum efx_farch_filter_table_id table_id
;
2745 struct efx_farch_filter_table
*table
;
2747 unsigned int filter_idx
;
2749 down_write(&state
->lock
);
2751 for (table_id
= 0; table_id
< EFX_FARCH_FILTER_TABLE_COUNT
; table_id
++) {
2752 table
= &state
->table
[table_id
];
2754 /* Check whether this is a regular register table */
2755 if (table
->step
== 0)
2758 for (filter_idx
= 0; filter_idx
< table
->size
; filter_idx
++) {
2759 if (!test_bit(filter_idx
, table
->used_bitmap
))
2761 efx_farch_filter_build(&filter
, &table
->spec
[filter_idx
]);
2762 efx_writeo(efx
, &filter
,
2763 table
->offset
+ table
->step
* filter_idx
);
2767 efx_farch_filter_push_rx_config(efx
);
2768 efx_farch_filter_push_tx_limits(efx
);
2770 up_write(&state
->lock
);
2773 void efx_farch_filter_table_remove(struct efx_nic
*efx
)
2775 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2776 enum efx_farch_filter_table_id table_id
;
2778 for (table_id
= 0; table_id
< EFX_FARCH_FILTER_TABLE_COUNT
; table_id
++) {
2779 kfree(state
->table
[table_id
].used_bitmap
);
2780 vfree(state
->table
[table_id
].spec
);
2785 int efx_farch_filter_table_probe(struct efx_nic
*efx
)
2787 struct efx_farch_filter_state
*state
;
2788 struct efx_farch_filter_table
*table
;
2791 state
= kzalloc(sizeof(struct efx_farch_filter_state
), GFP_KERNEL
);
2794 efx
->filter_state
= state
;
2795 init_rwsem(&state
->lock
);
2797 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_IP
];
2798 table
->id
= EFX_FARCH_FILTER_TABLE_RX_IP
;
2799 table
->offset
= FR_BZ_RX_FILTER_TBL0
;
2800 table
->size
= FR_BZ_RX_FILTER_TBL0_ROWS
;
2801 table
->step
= FR_BZ_RX_FILTER_TBL0_STEP
;
2803 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_MAC
];
2804 table
->id
= EFX_FARCH_FILTER_TABLE_RX_MAC
;
2805 table
->offset
= FR_CZ_RX_MAC_FILTER_TBL0
;
2806 table
->size
= FR_CZ_RX_MAC_FILTER_TBL0_ROWS
;
2807 table
->step
= FR_CZ_RX_MAC_FILTER_TBL0_STEP
;
2809 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_DEF
];
2810 table
->id
= EFX_FARCH_FILTER_TABLE_RX_DEF
;
2811 table
->size
= EFX_FARCH_FILTER_SIZE_RX_DEF
;
2813 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_TX_MAC
];
2814 table
->id
= EFX_FARCH_FILTER_TABLE_TX_MAC
;
2815 table
->offset
= FR_CZ_TX_MAC_FILTER_TBL0
;
2816 table
->size
= FR_CZ_TX_MAC_FILTER_TBL0_ROWS
;
2817 table
->step
= FR_CZ_TX_MAC_FILTER_TBL0_STEP
;
2819 for (table_id
= 0; table_id
< EFX_FARCH_FILTER_TABLE_COUNT
; table_id
++) {
2820 table
= &state
->table
[table_id
];
2821 if (table
->size
== 0)
2823 table
->used_bitmap
= kcalloc(BITS_TO_LONGS(table
->size
),
2824 sizeof(unsigned long),
2826 if (!table
->used_bitmap
)
2828 table
->spec
= vzalloc(array_size(sizeof(*table
->spec
),
2834 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_DEF
];
2836 /* RX default filters must always exist */
2837 struct efx_farch_filter_spec
*spec
;
2840 for (i
= 0; i
< EFX_FARCH_FILTER_SIZE_RX_DEF
; i
++) {
2841 spec
= &table
->spec
[i
];
2842 spec
->type
= EFX_FARCH_FILTER_UC_DEF
+ i
;
2843 efx_farch_filter_init_rx_auto(efx
, spec
);
2844 __set_bit(i
, table
->used_bitmap
);
2848 efx_farch_filter_push_rx_config(efx
);
2853 efx_farch_filter_table_remove(efx
);
2857 /* Update scatter enable flags for filters pointing to our own RX queues */
2858 void efx_farch_filter_update_rx_scatter(struct efx_nic
*efx
)
2860 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2861 enum efx_farch_filter_table_id table_id
;
2862 struct efx_farch_filter_table
*table
;
2864 unsigned int filter_idx
;
2866 down_write(&state
->lock
);
2868 for (table_id
= EFX_FARCH_FILTER_TABLE_RX_IP
;
2869 table_id
<= EFX_FARCH_FILTER_TABLE_RX_DEF
;
2871 table
= &state
->table
[table_id
];
2873 for (filter_idx
= 0; filter_idx
< table
->size
; filter_idx
++) {
2874 if (!test_bit(filter_idx
, table
->used_bitmap
) ||
2875 table
->spec
[filter_idx
].dmaq_id
>=
2879 if (efx
->rx_scatter
)
2880 table
->spec
[filter_idx
].flags
|=
2881 EFX_FILTER_FLAG_RX_SCATTER
;
2883 table
->spec
[filter_idx
].flags
&=
2884 ~EFX_FILTER_FLAG_RX_SCATTER
;
2886 if (table_id
== EFX_FARCH_FILTER_TABLE_RX_DEF
)
2887 /* Pushed by efx_farch_filter_push_rx_config() */
2890 efx_farch_filter_build(&filter
, &table
->spec
[filter_idx
]);
2891 efx_writeo(efx
, &filter
,
2892 table
->offset
+ table
->step
* filter_idx
);
2896 efx_farch_filter_push_rx_config(efx
);
2898 up_write(&state
->lock
);
2901 #ifdef CONFIG_RFS_ACCEL
2903 bool efx_farch_filter_rfs_expire_one(struct efx_nic
*efx
, u32 flow_id
,
2906 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2907 struct efx_farch_filter_table
*table
;
2908 bool ret
= false, force
= false;
2911 down_write(&state
->lock
);
2912 spin_lock_bh(&efx
->rps_hash_lock
);
2913 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_IP
];
2914 if (test_bit(index
, table
->used_bitmap
) &&
2915 table
->spec
[index
].priority
== EFX_FILTER_PRI_HINT
) {
2916 struct efx_arfs_rule
*rule
= NULL
;
2917 struct efx_filter_spec spec
;
2919 efx_farch_filter_to_gen_spec(&spec
, &table
->spec
[index
]);
2920 if (!efx
->rps_hash_table
) {
2921 /* In the absence of the table, we always returned 0 to
2922 * ARFS, so use the same to query it.
2926 rule
= efx_rps_hash_find(efx
, &spec
);
2928 /* ARFS table doesn't know of this filter, remove it */
2931 arfs_id
= rule
->arfs_id
;
2932 if (!efx_rps_check_rule(rule
, index
, &force
))
2936 if (force
|| rps_may_expire_flow(efx
->net_dev
, spec
.dmaq_id
,
2937 flow_id
, arfs_id
)) {
2939 rule
->filter_id
= EFX_ARFS_FILTER_ID_REMOVING
;
2940 efx_rps_hash_del(efx
, &spec
);
2941 efx_farch_filter_table_clear_entry(efx
, table
, index
);
2946 spin_unlock_bh(&efx
->rps_hash_lock
);
2947 up_write(&state
->lock
);
2951 #endif /* CONFIG_RFS_ACCEL */
2953 void efx_farch_filter_sync_rx_mode(struct efx_nic
*efx
)
2955 struct net_device
*net_dev
= efx
->net_dev
;
2956 struct netdev_hw_addr
*ha
;
2957 union efx_multicast_hash
*mc_hash
= &efx
->multicast_hash
;
2961 if (!efx_dev_registered(efx
))
2964 netif_addr_lock_bh(net_dev
);
2966 efx
->unicast_filter
= !(net_dev
->flags
& IFF_PROMISC
);
2968 /* Build multicast hash table */
2969 if (net_dev
->flags
& (IFF_PROMISC
| IFF_ALLMULTI
)) {
2970 memset(mc_hash
, 0xff, sizeof(*mc_hash
));
2972 memset(mc_hash
, 0x00, sizeof(*mc_hash
));
2973 netdev_for_each_mc_addr(ha
, net_dev
) {
2974 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
2975 bit
= crc
& (EFX_MCAST_HASH_ENTRIES
- 1);
2976 __set_bit_le(bit
, mc_hash
);
2979 /* Broadcast packets go through the multicast hash filter.
2980 * ether_crc_le() of the broadcast address is 0xbe2612ff
2981 * so we always add bit 0xff to the mask.
2983 __set_bit_le(0xff, mc_hash
);
2986 netif_addr_unlock_bh(net_dev
);