1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2008-2013 Solarflare Communications Inc.
7 #include <linux/delay.h>
8 #include <linux/moduleparam.h>
9 #include <linux/atomic.h>
10 #include "net_driver.h"
13 #include "farch_regs.h"
14 #include "mcdi_pcol.h"
16 /**************************************************************************
18 * Management-Controller-to-Driver Interface
20 **************************************************************************
23 #define MCDI_RPC_TIMEOUT (10 * HZ)
25 /* A reboot/assertion causes the MCDI status word to be set after the
26 * command word is set or a REBOOT event is sent. If we notice a reboot
27 * via these mechanisms then wait 250ms for the status word to be set.
29 #define MCDI_STATUS_DELAY_US 100
30 #define MCDI_STATUS_DELAY_COUNT 2500
31 #define MCDI_STATUS_SLEEP_MS \
32 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
35 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
37 struct efx_mcdi_async_param
{
38 struct list_head list
;
43 efx_mcdi_async_completer
*complete
;
45 /* followed by request/response buffer */
48 static void efx_mcdi_timeout_async(struct timer_list
*t
);
49 static int efx_mcdi_drv_attach(struct efx_nic
*efx
, bool driver_operating
,
50 bool *was_attached_out
);
51 static bool efx_mcdi_poll_once(struct efx_nic
*efx
);
52 static void efx_mcdi_abandon(struct efx_nic
*efx
);
54 #ifdef CONFIG_SFC_MCDI_LOGGING
55 static bool mcdi_logging_default
;
56 module_param(mcdi_logging_default
, bool, 0644);
57 MODULE_PARM_DESC(mcdi_logging_default
,
58 "Enable MCDI logging on newly-probed functions");
61 int efx_mcdi_init(struct efx_nic
*efx
)
63 struct efx_mcdi_iface
*mcdi
;
64 bool already_attached
;
67 efx
->mcdi
= kzalloc(sizeof(*efx
->mcdi
), GFP_KERNEL
);
73 #ifdef CONFIG_SFC_MCDI_LOGGING
74 /* consuming code assumes buffer is page-sized */
75 mcdi
->logging_buffer
= (char *)__get_free_page(GFP_KERNEL
);
76 if (!mcdi
->logging_buffer
)
78 mcdi
->logging_enabled
= mcdi_logging_default
;
80 init_waitqueue_head(&mcdi
->wq
);
81 init_waitqueue_head(&mcdi
->proxy_rx_wq
);
82 spin_lock_init(&mcdi
->iface_lock
);
83 mcdi
->state
= MCDI_STATE_QUIESCENT
;
84 mcdi
->mode
= MCDI_MODE_POLL
;
85 spin_lock_init(&mcdi
->async_lock
);
86 INIT_LIST_HEAD(&mcdi
->async_list
);
87 timer_setup(&mcdi
->async_timer
, efx_mcdi_timeout_async
, 0);
89 (void) efx_mcdi_poll_reboot(efx
);
90 mcdi
->new_epoch
= true;
92 /* Recover from a failed assertion before probing */
93 rc
= efx_mcdi_handle_assertion(efx
);
97 /* Let the MC (and BMC, if this is a LOM) know that the driver
98 * is loaded. We should do this before we reset the NIC.
100 rc
= efx_mcdi_drv_attach(efx
, true, &already_attached
);
102 netif_err(efx
, probe
, efx
->net_dev
,
103 "Unable to register driver with MCPU\n");
106 if (already_attached
)
107 /* Not a fatal error */
108 netif_err(efx
, probe
, efx
->net_dev
,
109 "Host already registered with MCPU\n");
111 if (efx
->mcdi
->fn_flags
&
112 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
))
117 #ifdef CONFIG_SFC_MCDI_LOGGING
118 free_page((unsigned long)mcdi
->logging_buffer
);
127 void efx_mcdi_detach(struct efx_nic
*efx
)
132 BUG_ON(efx
->mcdi
->iface
.state
!= MCDI_STATE_QUIESCENT
);
134 /* Relinquish the device (back to the BMC, if this is a LOM) */
135 efx_mcdi_drv_attach(efx
, false, NULL
);
138 void efx_mcdi_fini(struct efx_nic
*efx
)
143 #ifdef CONFIG_SFC_MCDI_LOGGING
144 free_page((unsigned long)efx
->mcdi
->iface
.logging_buffer
);
150 static void efx_mcdi_send_request(struct efx_nic
*efx
, unsigned cmd
,
151 const efx_dword_t
*inbuf
, size_t inlen
)
153 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
154 #ifdef CONFIG_SFC_MCDI_LOGGING
155 char *buf
= mcdi
->logging_buffer
; /* page-sized */
161 BUG_ON(mcdi
->state
== MCDI_STATE_QUIESCENT
);
163 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
164 spin_lock_bh(&mcdi
->iface_lock
);
166 spin_unlock_bh(&mcdi
->iface_lock
);
168 seqno
= mcdi
->seqno
& SEQ_MASK
;
170 if (mcdi
->mode
== MCDI_MODE_EVENTS
)
171 xflags
|= MCDI_HEADER_XFLAGS_EVREQ
;
173 if (efx
->type
->mcdi_max_ver
== 1) {
175 EFX_POPULATE_DWORD_7(hdr
[0],
176 MCDI_HEADER_RESPONSE
, 0,
177 MCDI_HEADER_RESYNC
, 1,
178 MCDI_HEADER_CODE
, cmd
,
179 MCDI_HEADER_DATALEN
, inlen
,
180 MCDI_HEADER_SEQ
, seqno
,
181 MCDI_HEADER_XFLAGS
, xflags
,
182 MCDI_HEADER_NOT_EPOCH
, !mcdi
->new_epoch
);
186 BUG_ON(inlen
> MCDI_CTL_SDU_LEN_MAX_V2
);
187 EFX_POPULATE_DWORD_7(hdr
[0],
188 MCDI_HEADER_RESPONSE
, 0,
189 MCDI_HEADER_RESYNC
, 1,
190 MCDI_HEADER_CODE
, MC_CMD_V2_EXTN
,
191 MCDI_HEADER_DATALEN
, 0,
192 MCDI_HEADER_SEQ
, seqno
,
193 MCDI_HEADER_XFLAGS
, xflags
,
194 MCDI_HEADER_NOT_EPOCH
, !mcdi
->new_epoch
);
195 EFX_POPULATE_DWORD_2(hdr
[1],
196 MC_CMD_V2_EXTN_IN_EXTENDED_CMD
, cmd
,
197 MC_CMD_V2_EXTN_IN_ACTUAL_LEN
, inlen
);
201 #ifdef CONFIG_SFC_MCDI_LOGGING
202 if (mcdi
->logging_enabled
&& !WARN_ON_ONCE(!buf
)) {
205 /* Lengths should always be a whole number of dwords, so scream
208 WARN_ON_ONCE(hdr_len
% 4);
209 WARN_ON_ONCE(inlen
% 4);
211 /* We own the logging buffer, as only one MCDI can be in
212 * progress on a NIC at any one time. So no need for locking.
214 for (i
= 0; i
< hdr_len
/ 4 && bytes
< PAGE_SIZE
; i
++)
215 bytes
+= snprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
216 " %08x", le32_to_cpu(hdr
[i
].u32
[0]));
218 for (i
= 0; i
< inlen
/ 4 && bytes
< PAGE_SIZE
; i
++)
219 bytes
+= snprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
220 " %08x", le32_to_cpu(inbuf
[i
].u32
[0]));
222 netif_info(efx
, hw
, efx
->net_dev
, "MCDI RPC REQ:%s\n", buf
);
226 efx
->type
->mcdi_request(efx
, hdr
, hdr_len
, inbuf
, inlen
);
228 mcdi
->new_epoch
= false;
231 static int efx_mcdi_errno(unsigned int mcdi_err
)
236 #define TRANSLATE_ERROR(name) \
237 case MC_CMD_ERR_ ## name: \
239 TRANSLATE_ERROR(EPERM
);
240 TRANSLATE_ERROR(ENOENT
);
241 TRANSLATE_ERROR(EINTR
);
242 TRANSLATE_ERROR(EAGAIN
);
243 TRANSLATE_ERROR(EACCES
);
244 TRANSLATE_ERROR(EBUSY
);
245 TRANSLATE_ERROR(EINVAL
);
246 TRANSLATE_ERROR(EDEADLK
);
247 TRANSLATE_ERROR(ENOSYS
);
248 TRANSLATE_ERROR(ETIME
);
249 TRANSLATE_ERROR(EALREADY
);
250 TRANSLATE_ERROR(ENOSPC
);
251 #undef TRANSLATE_ERROR
252 case MC_CMD_ERR_ENOTSUP
:
254 case MC_CMD_ERR_ALLOC_FAIL
:
256 case MC_CMD_ERR_MAC_EXIST
:
263 static void efx_mcdi_read_response_header(struct efx_nic
*efx
)
265 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
266 unsigned int respseq
, respcmd
, error
;
267 #ifdef CONFIG_SFC_MCDI_LOGGING
268 char *buf
= mcdi
->logging_buffer
; /* page-sized */
272 efx
->type
->mcdi_read_response(efx
, &hdr
, 0, 4);
273 respseq
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_SEQ
);
274 respcmd
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_CODE
);
275 error
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_ERROR
);
277 if (respcmd
!= MC_CMD_V2_EXTN
) {
278 mcdi
->resp_hdr_len
= 4;
279 mcdi
->resp_data_len
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_DATALEN
);
281 efx
->type
->mcdi_read_response(efx
, &hdr
, 4, 4);
282 mcdi
->resp_hdr_len
= 8;
283 mcdi
->resp_data_len
=
284 EFX_DWORD_FIELD(hdr
, MC_CMD_V2_EXTN_IN_ACTUAL_LEN
);
287 #ifdef CONFIG_SFC_MCDI_LOGGING
288 if (mcdi
->logging_enabled
&& !WARN_ON_ONCE(!buf
)) {
289 size_t hdr_len
, data_len
;
293 WARN_ON_ONCE(mcdi
->resp_hdr_len
% 4);
294 hdr_len
= mcdi
->resp_hdr_len
/ 4;
295 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded
296 * to dword size, and the MCDI buffer is always dword size
298 data_len
= DIV_ROUND_UP(mcdi
->resp_data_len
, 4);
300 /* We own the logging buffer, as only one MCDI can be in
301 * progress on a NIC at any one time. So no need for locking.
303 for (i
= 0; i
< hdr_len
&& bytes
< PAGE_SIZE
; i
++) {
304 efx
->type
->mcdi_read_response(efx
, &hdr
, (i
* 4), 4);
305 bytes
+= snprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
306 " %08x", le32_to_cpu(hdr
.u32
[0]));
309 for (i
= 0; i
< data_len
&& bytes
< PAGE_SIZE
; i
++) {
310 efx
->type
->mcdi_read_response(efx
, &hdr
,
311 mcdi
->resp_hdr_len
+ (i
* 4), 4);
312 bytes
+= snprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
313 " %08x", le32_to_cpu(hdr
.u32
[0]));
316 netif_info(efx
, hw
, efx
->net_dev
, "MCDI RPC RESP:%s\n", buf
);
320 mcdi
->resprc_raw
= 0;
321 if (error
&& mcdi
->resp_data_len
== 0) {
322 netif_err(efx
, hw
, efx
->net_dev
, "MC rebooted\n");
324 } else if ((respseq
^ mcdi
->seqno
) & SEQ_MASK
) {
325 netif_err(efx
, hw
, efx
->net_dev
,
326 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
327 respseq
, mcdi
->seqno
);
330 efx
->type
->mcdi_read_response(efx
, &hdr
, mcdi
->resp_hdr_len
, 4);
331 mcdi
->resprc_raw
= EFX_DWORD_FIELD(hdr
, EFX_DWORD_0
);
332 mcdi
->resprc
= efx_mcdi_errno(mcdi
->resprc_raw
);
338 static bool efx_mcdi_poll_once(struct efx_nic
*efx
)
340 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
343 if (!efx
->type
->mcdi_poll_response(efx
))
346 spin_lock_bh(&mcdi
->iface_lock
);
347 efx_mcdi_read_response_header(efx
);
348 spin_unlock_bh(&mcdi
->iface_lock
);
353 static int efx_mcdi_poll(struct efx_nic
*efx
)
355 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
356 unsigned long time
, finish
;
360 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
361 rc
= efx_mcdi_poll_reboot(efx
);
363 spin_lock_bh(&mcdi
->iface_lock
);
365 mcdi
->resp_hdr_len
= 0;
366 mcdi
->resp_data_len
= 0;
367 spin_unlock_bh(&mcdi
->iface_lock
);
371 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
372 * because generally mcdi responses are fast. After that, back off
373 * and poll once a jiffy (approximately)
375 spins
= USER_TICK_USEC
;
376 finish
= jiffies
+ MCDI_RPC_TIMEOUT
;
383 schedule_timeout_uninterruptible(1);
388 if (efx_mcdi_poll_once(efx
))
391 if (time_after(time
, finish
))
395 /* Return rc=0 like wait_event_timeout() */
399 /* Test and clear MC-rebooted flag for this port/function; reset
400 * software state as necessary.
402 int efx_mcdi_poll_reboot(struct efx_nic
*efx
)
407 return efx
->type
->mcdi_poll_reboot(efx
);
410 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface
*mcdi
)
412 return cmpxchg(&mcdi
->state
,
413 MCDI_STATE_QUIESCENT
, MCDI_STATE_RUNNING_ASYNC
) ==
414 MCDI_STATE_QUIESCENT
;
417 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface
*mcdi
)
419 /* Wait until the interface becomes QUIESCENT and we win the race
420 * to mark it RUNNING_SYNC.
423 cmpxchg(&mcdi
->state
,
424 MCDI_STATE_QUIESCENT
, MCDI_STATE_RUNNING_SYNC
) ==
425 MCDI_STATE_QUIESCENT
);
428 static int efx_mcdi_await_completion(struct efx_nic
*efx
)
430 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
432 if (wait_event_timeout(mcdi
->wq
, mcdi
->state
== MCDI_STATE_COMPLETED
,
433 MCDI_RPC_TIMEOUT
) == 0)
436 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
437 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
438 * completed the request first, then we'll just end up completing the
439 * request again, which is safe.
441 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
442 * wait_event_timeout() implicitly provides.
444 if (mcdi
->mode
== MCDI_MODE_POLL
)
445 return efx_mcdi_poll(efx
);
450 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
451 * requester. Return whether this was done. Does not take any locks.
453 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface
*mcdi
)
455 if (cmpxchg(&mcdi
->state
,
456 MCDI_STATE_RUNNING_SYNC
, MCDI_STATE_COMPLETED
) ==
457 MCDI_STATE_RUNNING_SYNC
) {
465 static void efx_mcdi_release(struct efx_mcdi_iface
*mcdi
)
467 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
468 struct efx_mcdi_async_param
*async
;
469 struct efx_nic
*efx
= mcdi
->efx
;
471 /* Process the asynchronous request queue */
472 spin_lock_bh(&mcdi
->async_lock
);
473 async
= list_first_entry_or_null(
474 &mcdi
->async_list
, struct efx_mcdi_async_param
, list
);
476 mcdi
->state
= MCDI_STATE_RUNNING_ASYNC
;
477 efx_mcdi_send_request(efx
, async
->cmd
,
478 (const efx_dword_t
*)(async
+ 1),
480 mod_timer(&mcdi
->async_timer
,
481 jiffies
+ MCDI_RPC_TIMEOUT
);
483 spin_unlock_bh(&mcdi
->async_lock
);
489 mcdi
->state
= MCDI_STATE_QUIESCENT
;
493 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
494 * asynchronous completion function, and release the interface.
495 * Return whether this was done. Must be called in bh-disabled
496 * context. Will take iface_lock and async_lock.
498 static bool efx_mcdi_complete_async(struct efx_mcdi_iface
*mcdi
, bool timeout
)
500 struct efx_nic
*efx
= mcdi
->efx
;
501 struct efx_mcdi_async_param
*async
;
502 size_t hdr_len
, data_len
, err_len
;
504 MCDI_DECLARE_BUF_ERR(errbuf
);
507 if (cmpxchg(&mcdi
->state
,
508 MCDI_STATE_RUNNING_ASYNC
, MCDI_STATE_COMPLETED
) !=
509 MCDI_STATE_RUNNING_ASYNC
)
512 spin_lock(&mcdi
->iface_lock
);
514 /* Ensure that if the completion event arrives later,
515 * the seqno check in efx_mcdi_ev_cpl() will fail
524 hdr_len
= mcdi
->resp_hdr_len
;
525 data_len
= mcdi
->resp_data_len
;
527 spin_unlock(&mcdi
->iface_lock
);
529 /* Stop the timer. In case the timer function is running, we
530 * must wait for it to return so that there is no possibility
531 * of it aborting the next request.
534 del_timer_sync(&mcdi
->async_timer
);
536 spin_lock(&mcdi
->async_lock
);
537 async
= list_first_entry(&mcdi
->async_list
,
538 struct efx_mcdi_async_param
, list
);
539 list_del(&async
->list
);
540 spin_unlock(&mcdi
->async_lock
);
542 outbuf
= (efx_dword_t
*)(async
+ 1);
543 efx
->type
->mcdi_read_response(efx
, outbuf
, hdr_len
,
544 min(async
->outlen
, data_len
));
545 if (!timeout
&& rc
&& !async
->quiet
) {
546 err_len
= min(sizeof(errbuf
), data_len
);
547 efx
->type
->mcdi_read_response(efx
, errbuf
, hdr_len
,
549 efx_mcdi_display_error(efx
, async
->cmd
, async
->inlen
, errbuf
,
554 async
->complete(efx
, async
->cookie
, rc
, outbuf
,
555 min(async
->outlen
, data_len
));
558 efx_mcdi_release(mcdi
);
563 static void efx_mcdi_ev_cpl(struct efx_nic
*efx
, unsigned int seqno
,
564 unsigned int datalen
, unsigned int mcdi_err
)
566 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
569 spin_lock(&mcdi
->iface_lock
);
571 if ((seqno
^ mcdi
->seqno
) & SEQ_MASK
) {
573 /* The request has been cancelled */
576 netif_err(efx
, hw
, efx
->net_dev
,
577 "MC response mismatch tx seq 0x%x rx "
578 "seq 0x%x\n", seqno
, mcdi
->seqno
);
580 if (efx
->type
->mcdi_max_ver
>= 2) {
581 /* MCDI v2 responses don't fit in an event */
582 efx_mcdi_read_response_header(efx
);
584 mcdi
->resprc
= efx_mcdi_errno(mcdi_err
);
585 mcdi
->resp_hdr_len
= 4;
586 mcdi
->resp_data_len
= datalen
;
592 spin_unlock(&mcdi
->iface_lock
);
595 if (!efx_mcdi_complete_async(mcdi
, false))
596 (void) efx_mcdi_complete_sync(mcdi
);
598 /* If the interface isn't RUNNING_ASYNC or
599 * RUNNING_SYNC then we've received a duplicate
600 * completion after we've already transitioned back to
601 * QUIESCENT. [A subsequent invocation would increment
602 * seqno, so would have failed the seqno check].
607 static void efx_mcdi_timeout_async(struct timer_list
*t
)
609 struct efx_mcdi_iface
*mcdi
= from_timer(mcdi
, t
, async_timer
);
611 efx_mcdi_complete_async(mcdi
, true);
615 efx_mcdi_check_supported(struct efx_nic
*efx
, unsigned int cmd
, size_t inlen
)
617 if (efx
->type
->mcdi_max_ver
< 0 ||
618 (efx
->type
->mcdi_max_ver
< 2 &&
619 cmd
> MC_CMD_CMD_SPACE_ESCAPE_7
))
622 if (inlen
> MCDI_CTL_SDU_LEN_MAX_V2
||
623 (efx
->type
->mcdi_max_ver
< 2 &&
624 inlen
> MCDI_CTL_SDU_LEN_MAX_V1
))
630 static bool efx_mcdi_get_proxy_handle(struct efx_nic
*efx
,
631 size_t hdr_len
, size_t data_len
,
634 MCDI_DECLARE_BUF_ERR(testbuf
);
635 const size_t buflen
= sizeof(testbuf
);
637 if (!proxy_handle
|| data_len
< buflen
)
640 efx
->type
->mcdi_read_response(efx
, testbuf
, hdr_len
, buflen
);
641 if (MCDI_DWORD(testbuf
, ERR_CODE
) == MC_CMD_ERR_PROXY_PENDING
) {
642 *proxy_handle
= MCDI_DWORD(testbuf
, ERR_PROXY_PENDING_HANDLE
);
649 static int _efx_mcdi_rpc_finish(struct efx_nic
*efx
, unsigned int cmd
,
651 efx_dword_t
*outbuf
, size_t outlen
,
652 size_t *outlen_actual
, bool quiet
,
653 u32
*proxy_handle
, int *raw_rc
)
655 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
656 MCDI_DECLARE_BUF_ERR(errbuf
);
659 if (mcdi
->mode
== MCDI_MODE_POLL
)
660 rc
= efx_mcdi_poll(efx
);
662 rc
= efx_mcdi_await_completion(efx
);
665 netif_err(efx
, hw
, efx
->net_dev
,
666 "MC command 0x%x inlen %d mode %d timed out\n",
667 cmd
, (int)inlen
, mcdi
->mode
);
669 if (mcdi
->mode
== MCDI_MODE_EVENTS
&& efx_mcdi_poll_once(efx
)) {
670 netif_err(efx
, hw
, efx
->net_dev
,
671 "MCDI request was completed without an event\n");
675 efx_mcdi_abandon(efx
);
677 /* Close the race with efx_mcdi_ev_cpl() executing just too late
678 * and completing a request we've just cancelled, by ensuring
679 * that the seqno check therein fails.
681 spin_lock_bh(&mcdi
->iface_lock
);
684 spin_unlock_bh(&mcdi
->iface_lock
);
694 size_t hdr_len
, data_len
, err_len
;
696 /* At the very least we need a memory barrier here to ensure
697 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
698 * a spurious efx_mcdi_ev_cpl() running concurrently by
699 * acquiring the iface_lock. */
700 spin_lock_bh(&mcdi
->iface_lock
);
703 *raw_rc
= mcdi
->resprc_raw
;
704 hdr_len
= mcdi
->resp_hdr_len
;
705 data_len
= mcdi
->resp_data_len
;
706 err_len
= min(sizeof(errbuf
), data_len
);
707 spin_unlock_bh(&mcdi
->iface_lock
);
711 efx
->type
->mcdi_read_response(efx
, outbuf
, hdr_len
,
712 min(outlen
, data_len
));
714 *outlen_actual
= data_len
;
716 efx
->type
->mcdi_read_response(efx
, errbuf
, hdr_len
, err_len
);
718 if (cmd
== MC_CMD_REBOOT
&& rc
== -EIO
) {
719 /* Don't reset if MC_CMD_REBOOT returns EIO */
720 } else if (rc
== -EIO
|| rc
== -EINTR
) {
721 netif_err(efx
, hw
, efx
->net_dev
, "MC reboot detected\n");
722 netif_dbg(efx
, hw
, efx
->net_dev
, "MC rebooted during command %d rc %d\n",
724 if (efx
->type
->mcdi_reboot_detected
)
725 efx
->type
->mcdi_reboot_detected(efx
);
726 efx_schedule_reset(efx
, RESET_TYPE_MC_FAILURE
);
727 } else if (proxy_handle
&& (rc
== -EPROTO
) &&
728 efx_mcdi_get_proxy_handle(efx
, hdr_len
, data_len
,
730 mcdi
->proxy_rx_status
= 0;
731 mcdi
->proxy_rx_handle
= 0;
732 mcdi
->state
= MCDI_STATE_PROXY_WAIT
;
733 } else if (rc
&& !quiet
) {
734 efx_mcdi_display_error(efx
, cmd
, inlen
, errbuf
, err_len
,
738 if (rc
== -EIO
|| rc
== -EINTR
) {
739 msleep(MCDI_STATUS_SLEEP_MS
);
740 efx_mcdi_poll_reboot(efx
);
741 mcdi
->new_epoch
= true;
745 if (!proxy_handle
|| !*proxy_handle
)
746 efx_mcdi_release(mcdi
);
750 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface
*mcdi
)
752 if (mcdi
->state
== MCDI_STATE_PROXY_WAIT
) {
753 /* Interrupt the proxy wait. */
754 mcdi
->proxy_rx_status
= -EINTR
;
755 wake_up(&mcdi
->proxy_rx_wq
);
759 static void efx_mcdi_ev_proxy_response(struct efx_nic
*efx
,
760 u32 handle
, int status
)
762 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
764 WARN_ON(mcdi
->state
!= MCDI_STATE_PROXY_WAIT
);
766 mcdi
->proxy_rx_status
= efx_mcdi_errno(status
);
767 /* Ensure the status is written before we update the handle, since the
768 * latter is used to check if we've finished.
771 mcdi
->proxy_rx_handle
= handle
;
772 wake_up(&mcdi
->proxy_rx_wq
);
775 static int efx_mcdi_proxy_wait(struct efx_nic
*efx
, u32 handle
, bool quiet
)
777 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
780 /* Wait for a proxy event, or timeout. */
781 rc
= wait_event_timeout(mcdi
->proxy_rx_wq
,
782 mcdi
->proxy_rx_handle
!= 0 ||
783 mcdi
->proxy_rx_status
== -EINTR
,
787 netif_dbg(efx
, hw
, efx
->net_dev
,
788 "MCDI proxy timeout %d\n", handle
);
790 } else if (mcdi
->proxy_rx_handle
!= handle
) {
791 netif_warn(efx
, hw
, efx
->net_dev
,
792 "MCDI proxy unexpected handle %d (expected %d)\n",
793 mcdi
->proxy_rx_handle
, handle
);
797 return mcdi
->proxy_rx_status
;
800 static int _efx_mcdi_rpc(struct efx_nic
*efx
, unsigned int cmd
,
801 const efx_dword_t
*inbuf
, size_t inlen
,
802 efx_dword_t
*outbuf
, size_t outlen
,
803 size_t *outlen_actual
, bool quiet
, int *raw_rc
)
805 u32 proxy_handle
= 0; /* Zero is an invalid proxy handle. */
808 if (inbuf
&& inlen
&& (inbuf
== outbuf
)) {
809 /* The input buffer can't be aliased with the output. */
814 rc
= efx_mcdi_rpc_start(efx
, cmd
, inbuf
, inlen
);
818 rc
= _efx_mcdi_rpc_finish(efx
, cmd
, inlen
, outbuf
, outlen
,
819 outlen_actual
, quiet
, &proxy_handle
, raw_rc
);
822 /* Handle proxy authorisation. This allows approval of MCDI
823 * operations to be delegated to the admin function, allowing
824 * fine control over (eg) multicast subscriptions.
826 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
828 netif_dbg(efx
, hw
, efx
->net_dev
,
829 "MCDI waiting for proxy auth %d\n",
831 rc
= efx_mcdi_proxy_wait(efx
, proxy_handle
, quiet
);
834 netif_dbg(efx
, hw
, efx
->net_dev
,
835 "MCDI proxy retry %d\n", proxy_handle
);
837 /* We now retry the original request. */
838 mcdi
->state
= MCDI_STATE_RUNNING_SYNC
;
839 efx_mcdi_send_request(efx
, cmd
, inbuf
, inlen
);
841 rc
= _efx_mcdi_rpc_finish(efx
, cmd
, inlen
,
842 outbuf
, outlen
, outlen_actual
,
843 quiet
, NULL
, raw_rc
);
845 netif_cond_dbg(efx
, hw
, efx
->net_dev
, rc
== -EPERM
, err
,
846 "MC command 0x%x failed after proxy auth rc=%d\n",
849 if (rc
== -EINTR
|| rc
== -EIO
)
850 efx_schedule_reset(efx
, RESET_TYPE_MC_FAILURE
);
851 efx_mcdi_release(mcdi
);
858 static int _efx_mcdi_rpc_evb_retry(struct efx_nic
*efx
, unsigned cmd
,
859 const efx_dword_t
*inbuf
, size_t inlen
,
860 efx_dword_t
*outbuf
, size_t outlen
,
861 size_t *outlen_actual
, bool quiet
)
866 rc
= _efx_mcdi_rpc(efx
, cmd
, inbuf
, inlen
,
867 outbuf
, outlen
, outlen_actual
, true, &raw_rc
);
869 if ((rc
== -EPROTO
) && (raw_rc
== MC_CMD_ERR_NO_EVB_PORT
) &&
871 /* If the EVB port isn't available within a VF this may
872 * mean the PF is still bringing the switch up. We should
873 * retry our request shortly.
875 unsigned long abort_time
= jiffies
+ MCDI_RPC_TIMEOUT
;
876 unsigned int delay_us
= 10000;
878 netif_dbg(efx
, hw
, efx
->net_dev
,
879 "%s: NO_EVB_PORT; will retry request\n",
883 usleep_range(delay_us
, delay_us
+ 10000);
884 rc
= _efx_mcdi_rpc(efx
, cmd
, inbuf
, inlen
,
885 outbuf
, outlen
, outlen_actual
,
887 if (delay_us
< 100000)
889 } while ((rc
== -EPROTO
) &&
890 (raw_rc
== MC_CMD_ERR_NO_EVB_PORT
) &&
891 time_before(jiffies
, abort_time
));
894 if (rc
&& !quiet
&& !(cmd
== MC_CMD_REBOOT
&& rc
== -EIO
))
895 efx_mcdi_display_error(efx
, cmd
, inlen
,
902 * efx_mcdi_rpc - Issue an MCDI command and wait for completion
903 * @efx: NIC through which to issue the command
904 * @cmd: Command type number
905 * @inbuf: Command parameters
906 * @inlen: Length of command parameters, in bytes. Must be a multiple
907 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
908 * @outbuf: Response buffer. May be %NULL if @outlen is 0.
909 * @outlen: Length of response buffer, in bytes. If the actual
910 * response is longer than @outlen & ~3, it will be truncated
912 * @outlen_actual: Pointer through which to return the actual response
913 * length. May be %NULL if this is not needed.
915 * This function may sleep and therefore must be called in an appropriate
918 * Return: A negative error code, or zero if successful. The error
919 * code may come from the MCDI response or may indicate a failure
920 * to communicate with the MC. In the former case, the response
921 * will still be copied to @outbuf and *@outlen_actual will be
922 * set accordingly. In the latter case, *@outlen_actual will be
925 int efx_mcdi_rpc(struct efx_nic
*efx
, unsigned cmd
,
926 const efx_dword_t
*inbuf
, size_t inlen
,
927 efx_dword_t
*outbuf
, size_t outlen
,
928 size_t *outlen_actual
)
930 return _efx_mcdi_rpc_evb_retry(efx
, cmd
, inbuf
, inlen
, outbuf
, outlen
,
931 outlen_actual
, false);
934 /* Normally, on receiving an error code in the MCDI response,
935 * efx_mcdi_rpc will log an error message containing (among other
936 * things) the raw error code, by means of efx_mcdi_display_error.
937 * This _quiet version suppresses that; if the caller wishes to log
938 * the error conditionally on the return code, it should call this
939 * function and is then responsible for calling efx_mcdi_display_error
942 int efx_mcdi_rpc_quiet(struct efx_nic
*efx
, unsigned cmd
,
943 const efx_dword_t
*inbuf
, size_t inlen
,
944 efx_dword_t
*outbuf
, size_t outlen
,
945 size_t *outlen_actual
)
947 return _efx_mcdi_rpc_evb_retry(efx
, cmd
, inbuf
, inlen
, outbuf
, outlen
,
948 outlen_actual
, true);
951 int efx_mcdi_rpc_start(struct efx_nic
*efx
, unsigned cmd
,
952 const efx_dword_t
*inbuf
, size_t inlen
)
954 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
957 rc
= efx_mcdi_check_supported(efx
, cmd
, inlen
);
961 if (efx
->mc_bist_for_other_fn
)
964 if (mcdi
->mode
== MCDI_MODE_FAIL
)
967 efx_mcdi_acquire_sync(mcdi
);
968 efx_mcdi_send_request(efx
, cmd
, inbuf
, inlen
);
972 static int _efx_mcdi_rpc_async(struct efx_nic
*efx
, unsigned int cmd
,
973 const efx_dword_t
*inbuf
, size_t inlen
,
975 efx_mcdi_async_completer
*complete
,
976 unsigned long cookie
, bool quiet
)
978 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
979 struct efx_mcdi_async_param
*async
;
982 rc
= efx_mcdi_check_supported(efx
, cmd
, inlen
);
986 if (efx
->mc_bist_for_other_fn
)
989 async
= kmalloc(sizeof(*async
) + ALIGN(max(inlen
, outlen
), 4),
995 async
->inlen
= inlen
;
996 async
->outlen
= outlen
;
997 async
->quiet
= quiet
;
998 async
->complete
= complete
;
999 async
->cookie
= cookie
;
1000 memcpy(async
+ 1, inbuf
, inlen
);
1002 spin_lock_bh(&mcdi
->async_lock
);
1004 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
1005 list_add_tail(&async
->list
, &mcdi
->async_list
);
1007 /* If this is at the front of the queue, try to start it
1010 if (mcdi
->async_list
.next
== &async
->list
&&
1011 efx_mcdi_acquire_async(mcdi
)) {
1012 efx_mcdi_send_request(efx
, cmd
, inbuf
, inlen
);
1013 mod_timer(&mcdi
->async_timer
,
1014 jiffies
+ MCDI_RPC_TIMEOUT
);
1021 spin_unlock_bh(&mcdi
->async_lock
);
1027 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1028 * @efx: NIC through which to issue the command
1029 * @cmd: Command type number
1030 * @inbuf: Command parameters
1031 * @inlen: Length of command parameters, in bytes
1032 * @outlen: Length to allocate for response buffer, in bytes
1033 * @complete: Function to be called on completion or cancellation.
1034 * @cookie: Arbitrary value to be passed to @complete.
1036 * This function does not sleep and therefore may be called in atomic
1037 * context. It will fail if event queues are disabled or if MCDI
1038 * event completions have been disabled due to an error.
1040 * If it succeeds, the @complete function will be called exactly once
1041 * in atomic context, when one of the following occurs:
1042 * (a) the completion event is received (in NAPI context)
1043 * (b) event queues are disabled (in the process that disables them)
1044 * (c) the request times-out (in timer context)
1047 efx_mcdi_rpc_async(struct efx_nic
*efx
, unsigned int cmd
,
1048 const efx_dword_t
*inbuf
, size_t inlen
, size_t outlen
,
1049 efx_mcdi_async_completer
*complete
, unsigned long cookie
)
1051 return _efx_mcdi_rpc_async(efx
, cmd
, inbuf
, inlen
, outlen
, complete
,
1055 int efx_mcdi_rpc_async_quiet(struct efx_nic
*efx
, unsigned int cmd
,
1056 const efx_dword_t
*inbuf
, size_t inlen
,
1057 size_t outlen
, efx_mcdi_async_completer
*complete
,
1058 unsigned long cookie
)
1060 return _efx_mcdi_rpc_async(efx
, cmd
, inbuf
, inlen
, outlen
, complete
,
1064 int efx_mcdi_rpc_finish(struct efx_nic
*efx
, unsigned cmd
, size_t inlen
,
1065 efx_dword_t
*outbuf
, size_t outlen
,
1066 size_t *outlen_actual
)
1068 return _efx_mcdi_rpc_finish(efx
, cmd
, inlen
, outbuf
, outlen
,
1069 outlen_actual
, false, NULL
, NULL
);
1072 int efx_mcdi_rpc_finish_quiet(struct efx_nic
*efx
, unsigned cmd
, size_t inlen
,
1073 efx_dword_t
*outbuf
, size_t outlen
,
1074 size_t *outlen_actual
)
1076 return _efx_mcdi_rpc_finish(efx
, cmd
, inlen
, outbuf
, outlen
,
1077 outlen_actual
, true, NULL
, NULL
);
1080 void efx_mcdi_display_error(struct efx_nic
*efx
, unsigned cmd
,
1081 size_t inlen
, efx_dword_t
*outbuf
,
1082 size_t outlen
, int rc
)
1084 int code
= 0, err_arg
= 0;
1086 if (outlen
>= MC_CMD_ERR_CODE_OFST
+ 4)
1087 code
= MCDI_DWORD(outbuf
, ERR_CODE
);
1088 if (outlen
>= MC_CMD_ERR_ARG_OFST
+ 4)
1089 err_arg
= MCDI_DWORD(outbuf
, ERR_ARG
);
1090 netif_cond_dbg(efx
, hw
, efx
->net_dev
, rc
== -EPERM
, err
,
1091 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1092 cmd
, inlen
, rc
, code
, err_arg
);
1095 /* Switch to polled MCDI completions. This can be called in various
1096 * error conditions with various locks held, so it must be lockless.
1097 * Caller is responsible for flushing asynchronous requests later.
1099 void efx_mcdi_mode_poll(struct efx_nic
*efx
)
1101 struct efx_mcdi_iface
*mcdi
;
1106 mcdi
= efx_mcdi(efx
);
1107 /* If already in polling mode, nothing to do.
1108 * If in fail-fast state, don't switch to polled completion.
1109 * FLR recovery will do that later.
1111 if (mcdi
->mode
== MCDI_MODE_POLL
|| mcdi
->mode
== MCDI_MODE_FAIL
)
1114 /* We can switch from event completion to polled completion, because
1115 * mcdi requests are always completed in shared memory. We do this by
1116 * switching the mode to POLL'd then completing the request.
1117 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1119 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1120 * which efx_mcdi_complete_sync() provides for us.
1122 mcdi
->mode
= MCDI_MODE_POLL
;
1124 efx_mcdi_complete_sync(mcdi
);
1127 /* Flush any running or queued asynchronous requests, after event processing
1130 void efx_mcdi_flush_async(struct efx_nic
*efx
)
1132 struct efx_mcdi_async_param
*async
, *next
;
1133 struct efx_mcdi_iface
*mcdi
;
1138 mcdi
= efx_mcdi(efx
);
1140 /* We must be in poll or fail mode so no more requests can be queued */
1141 BUG_ON(mcdi
->mode
== MCDI_MODE_EVENTS
);
1143 del_timer_sync(&mcdi
->async_timer
);
1145 /* If a request is still running, make sure we give the MC
1146 * time to complete it so that the response won't overwrite our
1149 if (mcdi
->state
== MCDI_STATE_RUNNING_ASYNC
) {
1151 mcdi
->state
= MCDI_STATE_QUIESCENT
;
1154 /* Nothing else will access the async list now, so it is safe
1155 * to walk it without holding async_lock. If we hold it while
1156 * calling a completer then lockdep may warn that we have
1157 * acquired locks in the wrong order.
1159 list_for_each_entry_safe(async
, next
, &mcdi
->async_list
, list
) {
1160 if (async
->complete
)
1161 async
->complete(efx
, async
->cookie
, -ENETDOWN
, NULL
, 0);
1162 list_del(&async
->list
);
1167 void efx_mcdi_mode_event(struct efx_nic
*efx
)
1169 struct efx_mcdi_iface
*mcdi
;
1174 mcdi
= efx_mcdi(efx
);
1175 /* If already in event completion mode, nothing to do.
1176 * If in fail-fast state, don't switch to event completion. FLR
1177 * recovery will do that later.
1179 if (mcdi
->mode
== MCDI_MODE_EVENTS
|| mcdi
->mode
== MCDI_MODE_FAIL
)
1182 /* We can't switch from polled to event completion in the middle of a
1183 * request, because the completion method is specified in the request.
1184 * So acquire the interface to serialise the requestors. We don't need
1185 * to acquire the iface_lock to change the mode here, but we do need a
1186 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1187 * efx_mcdi_acquire() provides.
1189 efx_mcdi_acquire_sync(mcdi
);
1190 mcdi
->mode
= MCDI_MODE_EVENTS
;
1191 efx_mcdi_release(mcdi
);
1194 static void efx_mcdi_ev_death(struct efx_nic
*efx
, int rc
)
1196 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1198 /* If there is an outstanding MCDI request, it has been terminated
1199 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1200 * in polled mode, then do nothing because the MC reboot handler will
1201 * set the header correctly. However, if the mcdi interface is waiting
1202 * for a CMDDONE event it won't receive it [and since all MCDI events
1203 * are sent to the same queue, we can't be racing with
1204 * efx_mcdi_ev_cpl()]
1206 * If there is an outstanding asynchronous request, we can't
1207 * complete it now (efx_mcdi_complete() would deadlock). The
1208 * reset process will take care of this.
1210 * There's a race here with efx_mcdi_send_request(), because
1211 * we might receive a REBOOT event *before* the request has
1212 * been copied out. In polled mode (during startup) this is
1213 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1214 * event mode, this condition is just an edge-case of
1215 * receiving a REBOOT event after posting the MCDI
1216 * request. Did the mc reboot before or after the copyout? The
1217 * best we can do always is just return failure.
1219 * If there is an outstanding proxy response expected it is not going
1220 * to arrive. We should thus abort it.
1222 spin_lock(&mcdi
->iface_lock
);
1223 efx_mcdi_proxy_abort(mcdi
);
1225 if (efx_mcdi_complete_sync(mcdi
)) {
1226 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
1228 mcdi
->resp_hdr_len
= 0;
1229 mcdi
->resp_data_len
= 0;
1235 /* Consume the status word since efx_mcdi_rpc_finish() won't */
1236 for (count
= 0; count
< MCDI_STATUS_DELAY_COUNT
; ++count
) {
1237 rc
= efx_mcdi_poll_reboot(efx
);
1240 udelay(MCDI_STATUS_DELAY_US
);
1243 /* On EF10, a CODE_MC_REBOOT event can be received without the
1244 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1245 * If zero was returned from the final call to
1246 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1247 * MC has definitely rebooted so prepare for the reset.
1249 if (!rc
&& efx
->type
->mcdi_reboot_detected
)
1250 efx
->type
->mcdi_reboot_detected(efx
);
1252 mcdi
->new_epoch
= true;
1254 /* Nobody was waiting for an MCDI request, so trigger a reset */
1255 efx_schedule_reset(efx
, RESET_TYPE_MC_FAILURE
);
1258 spin_unlock(&mcdi
->iface_lock
);
1261 /* The MC is going down in to BIST mode. set the BIST flag to block
1262 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
1263 * (which doesn't actually execute a reset, it waits for the controlling
1264 * function to reset it).
1266 static void efx_mcdi_ev_bist(struct efx_nic
*efx
)
1268 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1270 spin_lock(&mcdi
->iface_lock
);
1271 efx
->mc_bist_for_other_fn
= true;
1272 efx_mcdi_proxy_abort(mcdi
);
1274 if (efx_mcdi_complete_sync(mcdi
)) {
1275 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
1276 mcdi
->resprc
= -EIO
;
1277 mcdi
->resp_hdr_len
= 0;
1278 mcdi
->resp_data_len
= 0;
1282 mcdi
->new_epoch
= true;
1283 efx_schedule_reset(efx
, RESET_TYPE_MC_BIST
);
1284 spin_unlock(&mcdi
->iface_lock
);
1287 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1290 static void efx_mcdi_abandon(struct efx_nic
*efx
)
1292 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1294 if (xchg(&mcdi
->mode
, MCDI_MODE_FAIL
) == MCDI_MODE_FAIL
)
1295 return; /* it had already been done */
1296 netif_dbg(efx
, hw
, efx
->net_dev
, "MCDI is timing out; trying to recover\n");
1297 efx_schedule_reset(efx
, RESET_TYPE_MCDI_TIMEOUT
);
1300 /* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */
1301 void efx_mcdi_process_event(struct efx_channel
*channel
,
1304 struct efx_nic
*efx
= channel
->efx
;
1305 int code
= EFX_QWORD_FIELD(*event
, MCDI_EVENT_CODE
);
1306 u32 data
= EFX_QWORD_FIELD(*event
, MCDI_EVENT_DATA
);
1309 case MCDI_EVENT_CODE_BADSSERT
:
1310 netif_err(efx
, hw
, efx
->net_dev
,
1311 "MC watchdog or assertion failure at 0x%x\n", data
);
1312 efx_mcdi_ev_death(efx
, -EINTR
);
1315 case MCDI_EVENT_CODE_PMNOTICE
:
1316 netif_info(efx
, wol
, efx
->net_dev
, "MCDI PM event.\n");
1319 case MCDI_EVENT_CODE_CMDDONE
:
1320 efx_mcdi_ev_cpl(efx
,
1321 MCDI_EVENT_FIELD(*event
, CMDDONE_SEQ
),
1322 MCDI_EVENT_FIELD(*event
, CMDDONE_DATALEN
),
1323 MCDI_EVENT_FIELD(*event
, CMDDONE_ERRNO
));
1326 case MCDI_EVENT_CODE_LINKCHANGE
:
1327 efx_mcdi_process_link_change(efx
, event
);
1329 case MCDI_EVENT_CODE_SENSOREVT
:
1330 efx_mcdi_sensor_event(efx
, event
);
1332 case MCDI_EVENT_CODE_SCHEDERR
:
1333 netif_dbg(efx
, hw
, efx
->net_dev
,
1334 "MC Scheduler alert (0x%x)\n", data
);
1336 case MCDI_EVENT_CODE_REBOOT
:
1337 case MCDI_EVENT_CODE_MC_REBOOT
:
1338 netif_info(efx
, hw
, efx
->net_dev
, "MC Reboot\n");
1339 efx_mcdi_ev_death(efx
, -EIO
);
1341 case MCDI_EVENT_CODE_MC_BIST
:
1342 netif_info(efx
, hw
, efx
->net_dev
, "MC entered BIST mode\n");
1343 efx_mcdi_ev_bist(efx
);
1345 case MCDI_EVENT_CODE_MAC_STATS_DMA
:
1346 /* MAC stats are gather lazily. We can ignore this. */
1348 case MCDI_EVENT_CODE_FLR
:
1349 if (efx
->type
->sriov_flr
)
1350 efx
->type
->sriov_flr(efx
,
1351 MCDI_EVENT_FIELD(*event
, FLR_VF
));
1353 case MCDI_EVENT_CODE_PTP_RX
:
1354 case MCDI_EVENT_CODE_PTP_FAULT
:
1355 case MCDI_EVENT_CODE_PTP_PPS
:
1356 efx_ptp_event(efx
, event
);
1358 case MCDI_EVENT_CODE_PTP_TIME
:
1359 efx_time_sync_event(channel
, event
);
1361 case MCDI_EVENT_CODE_TX_FLUSH
:
1362 case MCDI_EVENT_CODE_RX_FLUSH
:
1363 /* Two flush events will be sent: one to the same event
1364 * queue as completions, and one to event queue 0.
1365 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1366 * flag will be set, and we should ignore the event
1367 * because we want to wait for all completions.
1369 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN
!=
1370 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN
);
1371 if (!MCDI_EVENT_FIELD(*event
, TX_FLUSH_TO_DRIVER
))
1372 efx_ef10_handle_drain_event(efx
);
1374 case MCDI_EVENT_CODE_TX_ERR
:
1375 case MCDI_EVENT_CODE_RX_ERR
:
1376 netif_err(efx
, hw
, efx
->net_dev
,
1377 "%s DMA error (event: "EFX_QWORD_FMT
")\n",
1378 code
== MCDI_EVENT_CODE_TX_ERR
? "TX" : "RX",
1379 EFX_QWORD_VAL(*event
));
1380 efx_schedule_reset(efx
, RESET_TYPE_DMA_ERROR
);
1382 case MCDI_EVENT_CODE_PROXY_RESPONSE
:
1383 efx_mcdi_ev_proxy_response(efx
,
1384 MCDI_EVENT_FIELD(*event
, PROXY_RESPONSE_HANDLE
),
1385 MCDI_EVENT_FIELD(*event
, PROXY_RESPONSE_RC
));
1388 netif_err(efx
, hw
, efx
->net_dev
,
1389 "Unknown MCDI event " EFX_QWORD_FMT
"\n",
1390 EFX_QWORD_VAL(*event
));
1394 /**************************************************************************
1396 * Specific request functions
1398 **************************************************************************
1401 void efx_mcdi_print_fwver(struct efx_nic
*efx
, char *buf
, size_t len
)
1403 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_VERSION_OUT_LEN
);
1405 const __le16
*ver_words
;
1409 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN
!= 0);
1410 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_VERSION
, NULL
, 0,
1411 outbuf
, sizeof(outbuf
), &outlength
);
1414 if (outlength
< MC_CMD_GET_VERSION_OUT_LEN
) {
1419 ver_words
= (__le16
*)MCDI_PTR(outbuf
, GET_VERSION_OUT_VERSION
);
1420 offset
= snprintf(buf
, len
, "%u.%u.%u.%u",
1421 le16_to_cpu(ver_words
[0]), le16_to_cpu(ver_words
[1]),
1422 le16_to_cpu(ver_words
[2]), le16_to_cpu(ver_words
[3]));
1424 /* EF10 may have multiple datapath firmware variants within a
1425 * single version. Report which variants are running.
1427 if (efx_nic_rev(efx
) >= EFX_REV_HUNT_A0
) {
1428 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1430 offset
+= snprintf(buf
+ offset
, len
- offset
, " rx%x tx%x",
1431 nic_data
->rx_dpcpu_fw_id
,
1432 nic_data
->tx_dpcpu_fw_id
);
1434 /* It's theoretically possible for the string to exceed 31
1435 * characters, though in practice the first three version
1436 * components are short enough that this doesn't happen.
1438 if (WARN_ON(offset
>= len
))
1445 netif_err(efx
, probe
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1449 static int efx_mcdi_drv_attach(struct efx_nic
*efx
, bool driver_operating
,
1452 MCDI_DECLARE_BUF(inbuf
, MC_CMD_DRV_ATTACH_IN_LEN
);
1453 MCDI_DECLARE_BUF(outbuf
, MC_CMD_DRV_ATTACH_EXT_OUT_LEN
);
1457 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_NEW_STATE
,
1458 driver_operating
? 1 : 0);
1459 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_UPDATE
, 1);
1460 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_FIRMWARE_ID
, MC_CMD_FW_LOW_LATENCY
);
1462 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_DRV_ATTACH
, inbuf
, sizeof(inbuf
),
1463 outbuf
, sizeof(outbuf
), &outlen
);
1464 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1465 * specified will fail with EPERM, and we have to tell the MC we don't
1466 * care what firmware we get.
1469 netif_dbg(efx
, probe
, efx
->net_dev
,
1470 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1471 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_FIRMWARE_ID
,
1472 MC_CMD_FW_DONT_CARE
);
1473 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_DRV_ATTACH
, inbuf
,
1474 sizeof(inbuf
), outbuf
, sizeof(outbuf
),
1478 efx_mcdi_display_error(efx
, MC_CMD_DRV_ATTACH
, sizeof(inbuf
),
1479 outbuf
, outlen
, rc
);
1482 if (outlen
< MC_CMD_DRV_ATTACH_OUT_LEN
) {
1487 if (driver_operating
) {
1488 if (outlen
>= MC_CMD_DRV_ATTACH_EXT_OUT_LEN
) {
1489 efx
->mcdi
->fn_flags
=
1491 DRV_ATTACH_EXT_OUT_FUNC_FLAGS
);
1493 /* Synthesise flags for Siena */
1494 efx
->mcdi
->fn_flags
=
1495 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL
|
1496 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED
|
1497 (efx_port_num(efx
) == 0) <<
1498 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
;
1502 /* We currently assume we have control of the external link
1503 * and are completely trusted by firmware. Abort probing
1504 * if that's not true for this function.
1507 if (was_attached
!= NULL
)
1508 *was_attached
= MCDI_DWORD(outbuf
, DRV_ATTACH_OUT_OLD_STATE
);
1512 netif_err(efx
, probe
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1516 int efx_mcdi_get_board_cfg(struct efx_nic
*efx
, u8
*mac_address
,
1517 u16
*fw_subtype_list
, u32
*capabilities
)
1519 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_BOARD_CFG_OUT_LENMAX
);
1521 int port_num
= efx_port_num(efx
);
1524 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN
!= 0);
1525 /* we need __aligned(2) for ether_addr_copy */
1526 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST
& 1);
1527 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST
& 1);
1529 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_BOARD_CFG
, NULL
, 0,
1530 outbuf
, sizeof(outbuf
), &outlen
);
1534 if (outlen
< MC_CMD_GET_BOARD_CFG_OUT_LENMIN
) {
1540 ether_addr_copy(mac_address
,
1542 MCDI_PTR(outbuf
, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1
) :
1543 MCDI_PTR(outbuf
, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0
));
1544 if (fw_subtype_list
) {
1546 i
< MCDI_VAR_ARRAY_LEN(outlen
,
1547 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST
);
1549 fw_subtype_list
[i
] = MCDI_ARRAY_WORD(
1550 outbuf
, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST
, i
);
1551 for (; i
< MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM
; i
++)
1552 fw_subtype_list
[i
] = 0;
1556 *capabilities
= MCDI_DWORD(outbuf
,
1557 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1
);
1559 *capabilities
= MCDI_DWORD(outbuf
,
1560 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0
);
1566 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d len=%d\n",
1567 __func__
, rc
, (int)outlen
);
1572 int efx_mcdi_log_ctrl(struct efx_nic
*efx
, bool evq
, bool uart
, u32 dest_evq
)
1574 MCDI_DECLARE_BUF(inbuf
, MC_CMD_LOG_CTRL_IN_LEN
);
1579 dest
|= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART
;
1581 dest
|= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ
;
1583 MCDI_SET_DWORD(inbuf
, LOG_CTRL_IN_LOG_DEST
, dest
);
1584 MCDI_SET_DWORD(inbuf
, LOG_CTRL_IN_LOG_DEST_EVQ
, dest_evq
);
1586 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN
!= 0);
1588 rc
= efx_mcdi_rpc(efx
, MC_CMD_LOG_CTRL
, inbuf
, sizeof(inbuf
),
1593 int efx_mcdi_nvram_types(struct efx_nic
*efx
, u32
*nvram_types_out
)
1595 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_TYPES_OUT_LEN
);
1599 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN
!= 0);
1601 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_TYPES
, NULL
, 0,
1602 outbuf
, sizeof(outbuf
), &outlen
);
1605 if (outlen
< MC_CMD_NVRAM_TYPES_OUT_LEN
) {
1610 *nvram_types_out
= MCDI_DWORD(outbuf
, NVRAM_TYPES_OUT_TYPES
);
1614 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n",
1619 int efx_mcdi_nvram_info(struct efx_nic
*efx
, unsigned int type
,
1620 size_t *size_out
, size_t *erase_size_out
,
1621 bool *protected_out
)
1623 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_INFO_IN_LEN
);
1624 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_INFO_OUT_LEN
);
1628 MCDI_SET_DWORD(inbuf
, NVRAM_INFO_IN_TYPE
, type
);
1630 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_INFO
, inbuf
, sizeof(inbuf
),
1631 outbuf
, sizeof(outbuf
), &outlen
);
1634 if (outlen
< MC_CMD_NVRAM_INFO_OUT_LEN
) {
1639 *size_out
= MCDI_DWORD(outbuf
, NVRAM_INFO_OUT_SIZE
);
1640 *erase_size_out
= MCDI_DWORD(outbuf
, NVRAM_INFO_OUT_ERASESIZE
);
1641 *protected_out
= !!(MCDI_DWORD(outbuf
, NVRAM_INFO_OUT_FLAGS
) &
1642 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN
));
1646 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1650 static int efx_mcdi_nvram_test(struct efx_nic
*efx
, unsigned int type
)
1652 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_TEST_IN_LEN
);
1653 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_TEST_OUT_LEN
);
1656 MCDI_SET_DWORD(inbuf
, NVRAM_TEST_IN_TYPE
, type
);
1658 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_TEST
, inbuf
, sizeof(inbuf
),
1659 outbuf
, sizeof(outbuf
), NULL
);
1663 switch (MCDI_DWORD(outbuf
, NVRAM_TEST_OUT_RESULT
)) {
1664 case MC_CMD_NVRAM_TEST_PASS
:
1665 case MC_CMD_NVRAM_TEST_NOTSUPP
:
1672 int efx_mcdi_nvram_test_all(struct efx_nic
*efx
)
1678 rc
= efx_mcdi_nvram_types(efx
, &nvram_types
);
1683 while (nvram_types
!= 0) {
1684 if (nvram_types
& 1) {
1685 rc
= efx_mcdi_nvram_test(efx
, type
);
1696 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed type=%u\n",
1699 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1703 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1704 * negative on error.
1706 static int efx_mcdi_read_assertion(struct efx_nic
*efx
)
1708 MCDI_DECLARE_BUF(inbuf
, MC_CMD_GET_ASSERTS_IN_LEN
);
1709 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_ASSERTS_OUT_LEN
);
1710 unsigned int flags
, index
;
1716 /* Attempt to read any stored assertion state before we reboot
1717 * the mcfw out of the assertion handler. Retry twice, once
1718 * because a boot-time assertion might cause this command to fail
1719 * with EINTR. And once again because GET_ASSERTS can race with
1720 * MC_CMD_REBOOT running on the other port. */
1723 MCDI_SET_DWORD(inbuf
, GET_ASSERTS_IN_CLEAR
, 1);
1724 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_GET_ASSERTS
,
1725 inbuf
, MC_CMD_GET_ASSERTS_IN_LEN
,
1726 outbuf
, sizeof(outbuf
), &outlen
);
1729 } while ((rc
== -EINTR
|| rc
== -EIO
) && retry
-- > 0);
1732 efx_mcdi_display_error(efx
, MC_CMD_GET_ASSERTS
,
1733 MC_CMD_GET_ASSERTS_IN_LEN
, outbuf
,
1737 if (outlen
< MC_CMD_GET_ASSERTS_OUT_LEN
)
1740 /* Print out any recorded assertion state */
1741 flags
= MCDI_DWORD(outbuf
, GET_ASSERTS_OUT_GLOBAL_FLAGS
);
1742 if (flags
== MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS
)
1745 reason
= (flags
== MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL
)
1746 ? "system-level assertion"
1747 : (flags
== MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL
)
1748 ? "thread-level assertion"
1749 : (flags
== MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED
)
1751 : "unknown assertion";
1752 netif_err(efx
, hw
, efx
->net_dev
,
1753 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason
,
1754 MCDI_DWORD(outbuf
, GET_ASSERTS_OUT_SAVED_PC_OFFS
),
1755 MCDI_DWORD(outbuf
, GET_ASSERTS_OUT_THREAD_OFFS
));
1757 /* Print out the registers */
1759 index
< MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM
;
1761 netif_err(efx
, hw
, efx
->net_dev
, "R%.2d (?): 0x%.8x\n",
1763 MCDI_ARRAY_DWORD(outbuf
, GET_ASSERTS_OUT_GP_REGS_OFFS
,
1769 static int efx_mcdi_exit_assertion(struct efx_nic
*efx
)
1771 MCDI_DECLARE_BUF(inbuf
, MC_CMD_REBOOT_IN_LEN
);
1774 /* If the MC is running debug firmware, it might now be
1775 * waiting for a debugger to attach, but we just want it to
1776 * reboot. We set a flag that makes the command a no-op if it
1777 * has already done so.
1778 * The MCDI will thus return either 0 or -EIO.
1780 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN
!= 0);
1781 MCDI_SET_DWORD(inbuf
, REBOOT_IN_FLAGS
,
1782 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION
);
1783 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_REBOOT
, inbuf
, MC_CMD_REBOOT_IN_LEN
,
1788 efx_mcdi_display_error(efx
, MC_CMD_REBOOT
, MC_CMD_REBOOT_IN_LEN
,
1793 int efx_mcdi_handle_assertion(struct efx_nic
*efx
)
1797 rc
= efx_mcdi_read_assertion(efx
);
1801 return efx_mcdi_exit_assertion(efx
);
1804 void efx_mcdi_set_id_led(struct efx_nic
*efx
, enum efx_led_mode mode
)
1806 MCDI_DECLARE_BUF(inbuf
, MC_CMD_SET_ID_LED_IN_LEN
);
1809 BUILD_BUG_ON(EFX_LED_OFF
!= MC_CMD_LED_OFF
);
1810 BUILD_BUG_ON(EFX_LED_ON
!= MC_CMD_LED_ON
);
1811 BUILD_BUG_ON(EFX_LED_DEFAULT
!= MC_CMD_LED_DEFAULT
);
1813 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN
!= 0);
1815 MCDI_SET_DWORD(inbuf
, SET_ID_LED_IN_STATE
, mode
);
1817 rc
= efx_mcdi_rpc(efx
, MC_CMD_SET_ID_LED
, inbuf
, sizeof(inbuf
),
1821 static int efx_mcdi_reset_func(struct efx_nic
*efx
)
1823 MCDI_DECLARE_BUF(inbuf
, MC_CMD_ENTITY_RESET_IN_LEN
);
1826 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN
!= 0);
1827 MCDI_POPULATE_DWORD_1(inbuf
, ENTITY_RESET_IN_FLAG
,
1828 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET
, 1);
1829 rc
= efx_mcdi_rpc(efx
, MC_CMD_ENTITY_RESET
, inbuf
, sizeof(inbuf
),
1834 static int efx_mcdi_reset_mc(struct efx_nic
*efx
)
1836 MCDI_DECLARE_BUF(inbuf
, MC_CMD_REBOOT_IN_LEN
);
1839 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN
!= 0);
1840 MCDI_SET_DWORD(inbuf
, REBOOT_IN_FLAGS
, 0);
1841 rc
= efx_mcdi_rpc(efx
, MC_CMD_REBOOT
, inbuf
, sizeof(inbuf
),
1843 /* White is black, and up is down */
1851 enum reset_type
efx_mcdi_map_reset_reason(enum reset_type reason
)
1853 return RESET_TYPE_RECOVER_OR_ALL
;
1856 int efx_mcdi_reset(struct efx_nic
*efx
, enum reset_type method
)
1860 /* If MCDI is down, we can't handle_assertion */
1861 if (method
== RESET_TYPE_MCDI_TIMEOUT
) {
1862 rc
= pci_reset_function(efx
->pci_dev
);
1865 /* Re-enable polled MCDI completion */
1867 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1868 mcdi
->mode
= MCDI_MODE_POLL
;
1873 /* Recover from a failed assertion pre-reset */
1874 rc
= efx_mcdi_handle_assertion(efx
);
1878 if (method
== RESET_TYPE_DATAPATH
)
1880 else if (method
== RESET_TYPE_WORLD
)
1881 return efx_mcdi_reset_mc(efx
);
1883 return efx_mcdi_reset_func(efx
);
1886 static int efx_mcdi_wol_filter_set(struct efx_nic
*efx
, u32 type
,
1887 const u8
*mac
, int *id_out
)
1889 MCDI_DECLARE_BUF(inbuf
, MC_CMD_WOL_FILTER_SET_IN_LEN
);
1890 MCDI_DECLARE_BUF(outbuf
, MC_CMD_WOL_FILTER_SET_OUT_LEN
);
1894 MCDI_SET_DWORD(inbuf
, WOL_FILTER_SET_IN_WOL_TYPE
, type
);
1895 MCDI_SET_DWORD(inbuf
, WOL_FILTER_SET_IN_FILTER_MODE
,
1896 MC_CMD_FILTER_MODE_SIMPLE
);
1897 ether_addr_copy(MCDI_PTR(inbuf
, WOL_FILTER_SET_IN_MAGIC_MAC
), mac
);
1899 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_SET
, inbuf
, sizeof(inbuf
),
1900 outbuf
, sizeof(outbuf
), &outlen
);
1904 if (outlen
< MC_CMD_WOL_FILTER_SET_OUT_LEN
) {
1909 *id_out
= (int)MCDI_DWORD(outbuf
, WOL_FILTER_SET_OUT_FILTER_ID
);
1915 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1922 efx_mcdi_wol_filter_set_magic(struct efx_nic
*efx
, const u8
*mac
, int *id_out
)
1924 return efx_mcdi_wol_filter_set(efx
, MC_CMD_WOL_TYPE_MAGIC
, mac
, id_out
);
1928 int efx_mcdi_wol_filter_get_magic(struct efx_nic
*efx
, int *id_out
)
1930 MCDI_DECLARE_BUF(outbuf
, MC_CMD_WOL_FILTER_GET_OUT_LEN
);
1934 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_GET
, NULL
, 0,
1935 outbuf
, sizeof(outbuf
), &outlen
);
1939 if (outlen
< MC_CMD_WOL_FILTER_GET_OUT_LEN
) {
1944 *id_out
= (int)MCDI_DWORD(outbuf
, WOL_FILTER_GET_OUT_FILTER_ID
);
1950 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1955 int efx_mcdi_wol_filter_remove(struct efx_nic
*efx
, int id
)
1957 MCDI_DECLARE_BUF(inbuf
, MC_CMD_WOL_FILTER_REMOVE_IN_LEN
);
1960 MCDI_SET_DWORD(inbuf
, WOL_FILTER_REMOVE_IN_FILTER_ID
, (u32
)id
);
1962 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_REMOVE
, inbuf
, sizeof(inbuf
),
1967 int efx_mcdi_flush_rxqs(struct efx_nic
*efx
)
1969 struct efx_channel
*channel
;
1970 struct efx_rx_queue
*rx_queue
;
1971 MCDI_DECLARE_BUF(inbuf
,
1972 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS
));
1975 BUILD_BUG_ON(EFX_MAX_CHANNELS
>
1976 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM
);
1979 efx_for_each_channel(channel
, efx
) {
1980 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
1981 if (rx_queue
->flush_pending
) {
1982 rx_queue
->flush_pending
= false;
1983 atomic_dec(&efx
->rxq_flush_pending
);
1984 MCDI_SET_ARRAY_DWORD(
1985 inbuf
, FLUSH_RX_QUEUES_IN_QID_OFST
,
1986 count
, efx_rx_queue_index(rx_queue
));
1992 rc
= efx_mcdi_rpc(efx
, MC_CMD_FLUSH_RX_QUEUES
, inbuf
,
1993 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count
), NULL
, 0, NULL
);
1999 int efx_mcdi_wol_filter_reset(struct efx_nic
*efx
)
2003 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_RESET
, NULL
, 0, NULL
, 0, NULL
);
2007 int efx_mcdi_set_workaround(struct efx_nic
*efx
, u32 type
, bool enabled
,
2008 unsigned int *flags
)
2010 MCDI_DECLARE_BUF(inbuf
, MC_CMD_WORKAROUND_IN_LEN
);
2011 MCDI_DECLARE_BUF(outbuf
, MC_CMD_WORKAROUND_EXT_OUT_LEN
);
2015 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN
!= 0);
2016 MCDI_SET_DWORD(inbuf
, WORKAROUND_IN_TYPE
, type
);
2017 MCDI_SET_DWORD(inbuf
, WORKAROUND_IN_ENABLED
, enabled
);
2018 rc
= efx_mcdi_rpc(efx
, MC_CMD_WORKAROUND
, inbuf
, sizeof(inbuf
),
2019 outbuf
, sizeof(outbuf
), &outlen
);
2026 if (outlen
>= MC_CMD_WORKAROUND_EXT_OUT_LEN
)
2027 *flags
= MCDI_DWORD(outbuf
, WORKAROUND_EXT_OUT_FLAGS
);
2034 int efx_mcdi_get_workarounds(struct efx_nic
*efx
, unsigned int *impl_out
,
2035 unsigned int *enabled_out
)
2037 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_WORKAROUNDS_OUT_LEN
);
2041 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_WORKAROUNDS
, NULL
, 0,
2042 outbuf
, sizeof(outbuf
), &outlen
);
2046 if (outlen
< MC_CMD_GET_WORKAROUNDS_OUT_LEN
) {
2052 *impl_out
= MCDI_DWORD(outbuf
, GET_WORKAROUNDS_OUT_IMPLEMENTED
);
2055 *enabled_out
= MCDI_DWORD(outbuf
, GET_WORKAROUNDS_OUT_ENABLED
);
2060 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2061 * terrifying. The call site will have to deal with it though.
2063 netif_cond_dbg(efx
, hw
, efx
->net_dev
, rc
== -ENOSYS
, err
,
2064 "%s: failed rc=%d\n", __func__
, rc
);
2068 #ifdef CONFIG_SFC_MTD
2070 #define EFX_MCDI_NVRAM_LEN_MAX 128
2072 static int efx_mcdi_nvram_update_start(struct efx_nic
*efx
, unsigned int type
)
2074 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN
);
2077 MCDI_SET_DWORD(inbuf
, NVRAM_UPDATE_START_IN_TYPE
, type
);
2078 MCDI_POPULATE_DWORD_1(inbuf
, NVRAM_UPDATE_START_V2_IN_FLAGS
,
2079 NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT
,
2082 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN
!= 0);
2084 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_UPDATE_START
, inbuf
, sizeof(inbuf
),
2090 static int efx_mcdi_nvram_read(struct efx_nic
*efx
, unsigned int type
,
2091 loff_t offset
, u8
*buffer
, size_t length
)
2093 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_READ_IN_V2_LEN
);
2094 MCDI_DECLARE_BUF(outbuf
,
2095 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX
));
2099 MCDI_SET_DWORD(inbuf
, NVRAM_READ_IN_TYPE
, type
);
2100 MCDI_SET_DWORD(inbuf
, NVRAM_READ_IN_OFFSET
, offset
);
2101 MCDI_SET_DWORD(inbuf
, NVRAM_READ_IN_LENGTH
, length
);
2102 MCDI_SET_DWORD(inbuf
, NVRAM_READ_IN_V2_MODE
,
2103 MC_CMD_NVRAM_READ_IN_V2_DEFAULT
);
2105 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_READ
, inbuf
, sizeof(inbuf
),
2106 outbuf
, sizeof(outbuf
), &outlen
);
2110 memcpy(buffer
, MCDI_PTR(outbuf
, NVRAM_READ_OUT_READ_BUFFER
), length
);
2114 static int efx_mcdi_nvram_write(struct efx_nic
*efx
, unsigned int type
,
2115 loff_t offset
, const u8
*buffer
, size_t length
)
2117 MCDI_DECLARE_BUF(inbuf
,
2118 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX
));
2121 MCDI_SET_DWORD(inbuf
, NVRAM_WRITE_IN_TYPE
, type
);
2122 MCDI_SET_DWORD(inbuf
, NVRAM_WRITE_IN_OFFSET
, offset
);
2123 MCDI_SET_DWORD(inbuf
, NVRAM_WRITE_IN_LENGTH
, length
);
2124 memcpy(MCDI_PTR(inbuf
, NVRAM_WRITE_IN_WRITE_BUFFER
), buffer
, length
);
2126 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN
!= 0);
2128 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_WRITE
, inbuf
,
2129 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length
), 4),
2134 static int efx_mcdi_nvram_erase(struct efx_nic
*efx
, unsigned int type
,
2135 loff_t offset
, size_t length
)
2137 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_ERASE_IN_LEN
);
2140 MCDI_SET_DWORD(inbuf
, NVRAM_ERASE_IN_TYPE
, type
);
2141 MCDI_SET_DWORD(inbuf
, NVRAM_ERASE_IN_OFFSET
, offset
);
2142 MCDI_SET_DWORD(inbuf
, NVRAM_ERASE_IN_LENGTH
, length
);
2144 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN
!= 0);
2146 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_ERASE
, inbuf
, sizeof(inbuf
),
2151 static int efx_mcdi_nvram_update_finish(struct efx_nic
*efx
, unsigned int type
)
2153 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN
);
2154 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN
);
2158 MCDI_SET_DWORD(inbuf
, NVRAM_UPDATE_FINISH_IN_TYPE
, type
);
2159 /* Always set this flag. Old firmware ignores it */
2160 MCDI_POPULATE_DWORD_1(inbuf
, NVRAM_UPDATE_FINISH_V2_IN_FLAGS
,
2161 NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT
,
2164 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_UPDATE_FINISH
, inbuf
, sizeof(inbuf
),
2165 outbuf
, sizeof(outbuf
), &outlen
);
2166 if (!rc
&& outlen
>= MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN
) {
2167 rc2
= MCDI_DWORD(outbuf
, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE
);
2168 if (rc2
!= MC_CMD_NVRAM_VERIFY_RC_SUCCESS
)
2169 netif_err(efx
, drv
, efx
->net_dev
,
2170 "NVRAM update failed verification with code 0x%x\n",
2173 case MC_CMD_NVRAM_VERIFY_RC_SUCCESS
:
2175 case MC_CMD_NVRAM_VERIFY_RC_CMS_CHECK_FAILED
:
2176 case MC_CMD_NVRAM_VERIFY_RC_MESSAGE_DIGEST_CHECK_FAILED
:
2177 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHECK_FAILED
:
2178 case MC_CMD_NVRAM_VERIFY_RC_TRUSTED_APPROVERS_CHECK_FAILED
:
2179 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHAIN_CHECK_FAILED
:
2182 case MC_CMD_NVRAM_VERIFY_RC_INVALID_CMS_FORMAT
:
2183 case MC_CMD_NVRAM_VERIFY_RC_BAD_MESSAGE_DIGEST
:
2186 case MC_CMD_NVRAM_VERIFY_RC_NO_VALID_SIGNATURES
:
2187 case MC_CMD_NVRAM_VERIFY_RC_NO_TRUSTED_APPROVERS
:
2188 case MC_CMD_NVRAM_VERIFY_RC_NO_SIGNATURE_MATCH
:
2192 netif_err(efx
, drv
, efx
->net_dev
,
2193 "Unknown response to NVRAM_UPDATE_FINISH\n");
2201 int efx_mcdi_mtd_read(struct mtd_info
*mtd
, loff_t start
,
2202 size_t len
, size_t *retlen
, u8
*buffer
)
2204 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
2205 struct efx_nic
*efx
= mtd
->priv
;
2206 loff_t offset
= start
;
2207 loff_t end
= min_t(loff_t
, start
+ len
, mtd
->size
);
2211 while (offset
< end
) {
2212 chunk
= min_t(size_t, end
- offset
, EFX_MCDI_NVRAM_LEN_MAX
);
2213 rc
= efx_mcdi_nvram_read(efx
, part
->nvram_type
, offset
,
2221 *retlen
= offset
- start
;
2225 int efx_mcdi_mtd_erase(struct mtd_info
*mtd
, loff_t start
, size_t len
)
2227 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
2228 struct efx_nic
*efx
= mtd
->priv
;
2229 loff_t offset
= start
& ~((loff_t
)(mtd
->erasesize
- 1));
2230 loff_t end
= min_t(loff_t
, start
+ len
, mtd
->size
);
2231 size_t chunk
= part
->common
.mtd
.erasesize
;
2234 if (!part
->updating
) {
2235 rc
= efx_mcdi_nvram_update_start(efx
, part
->nvram_type
);
2238 part
->updating
= true;
2241 /* The MCDI interface can in fact do multiple erase blocks at once;
2242 * but erasing may be slow, so we make multiple calls here to avoid
2243 * tripping the MCDI RPC timeout. */
2244 while (offset
< end
) {
2245 rc
= efx_mcdi_nvram_erase(efx
, part
->nvram_type
, offset
,
2255 int efx_mcdi_mtd_write(struct mtd_info
*mtd
, loff_t start
,
2256 size_t len
, size_t *retlen
, const u8
*buffer
)
2258 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
2259 struct efx_nic
*efx
= mtd
->priv
;
2260 loff_t offset
= start
;
2261 loff_t end
= min_t(loff_t
, start
+ len
, mtd
->size
);
2265 if (!part
->updating
) {
2266 rc
= efx_mcdi_nvram_update_start(efx
, part
->nvram_type
);
2269 part
->updating
= true;
2272 while (offset
< end
) {
2273 chunk
= min_t(size_t, end
- offset
, EFX_MCDI_NVRAM_LEN_MAX
);
2274 rc
= efx_mcdi_nvram_write(efx
, part
->nvram_type
, offset
,
2282 *retlen
= offset
- start
;
2286 int efx_mcdi_mtd_sync(struct mtd_info
*mtd
)
2288 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
2289 struct efx_nic
*efx
= mtd
->priv
;
2292 if (part
->updating
) {
2293 part
->updating
= false;
2294 rc
= efx_mcdi_nvram_update_finish(efx
, part
->nvram_type
);
2300 void efx_mcdi_mtd_rename(struct efx_mtd_partition
*part
)
2302 struct efx_mcdi_mtd_partition
*mcdi_part
=
2303 container_of(part
, struct efx_mcdi_mtd_partition
, common
);
2304 struct efx_nic
*efx
= part
->mtd
.priv
;
2306 snprintf(part
->name
, sizeof(part
->name
), "%s %s:%02x",
2307 efx
->name
, part
->type_name
, mcdi_part
->fw_subtype
);
2310 #endif /* CONFIG_SFC_MTD */