treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / ethernet / sfc / tx.c
blob04d7f41d7ed90c4107a0093718523d57b2a17aa5
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
6 */
8 #include <linux/pci.h>
9 #include <linux/tcp.h>
10 #include <linux/ip.h>
11 #include <linux/in.h>
12 #include <linux/ipv6.h>
13 #include <linux/slab.h>
14 #include <net/ipv6.h>
15 #include <linux/if_ether.h>
16 #include <linux/highmem.h>
17 #include <linux/cache.h>
18 #include "net_driver.h"
19 #include "efx.h"
20 #include "io.h"
21 #include "nic.h"
22 #include "tx.h"
23 #include "tx_common.h"
24 #include "workarounds.h"
25 #include "ef10_regs.h"
27 #ifdef EFX_USE_PIO
29 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
30 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
32 #endif /* EFX_USE_PIO */
34 static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
35 struct efx_tx_buffer *buffer)
37 unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
38 struct efx_buffer *page_buf =
39 &tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
40 unsigned int offset =
41 ((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
43 if (unlikely(!page_buf->addr) &&
44 efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
45 GFP_ATOMIC))
46 return NULL;
47 buffer->dma_addr = page_buf->dma_addr + offset;
48 buffer->unmap_len = 0;
49 return (u8 *)page_buf->addr + offset;
52 u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
53 struct efx_tx_buffer *buffer, size_t len)
55 if (len > EFX_TX_CB_SIZE)
56 return NULL;
57 return efx_tx_get_copy_buffer(tx_queue, buffer);
60 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
62 /* We need to consider both queues that the net core sees as one */
63 struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
64 struct efx_nic *efx = txq1->efx;
65 unsigned int fill_level;
67 fill_level = max(txq1->insert_count - txq1->old_read_count,
68 txq2->insert_count - txq2->old_read_count);
69 if (likely(fill_level < efx->txq_stop_thresh))
70 return;
72 /* We used the stale old_read_count above, which gives us a
73 * pessimistic estimate of the fill level (which may even
74 * validly be >= efx->txq_entries). Now try again using
75 * read_count (more likely to be a cache miss).
77 * If we read read_count and then conditionally stop the
78 * queue, it is possible for the completion path to race with
79 * us and complete all outstanding descriptors in the middle,
80 * after which there will be no more completions to wake it.
81 * Therefore we stop the queue first, then read read_count
82 * (with a memory barrier to ensure the ordering), then
83 * restart the queue if the fill level turns out to be low
84 * enough.
86 netif_tx_stop_queue(txq1->core_txq);
87 smp_mb();
88 txq1->old_read_count = READ_ONCE(txq1->read_count);
89 txq2->old_read_count = READ_ONCE(txq2->read_count);
91 fill_level = max(txq1->insert_count - txq1->old_read_count,
92 txq2->insert_count - txq2->old_read_count);
93 EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
94 if (likely(fill_level < efx->txq_stop_thresh)) {
95 smp_mb();
96 if (likely(!efx->loopback_selftest))
97 netif_tx_start_queue(txq1->core_txq);
101 static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
102 struct sk_buff *skb)
104 unsigned int copy_len = skb->len;
105 struct efx_tx_buffer *buffer;
106 u8 *copy_buffer;
107 int rc;
109 EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
111 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
113 copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
114 if (unlikely(!copy_buffer))
115 return -ENOMEM;
117 rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
118 EFX_WARN_ON_PARANOID(rc);
119 buffer->len = copy_len;
121 buffer->skb = skb;
122 buffer->flags = EFX_TX_BUF_SKB;
124 ++tx_queue->insert_count;
125 return rc;
128 #ifdef EFX_USE_PIO
130 struct efx_short_copy_buffer {
131 int used;
132 u8 buf[L1_CACHE_BYTES];
135 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
136 * Advances piobuf pointer. Leaves additional data in the copy buffer.
138 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
139 u8 *data, int len,
140 struct efx_short_copy_buffer *copy_buf)
142 int block_len = len & ~(sizeof(copy_buf->buf) - 1);
144 __iowrite64_copy(*piobuf, data, block_len >> 3);
145 *piobuf += block_len;
146 len -= block_len;
148 if (len) {
149 data += block_len;
150 BUG_ON(copy_buf->used);
151 BUG_ON(len > sizeof(copy_buf->buf));
152 memcpy(copy_buf->buf, data, len);
153 copy_buf->used = len;
157 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
158 * Advances piobuf pointer. Leaves additional data in the copy buffer.
160 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
161 u8 *data, int len,
162 struct efx_short_copy_buffer *copy_buf)
164 if (copy_buf->used) {
165 /* if the copy buffer is partially full, fill it up and write */
166 int copy_to_buf =
167 min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
169 memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
170 copy_buf->used += copy_to_buf;
172 /* if we didn't fill it up then we're done for now */
173 if (copy_buf->used < sizeof(copy_buf->buf))
174 return;
176 __iowrite64_copy(*piobuf, copy_buf->buf,
177 sizeof(copy_buf->buf) >> 3);
178 *piobuf += sizeof(copy_buf->buf);
179 data += copy_to_buf;
180 len -= copy_to_buf;
181 copy_buf->used = 0;
184 efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
187 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
188 struct efx_short_copy_buffer *copy_buf)
190 /* if there's anything in it, write the whole buffer, including junk */
191 if (copy_buf->used)
192 __iowrite64_copy(piobuf, copy_buf->buf,
193 sizeof(copy_buf->buf) >> 3);
196 /* Traverse skb structure and copy fragments in to PIO buffer.
197 * Advances piobuf pointer.
199 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
200 u8 __iomem **piobuf,
201 struct efx_short_copy_buffer *copy_buf)
203 int i;
205 efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
206 copy_buf);
208 for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
209 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
210 u8 *vaddr;
212 vaddr = kmap_atomic(skb_frag_page(f));
214 efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + skb_frag_off(f),
215 skb_frag_size(f), copy_buf);
216 kunmap_atomic(vaddr);
219 EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
222 static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
223 struct sk_buff *skb)
225 struct efx_tx_buffer *buffer =
226 efx_tx_queue_get_insert_buffer(tx_queue);
227 u8 __iomem *piobuf = tx_queue->piobuf;
229 /* Copy to PIO buffer. Ensure the writes are padded to the end
230 * of a cache line, as this is required for write-combining to be
231 * effective on at least x86.
234 if (skb_shinfo(skb)->nr_frags) {
235 /* The size of the copy buffer will ensure all writes
236 * are the size of a cache line.
238 struct efx_short_copy_buffer copy_buf;
240 copy_buf.used = 0;
242 efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
243 &piobuf, &copy_buf);
244 efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
245 } else {
246 /* Pad the write to the size of a cache line.
247 * We can do this because we know the skb_shared_info struct is
248 * after the source, and the destination buffer is big enough.
250 BUILD_BUG_ON(L1_CACHE_BYTES >
251 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
252 __iowrite64_copy(tx_queue->piobuf, skb->data,
253 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
256 buffer->skb = skb;
257 buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;
259 EFX_POPULATE_QWORD_5(buffer->option,
260 ESF_DZ_TX_DESC_IS_OPT, 1,
261 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
262 ESF_DZ_TX_PIO_CONT, 0,
263 ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
264 ESF_DZ_TX_PIO_BUF_ADDR,
265 tx_queue->piobuf_offset);
266 ++tx_queue->insert_count;
267 return 0;
269 #endif /* EFX_USE_PIO */
272 * Fallback to software TSO.
274 * This is used if we are unable to send a GSO packet through hardware TSO.
275 * This should only ever happen due to per-queue restrictions - unsupported
276 * packets should first be filtered by the feature flags.
278 * Returns 0 on success, error code otherwise.
280 static int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue,
281 struct sk_buff *skb)
283 struct sk_buff *segments, *next;
285 segments = skb_gso_segment(skb, 0);
286 if (IS_ERR(segments))
287 return PTR_ERR(segments);
289 dev_consume_skb_any(skb);
290 skb = segments;
292 skb_list_walk_safe(skb, skb, next) {
293 skb_mark_not_on_list(skb);
294 efx_enqueue_skb(tx_queue, skb);
297 return 0;
301 * Add a socket buffer to a TX queue
303 * This maps all fragments of a socket buffer for DMA and adds them to
304 * the TX queue. The queue's insert pointer will be incremented by
305 * the number of fragments in the socket buffer.
307 * If any DMA mapping fails, any mapped fragments will be unmapped,
308 * the queue's insert pointer will be restored to its original value.
310 * This function is split out from efx_hard_start_xmit to allow the
311 * loopback test to direct packets via specific TX queues.
313 * Returns NETDEV_TX_OK.
314 * You must hold netif_tx_lock() to call this function.
316 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
318 unsigned int old_insert_count = tx_queue->insert_count;
319 bool xmit_more = netdev_xmit_more();
320 bool data_mapped = false;
321 unsigned int segments;
322 unsigned int skb_len;
323 int rc;
325 skb_len = skb->len;
326 segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
327 if (segments == 1)
328 segments = 0; /* Don't use TSO for a single segment. */
330 /* Handle TSO first - it's *possible* (although unlikely) that we might
331 * be passed a packet to segment that's smaller than the copybreak/PIO
332 * size limit.
334 if (segments) {
335 EFX_WARN_ON_ONCE_PARANOID(!tx_queue->handle_tso);
336 rc = tx_queue->handle_tso(tx_queue, skb, &data_mapped);
337 if (rc == -EINVAL) {
338 rc = efx_tx_tso_fallback(tx_queue, skb);
339 tx_queue->tso_fallbacks++;
340 if (rc == 0)
341 return 0;
343 if (rc)
344 goto err;
345 #ifdef EFX_USE_PIO
346 } else if (skb_len <= efx_piobuf_size && !xmit_more &&
347 efx_nic_may_tx_pio(tx_queue)) {
348 /* Use PIO for short packets with an empty queue. */
349 if (efx_enqueue_skb_pio(tx_queue, skb))
350 goto err;
351 tx_queue->pio_packets++;
352 data_mapped = true;
353 #endif
354 } else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
355 /* Pad short packets or coalesce short fragmented packets. */
356 if (efx_enqueue_skb_copy(tx_queue, skb))
357 goto err;
358 tx_queue->cb_packets++;
359 data_mapped = true;
362 /* Map for DMA and create descriptors if we haven't done so already. */
363 if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
364 goto err;
366 efx_tx_maybe_stop_queue(tx_queue);
368 /* Pass off to hardware */
369 if (__netdev_tx_sent_queue(tx_queue->core_txq, skb_len, xmit_more)) {
370 struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
372 /* There could be packets left on the partner queue if
373 * xmit_more was set. If we do not push those they
374 * could be left for a long time and cause a netdev watchdog.
376 if (txq2->xmit_more_available)
377 efx_nic_push_buffers(txq2);
379 efx_nic_push_buffers(tx_queue);
380 } else {
381 tx_queue->xmit_more_available = xmit_more;
384 if (segments) {
385 tx_queue->tso_bursts++;
386 tx_queue->tso_packets += segments;
387 tx_queue->tx_packets += segments;
388 } else {
389 tx_queue->tx_packets++;
392 return NETDEV_TX_OK;
395 err:
396 efx_enqueue_unwind(tx_queue, old_insert_count);
397 dev_kfree_skb_any(skb);
399 /* If we're not expecting another transmit and we had something to push
400 * on this queue or a partner queue then we need to push here to get the
401 * previous packets out.
403 if (!xmit_more) {
404 struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
406 if (txq2->xmit_more_available)
407 efx_nic_push_buffers(txq2);
409 efx_nic_push_buffers(tx_queue);
412 return NETDEV_TX_OK;
415 static void efx_xdp_return_frames(int n, struct xdp_frame **xdpfs)
417 int i;
419 for (i = 0; i < n; i++)
420 xdp_return_frame_rx_napi(xdpfs[i]);
423 /* Transmit a packet from an XDP buffer
425 * Returns number of packets sent on success, error code otherwise.
426 * Runs in NAPI context, either in our poll (for XDP TX) or a different NIC
427 * (for XDP redirect).
429 int efx_xdp_tx_buffers(struct efx_nic *efx, int n, struct xdp_frame **xdpfs,
430 bool flush)
432 struct efx_tx_buffer *tx_buffer;
433 struct efx_tx_queue *tx_queue;
434 struct xdp_frame *xdpf;
435 dma_addr_t dma_addr;
436 unsigned int len;
437 int space;
438 int cpu;
439 int i;
441 cpu = raw_smp_processor_id();
443 if (!efx->xdp_tx_queue_count ||
444 unlikely(cpu >= efx->xdp_tx_queue_count))
445 return -EINVAL;
447 tx_queue = efx->xdp_tx_queues[cpu];
448 if (unlikely(!tx_queue))
449 return -EINVAL;
451 if (unlikely(n && !xdpfs))
452 return -EINVAL;
454 if (!n)
455 return 0;
457 /* Check for available space. We should never need multiple
458 * descriptors per frame.
460 space = efx->txq_entries +
461 tx_queue->read_count - tx_queue->insert_count;
463 for (i = 0; i < n; i++) {
464 xdpf = xdpfs[i];
466 if (i >= space)
467 break;
469 /* We'll want a descriptor for this tx. */
470 prefetchw(__efx_tx_queue_get_insert_buffer(tx_queue));
472 len = xdpf->len;
474 /* Map for DMA. */
475 dma_addr = dma_map_single(&efx->pci_dev->dev,
476 xdpf->data, len,
477 DMA_TO_DEVICE);
478 if (dma_mapping_error(&efx->pci_dev->dev, dma_addr))
479 break;
481 /* Create descriptor and set up for unmapping DMA. */
482 tx_buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
483 tx_buffer->xdpf = xdpf;
484 tx_buffer->flags = EFX_TX_BUF_XDP |
485 EFX_TX_BUF_MAP_SINGLE;
486 tx_buffer->dma_offset = 0;
487 tx_buffer->unmap_len = len;
488 tx_queue->tx_packets++;
491 /* Pass mapped frames to hardware. */
492 if (flush && i > 0)
493 efx_nic_push_buffers(tx_queue);
495 if (i == 0)
496 return -EIO;
498 efx_xdp_return_frames(n - i, xdpfs + i);
500 return i;
503 /* Initiate a packet transmission. We use one channel per CPU
504 * (sharing when we have more CPUs than channels). On Falcon, the TX
505 * completion events will be directed back to the CPU that transmitted
506 * the packet, which should be cache-efficient.
508 * Context: non-blocking.
509 * Note that returning anything other than NETDEV_TX_OK will cause the
510 * OS to free the skb.
512 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
513 struct net_device *net_dev)
515 struct efx_nic *efx = netdev_priv(net_dev);
516 struct efx_tx_queue *tx_queue;
517 unsigned index, type;
519 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
521 /* PTP "event" packet */
522 if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
523 unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
524 return efx_ptp_tx(efx, skb);
527 index = skb_get_queue_mapping(skb);
528 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
529 if (index >= efx->n_tx_channels) {
530 index -= efx->n_tx_channels;
531 type |= EFX_TXQ_TYPE_HIGHPRI;
533 tx_queue = efx_get_tx_queue(efx, index, type);
535 return efx_enqueue_skb(tx_queue, skb);
538 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
540 struct efx_nic *efx = tx_queue->efx;
542 /* Must be inverse of queue lookup in efx_hard_start_xmit() */
543 tx_queue->core_txq =
544 netdev_get_tx_queue(efx->net_dev,
545 tx_queue->queue / EFX_TXQ_TYPES +
546 ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
547 efx->n_tx_channels : 0));
550 int efx_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
551 void *type_data)
553 struct efx_nic *efx = netdev_priv(net_dev);
554 struct tc_mqprio_qopt *mqprio = type_data;
555 struct efx_channel *channel;
556 struct efx_tx_queue *tx_queue;
557 unsigned tc, num_tc;
558 int rc;
560 if (type != TC_SETUP_QDISC_MQPRIO)
561 return -EOPNOTSUPP;
563 num_tc = mqprio->num_tc;
565 if (num_tc > EFX_MAX_TX_TC)
566 return -EINVAL;
568 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
570 if (num_tc == net_dev->num_tc)
571 return 0;
573 for (tc = 0; tc < num_tc; tc++) {
574 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
575 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
578 if (num_tc > net_dev->num_tc) {
579 /* Initialise high-priority queues as necessary */
580 efx_for_each_channel(channel, efx) {
581 efx_for_each_possible_channel_tx_queue(tx_queue,
582 channel) {
583 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
584 continue;
585 if (!tx_queue->buffer) {
586 rc = efx_probe_tx_queue(tx_queue);
587 if (rc)
588 return rc;
590 if (!tx_queue->initialised)
591 efx_init_tx_queue(tx_queue);
592 efx_init_tx_queue_core_txq(tx_queue);
595 } else {
596 /* Reduce number of classes before number of queues */
597 net_dev->num_tc = num_tc;
600 rc = netif_set_real_num_tx_queues(net_dev,
601 max_t(int, num_tc, 1) *
602 efx->n_tx_channels);
603 if (rc)
604 return rc;
606 /* Do not destroy high-priority queues when they become
607 * unused. We would have to flush them first, and it is
608 * fairly difficult to flush a subset of TX queues. Leave
609 * it to efx_fini_channels().
612 net_dev->num_tc = num_tc;
613 return 0;