treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / ethernet / sfc / mcdi.c
blob2713300343c7f2735da13462e1d4c3644f428725
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2008-2013 Solarflare Communications Inc.
5 */
7 #include <linux/delay.h>
8 #include <linux/moduleparam.h>
9 #include <linux/atomic.h>
10 #include "net_driver.h"
11 #include "nic.h"
12 #include "io.h"
13 #include "farch_regs.h"
14 #include "mcdi_pcol.h"
16 /**************************************************************************
18 * Management-Controller-to-Driver Interface
20 **************************************************************************
23 #define MCDI_RPC_TIMEOUT (10 * HZ)
25 /* A reboot/assertion causes the MCDI status word to be set after the
26 * command word is set or a REBOOT event is sent. If we notice a reboot
27 * via these mechanisms then wait 250ms for the status word to be set.
29 #define MCDI_STATUS_DELAY_US 100
30 #define MCDI_STATUS_DELAY_COUNT 2500
31 #define MCDI_STATUS_SLEEP_MS \
32 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
34 #define SEQ_MASK \
35 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
37 struct efx_mcdi_async_param {
38 struct list_head list;
39 unsigned int cmd;
40 size_t inlen;
41 size_t outlen;
42 bool quiet;
43 efx_mcdi_async_completer *complete;
44 unsigned long cookie;
45 /* followed by request/response buffer */
48 static void efx_mcdi_timeout_async(struct timer_list *t);
49 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
50 bool *was_attached_out);
51 static bool efx_mcdi_poll_once(struct efx_nic *efx);
52 static void efx_mcdi_abandon(struct efx_nic *efx);
54 #ifdef CONFIG_SFC_MCDI_LOGGING
55 static bool mcdi_logging_default;
56 module_param(mcdi_logging_default, bool, 0644);
57 MODULE_PARM_DESC(mcdi_logging_default,
58 "Enable MCDI logging on newly-probed functions");
59 #endif
61 int efx_mcdi_init(struct efx_nic *efx)
63 struct efx_mcdi_iface *mcdi;
64 bool already_attached;
65 int rc = -ENOMEM;
67 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
68 if (!efx->mcdi)
69 goto fail;
71 mcdi = efx_mcdi(efx);
72 mcdi->efx = efx;
73 #ifdef CONFIG_SFC_MCDI_LOGGING
74 /* consuming code assumes buffer is page-sized */
75 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
76 if (!mcdi->logging_buffer)
77 goto fail1;
78 mcdi->logging_enabled = mcdi_logging_default;
79 #endif
80 init_waitqueue_head(&mcdi->wq);
81 init_waitqueue_head(&mcdi->proxy_rx_wq);
82 spin_lock_init(&mcdi->iface_lock);
83 mcdi->state = MCDI_STATE_QUIESCENT;
84 mcdi->mode = MCDI_MODE_POLL;
85 spin_lock_init(&mcdi->async_lock);
86 INIT_LIST_HEAD(&mcdi->async_list);
87 timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0);
89 (void) efx_mcdi_poll_reboot(efx);
90 mcdi->new_epoch = true;
92 /* Recover from a failed assertion before probing */
93 rc = efx_mcdi_handle_assertion(efx);
94 if (rc)
95 goto fail2;
97 /* Let the MC (and BMC, if this is a LOM) know that the driver
98 * is loaded. We should do this before we reset the NIC.
100 rc = efx_mcdi_drv_attach(efx, true, &already_attached);
101 if (rc) {
102 netif_err(efx, probe, efx->net_dev,
103 "Unable to register driver with MCPU\n");
104 goto fail2;
106 if (already_attached)
107 /* Not a fatal error */
108 netif_err(efx, probe, efx->net_dev,
109 "Host already registered with MCPU\n");
111 if (efx->mcdi->fn_flags &
112 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
113 efx->primary = efx;
115 return 0;
116 fail2:
117 #ifdef CONFIG_SFC_MCDI_LOGGING
118 free_page((unsigned long)mcdi->logging_buffer);
119 fail1:
120 #endif
121 kfree(efx->mcdi);
122 efx->mcdi = NULL;
123 fail:
124 return rc;
127 void efx_mcdi_detach(struct efx_nic *efx)
129 if (!efx->mcdi)
130 return;
132 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
134 /* Relinquish the device (back to the BMC, if this is a LOM) */
135 efx_mcdi_drv_attach(efx, false, NULL);
138 void efx_mcdi_fini(struct efx_nic *efx)
140 if (!efx->mcdi)
141 return;
143 #ifdef CONFIG_SFC_MCDI_LOGGING
144 free_page((unsigned long)efx->mcdi->iface.logging_buffer);
145 #endif
147 kfree(efx->mcdi);
150 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
151 const efx_dword_t *inbuf, size_t inlen)
153 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
154 #ifdef CONFIG_SFC_MCDI_LOGGING
155 char *buf = mcdi->logging_buffer; /* page-sized */
156 #endif
157 efx_dword_t hdr[2];
158 size_t hdr_len;
159 u32 xflags, seqno;
161 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
163 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
164 spin_lock_bh(&mcdi->iface_lock);
165 ++mcdi->seqno;
166 spin_unlock_bh(&mcdi->iface_lock);
168 seqno = mcdi->seqno & SEQ_MASK;
169 xflags = 0;
170 if (mcdi->mode == MCDI_MODE_EVENTS)
171 xflags |= MCDI_HEADER_XFLAGS_EVREQ;
173 if (efx->type->mcdi_max_ver == 1) {
174 /* MCDI v1 */
175 EFX_POPULATE_DWORD_7(hdr[0],
176 MCDI_HEADER_RESPONSE, 0,
177 MCDI_HEADER_RESYNC, 1,
178 MCDI_HEADER_CODE, cmd,
179 MCDI_HEADER_DATALEN, inlen,
180 MCDI_HEADER_SEQ, seqno,
181 MCDI_HEADER_XFLAGS, xflags,
182 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
183 hdr_len = 4;
184 } else {
185 /* MCDI v2 */
186 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
187 EFX_POPULATE_DWORD_7(hdr[0],
188 MCDI_HEADER_RESPONSE, 0,
189 MCDI_HEADER_RESYNC, 1,
190 MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
191 MCDI_HEADER_DATALEN, 0,
192 MCDI_HEADER_SEQ, seqno,
193 MCDI_HEADER_XFLAGS, xflags,
194 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
195 EFX_POPULATE_DWORD_2(hdr[1],
196 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
197 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
198 hdr_len = 8;
201 #ifdef CONFIG_SFC_MCDI_LOGGING
202 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
203 int bytes = 0;
204 int i;
205 /* Lengths should always be a whole number of dwords, so scream
206 * if they're not.
208 WARN_ON_ONCE(hdr_len % 4);
209 WARN_ON_ONCE(inlen % 4);
211 /* We own the logging buffer, as only one MCDI can be in
212 * progress on a NIC at any one time. So no need for locking.
214 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
215 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
216 " %08x", le32_to_cpu(hdr[i].u32[0]));
218 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
219 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
220 " %08x", le32_to_cpu(inbuf[i].u32[0]));
222 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
224 #endif
226 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
228 mcdi->new_epoch = false;
231 static int efx_mcdi_errno(unsigned int mcdi_err)
233 switch (mcdi_err) {
234 case 0:
235 return 0;
236 #define TRANSLATE_ERROR(name) \
237 case MC_CMD_ERR_ ## name: \
238 return -name;
239 TRANSLATE_ERROR(EPERM);
240 TRANSLATE_ERROR(ENOENT);
241 TRANSLATE_ERROR(EINTR);
242 TRANSLATE_ERROR(EAGAIN);
243 TRANSLATE_ERROR(EACCES);
244 TRANSLATE_ERROR(EBUSY);
245 TRANSLATE_ERROR(EINVAL);
246 TRANSLATE_ERROR(EDEADLK);
247 TRANSLATE_ERROR(ENOSYS);
248 TRANSLATE_ERROR(ETIME);
249 TRANSLATE_ERROR(EALREADY);
250 TRANSLATE_ERROR(ENOSPC);
251 #undef TRANSLATE_ERROR
252 case MC_CMD_ERR_ENOTSUP:
253 return -EOPNOTSUPP;
254 case MC_CMD_ERR_ALLOC_FAIL:
255 return -ENOBUFS;
256 case MC_CMD_ERR_MAC_EXIST:
257 return -EADDRINUSE;
258 default:
259 return -EPROTO;
263 static void efx_mcdi_read_response_header(struct efx_nic *efx)
265 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
266 unsigned int respseq, respcmd, error;
267 #ifdef CONFIG_SFC_MCDI_LOGGING
268 char *buf = mcdi->logging_buffer; /* page-sized */
269 #endif
270 efx_dword_t hdr;
272 efx->type->mcdi_read_response(efx, &hdr, 0, 4);
273 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
274 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
275 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
277 if (respcmd != MC_CMD_V2_EXTN) {
278 mcdi->resp_hdr_len = 4;
279 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
280 } else {
281 efx->type->mcdi_read_response(efx, &hdr, 4, 4);
282 mcdi->resp_hdr_len = 8;
283 mcdi->resp_data_len =
284 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
287 #ifdef CONFIG_SFC_MCDI_LOGGING
288 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
289 size_t hdr_len, data_len;
290 int bytes = 0;
291 int i;
293 WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
294 hdr_len = mcdi->resp_hdr_len / 4;
295 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded
296 * to dword size, and the MCDI buffer is always dword size
298 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
300 /* We own the logging buffer, as only one MCDI can be in
301 * progress on a NIC at any one time. So no need for locking.
303 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
304 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
305 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
306 " %08x", le32_to_cpu(hdr.u32[0]));
309 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
310 efx->type->mcdi_read_response(efx, &hdr,
311 mcdi->resp_hdr_len + (i * 4), 4);
312 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
313 " %08x", le32_to_cpu(hdr.u32[0]));
316 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
318 #endif
320 mcdi->resprc_raw = 0;
321 if (error && mcdi->resp_data_len == 0) {
322 netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
323 mcdi->resprc = -EIO;
324 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
325 netif_err(efx, hw, efx->net_dev,
326 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
327 respseq, mcdi->seqno);
328 mcdi->resprc = -EIO;
329 } else if (error) {
330 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
331 mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
332 mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
333 } else {
334 mcdi->resprc = 0;
338 static bool efx_mcdi_poll_once(struct efx_nic *efx)
340 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
342 rmb();
343 if (!efx->type->mcdi_poll_response(efx))
344 return false;
346 spin_lock_bh(&mcdi->iface_lock);
347 efx_mcdi_read_response_header(efx);
348 spin_unlock_bh(&mcdi->iface_lock);
350 return true;
353 static int efx_mcdi_poll(struct efx_nic *efx)
355 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
356 unsigned long time, finish;
357 unsigned int spins;
358 int rc;
360 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
361 rc = efx_mcdi_poll_reboot(efx);
362 if (rc) {
363 spin_lock_bh(&mcdi->iface_lock);
364 mcdi->resprc = rc;
365 mcdi->resp_hdr_len = 0;
366 mcdi->resp_data_len = 0;
367 spin_unlock_bh(&mcdi->iface_lock);
368 return 0;
371 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
372 * because generally mcdi responses are fast. After that, back off
373 * and poll once a jiffy (approximately)
375 spins = USER_TICK_USEC;
376 finish = jiffies + MCDI_RPC_TIMEOUT;
378 while (1) {
379 if (spins != 0) {
380 --spins;
381 udelay(1);
382 } else {
383 schedule_timeout_uninterruptible(1);
386 time = jiffies;
388 if (efx_mcdi_poll_once(efx))
389 break;
391 if (time_after(time, finish))
392 return -ETIMEDOUT;
395 /* Return rc=0 like wait_event_timeout() */
396 return 0;
399 /* Test and clear MC-rebooted flag for this port/function; reset
400 * software state as necessary.
402 int efx_mcdi_poll_reboot(struct efx_nic *efx)
404 if (!efx->mcdi)
405 return 0;
407 return efx->type->mcdi_poll_reboot(efx);
410 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
412 return cmpxchg(&mcdi->state,
413 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
414 MCDI_STATE_QUIESCENT;
417 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
419 /* Wait until the interface becomes QUIESCENT and we win the race
420 * to mark it RUNNING_SYNC.
422 wait_event(mcdi->wq,
423 cmpxchg(&mcdi->state,
424 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
425 MCDI_STATE_QUIESCENT);
428 static int efx_mcdi_await_completion(struct efx_nic *efx)
430 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
432 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
433 MCDI_RPC_TIMEOUT) == 0)
434 return -ETIMEDOUT;
436 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
437 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
438 * completed the request first, then we'll just end up completing the
439 * request again, which is safe.
441 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
442 * wait_event_timeout() implicitly provides.
444 if (mcdi->mode == MCDI_MODE_POLL)
445 return efx_mcdi_poll(efx);
447 return 0;
450 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
451 * requester. Return whether this was done. Does not take any locks.
453 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
455 if (cmpxchg(&mcdi->state,
456 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
457 MCDI_STATE_RUNNING_SYNC) {
458 wake_up(&mcdi->wq);
459 return true;
462 return false;
465 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
467 if (mcdi->mode == MCDI_MODE_EVENTS) {
468 struct efx_mcdi_async_param *async;
469 struct efx_nic *efx = mcdi->efx;
471 /* Process the asynchronous request queue */
472 spin_lock_bh(&mcdi->async_lock);
473 async = list_first_entry_or_null(
474 &mcdi->async_list, struct efx_mcdi_async_param, list);
475 if (async) {
476 mcdi->state = MCDI_STATE_RUNNING_ASYNC;
477 efx_mcdi_send_request(efx, async->cmd,
478 (const efx_dword_t *)(async + 1),
479 async->inlen);
480 mod_timer(&mcdi->async_timer,
481 jiffies + MCDI_RPC_TIMEOUT);
483 spin_unlock_bh(&mcdi->async_lock);
485 if (async)
486 return;
489 mcdi->state = MCDI_STATE_QUIESCENT;
490 wake_up(&mcdi->wq);
493 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
494 * asynchronous completion function, and release the interface.
495 * Return whether this was done. Must be called in bh-disabled
496 * context. Will take iface_lock and async_lock.
498 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
500 struct efx_nic *efx = mcdi->efx;
501 struct efx_mcdi_async_param *async;
502 size_t hdr_len, data_len, err_len;
503 efx_dword_t *outbuf;
504 MCDI_DECLARE_BUF_ERR(errbuf);
505 int rc;
507 if (cmpxchg(&mcdi->state,
508 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
509 MCDI_STATE_RUNNING_ASYNC)
510 return false;
512 spin_lock(&mcdi->iface_lock);
513 if (timeout) {
514 /* Ensure that if the completion event arrives later,
515 * the seqno check in efx_mcdi_ev_cpl() will fail
517 ++mcdi->seqno;
518 ++mcdi->credits;
519 rc = -ETIMEDOUT;
520 hdr_len = 0;
521 data_len = 0;
522 } else {
523 rc = mcdi->resprc;
524 hdr_len = mcdi->resp_hdr_len;
525 data_len = mcdi->resp_data_len;
527 spin_unlock(&mcdi->iface_lock);
529 /* Stop the timer. In case the timer function is running, we
530 * must wait for it to return so that there is no possibility
531 * of it aborting the next request.
533 if (!timeout)
534 del_timer_sync(&mcdi->async_timer);
536 spin_lock(&mcdi->async_lock);
537 async = list_first_entry(&mcdi->async_list,
538 struct efx_mcdi_async_param, list);
539 list_del(&async->list);
540 spin_unlock(&mcdi->async_lock);
542 outbuf = (efx_dword_t *)(async + 1);
543 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
544 min(async->outlen, data_len));
545 if (!timeout && rc && !async->quiet) {
546 err_len = min(sizeof(errbuf), data_len);
547 efx->type->mcdi_read_response(efx, errbuf, hdr_len,
548 sizeof(errbuf));
549 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
550 err_len, rc);
553 if (async->complete)
554 async->complete(efx, async->cookie, rc, outbuf,
555 min(async->outlen, data_len));
556 kfree(async);
558 efx_mcdi_release(mcdi);
560 return true;
563 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
564 unsigned int datalen, unsigned int mcdi_err)
566 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
567 bool wake = false;
569 spin_lock(&mcdi->iface_lock);
571 if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
572 if (mcdi->credits)
573 /* The request has been cancelled */
574 --mcdi->credits;
575 else
576 netif_err(efx, hw, efx->net_dev,
577 "MC response mismatch tx seq 0x%x rx "
578 "seq 0x%x\n", seqno, mcdi->seqno);
579 } else {
580 if (efx->type->mcdi_max_ver >= 2) {
581 /* MCDI v2 responses don't fit in an event */
582 efx_mcdi_read_response_header(efx);
583 } else {
584 mcdi->resprc = efx_mcdi_errno(mcdi_err);
585 mcdi->resp_hdr_len = 4;
586 mcdi->resp_data_len = datalen;
589 wake = true;
592 spin_unlock(&mcdi->iface_lock);
594 if (wake) {
595 if (!efx_mcdi_complete_async(mcdi, false))
596 (void) efx_mcdi_complete_sync(mcdi);
598 /* If the interface isn't RUNNING_ASYNC or
599 * RUNNING_SYNC then we've received a duplicate
600 * completion after we've already transitioned back to
601 * QUIESCENT. [A subsequent invocation would increment
602 * seqno, so would have failed the seqno check].
607 static void efx_mcdi_timeout_async(struct timer_list *t)
609 struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer);
611 efx_mcdi_complete_async(mcdi, true);
614 static int
615 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
617 if (efx->type->mcdi_max_ver < 0 ||
618 (efx->type->mcdi_max_ver < 2 &&
619 cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
620 return -EINVAL;
622 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
623 (efx->type->mcdi_max_ver < 2 &&
624 inlen > MCDI_CTL_SDU_LEN_MAX_V1))
625 return -EMSGSIZE;
627 return 0;
630 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
631 size_t hdr_len, size_t data_len,
632 u32 *proxy_handle)
634 MCDI_DECLARE_BUF_ERR(testbuf);
635 const size_t buflen = sizeof(testbuf);
637 if (!proxy_handle || data_len < buflen)
638 return false;
640 efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
641 if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
642 *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
643 return true;
646 return false;
649 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
650 size_t inlen,
651 efx_dword_t *outbuf, size_t outlen,
652 size_t *outlen_actual, bool quiet,
653 u32 *proxy_handle, int *raw_rc)
655 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
656 MCDI_DECLARE_BUF_ERR(errbuf);
657 int rc;
659 if (mcdi->mode == MCDI_MODE_POLL)
660 rc = efx_mcdi_poll(efx);
661 else
662 rc = efx_mcdi_await_completion(efx);
664 if (rc != 0) {
665 netif_err(efx, hw, efx->net_dev,
666 "MC command 0x%x inlen %d mode %d timed out\n",
667 cmd, (int)inlen, mcdi->mode);
669 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
670 netif_err(efx, hw, efx->net_dev,
671 "MCDI request was completed without an event\n");
672 rc = 0;
675 efx_mcdi_abandon(efx);
677 /* Close the race with efx_mcdi_ev_cpl() executing just too late
678 * and completing a request we've just cancelled, by ensuring
679 * that the seqno check therein fails.
681 spin_lock_bh(&mcdi->iface_lock);
682 ++mcdi->seqno;
683 ++mcdi->credits;
684 spin_unlock_bh(&mcdi->iface_lock);
687 if (proxy_handle)
688 *proxy_handle = 0;
690 if (rc != 0) {
691 if (outlen_actual)
692 *outlen_actual = 0;
693 } else {
694 size_t hdr_len, data_len, err_len;
696 /* At the very least we need a memory barrier here to ensure
697 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
698 * a spurious efx_mcdi_ev_cpl() running concurrently by
699 * acquiring the iface_lock. */
700 spin_lock_bh(&mcdi->iface_lock);
701 rc = mcdi->resprc;
702 if (raw_rc)
703 *raw_rc = mcdi->resprc_raw;
704 hdr_len = mcdi->resp_hdr_len;
705 data_len = mcdi->resp_data_len;
706 err_len = min(sizeof(errbuf), data_len);
707 spin_unlock_bh(&mcdi->iface_lock);
709 BUG_ON(rc > 0);
711 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
712 min(outlen, data_len));
713 if (outlen_actual)
714 *outlen_actual = data_len;
716 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
718 if (cmd == MC_CMD_REBOOT && rc == -EIO) {
719 /* Don't reset if MC_CMD_REBOOT returns EIO */
720 } else if (rc == -EIO || rc == -EINTR) {
721 netif_err(efx, hw, efx->net_dev, "MC reboot detected\n");
722 netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n",
723 cmd, -rc);
724 if (efx->type->mcdi_reboot_detected)
725 efx->type->mcdi_reboot_detected(efx);
726 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
727 } else if (proxy_handle && (rc == -EPROTO) &&
728 efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
729 proxy_handle)) {
730 mcdi->proxy_rx_status = 0;
731 mcdi->proxy_rx_handle = 0;
732 mcdi->state = MCDI_STATE_PROXY_WAIT;
733 } else if (rc && !quiet) {
734 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
735 rc);
738 if (rc == -EIO || rc == -EINTR) {
739 msleep(MCDI_STATUS_SLEEP_MS);
740 efx_mcdi_poll_reboot(efx);
741 mcdi->new_epoch = true;
745 if (!proxy_handle || !*proxy_handle)
746 efx_mcdi_release(mcdi);
747 return rc;
750 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
752 if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
753 /* Interrupt the proxy wait. */
754 mcdi->proxy_rx_status = -EINTR;
755 wake_up(&mcdi->proxy_rx_wq);
759 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
760 u32 handle, int status)
762 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
764 WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
766 mcdi->proxy_rx_status = efx_mcdi_errno(status);
767 /* Ensure the status is written before we update the handle, since the
768 * latter is used to check if we've finished.
770 wmb();
771 mcdi->proxy_rx_handle = handle;
772 wake_up(&mcdi->proxy_rx_wq);
775 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
777 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
778 int rc;
780 /* Wait for a proxy event, or timeout. */
781 rc = wait_event_timeout(mcdi->proxy_rx_wq,
782 mcdi->proxy_rx_handle != 0 ||
783 mcdi->proxy_rx_status == -EINTR,
784 MCDI_RPC_TIMEOUT);
786 if (rc <= 0) {
787 netif_dbg(efx, hw, efx->net_dev,
788 "MCDI proxy timeout %d\n", handle);
789 return -ETIMEDOUT;
790 } else if (mcdi->proxy_rx_handle != handle) {
791 netif_warn(efx, hw, efx->net_dev,
792 "MCDI proxy unexpected handle %d (expected %d)\n",
793 mcdi->proxy_rx_handle, handle);
794 return -EINVAL;
797 return mcdi->proxy_rx_status;
800 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
801 const efx_dword_t *inbuf, size_t inlen,
802 efx_dword_t *outbuf, size_t outlen,
803 size_t *outlen_actual, bool quiet, int *raw_rc)
805 u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
806 int rc;
808 if (inbuf && inlen && (inbuf == outbuf)) {
809 /* The input buffer can't be aliased with the output. */
810 WARN_ON(1);
811 return -EINVAL;
814 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
815 if (rc)
816 return rc;
818 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
819 outlen_actual, quiet, &proxy_handle, raw_rc);
821 if (proxy_handle) {
822 /* Handle proxy authorisation. This allows approval of MCDI
823 * operations to be delegated to the admin function, allowing
824 * fine control over (eg) multicast subscriptions.
826 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
828 netif_dbg(efx, hw, efx->net_dev,
829 "MCDI waiting for proxy auth %d\n",
830 proxy_handle);
831 rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
833 if (rc == 0) {
834 netif_dbg(efx, hw, efx->net_dev,
835 "MCDI proxy retry %d\n", proxy_handle);
837 /* We now retry the original request. */
838 mcdi->state = MCDI_STATE_RUNNING_SYNC;
839 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
841 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
842 outbuf, outlen, outlen_actual,
843 quiet, NULL, raw_rc);
844 } else {
845 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
846 "MC command 0x%x failed after proxy auth rc=%d\n",
847 cmd, rc);
849 if (rc == -EINTR || rc == -EIO)
850 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
851 efx_mcdi_release(mcdi);
855 return rc;
858 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
859 const efx_dword_t *inbuf, size_t inlen,
860 efx_dword_t *outbuf, size_t outlen,
861 size_t *outlen_actual, bool quiet)
863 int raw_rc = 0;
864 int rc;
866 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
867 outbuf, outlen, outlen_actual, true, &raw_rc);
869 if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
870 efx->type->is_vf) {
871 /* If the EVB port isn't available within a VF this may
872 * mean the PF is still bringing the switch up. We should
873 * retry our request shortly.
875 unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
876 unsigned int delay_us = 10000;
878 netif_dbg(efx, hw, efx->net_dev,
879 "%s: NO_EVB_PORT; will retry request\n",
880 __func__);
882 do {
883 usleep_range(delay_us, delay_us + 10000);
884 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
885 outbuf, outlen, outlen_actual,
886 true, &raw_rc);
887 if (delay_us < 100000)
888 delay_us <<= 1;
889 } while ((rc == -EPROTO) &&
890 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
891 time_before(jiffies, abort_time));
894 if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
895 efx_mcdi_display_error(efx, cmd, inlen,
896 outbuf, outlen, rc);
898 return rc;
902 * efx_mcdi_rpc - Issue an MCDI command and wait for completion
903 * @efx: NIC through which to issue the command
904 * @cmd: Command type number
905 * @inbuf: Command parameters
906 * @inlen: Length of command parameters, in bytes. Must be a multiple
907 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
908 * @outbuf: Response buffer. May be %NULL if @outlen is 0.
909 * @outlen: Length of response buffer, in bytes. If the actual
910 * response is longer than @outlen & ~3, it will be truncated
911 * to that length.
912 * @outlen_actual: Pointer through which to return the actual response
913 * length. May be %NULL if this is not needed.
915 * This function may sleep and therefore must be called in an appropriate
916 * context.
918 * Return: A negative error code, or zero if successful. The error
919 * code may come from the MCDI response or may indicate a failure
920 * to communicate with the MC. In the former case, the response
921 * will still be copied to @outbuf and *@outlen_actual will be
922 * set accordingly. In the latter case, *@outlen_actual will be
923 * set to zero.
925 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
926 const efx_dword_t *inbuf, size_t inlen,
927 efx_dword_t *outbuf, size_t outlen,
928 size_t *outlen_actual)
930 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
931 outlen_actual, false);
934 /* Normally, on receiving an error code in the MCDI response,
935 * efx_mcdi_rpc will log an error message containing (among other
936 * things) the raw error code, by means of efx_mcdi_display_error.
937 * This _quiet version suppresses that; if the caller wishes to log
938 * the error conditionally on the return code, it should call this
939 * function and is then responsible for calling efx_mcdi_display_error
940 * as needed.
942 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
943 const efx_dword_t *inbuf, size_t inlen,
944 efx_dword_t *outbuf, size_t outlen,
945 size_t *outlen_actual)
947 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
948 outlen_actual, true);
951 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
952 const efx_dword_t *inbuf, size_t inlen)
954 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
955 int rc;
957 rc = efx_mcdi_check_supported(efx, cmd, inlen);
958 if (rc)
959 return rc;
961 if (efx->mc_bist_for_other_fn)
962 return -ENETDOWN;
964 if (mcdi->mode == MCDI_MODE_FAIL)
965 return -ENETDOWN;
967 efx_mcdi_acquire_sync(mcdi);
968 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
969 return 0;
972 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
973 const efx_dword_t *inbuf, size_t inlen,
974 size_t outlen,
975 efx_mcdi_async_completer *complete,
976 unsigned long cookie, bool quiet)
978 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
979 struct efx_mcdi_async_param *async;
980 int rc;
982 rc = efx_mcdi_check_supported(efx, cmd, inlen);
983 if (rc)
984 return rc;
986 if (efx->mc_bist_for_other_fn)
987 return -ENETDOWN;
989 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
990 GFP_ATOMIC);
991 if (!async)
992 return -ENOMEM;
994 async->cmd = cmd;
995 async->inlen = inlen;
996 async->outlen = outlen;
997 async->quiet = quiet;
998 async->complete = complete;
999 async->cookie = cookie;
1000 memcpy(async + 1, inbuf, inlen);
1002 spin_lock_bh(&mcdi->async_lock);
1004 if (mcdi->mode == MCDI_MODE_EVENTS) {
1005 list_add_tail(&async->list, &mcdi->async_list);
1007 /* If this is at the front of the queue, try to start it
1008 * immediately
1010 if (mcdi->async_list.next == &async->list &&
1011 efx_mcdi_acquire_async(mcdi)) {
1012 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
1013 mod_timer(&mcdi->async_timer,
1014 jiffies + MCDI_RPC_TIMEOUT);
1016 } else {
1017 kfree(async);
1018 rc = -ENETDOWN;
1021 spin_unlock_bh(&mcdi->async_lock);
1023 return rc;
1027 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1028 * @efx: NIC through which to issue the command
1029 * @cmd: Command type number
1030 * @inbuf: Command parameters
1031 * @inlen: Length of command parameters, in bytes
1032 * @outlen: Length to allocate for response buffer, in bytes
1033 * @complete: Function to be called on completion or cancellation.
1034 * @cookie: Arbitrary value to be passed to @complete.
1036 * This function does not sleep and therefore may be called in atomic
1037 * context. It will fail if event queues are disabled or if MCDI
1038 * event completions have been disabled due to an error.
1040 * If it succeeds, the @complete function will be called exactly once
1041 * in atomic context, when one of the following occurs:
1042 * (a) the completion event is received (in NAPI context)
1043 * (b) event queues are disabled (in the process that disables them)
1044 * (c) the request times-out (in timer context)
1047 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
1048 const efx_dword_t *inbuf, size_t inlen, size_t outlen,
1049 efx_mcdi_async_completer *complete, unsigned long cookie)
1051 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1052 cookie, false);
1055 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
1056 const efx_dword_t *inbuf, size_t inlen,
1057 size_t outlen, efx_mcdi_async_completer *complete,
1058 unsigned long cookie)
1060 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1061 cookie, true);
1064 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
1065 efx_dword_t *outbuf, size_t outlen,
1066 size_t *outlen_actual)
1068 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1069 outlen_actual, false, NULL, NULL);
1072 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
1073 efx_dword_t *outbuf, size_t outlen,
1074 size_t *outlen_actual)
1076 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1077 outlen_actual, true, NULL, NULL);
1080 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
1081 size_t inlen, efx_dword_t *outbuf,
1082 size_t outlen, int rc)
1084 int code = 0, err_arg = 0;
1086 if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
1087 code = MCDI_DWORD(outbuf, ERR_CODE);
1088 if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
1089 err_arg = MCDI_DWORD(outbuf, ERR_ARG);
1090 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
1091 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1092 cmd, inlen, rc, code, err_arg);
1095 /* Switch to polled MCDI completions. This can be called in various
1096 * error conditions with various locks held, so it must be lockless.
1097 * Caller is responsible for flushing asynchronous requests later.
1099 void efx_mcdi_mode_poll(struct efx_nic *efx)
1101 struct efx_mcdi_iface *mcdi;
1103 if (!efx->mcdi)
1104 return;
1106 mcdi = efx_mcdi(efx);
1107 /* If already in polling mode, nothing to do.
1108 * If in fail-fast state, don't switch to polled completion.
1109 * FLR recovery will do that later.
1111 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
1112 return;
1114 /* We can switch from event completion to polled completion, because
1115 * mcdi requests are always completed in shared memory. We do this by
1116 * switching the mode to POLL'd then completing the request.
1117 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1119 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1120 * which efx_mcdi_complete_sync() provides for us.
1122 mcdi->mode = MCDI_MODE_POLL;
1124 efx_mcdi_complete_sync(mcdi);
1127 /* Flush any running or queued asynchronous requests, after event processing
1128 * is stopped
1130 void efx_mcdi_flush_async(struct efx_nic *efx)
1132 struct efx_mcdi_async_param *async, *next;
1133 struct efx_mcdi_iface *mcdi;
1135 if (!efx->mcdi)
1136 return;
1138 mcdi = efx_mcdi(efx);
1140 /* We must be in poll or fail mode so no more requests can be queued */
1141 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
1143 del_timer_sync(&mcdi->async_timer);
1145 /* If a request is still running, make sure we give the MC
1146 * time to complete it so that the response won't overwrite our
1147 * next request.
1149 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
1150 efx_mcdi_poll(efx);
1151 mcdi->state = MCDI_STATE_QUIESCENT;
1154 /* Nothing else will access the async list now, so it is safe
1155 * to walk it without holding async_lock. If we hold it while
1156 * calling a completer then lockdep may warn that we have
1157 * acquired locks in the wrong order.
1159 list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
1160 if (async->complete)
1161 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
1162 list_del(&async->list);
1163 kfree(async);
1167 void efx_mcdi_mode_event(struct efx_nic *efx)
1169 struct efx_mcdi_iface *mcdi;
1171 if (!efx->mcdi)
1172 return;
1174 mcdi = efx_mcdi(efx);
1175 /* If already in event completion mode, nothing to do.
1176 * If in fail-fast state, don't switch to event completion. FLR
1177 * recovery will do that later.
1179 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
1180 return;
1182 /* We can't switch from polled to event completion in the middle of a
1183 * request, because the completion method is specified in the request.
1184 * So acquire the interface to serialise the requestors. We don't need
1185 * to acquire the iface_lock to change the mode here, but we do need a
1186 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1187 * efx_mcdi_acquire() provides.
1189 efx_mcdi_acquire_sync(mcdi);
1190 mcdi->mode = MCDI_MODE_EVENTS;
1191 efx_mcdi_release(mcdi);
1194 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
1196 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1198 /* If there is an outstanding MCDI request, it has been terminated
1199 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1200 * in polled mode, then do nothing because the MC reboot handler will
1201 * set the header correctly. However, if the mcdi interface is waiting
1202 * for a CMDDONE event it won't receive it [and since all MCDI events
1203 * are sent to the same queue, we can't be racing with
1204 * efx_mcdi_ev_cpl()]
1206 * If there is an outstanding asynchronous request, we can't
1207 * complete it now (efx_mcdi_complete() would deadlock). The
1208 * reset process will take care of this.
1210 * There's a race here with efx_mcdi_send_request(), because
1211 * we might receive a REBOOT event *before* the request has
1212 * been copied out. In polled mode (during startup) this is
1213 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1214 * event mode, this condition is just an edge-case of
1215 * receiving a REBOOT event after posting the MCDI
1216 * request. Did the mc reboot before or after the copyout? The
1217 * best we can do always is just return failure.
1219 * If there is an outstanding proxy response expected it is not going
1220 * to arrive. We should thus abort it.
1222 spin_lock(&mcdi->iface_lock);
1223 efx_mcdi_proxy_abort(mcdi);
1225 if (efx_mcdi_complete_sync(mcdi)) {
1226 if (mcdi->mode == MCDI_MODE_EVENTS) {
1227 mcdi->resprc = rc;
1228 mcdi->resp_hdr_len = 0;
1229 mcdi->resp_data_len = 0;
1230 ++mcdi->credits;
1232 } else {
1233 int count;
1235 /* Consume the status word since efx_mcdi_rpc_finish() won't */
1236 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1237 rc = efx_mcdi_poll_reboot(efx);
1238 if (rc)
1239 break;
1240 udelay(MCDI_STATUS_DELAY_US);
1243 /* On EF10, a CODE_MC_REBOOT event can be received without the
1244 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1245 * If zero was returned from the final call to
1246 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1247 * MC has definitely rebooted so prepare for the reset.
1249 if (!rc && efx->type->mcdi_reboot_detected)
1250 efx->type->mcdi_reboot_detected(efx);
1252 mcdi->new_epoch = true;
1254 /* Nobody was waiting for an MCDI request, so trigger a reset */
1255 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1258 spin_unlock(&mcdi->iface_lock);
1261 /* The MC is going down in to BIST mode. set the BIST flag to block
1262 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
1263 * (which doesn't actually execute a reset, it waits for the controlling
1264 * function to reset it).
1266 static void efx_mcdi_ev_bist(struct efx_nic *efx)
1268 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1270 spin_lock(&mcdi->iface_lock);
1271 efx->mc_bist_for_other_fn = true;
1272 efx_mcdi_proxy_abort(mcdi);
1274 if (efx_mcdi_complete_sync(mcdi)) {
1275 if (mcdi->mode == MCDI_MODE_EVENTS) {
1276 mcdi->resprc = -EIO;
1277 mcdi->resp_hdr_len = 0;
1278 mcdi->resp_data_len = 0;
1279 ++mcdi->credits;
1282 mcdi->new_epoch = true;
1283 efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
1284 spin_unlock(&mcdi->iface_lock);
1287 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1288 * to recover.
1290 static void efx_mcdi_abandon(struct efx_nic *efx)
1292 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1294 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1295 return; /* it had already been done */
1296 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1297 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1300 /* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */
1301 void efx_mcdi_process_event(struct efx_channel *channel,
1302 efx_qword_t *event)
1304 struct efx_nic *efx = channel->efx;
1305 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1306 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1308 switch (code) {
1309 case MCDI_EVENT_CODE_BADSSERT:
1310 netif_err(efx, hw, efx->net_dev,
1311 "MC watchdog or assertion failure at 0x%x\n", data);
1312 efx_mcdi_ev_death(efx, -EINTR);
1313 break;
1315 case MCDI_EVENT_CODE_PMNOTICE:
1316 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1317 break;
1319 case MCDI_EVENT_CODE_CMDDONE:
1320 efx_mcdi_ev_cpl(efx,
1321 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1322 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1323 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1324 break;
1326 case MCDI_EVENT_CODE_LINKCHANGE:
1327 efx_mcdi_process_link_change(efx, event);
1328 break;
1329 case MCDI_EVENT_CODE_SENSOREVT:
1330 efx_mcdi_sensor_event(efx, event);
1331 break;
1332 case MCDI_EVENT_CODE_SCHEDERR:
1333 netif_dbg(efx, hw, efx->net_dev,
1334 "MC Scheduler alert (0x%x)\n", data);
1335 break;
1336 case MCDI_EVENT_CODE_REBOOT:
1337 case MCDI_EVENT_CODE_MC_REBOOT:
1338 netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1339 efx_mcdi_ev_death(efx, -EIO);
1340 break;
1341 case MCDI_EVENT_CODE_MC_BIST:
1342 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1343 efx_mcdi_ev_bist(efx);
1344 break;
1345 case MCDI_EVENT_CODE_MAC_STATS_DMA:
1346 /* MAC stats are gather lazily. We can ignore this. */
1347 break;
1348 case MCDI_EVENT_CODE_FLR:
1349 if (efx->type->sriov_flr)
1350 efx->type->sriov_flr(efx,
1351 MCDI_EVENT_FIELD(*event, FLR_VF));
1352 break;
1353 case MCDI_EVENT_CODE_PTP_RX:
1354 case MCDI_EVENT_CODE_PTP_FAULT:
1355 case MCDI_EVENT_CODE_PTP_PPS:
1356 efx_ptp_event(efx, event);
1357 break;
1358 case MCDI_EVENT_CODE_PTP_TIME:
1359 efx_time_sync_event(channel, event);
1360 break;
1361 case MCDI_EVENT_CODE_TX_FLUSH:
1362 case MCDI_EVENT_CODE_RX_FLUSH:
1363 /* Two flush events will be sent: one to the same event
1364 * queue as completions, and one to event queue 0.
1365 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1366 * flag will be set, and we should ignore the event
1367 * because we want to wait for all completions.
1369 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1370 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1371 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1372 efx_ef10_handle_drain_event(efx);
1373 break;
1374 case MCDI_EVENT_CODE_TX_ERR:
1375 case MCDI_EVENT_CODE_RX_ERR:
1376 netif_err(efx, hw, efx->net_dev,
1377 "%s DMA error (event: "EFX_QWORD_FMT")\n",
1378 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1379 EFX_QWORD_VAL(*event));
1380 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1381 break;
1382 case MCDI_EVENT_CODE_PROXY_RESPONSE:
1383 efx_mcdi_ev_proxy_response(efx,
1384 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
1385 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
1386 break;
1387 default:
1388 netif_err(efx, hw, efx->net_dev,
1389 "Unknown MCDI event " EFX_QWORD_FMT "\n",
1390 EFX_QWORD_VAL(*event));
1394 /**************************************************************************
1396 * Specific request functions
1398 **************************************************************************
1401 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1403 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1404 size_t outlength;
1405 const __le16 *ver_words;
1406 size_t offset;
1407 int rc;
1409 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1410 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1411 outbuf, sizeof(outbuf), &outlength);
1412 if (rc)
1413 goto fail;
1414 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1415 rc = -EIO;
1416 goto fail;
1419 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1420 offset = snprintf(buf, len, "%u.%u.%u.%u",
1421 le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
1422 le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
1424 /* EF10 may have multiple datapath firmware variants within a
1425 * single version. Report which variants are running.
1427 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
1428 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1430 offset += snprintf(buf + offset, len - offset, " rx%x tx%x",
1431 nic_data->rx_dpcpu_fw_id,
1432 nic_data->tx_dpcpu_fw_id);
1434 /* It's theoretically possible for the string to exceed 31
1435 * characters, though in practice the first three version
1436 * components are short enough that this doesn't happen.
1438 if (WARN_ON(offset >= len))
1439 buf[0] = 0;
1442 return;
1444 fail:
1445 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1446 buf[0] = 0;
1449 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1450 bool *was_attached)
1452 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1453 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1454 size_t outlen;
1455 int rc;
1457 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1458 driver_operating ? 1 : 0);
1459 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1460 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1462 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1463 outbuf, sizeof(outbuf), &outlen);
1464 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1465 * specified will fail with EPERM, and we have to tell the MC we don't
1466 * care what firmware we get.
1468 if (rc == -EPERM) {
1469 netif_dbg(efx, probe, efx->net_dev,
1470 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1471 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1472 MC_CMD_FW_DONT_CARE);
1473 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1474 sizeof(inbuf), outbuf, sizeof(outbuf),
1475 &outlen);
1477 if (rc) {
1478 efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1479 outbuf, outlen, rc);
1480 goto fail;
1482 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1483 rc = -EIO;
1484 goto fail;
1487 if (driver_operating) {
1488 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1489 efx->mcdi->fn_flags =
1490 MCDI_DWORD(outbuf,
1491 DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1492 } else {
1493 /* Synthesise flags for Siena */
1494 efx->mcdi->fn_flags =
1495 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1496 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1497 (efx_port_num(efx) == 0) <<
1498 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1502 /* We currently assume we have control of the external link
1503 * and are completely trusted by firmware. Abort probing
1504 * if that's not true for this function.
1507 if (was_attached != NULL)
1508 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1509 return 0;
1511 fail:
1512 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1513 return rc;
1516 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1517 u16 *fw_subtype_list, u32 *capabilities)
1519 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1520 size_t outlen, i;
1521 int port_num = efx_port_num(efx);
1522 int rc;
1524 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1525 /* we need __aligned(2) for ether_addr_copy */
1526 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1527 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1529 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1530 outbuf, sizeof(outbuf), &outlen);
1531 if (rc)
1532 goto fail;
1534 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1535 rc = -EIO;
1536 goto fail;
1539 if (mac_address)
1540 ether_addr_copy(mac_address,
1541 port_num ?
1542 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1543 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1544 if (fw_subtype_list) {
1545 for (i = 0;
1546 i < MCDI_VAR_ARRAY_LEN(outlen,
1547 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1548 i++)
1549 fw_subtype_list[i] = MCDI_ARRAY_WORD(
1550 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1551 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1552 fw_subtype_list[i] = 0;
1554 if (capabilities) {
1555 if (port_num)
1556 *capabilities = MCDI_DWORD(outbuf,
1557 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1558 else
1559 *capabilities = MCDI_DWORD(outbuf,
1560 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1563 return 0;
1565 fail:
1566 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1567 __func__, rc, (int)outlen);
1569 return rc;
1572 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1574 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1575 u32 dest = 0;
1576 int rc;
1578 if (uart)
1579 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1580 if (evq)
1581 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1583 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1584 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1586 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1588 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1589 NULL, 0, NULL);
1590 return rc;
1593 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1595 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1596 size_t outlen;
1597 int rc;
1599 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1601 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1602 outbuf, sizeof(outbuf), &outlen);
1603 if (rc)
1604 goto fail;
1605 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1606 rc = -EIO;
1607 goto fail;
1610 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1611 return 0;
1613 fail:
1614 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1615 __func__, rc);
1616 return rc;
1619 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1620 size_t *size_out, size_t *erase_size_out,
1621 bool *protected_out)
1623 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1624 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1625 size_t outlen;
1626 int rc;
1628 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1630 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1631 outbuf, sizeof(outbuf), &outlen);
1632 if (rc)
1633 goto fail;
1634 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1635 rc = -EIO;
1636 goto fail;
1639 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1640 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1641 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1642 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1643 return 0;
1645 fail:
1646 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1647 return rc;
1650 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1652 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1653 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1654 int rc;
1656 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1658 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1659 outbuf, sizeof(outbuf), NULL);
1660 if (rc)
1661 return rc;
1663 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1664 case MC_CMD_NVRAM_TEST_PASS:
1665 case MC_CMD_NVRAM_TEST_NOTSUPP:
1666 return 0;
1667 default:
1668 return -EIO;
1672 int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1674 u32 nvram_types;
1675 unsigned int type;
1676 int rc;
1678 rc = efx_mcdi_nvram_types(efx, &nvram_types);
1679 if (rc)
1680 goto fail1;
1682 type = 0;
1683 while (nvram_types != 0) {
1684 if (nvram_types & 1) {
1685 rc = efx_mcdi_nvram_test(efx, type);
1686 if (rc)
1687 goto fail2;
1689 type++;
1690 nvram_types >>= 1;
1693 return 0;
1695 fail2:
1696 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1697 __func__, type);
1698 fail1:
1699 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1700 return rc;
1703 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1704 * negative on error.
1706 static int efx_mcdi_read_assertion(struct efx_nic *efx)
1708 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1709 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1710 unsigned int flags, index;
1711 const char *reason;
1712 size_t outlen;
1713 int retry;
1714 int rc;
1716 /* Attempt to read any stored assertion state before we reboot
1717 * the mcfw out of the assertion handler. Retry twice, once
1718 * because a boot-time assertion might cause this command to fail
1719 * with EINTR. And once again because GET_ASSERTS can race with
1720 * MC_CMD_REBOOT running on the other port. */
1721 retry = 2;
1722 do {
1723 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1724 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1725 inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1726 outbuf, sizeof(outbuf), &outlen);
1727 if (rc == -EPERM)
1728 return 0;
1729 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1731 if (rc) {
1732 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1733 MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1734 outlen, rc);
1735 return rc;
1737 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1738 return -EIO;
1740 /* Print out any recorded assertion state */
1741 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1742 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1743 return 0;
1745 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1746 ? "system-level assertion"
1747 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1748 ? "thread-level assertion"
1749 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1750 ? "watchdog reset"
1751 : "unknown assertion";
1752 netif_err(efx, hw, efx->net_dev,
1753 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1754 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1755 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1757 /* Print out the registers */
1758 for (index = 0;
1759 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1760 index++)
1761 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1762 1 + index,
1763 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1764 index));
1766 return 1;
1769 static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1771 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1772 int rc;
1774 /* If the MC is running debug firmware, it might now be
1775 * waiting for a debugger to attach, but we just want it to
1776 * reboot. We set a flag that makes the command a no-op if it
1777 * has already done so.
1778 * The MCDI will thus return either 0 or -EIO.
1780 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1781 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1782 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1783 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1784 NULL, 0, NULL);
1785 if (rc == -EIO)
1786 rc = 0;
1787 if (rc)
1788 efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1789 NULL, 0, rc);
1790 return rc;
1793 int efx_mcdi_handle_assertion(struct efx_nic *efx)
1795 int rc;
1797 rc = efx_mcdi_read_assertion(efx);
1798 if (rc <= 0)
1799 return rc;
1801 return efx_mcdi_exit_assertion(efx);
1804 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1806 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1807 int rc;
1809 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1810 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1811 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1813 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1815 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1817 rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1818 NULL, 0, NULL);
1821 static int efx_mcdi_reset_func(struct efx_nic *efx)
1823 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1824 int rc;
1826 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1827 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1828 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1829 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1830 NULL, 0, NULL);
1831 return rc;
1834 static int efx_mcdi_reset_mc(struct efx_nic *efx)
1836 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1837 int rc;
1839 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1840 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1841 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1842 NULL, 0, NULL);
1843 /* White is black, and up is down */
1844 if (rc == -EIO)
1845 return 0;
1846 if (rc == 0)
1847 rc = -EIO;
1848 return rc;
1851 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1853 return RESET_TYPE_RECOVER_OR_ALL;
1856 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1858 int rc;
1860 /* If MCDI is down, we can't handle_assertion */
1861 if (method == RESET_TYPE_MCDI_TIMEOUT) {
1862 rc = pci_reset_function(efx->pci_dev);
1863 if (rc)
1864 return rc;
1865 /* Re-enable polled MCDI completion */
1866 if (efx->mcdi) {
1867 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1868 mcdi->mode = MCDI_MODE_POLL;
1870 return 0;
1873 /* Recover from a failed assertion pre-reset */
1874 rc = efx_mcdi_handle_assertion(efx);
1875 if (rc)
1876 return rc;
1878 if (method == RESET_TYPE_DATAPATH)
1879 return 0;
1880 else if (method == RESET_TYPE_WORLD)
1881 return efx_mcdi_reset_mc(efx);
1882 else
1883 return efx_mcdi_reset_func(efx);
1886 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1887 const u8 *mac, int *id_out)
1889 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1890 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1891 size_t outlen;
1892 int rc;
1894 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1895 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1896 MC_CMD_FILTER_MODE_SIMPLE);
1897 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1899 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1900 outbuf, sizeof(outbuf), &outlen);
1901 if (rc)
1902 goto fail;
1904 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1905 rc = -EIO;
1906 goto fail;
1909 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1911 return 0;
1913 fail:
1914 *id_out = -1;
1915 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1916 return rc;
1922 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
1924 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1928 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1930 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1931 size_t outlen;
1932 int rc;
1934 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1935 outbuf, sizeof(outbuf), &outlen);
1936 if (rc)
1937 goto fail;
1939 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1940 rc = -EIO;
1941 goto fail;
1944 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1946 return 0;
1948 fail:
1949 *id_out = -1;
1950 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1951 return rc;
1955 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1957 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1958 int rc;
1960 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1962 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1963 NULL, 0, NULL);
1964 return rc;
1967 int efx_mcdi_flush_rxqs(struct efx_nic *efx)
1969 struct efx_channel *channel;
1970 struct efx_rx_queue *rx_queue;
1971 MCDI_DECLARE_BUF(inbuf,
1972 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1973 int rc, count;
1975 BUILD_BUG_ON(EFX_MAX_CHANNELS >
1976 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1978 count = 0;
1979 efx_for_each_channel(channel, efx) {
1980 efx_for_each_channel_rx_queue(rx_queue, channel) {
1981 if (rx_queue->flush_pending) {
1982 rx_queue->flush_pending = false;
1983 atomic_dec(&efx->rxq_flush_pending);
1984 MCDI_SET_ARRAY_DWORD(
1985 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1986 count, efx_rx_queue_index(rx_queue));
1987 count++;
1992 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
1993 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
1994 WARN_ON(rc < 0);
1996 return rc;
1999 int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
2001 int rc;
2003 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
2004 return rc;
2007 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
2008 unsigned int *flags)
2010 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
2011 MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
2012 size_t outlen;
2013 int rc;
2015 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
2016 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
2017 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
2018 rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
2019 outbuf, sizeof(outbuf), &outlen);
2020 if (rc)
2021 return rc;
2023 if (!flags)
2024 return 0;
2026 if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2027 *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
2028 else
2029 *flags = 0;
2031 return 0;
2034 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
2035 unsigned int *enabled_out)
2037 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2038 size_t outlen;
2039 int rc;
2041 rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
2042 outbuf, sizeof(outbuf), &outlen);
2043 if (rc)
2044 goto fail;
2046 if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
2047 rc = -EIO;
2048 goto fail;
2051 if (impl_out)
2052 *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2054 if (enabled_out)
2055 *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
2057 return 0;
2059 fail:
2060 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2061 * terrifying. The call site will have to deal with it though.
2063 netif_cond_dbg(efx, hw, efx->net_dev, rc == -ENOSYS, err,
2064 "%s: failed rc=%d\n", __func__, rc);
2065 return rc;
2068 #ifdef CONFIG_SFC_MTD
2070 #define EFX_MCDI_NVRAM_LEN_MAX 128
2072 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
2074 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN);
2075 int rc;
2077 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
2078 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_START_V2_IN_FLAGS,
2079 NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2082 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
2084 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
2085 NULL, 0, NULL);
2087 return rc;
2090 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
2091 loff_t offset, u8 *buffer, size_t length)
2093 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_V2_LEN);
2094 MCDI_DECLARE_BUF(outbuf,
2095 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2096 size_t outlen;
2097 int rc;
2099 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
2100 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
2101 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
2102 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_V2_MODE,
2103 MC_CMD_NVRAM_READ_IN_V2_DEFAULT);
2105 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
2106 outbuf, sizeof(outbuf), &outlen);
2107 if (rc)
2108 return rc;
2110 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
2111 return 0;
2114 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
2115 loff_t offset, const u8 *buffer, size_t length)
2117 MCDI_DECLARE_BUF(inbuf,
2118 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2119 int rc;
2121 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
2122 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
2123 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
2124 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
2126 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
2128 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
2129 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
2130 NULL, 0, NULL);
2131 return rc;
2134 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
2135 loff_t offset, size_t length)
2137 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
2138 int rc;
2140 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
2141 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
2142 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
2144 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
2146 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
2147 NULL, 0, NULL);
2148 return rc;
2151 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
2153 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN);
2154 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN);
2155 size_t outlen;
2156 int rc, rc2;
2158 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
2159 /* Always set this flag. Old firmware ignores it */
2160 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_FINISH_V2_IN_FLAGS,
2161 NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2164 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
2165 outbuf, sizeof(outbuf), &outlen);
2166 if (!rc && outlen >= MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN) {
2167 rc2 = MCDI_DWORD(outbuf, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE);
2168 if (rc2 != MC_CMD_NVRAM_VERIFY_RC_SUCCESS)
2169 netif_err(efx, drv, efx->net_dev,
2170 "NVRAM update failed verification with code 0x%x\n",
2171 rc2);
2172 switch (rc2) {
2173 case MC_CMD_NVRAM_VERIFY_RC_SUCCESS:
2174 break;
2175 case MC_CMD_NVRAM_VERIFY_RC_CMS_CHECK_FAILED:
2176 case MC_CMD_NVRAM_VERIFY_RC_MESSAGE_DIGEST_CHECK_FAILED:
2177 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHECK_FAILED:
2178 case MC_CMD_NVRAM_VERIFY_RC_TRUSTED_APPROVERS_CHECK_FAILED:
2179 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHAIN_CHECK_FAILED:
2180 rc = -EIO;
2181 break;
2182 case MC_CMD_NVRAM_VERIFY_RC_INVALID_CMS_FORMAT:
2183 case MC_CMD_NVRAM_VERIFY_RC_BAD_MESSAGE_DIGEST:
2184 rc = -EINVAL;
2185 break;
2186 case MC_CMD_NVRAM_VERIFY_RC_NO_VALID_SIGNATURES:
2187 case MC_CMD_NVRAM_VERIFY_RC_NO_TRUSTED_APPROVERS:
2188 case MC_CMD_NVRAM_VERIFY_RC_NO_SIGNATURE_MATCH:
2189 rc = -EPERM;
2190 break;
2191 default:
2192 netif_err(efx, drv, efx->net_dev,
2193 "Unknown response to NVRAM_UPDATE_FINISH\n");
2194 rc = -EIO;
2198 return rc;
2201 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
2202 size_t len, size_t *retlen, u8 *buffer)
2204 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2205 struct efx_nic *efx = mtd->priv;
2206 loff_t offset = start;
2207 loff_t end = min_t(loff_t, start + len, mtd->size);
2208 size_t chunk;
2209 int rc = 0;
2211 while (offset < end) {
2212 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2213 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
2214 buffer, chunk);
2215 if (rc)
2216 goto out;
2217 offset += chunk;
2218 buffer += chunk;
2220 out:
2221 *retlen = offset - start;
2222 return rc;
2225 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
2227 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2228 struct efx_nic *efx = mtd->priv;
2229 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
2230 loff_t end = min_t(loff_t, start + len, mtd->size);
2231 size_t chunk = part->common.mtd.erasesize;
2232 int rc = 0;
2234 if (!part->updating) {
2235 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2236 if (rc)
2237 goto out;
2238 part->updating = true;
2241 /* The MCDI interface can in fact do multiple erase blocks at once;
2242 * but erasing may be slow, so we make multiple calls here to avoid
2243 * tripping the MCDI RPC timeout. */
2244 while (offset < end) {
2245 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
2246 chunk);
2247 if (rc)
2248 goto out;
2249 offset += chunk;
2251 out:
2252 return rc;
2255 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2256 size_t len, size_t *retlen, const u8 *buffer)
2258 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2259 struct efx_nic *efx = mtd->priv;
2260 loff_t offset = start;
2261 loff_t end = min_t(loff_t, start + len, mtd->size);
2262 size_t chunk;
2263 int rc = 0;
2265 if (!part->updating) {
2266 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2267 if (rc)
2268 goto out;
2269 part->updating = true;
2272 while (offset < end) {
2273 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2274 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2275 buffer, chunk);
2276 if (rc)
2277 goto out;
2278 offset += chunk;
2279 buffer += chunk;
2281 out:
2282 *retlen = offset - start;
2283 return rc;
2286 int efx_mcdi_mtd_sync(struct mtd_info *mtd)
2288 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2289 struct efx_nic *efx = mtd->priv;
2290 int rc = 0;
2292 if (part->updating) {
2293 part->updating = false;
2294 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2297 return rc;
2300 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
2302 struct efx_mcdi_mtd_partition *mcdi_part =
2303 container_of(part, struct efx_mcdi_mtd_partition, common);
2304 struct efx_nic *efx = part->mtd.priv;
2306 snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2307 efx->name, part->type_name, mcdi_part->fw_subtype);
2310 #endif /* CONFIG_SFC_MTD */