treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / ethernet / sun / sungem.c
blob8358064fbd488b93163dadd342b0469c4f7c0aa6
1 // SPDX-License-Identifier: GPL-2.0
2 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
3 * sungem.c: Sun GEM ethernet driver.
5 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
7 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
8 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
9 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
11 * NAPI and NETPOLL support
12 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/fcntl.h>
22 #include <linux/interrupt.h>
23 #include <linux/ioport.h>
24 #include <linux/in.h>
25 #include <linux/sched.h>
26 #include <linux/string.h>
27 #include <linux/delay.h>
28 #include <linux/errno.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 #include <linux/crc32.h>
37 #include <linux/random.h>
38 #include <linux/workqueue.h>
39 #include <linux/if_vlan.h>
40 #include <linux/bitops.h>
41 #include <linux/mm.h>
42 #include <linux/gfp.h>
44 #include <asm/io.h>
45 #include <asm/byteorder.h>
46 #include <linux/uaccess.h>
47 #include <asm/irq.h>
49 #ifdef CONFIG_SPARC
50 #include <asm/idprom.h>
51 #include <asm/prom.h>
52 #endif
54 #ifdef CONFIG_PPC_PMAC
55 #include <asm/prom.h>
56 #include <asm/machdep.h>
57 #include <asm/pmac_feature.h>
58 #endif
60 #include <linux/sungem_phy.h>
61 #include "sungem.h"
63 #define STRIP_FCS
65 #define DEFAULT_MSG (NETIF_MSG_DRV | \
66 NETIF_MSG_PROBE | \
67 NETIF_MSG_LINK)
69 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
70 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
71 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
72 SUPPORTED_Pause | SUPPORTED_Autoneg)
74 #define DRV_NAME "sungem"
75 #define DRV_VERSION "1.0"
76 #define DRV_AUTHOR "David S. Miller <davem@redhat.com>"
78 static char version[] =
79 DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
81 MODULE_AUTHOR(DRV_AUTHOR);
82 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
83 MODULE_LICENSE("GPL");
85 #define GEM_MODULE_NAME "gem"
87 static const struct pci_device_id gem_pci_tbl[] = {
88 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
89 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
91 /* These models only differ from the original GEM in
92 * that their tx/rx fifos are of a different size and
93 * they only support 10/100 speeds. -DaveM
95 * Apple's GMAC does support gigabit on machines with
96 * the BCM54xx PHYs. -BenH
98 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
99 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
100 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
101 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
102 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
103 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
104 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
105 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
106 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
107 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
108 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
109 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
110 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
112 {0, }
115 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
117 static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
119 u32 cmd;
120 int limit = 10000;
122 cmd = (1 << 30);
123 cmd |= (2 << 28);
124 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
125 cmd |= (reg << 18) & MIF_FRAME_REGAD;
126 cmd |= (MIF_FRAME_TAMSB);
127 writel(cmd, gp->regs + MIF_FRAME);
129 while (--limit) {
130 cmd = readl(gp->regs + MIF_FRAME);
131 if (cmd & MIF_FRAME_TALSB)
132 break;
134 udelay(10);
137 if (!limit)
138 cmd = 0xffff;
140 return cmd & MIF_FRAME_DATA;
143 static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
145 struct gem *gp = netdev_priv(dev);
146 return __sungem_phy_read(gp, mii_id, reg);
149 static inline u16 sungem_phy_read(struct gem *gp, int reg)
151 return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
154 static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
156 u32 cmd;
157 int limit = 10000;
159 cmd = (1 << 30);
160 cmd |= (1 << 28);
161 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
162 cmd |= (reg << 18) & MIF_FRAME_REGAD;
163 cmd |= (MIF_FRAME_TAMSB);
164 cmd |= (val & MIF_FRAME_DATA);
165 writel(cmd, gp->regs + MIF_FRAME);
167 while (limit--) {
168 cmd = readl(gp->regs + MIF_FRAME);
169 if (cmd & MIF_FRAME_TALSB)
170 break;
172 udelay(10);
176 static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
178 struct gem *gp = netdev_priv(dev);
179 __sungem_phy_write(gp, mii_id, reg, val & 0xffff);
182 static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
184 __sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
187 static inline void gem_enable_ints(struct gem *gp)
189 /* Enable all interrupts but TXDONE */
190 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
193 static inline void gem_disable_ints(struct gem *gp)
195 /* Disable all interrupts, including TXDONE */
196 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
197 (void)readl(gp->regs + GREG_IMASK); /* write posting */
200 static void gem_get_cell(struct gem *gp)
202 BUG_ON(gp->cell_enabled < 0);
203 gp->cell_enabled++;
204 #ifdef CONFIG_PPC_PMAC
205 if (gp->cell_enabled == 1) {
206 mb();
207 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
208 udelay(10);
210 #endif /* CONFIG_PPC_PMAC */
213 /* Turn off the chip's clock */
214 static void gem_put_cell(struct gem *gp)
216 BUG_ON(gp->cell_enabled <= 0);
217 gp->cell_enabled--;
218 #ifdef CONFIG_PPC_PMAC
219 if (gp->cell_enabled == 0) {
220 mb();
221 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
222 udelay(10);
224 #endif /* CONFIG_PPC_PMAC */
227 static inline void gem_netif_stop(struct gem *gp)
229 netif_trans_update(gp->dev); /* prevent tx timeout */
230 napi_disable(&gp->napi);
231 netif_tx_disable(gp->dev);
234 static inline void gem_netif_start(struct gem *gp)
236 /* NOTE: unconditional netif_wake_queue is only
237 * appropriate so long as all callers are assured to
238 * have free tx slots.
240 netif_wake_queue(gp->dev);
241 napi_enable(&gp->napi);
244 static void gem_schedule_reset(struct gem *gp)
246 gp->reset_task_pending = 1;
247 schedule_work(&gp->reset_task);
250 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
252 if (netif_msg_intr(gp))
253 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
256 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
258 u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
259 u32 pcs_miistat;
261 if (netif_msg_intr(gp))
262 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
263 gp->dev->name, pcs_istat);
265 if (!(pcs_istat & PCS_ISTAT_LSC)) {
266 netdev_err(dev, "PCS irq but no link status change???\n");
267 return 0;
270 /* The link status bit latches on zero, so you must
271 * read it twice in such a case to see a transition
272 * to the link being up.
274 pcs_miistat = readl(gp->regs + PCS_MIISTAT);
275 if (!(pcs_miistat & PCS_MIISTAT_LS))
276 pcs_miistat |=
277 (readl(gp->regs + PCS_MIISTAT) &
278 PCS_MIISTAT_LS);
280 if (pcs_miistat & PCS_MIISTAT_ANC) {
281 /* The remote-fault indication is only valid
282 * when autoneg has completed.
284 if (pcs_miistat & PCS_MIISTAT_RF)
285 netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
286 else
287 netdev_info(dev, "PCS AutoNEG complete\n");
290 if (pcs_miistat & PCS_MIISTAT_LS) {
291 netdev_info(dev, "PCS link is now up\n");
292 netif_carrier_on(gp->dev);
293 } else {
294 netdev_info(dev, "PCS link is now down\n");
295 netif_carrier_off(gp->dev);
296 /* If this happens and the link timer is not running,
297 * reset so we re-negotiate.
299 if (!timer_pending(&gp->link_timer))
300 return 1;
303 return 0;
306 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
308 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
310 if (netif_msg_intr(gp))
311 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
312 gp->dev->name, txmac_stat);
314 /* Defer timer expiration is quite normal,
315 * don't even log the event.
317 if ((txmac_stat & MAC_TXSTAT_DTE) &&
318 !(txmac_stat & ~MAC_TXSTAT_DTE))
319 return 0;
321 if (txmac_stat & MAC_TXSTAT_URUN) {
322 netdev_err(dev, "TX MAC xmit underrun\n");
323 dev->stats.tx_fifo_errors++;
326 if (txmac_stat & MAC_TXSTAT_MPE) {
327 netdev_err(dev, "TX MAC max packet size error\n");
328 dev->stats.tx_errors++;
331 /* The rest are all cases of one of the 16-bit TX
332 * counters expiring.
334 if (txmac_stat & MAC_TXSTAT_NCE)
335 dev->stats.collisions += 0x10000;
337 if (txmac_stat & MAC_TXSTAT_ECE) {
338 dev->stats.tx_aborted_errors += 0x10000;
339 dev->stats.collisions += 0x10000;
342 if (txmac_stat & MAC_TXSTAT_LCE) {
343 dev->stats.tx_aborted_errors += 0x10000;
344 dev->stats.collisions += 0x10000;
347 /* We do not keep track of MAC_TXSTAT_FCE and
348 * MAC_TXSTAT_PCE events.
350 return 0;
353 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
354 * so we do the following.
356 * If any part of the reset goes wrong, we return 1 and that causes the
357 * whole chip to be reset.
359 static int gem_rxmac_reset(struct gem *gp)
361 struct net_device *dev = gp->dev;
362 int limit, i;
363 u64 desc_dma;
364 u32 val;
366 /* First, reset & disable MAC RX. */
367 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
368 for (limit = 0; limit < 5000; limit++) {
369 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
370 break;
371 udelay(10);
373 if (limit == 5000) {
374 netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
375 return 1;
378 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
379 gp->regs + MAC_RXCFG);
380 for (limit = 0; limit < 5000; limit++) {
381 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
382 break;
383 udelay(10);
385 if (limit == 5000) {
386 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
387 return 1;
390 /* Second, disable RX DMA. */
391 writel(0, gp->regs + RXDMA_CFG);
392 for (limit = 0; limit < 5000; limit++) {
393 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
394 break;
395 udelay(10);
397 if (limit == 5000) {
398 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
399 return 1;
402 mdelay(5);
404 /* Execute RX reset command. */
405 writel(gp->swrst_base | GREG_SWRST_RXRST,
406 gp->regs + GREG_SWRST);
407 for (limit = 0; limit < 5000; limit++) {
408 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
409 break;
410 udelay(10);
412 if (limit == 5000) {
413 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
414 return 1;
417 /* Refresh the RX ring. */
418 for (i = 0; i < RX_RING_SIZE; i++) {
419 struct gem_rxd *rxd = &gp->init_block->rxd[i];
421 if (gp->rx_skbs[i] == NULL) {
422 netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
423 return 1;
426 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
428 gp->rx_new = gp->rx_old = 0;
430 /* Now we must reprogram the rest of RX unit. */
431 desc_dma = (u64) gp->gblock_dvma;
432 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
433 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
434 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
435 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
436 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
437 (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
438 writel(val, gp->regs + RXDMA_CFG);
439 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
440 writel(((5 & RXDMA_BLANK_IPKTS) |
441 ((8 << 12) & RXDMA_BLANK_ITIME)),
442 gp->regs + RXDMA_BLANK);
443 else
444 writel(((5 & RXDMA_BLANK_IPKTS) |
445 ((4 << 12) & RXDMA_BLANK_ITIME)),
446 gp->regs + RXDMA_BLANK);
447 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
448 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
449 writel(val, gp->regs + RXDMA_PTHRESH);
450 val = readl(gp->regs + RXDMA_CFG);
451 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
452 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
453 val = readl(gp->regs + MAC_RXCFG);
454 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
456 return 0;
459 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
461 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
462 int ret = 0;
464 if (netif_msg_intr(gp))
465 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
466 gp->dev->name, rxmac_stat);
468 if (rxmac_stat & MAC_RXSTAT_OFLW) {
469 u32 smac = readl(gp->regs + MAC_SMACHINE);
471 netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
472 dev->stats.rx_over_errors++;
473 dev->stats.rx_fifo_errors++;
475 ret = gem_rxmac_reset(gp);
478 if (rxmac_stat & MAC_RXSTAT_ACE)
479 dev->stats.rx_frame_errors += 0x10000;
481 if (rxmac_stat & MAC_RXSTAT_CCE)
482 dev->stats.rx_crc_errors += 0x10000;
484 if (rxmac_stat & MAC_RXSTAT_LCE)
485 dev->stats.rx_length_errors += 0x10000;
487 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
488 * events.
490 return ret;
493 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
495 u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
497 if (netif_msg_intr(gp))
498 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
499 gp->dev->name, mac_cstat);
501 /* This interrupt is just for pause frame and pause
502 * tracking. It is useful for diagnostics and debug
503 * but probably by default we will mask these events.
505 if (mac_cstat & MAC_CSTAT_PS)
506 gp->pause_entered++;
508 if (mac_cstat & MAC_CSTAT_PRCV)
509 gp->pause_last_time_recvd = (mac_cstat >> 16);
511 return 0;
514 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
516 u32 mif_status = readl(gp->regs + MIF_STATUS);
517 u32 reg_val, changed_bits;
519 reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
520 changed_bits = (mif_status & MIF_STATUS_STAT);
522 gem_handle_mif_event(gp, reg_val, changed_bits);
524 return 0;
527 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
529 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
531 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
532 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
533 netdev_err(dev, "PCI error [%04x]", pci_estat);
535 if (pci_estat & GREG_PCIESTAT_BADACK)
536 pr_cont(" <No ACK64# during ABS64 cycle>");
537 if (pci_estat & GREG_PCIESTAT_DTRTO)
538 pr_cont(" <Delayed transaction timeout>");
539 if (pci_estat & GREG_PCIESTAT_OTHER)
540 pr_cont(" <other>");
541 pr_cont("\n");
542 } else {
543 pci_estat |= GREG_PCIESTAT_OTHER;
544 netdev_err(dev, "PCI error\n");
547 if (pci_estat & GREG_PCIESTAT_OTHER) {
548 u16 pci_cfg_stat;
550 /* Interrogate PCI config space for the
551 * true cause.
553 pci_read_config_word(gp->pdev, PCI_STATUS,
554 &pci_cfg_stat);
555 netdev_err(dev, "Read PCI cfg space status [%04x]\n",
556 pci_cfg_stat);
557 if (pci_cfg_stat & PCI_STATUS_PARITY)
558 netdev_err(dev, "PCI parity error detected\n");
559 if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
560 netdev_err(dev, "PCI target abort\n");
561 if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
562 netdev_err(dev, "PCI master acks target abort\n");
563 if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
564 netdev_err(dev, "PCI master abort\n");
565 if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
566 netdev_err(dev, "PCI system error SERR#\n");
567 if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
568 netdev_err(dev, "PCI parity error\n");
570 /* Write the error bits back to clear them. */
571 pci_cfg_stat &= (PCI_STATUS_PARITY |
572 PCI_STATUS_SIG_TARGET_ABORT |
573 PCI_STATUS_REC_TARGET_ABORT |
574 PCI_STATUS_REC_MASTER_ABORT |
575 PCI_STATUS_SIG_SYSTEM_ERROR |
576 PCI_STATUS_DETECTED_PARITY);
577 pci_write_config_word(gp->pdev,
578 PCI_STATUS, pci_cfg_stat);
581 /* For all PCI errors, we should reset the chip. */
582 return 1;
585 /* All non-normal interrupt conditions get serviced here.
586 * Returns non-zero if we should just exit the interrupt
587 * handler right now (ie. if we reset the card which invalidates
588 * all of the other original irq status bits).
590 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
592 if (gem_status & GREG_STAT_RXNOBUF) {
593 /* Frame arrived, no free RX buffers available. */
594 if (netif_msg_rx_err(gp))
595 printk(KERN_DEBUG "%s: no buffer for rx frame\n",
596 gp->dev->name);
597 dev->stats.rx_dropped++;
600 if (gem_status & GREG_STAT_RXTAGERR) {
601 /* corrupt RX tag framing */
602 if (netif_msg_rx_err(gp))
603 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
604 gp->dev->name);
605 dev->stats.rx_errors++;
607 return 1;
610 if (gem_status & GREG_STAT_PCS) {
611 if (gem_pcs_interrupt(dev, gp, gem_status))
612 return 1;
615 if (gem_status & GREG_STAT_TXMAC) {
616 if (gem_txmac_interrupt(dev, gp, gem_status))
617 return 1;
620 if (gem_status & GREG_STAT_RXMAC) {
621 if (gem_rxmac_interrupt(dev, gp, gem_status))
622 return 1;
625 if (gem_status & GREG_STAT_MAC) {
626 if (gem_mac_interrupt(dev, gp, gem_status))
627 return 1;
630 if (gem_status & GREG_STAT_MIF) {
631 if (gem_mif_interrupt(dev, gp, gem_status))
632 return 1;
635 if (gem_status & GREG_STAT_PCIERR) {
636 if (gem_pci_interrupt(dev, gp, gem_status))
637 return 1;
640 return 0;
643 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
645 int entry, limit;
647 entry = gp->tx_old;
648 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
649 while (entry != limit) {
650 struct sk_buff *skb;
651 struct gem_txd *txd;
652 dma_addr_t dma_addr;
653 u32 dma_len;
654 int frag;
656 if (netif_msg_tx_done(gp))
657 printk(KERN_DEBUG "%s: tx done, slot %d\n",
658 gp->dev->name, entry);
659 skb = gp->tx_skbs[entry];
660 if (skb_shinfo(skb)->nr_frags) {
661 int last = entry + skb_shinfo(skb)->nr_frags;
662 int walk = entry;
663 int incomplete = 0;
665 last &= (TX_RING_SIZE - 1);
666 for (;;) {
667 walk = NEXT_TX(walk);
668 if (walk == limit)
669 incomplete = 1;
670 if (walk == last)
671 break;
673 if (incomplete)
674 break;
676 gp->tx_skbs[entry] = NULL;
677 dev->stats.tx_bytes += skb->len;
679 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
680 txd = &gp->init_block->txd[entry];
682 dma_addr = le64_to_cpu(txd->buffer);
683 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
685 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
686 entry = NEXT_TX(entry);
689 dev->stats.tx_packets++;
690 dev_consume_skb_any(skb);
692 gp->tx_old = entry;
694 /* Need to make the tx_old update visible to gem_start_xmit()
695 * before checking for netif_queue_stopped(). Without the
696 * memory barrier, there is a small possibility that gem_start_xmit()
697 * will miss it and cause the queue to be stopped forever.
699 smp_mb();
701 if (unlikely(netif_queue_stopped(dev) &&
702 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
703 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
705 __netif_tx_lock(txq, smp_processor_id());
706 if (netif_queue_stopped(dev) &&
707 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
708 netif_wake_queue(dev);
709 __netif_tx_unlock(txq);
713 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
715 int cluster_start, curr, count, kick;
717 cluster_start = curr = (gp->rx_new & ~(4 - 1));
718 count = 0;
719 kick = -1;
720 dma_wmb();
721 while (curr != limit) {
722 curr = NEXT_RX(curr);
723 if (++count == 4) {
724 struct gem_rxd *rxd =
725 &gp->init_block->rxd[cluster_start];
726 for (;;) {
727 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
728 rxd++;
729 cluster_start = NEXT_RX(cluster_start);
730 if (cluster_start == curr)
731 break;
733 kick = curr;
734 count = 0;
737 if (kick >= 0) {
738 mb();
739 writel(kick, gp->regs + RXDMA_KICK);
743 #define ALIGNED_RX_SKB_ADDR(addr) \
744 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
745 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
746 gfp_t gfp_flags)
748 struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
750 if (likely(skb)) {
751 unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
752 skb_reserve(skb, offset);
754 return skb;
757 static int gem_rx(struct gem *gp, int work_to_do)
759 struct net_device *dev = gp->dev;
760 int entry, drops, work_done = 0;
761 u32 done;
763 if (netif_msg_rx_status(gp))
764 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
765 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
767 entry = gp->rx_new;
768 drops = 0;
769 done = readl(gp->regs + RXDMA_DONE);
770 for (;;) {
771 struct gem_rxd *rxd = &gp->init_block->rxd[entry];
772 struct sk_buff *skb;
773 u64 status = le64_to_cpu(rxd->status_word);
774 dma_addr_t dma_addr;
775 int len;
777 if ((status & RXDCTRL_OWN) != 0)
778 break;
780 if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
781 break;
783 /* When writing back RX descriptor, GEM writes status
784 * then buffer address, possibly in separate transactions.
785 * If we don't wait for the chip to write both, we could
786 * post a new buffer to this descriptor then have GEM spam
787 * on the buffer address. We sync on the RX completion
788 * register to prevent this from happening.
790 if (entry == done) {
791 done = readl(gp->regs + RXDMA_DONE);
792 if (entry == done)
793 break;
796 /* We can now account for the work we're about to do */
797 work_done++;
799 skb = gp->rx_skbs[entry];
801 len = (status & RXDCTRL_BUFSZ) >> 16;
802 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
803 dev->stats.rx_errors++;
804 if (len < ETH_ZLEN)
805 dev->stats.rx_length_errors++;
806 if (len & RXDCTRL_BAD)
807 dev->stats.rx_crc_errors++;
809 /* We'll just return it to GEM. */
810 drop_it:
811 dev->stats.rx_dropped++;
812 goto next;
815 dma_addr = le64_to_cpu(rxd->buffer);
816 if (len > RX_COPY_THRESHOLD) {
817 struct sk_buff *new_skb;
819 new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
820 if (new_skb == NULL) {
821 drops++;
822 goto drop_it;
824 pci_unmap_page(gp->pdev, dma_addr,
825 RX_BUF_ALLOC_SIZE(gp),
826 PCI_DMA_FROMDEVICE);
827 gp->rx_skbs[entry] = new_skb;
828 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
829 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
830 virt_to_page(new_skb->data),
831 offset_in_page(new_skb->data),
832 RX_BUF_ALLOC_SIZE(gp),
833 PCI_DMA_FROMDEVICE));
834 skb_reserve(new_skb, RX_OFFSET);
836 /* Trim the original skb for the netif. */
837 skb_trim(skb, len);
838 } else {
839 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
841 if (copy_skb == NULL) {
842 drops++;
843 goto drop_it;
846 skb_reserve(copy_skb, 2);
847 skb_put(copy_skb, len);
848 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
849 skb_copy_from_linear_data(skb, copy_skb->data, len);
850 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
852 /* We'll reuse the original ring buffer. */
853 skb = copy_skb;
856 if (likely(dev->features & NETIF_F_RXCSUM)) {
857 __sum16 csum;
859 csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
860 skb->csum = csum_unfold(csum);
861 skb->ip_summed = CHECKSUM_COMPLETE;
863 skb->protocol = eth_type_trans(skb, gp->dev);
865 napi_gro_receive(&gp->napi, skb);
867 dev->stats.rx_packets++;
868 dev->stats.rx_bytes += len;
870 next:
871 entry = NEXT_RX(entry);
874 gem_post_rxds(gp, entry);
876 gp->rx_new = entry;
878 if (drops)
879 netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
881 return work_done;
884 static int gem_poll(struct napi_struct *napi, int budget)
886 struct gem *gp = container_of(napi, struct gem, napi);
887 struct net_device *dev = gp->dev;
888 int work_done;
890 work_done = 0;
891 do {
892 /* Handle anomalies */
893 if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
894 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
895 int reset;
897 /* We run the abnormal interrupt handling code with
898 * the Tx lock. It only resets the Rx portion of the
899 * chip, but we need to guard it against DMA being
900 * restarted by the link poll timer
902 __netif_tx_lock(txq, smp_processor_id());
903 reset = gem_abnormal_irq(dev, gp, gp->status);
904 __netif_tx_unlock(txq);
905 if (reset) {
906 gem_schedule_reset(gp);
907 napi_complete(napi);
908 return work_done;
912 /* Run TX completion thread */
913 gem_tx(dev, gp, gp->status);
915 /* Run RX thread. We don't use any locking here,
916 * code willing to do bad things - like cleaning the
917 * rx ring - must call napi_disable(), which
918 * schedule_timeout()'s if polling is already disabled.
920 work_done += gem_rx(gp, budget - work_done);
922 if (work_done >= budget)
923 return work_done;
925 gp->status = readl(gp->regs + GREG_STAT);
926 } while (gp->status & GREG_STAT_NAPI);
928 napi_complete_done(napi, work_done);
929 gem_enable_ints(gp);
931 return work_done;
934 static irqreturn_t gem_interrupt(int irq, void *dev_id)
936 struct net_device *dev = dev_id;
937 struct gem *gp = netdev_priv(dev);
939 if (napi_schedule_prep(&gp->napi)) {
940 u32 gem_status = readl(gp->regs + GREG_STAT);
942 if (unlikely(gem_status == 0)) {
943 napi_enable(&gp->napi);
944 return IRQ_NONE;
946 if (netif_msg_intr(gp))
947 printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
948 gp->dev->name, gem_status);
950 gp->status = gem_status;
951 gem_disable_ints(gp);
952 __napi_schedule(&gp->napi);
955 /* If polling was disabled at the time we received that
956 * interrupt, we may return IRQ_HANDLED here while we
957 * should return IRQ_NONE. No big deal...
959 return IRQ_HANDLED;
962 #ifdef CONFIG_NET_POLL_CONTROLLER
963 static void gem_poll_controller(struct net_device *dev)
965 struct gem *gp = netdev_priv(dev);
967 disable_irq(gp->pdev->irq);
968 gem_interrupt(gp->pdev->irq, dev);
969 enable_irq(gp->pdev->irq);
971 #endif
973 static void gem_tx_timeout(struct net_device *dev, unsigned int txqueue)
975 struct gem *gp = netdev_priv(dev);
977 netdev_err(dev, "transmit timed out, resetting\n");
979 netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
980 readl(gp->regs + TXDMA_CFG),
981 readl(gp->regs + MAC_TXSTAT),
982 readl(gp->regs + MAC_TXCFG));
983 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
984 readl(gp->regs + RXDMA_CFG),
985 readl(gp->regs + MAC_RXSTAT),
986 readl(gp->regs + MAC_RXCFG));
988 gem_schedule_reset(gp);
991 static __inline__ int gem_intme(int entry)
993 /* Algorithm: IRQ every 1/2 of descriptors. */
994 if (!(entry & ((TX_RING_SIZE>>1)-1)))
995 return 1;
997 return 0;
1000 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
1001 struct net_device *dev)
1003 struct gem *gp = netdev_priv(dev);
1004 int entry;
1005 u64 ctrl;
1007 ctrl = 0;
1008 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1009 const u64 csum_start_off = skb_checksum_start_offset(skb);
1010 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1012 ctrl = (TXDCTRL_CENAB |
1013 (csum_start_off << 15) |
1014 (csum_stuff_off << 21));
1017 if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1018 /* This is a hard error, log it. */
1019 if (!netif_queue_stopped(dev)) {
1020 netif_stop_queue(dev);
1021 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1023 return NETDEV_TX_BUSY;
1026 entry = gp->tx_new;
1027 gp->tx_skbs[entry] = skb;
1029 if (skb_shinfo(skb)->nr_frags == 0) {
1030 struct gem_txd *txd = &gp->init_block->txd[entry];
1031 dma_addr_t mapping;
1032 u32 len;
1034 len = skb->len;
1035 mapping = pci_map_page(gp->pdev,
1036 virt_to_page(skb->data),
1037 offset_in_page(skb->data),
1038 len, PCI_DMA_TODEVICE);
1039 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1040 if (gem_intme(entry))
1041 ctrl |= TXDCTRL_INTME;
1042 txd->buffer = cpu_to_le64(mapping);
1043 dma_wmb();
1044 txd->control_word = cpu_to_le64(ctrl);
1045 entry = NEXT_TX(entry);
1046 } else {
1047 struct gem_txd *txd;
1048 u32 first_len;
1049 u64 intme;
1050 dma_addr_t first_mapping;
1051 int frag, first_entry = entry;
1053 intme = 0;
1054 if (gem_intme(entry))
1055 intme |= TXDCTRL_INTME;
1057 /* We must give this initial chunk to the device last.
1058 * Otherwise we could race with the device.
1060 first_len = skb_headlen(skb);
1061 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1062 offset_in_page(skb->data),
1063 first_len, PCI_DMA_TODEVICE);
1064 entry = NEXT_TX(entry);
1066 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1067 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1068 u32 len;
1069 dma_addr_t mapping;
1070 u64 this_ctrl;
1072 len = skb_frag_size(this_frag);
1073 mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1074 0, len, DMA_TO_DEVICE);
1075 this_ctrl = ctrl;
1076 if (frag == skb_shinfo(skb)->nr_frags - 1)
1077 this_ctrl |= TXDCTRL_EOF;
1079 txd = &gp->init_block->txd[entry];
1080 txd->buffer = cpu_to_le64(mapping);
1081 dma_wmb();
1082 txd->control_word = cpu_to_le64(this_ctrl | len);
1084 if (gem_intme(entry))
1085 intme |= TXDCTRL_INTME;
1087 entry = NEXT_TX(entry);
1089 txd = &gp->init_block->txd[first_entry];
1090 txd->buffer = cpu_to_le64(first_mapping);
1091 dma_wmb();
1092 txd->control_word =
1093 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1096 gp->tx_new = entry;
1097 if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1098 netif_stop_queue(dev);
1100 /* netif_stop_queue() must be done before checking
1101 * checking tx index in TX_BUFFS_AVAIL() below, because
1102 * in gem_tx(), we update tx_old before checking for
1103 * netif_queue_stopped().
1105 smp_mb();
1106 if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1107 netif_wake_queue(dev);
1109 if (netif_msg_tx_queued(gp))
1110 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1111 dev->name, entry, skb->len);
1112 mb();
1113 writel(gp->tx_new, gp->regs + TXDMA_KICK);
1115 return NETDEV_TX_OK;
1118 static void gem_pcs_reset(struct gem *gp)
1120 int limit;
1121 u32 val;
1123 /* Reset PCS unit. */
1124 val = readl(gp->regs + PCS_MIICTRL);
1125 val |= PCS_MIICTRL_RST;
1126 writel(val, gp->regs + PCS_MIICTRL);
1128 limit = 32;
1129 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1130 udelay(100);
1131 if (limit-- <= 0)
1132 break;
1134 if (limit < 0)
1135 netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1138 static void gem_pcs_reinit_adv(struct gem *gp)
1140 u32 val;
1142 /* Make sure PCS is disabled while changing advertisement
1143 * configuration.
1145 val = readl(gp->regs + PCS_CFG);
1146 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1147 writel(val, gp->regs + PCS_CFG);
1149 /* Advertise all capabilities except asymmetric
1150 * pause.
1152 val = readl(gp->regs + PCS_MIIADV);
1153 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1154 PCS_MIIADV_SP | PCS_MIIADV_AP);
1155 writel(val, gp->regs + PCS_MIIADV);
1157 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1158 * and re-enable PCS.
1160 val = readl(gp->regs + PCS_MIICTRL);
1161 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1162 val &= ~PCS_MIICTRL_WB;
1163 writel(val, gp->regs + PCS_MIICTRL);
1165 val = readl(gp->regs + PCS_CFG);
1166 val |= PCS_CFG_ENABLE;
1167 writel(val, gp->regs + PCS_CFG);
1169 /* Make sure serialink loopback is off. The meaning
1170 * of this bit is logically inverted based upon whether
1171 * you are in Serialink or SERDES mode.
1173 val = readl(gp->regs + PCS_SCTRL);
1174 if (gp->phy_type == phy_serialink)
1175 val &= ~PCS_SCTRL_LOOP;
1176 else
1177 val |= PCS_SCTRL_LOOP;
1178 writel(val, gp->regs + PCS_SCTRL);
1181 #define STOP_TRIES 32
1183 static void gem_reset(struct gem *gp)
1185 int limit;
1186 u32 val;
1188 /* Make sure we won't get any more interrupts */
1189 writel(0xffffffff, gp->regs + GREG_IMASK);
1191 /* Reset the chip */
1192 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1193 gp->regs + GREG_SWRST);
1195 limit = STOP_TRIES;
1197 do {
1198 udelay(20);
1199 val = readl(gp->regs + GREG_SWRST);
1200 if (limit-- <= 0)
1201 break;
1202 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1204 if (limit < 0)
1205 netdev_err(gp->dev, "SW reset is ghetto\n");
1207 if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1208 gem_pcs_reinit_adv(gp);
1211 static void gem_start_dma(struct gem *gp)
1213 u32 val;
1215 /* We are ready to rock, turn everything on. */
1216 val = readl(gp->regs + TXDMA_CFG);
1217 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1218 val = readl(gp->regs + RXDMA_CFG);
1219 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1220 val = readl(gp->regs + MAC_TXCFG);
1221 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1222 val = readl(gp->regs + MAC_RXCFG);
1223 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1225 (void) readl(gp->regs + MAC_RXCFG);
1226 udelay(100);
1228 gem_enable_ints(gp);
1230 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1233 /* DMA won't be actually stopped before about 4ms tho ...
1235 static void gem_stop_dma(struct gem *gp)
1237 u32 val;
1239 /* We are done rocking, turn everything off. */
1240 val = readl(gp->regs + TXDMA_CFG);
1241 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1242 val = readl(gp->regs + RXDMA_CFG);
1243 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1244 val = readl(gp->regs + MAC_TXCFG);
1245 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1246 val = readl(gp->regs + MAC_RXCFG);
1247 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1249 (void) readl(gp->regs + MAC_RXCFG);
1251 /* Need to wait a bit ... done by the caller */
1255 // XXX dbl check what that function should do when called on PCS PHY
1256 static void gem_begin_auto_negotiation(struct gem *gp,
1257 const struct ethtool_link_ksettings *ep)
1259 u32 advertise, features;
1260 int autoneg;
1261 int speed;
1262 int duplex;
1263 u32 advertising;
1265 if (ep)
1266 ethtool_convert_link_mode_to_legacy_u32(
1267 &advertising, ep->link_modes.advertising);
1269 if (gp->phy_type != phy_mii_mdio0 &&
1270 gp->phy_type != phy_mii_mdio1)
1271 goto non_mii;
1273 /* Setup advertise */
1274 if (found_mii_phy(gp))
1275 features = gp->phy_mii.def->features;
1276 else
1277 features = 0;
1279 advertise = features & ADVERTISE_MASK;
1280 if (gp->phy_mii.advertising != 0)
1281 advertise &= gp->phy_mii.advertising;
1283 autoneg = gp->want_autoneg;
1284 speed = gp->phy_mii.speed;
1285 duplex = gp->phy_mii.duplex;
1287 /* Setup link parameters */
1288 if (!ep)
1289 goto start_aneg;
1290 if (ep->base.autoneg == AUTONEG_ENABLE) {
1291 advertise = advertising;
1292 autoneg = 1;
1293 } else {
1294 autoneg = 0;
1295 speed = ep->base.speed;
1296 duplex = ep->base.duplex;
1299 start_aneg:
1300 /* Sanitize settings based on PHY capabilities */
1301 if ((features & SUPPORTED_Autoneg) == 0)
1302 autoneg = 0;
1303 if (speed == SPEED_1000 &&
1304 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1305 speed = SPEED_100;
1306 if (speed == SPEED_100 &&
1307 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1308 speed = SPEED_10;
1309 if (duplex == DUPLEX_FULL &&
1310 !(features & (SUPPORTED_1000baseT_Full |
1311 SUPPORTED_100baseT_Full |
1312 SUPPORTED_10baseT_Full)))
1313 duplex = DUPLEX_HALF;
1314 if (speed == 0)
1315 speed = SPEED_10;
1317 /* If we are asleep, we don't try to actually setup the PHY, we
1318 * just store the settings
1320 if (!netif_device_present(gp->dev)) {
1321 gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1322 gp->phy_mii.speed = speed;
1323 gp->phy_mii.duplex = duplex;
1324 return;
1327 /* Configure PHY & start aneg */
1328 gp->want_autoneg = autoneg;
1329 if (autoneg) {
1330 if (found_mii_phy(gp))
1331 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1332 gp->lstate = link_aneg;
1333 } else {
1334 if (found_mii_phy(gp))
1335 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1336 gp->lstate = link_force_ok;
1339 non_mii:
1340 gp->timer_ticks = 0;
1341 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1344 /* A link-up condition has occurred, initialize and enable the
1345 * rest of the chip.
1347 static int gem_set_link_modes(struct gem *gp)
1349 struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1350 int full_duplex, speed, pause;
1351 u32 val;
1353 full_duplex = 0;
1354 speed = SPEED_10;
1355 pause = 0;
1357 if (found_mii_phy(gp)) {
1358 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1359 return 1;
1360 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1361 speed = gp->phy_mii.speed;
1362 pause = gp->phy_mii.pause;
1363 } else if (gp->phy_type == phy_serialink ||
1364 gp->phy_type == phy_serdes) {
1365 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1367 if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1368 full_duplex = 1;
1369 speed = SPEED_1000;
1372 netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1373 speed, (full_duplex ? "full" : "half"));
1376 /* We take the tx queue lock to avoid collisions between
1377 * this code, the tx path and the NAPI-driven error path
1379 __netif_tx_lock(txq, smp_processor_id());
1381 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1382 if (full_duplex) {
1383 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1384 } else {
1385 /* MAC_TXCFG_NBO must be zero. */
1387 writel(val, gp->regs + MAC_TXCFG);
1389 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1390 if (!full_duplex &&
1391 (gp->phy_type == phy_mii_mdio0 ||
1392 gp->phy_type == phy_mii_mdio1)) {
1393 val |= MAC_XIFCFG_DISE;
1394 } else if (full_duplex) {
1395 val |= MAC_XIFCFG_FLED;
1398 if (speed == SPEED_1000)
1399 val |= (MAC_XIFCFG_GMII);
1401 writel(val, gp->regs + MAC_XIFCFG);
1403 /* If gigabit and half-duplex, enable carrier extension
1404 * mode. Else, disable it.
1406 if (speed == SPEED_1000 && !full_duplex) {
1407 val = readl(gp->regs + MAC_TXCFG);
1408 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1410 val = readl(gp->regs + MAC_RXCFG);
1411 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1412 } else {
1413 val = readl(gp->regs + MAC_TXCFG);
1414 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1416 val = readl(gp->regs + MAC_RXCFG);
1417 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1420 if (gp->phy_type == phy_serialink ||
1421 gp->phy_type == phy_serdes) {
1422 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1424 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1425 pause = 1;
1428 if (!full_duplex)
1429 writel(512, gp->regs + MAC_STIME);
1430 else
1431 writel(64, gp->regs + MAC_STIME);
1432 val = readl(gp->regs + MAC_MCCFG);
1433 if (pause)
1434 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1435 else
1436 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1437 writel(val, gp->regs + MAC_MCCFG);
1439 gem_start_dma(gp);
1441 __netif_tx_unlock(txq);
1443 if (netif_msg_link(gp)) {
1444 if (pause) {
1445 netdev_info(gp->dev,
1446 "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1447 gp->rx_fifo_sz,
1448 gp->rx_pause_off,
1449 gp->rx_pause_on);
1450 } else {
1451 netdev_info(gp->dev, "Pause is disabled\n");
1455 return 0;
1458 static int gem_mdio_link_not_up(struct gem *gp)
1460 switch (gp->lstate) {
1461 case link_force_ret:
1462 netif_info(gp, link, gp->dev,
1463 "Autoneg failed again, keeping forced mode\n");
1464 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1465 gp->last_forced_speed, DUPLEX_HALF);
1466 gp->timer_ticks = 5;
1467 gp->lstate = link_force_ok;
1468 return 0;
1469 case link_aneg:
1470 /* We try forced modes after a failed aneg only on PHYs that don't
1471 * have "magic_aneg" bit set, which means they internally do the
1472 * while forced-mode thingy. On these, we just restart aneg
1474 if (gp->phy_mii.def->magic_aneg)
1475 return 1;
1476 netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1477 /* Try forced modes. */
1478 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1479 DUPLEX_HALF);
1480 gp->timer_ticks = 5;
1481 gp->lstate = link_force_try;
1482 return 0;
1483 case link_force_try:
1484 /* Downgrade from 100 to 10 Mbps if necessary.
1485 * If already at 10Mbps, warn user about the
1486 * situation every 10 ticks.
1488 if (gp->phy_mii.speed == SPEED_100) {
1489 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1490 DUPLEX_HALF);
1491 gp->timer_ticks = 5;
1492 netif_info(gp, link, gp->dev,
1493 "switching to forced 10bt\n");
1494 return 0;
1495 } else
1496 return 1;
1497 default:
1498 return 0;
1502 static void gem_link_timer(struct timer_list *t)
1504 struct gem *gp = from_timer(gp, t, link_timer);
1505 struct net_device *dev = gp->dev;
1506 int restart_aneg = 0;
1508 /* There's no point doing anything if we're going to be reset */
1509 if (gp->reset_task_pending)
1510 return;
1512 if (gp->phy_type == phy_serialink ||
1513 gp->phy_type == phy_serdes) {
1514 u32 val = readl(gp->regs + PCS_MIISTAT);
1516 if (!(val & PCS_MIISTAT_LS))
1517 val = readl(gp->regs + PCS_MIISTAT);
1519 if ((val & PCS_MIISTAT_LS) != 0) {
1520 if (gp->lstate == link_up)
1521 goto restart;
1523 gp->lstate = link_up;
1524 netif_carrier_on(dev);
1525 (void)gem_set_link_modes(gp);
1527 goto restart;
1529 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1530 /* Ok, here we got a link. If we had it due to a forced
1531 * fallback, and we were configured for autoneg, we do
1532 * retry a short autoneg pass. If you know your hub is
1533 * broken, use ethtool ;)
1535 if (gp->lstate == link_force_try && gp->want_autoneg) {
1536 gp->lstate = link_force_ret;
1537 gp->last_forced_speed = gp->phy_mii.speed;
1538 gp->timer_ticks = 5;
1539 if (netif_msg_link(gp))
1540 netdev_info(dev,
1541 "Got link after fallback, retrying autoneg once...\n");
1542 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1543 } else if (gp->lstate != link_up) {
1544 gp->lstate = link_up;
1545 netif_carrier_on(dev);
1546 if (gem_set_link_modes(gp))
1547 restart_aneg = 1;
1549 } else {
1550 /* If the link was previously up, we restart the
1551 * whole process
1553 if (gp->lstate == link_up) {
1554 gp->lstate = link_down;
1555 netif_info(gp, link, dev, "Link down\n");
1556 netif_carrier_off(dev);
1557 gem_schedule_reset(gp);
1558 /* The reset task will restart the timer */
1559 return;
1560 } else if (++gp->timer_ticks > 10) {
1561 if (found_mii_phy(gp))
1562 restart_aneg = gem_mdio_link_not_up(gp);
1563 else
1564 restart_aneg = 1;
1567 if (restart_aneg) {
1568 gem_begin_auto_negotiation(gp, NULL);
1569 return;
1571 restart:
1572 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1575 static void gem_clean_rings(struct gem *gp)
1577 struct gem_init_block *gb = gp->init_block;
1578 struct sk_buff *skb;
1579 int i;
1580 dma_addr_t dma_addr;
1582 for (i = 0; i < RX_RING_SIZE; i++) {
1583 struct gem_rxd *rxd;
1585 rxd = &gb->rxd[i];
1586 if (gp->rx_skbs[i] != NULL) {
1587 skb = gp->rx_skbs[i];
1588 dma_addr = le64_to_cpu(rxd->buffer);
1589 pci_unmap_page(gp->pdev, dma_addr,
1590 RX_BUF_ALLOC_SIZE(gp),
1591 PCI_DMA_FROMDEVICE);
1592 dev_kfree_skb_any(skb);
1593 gp->rx_skbs[i] = NULL;
1595 rxd->status_word = 0;
1596 dma_wmb();
1597 rxd->buffer = 0;
1600 for (i = 0; i < TX_RING_SIZE; i++) {
1601 if (gp->tx_skbs[i] != NULL) {
1602 struct gem_txd *txd;
1603 int frag;
1605 skb = gp->tx_skbs[i];
1606 gp->tx_skbs[i] = NULL;
1608 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1609 int ent = i & (TX_RING_SIZE - 1);
1611 txd = &gb->txd[ent];
1612 dma_addr = le64_to_cpu(txd->buffer);
1613 pci_unmap_page(gp->pdev, dma_addr,
1614 le64_to_cpu(txd->control_word) &
1615 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1617 if (frag != skb_shinfo(skb)->nr_frags)
1618 i++;
1620 dev_kfree_skb_any(skb);
1625 static void gem_init_rings(struct gem *gp)
1627 struct gem_init_block *gb = gp->init_block;
1628 struct net_device *dev = gp->dev;
1629 int i;
1630 dma_addr_t dma_addr;
1632 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1634 gem_clean_rings(gp);
1636 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1637 (unsigned)VLAN_ETH_FRAME_LEN);
1639 for (i = 0; i < RX_RING_SIZE; i++) {
1640 struct sk_buff *skb;
1641 struct gem_rxd *rxd = &gb->rxd[i];
1643 skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1644 if (!skb) {
1645 rxd->buffer = 0;
1646 rxd->status_word = 0;
1647 continue;
1650 gp->rx_skbs[i] = skb;
1651 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1652 dma_addr = pci_map_page(gp->pdev,
1653 virt_to_page(skb->data),
1654 offset_in_page(skb->data),
1655 RX_BUF_ALLOC_SIZE(gp),
1656 PCI_DMA_FROMDEVICE);
1657 rxd->buffer = cpu_to_le64(dma_addr);
1658 dma_wmb();
1659 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1660 skb_reserve(skb, RX_OFFSET);
1663 for (i = 0; i < TX_RING_SIZE; i++) {
1664 struct gem_txd *txd = &gb->txd[i];
1666 txd->control_word = 0;
1667 dma_wmb();
1668 txd->buffer = 0;
1670 wmb();
1673 /* Init PHY interface and start link poll state machine */
1674 static void gem_init_phy(struct gem *gp)
1676 u32 mifcfg;
1678 /* Revert MIF CFG setting done on stop_phy */
1679 mifcfg = readl(gp->regs + MIF_CFG);
1680 mifcfg &= ~MIF_CFG_BBMODE;
1681 writel(mifcfg, gp->regs + MIF_CFG);
1683 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1684 int i;
1686 /* Those delay sucks, the HW seem to love them though, I'll
1687 * serisouly consider breaking some locks here to be able
1688 * to schedule instead
1690 for (i = 0; i < 3; i++) {
1691 #ifdef CONFIG_PPC_PMAC
1692 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1693 msleep(20);
1694 #endif
1695 /* Some PHYs used by apple have problem getting back to us,
1696 * we do an additional reset here
1698 sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
1699 msleep(20);
1700 if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
1701 break;
1702 if (i == 2)
1703 netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1707 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1708 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1709 u32 val;
1711 /* Init datapath mode register. */
1712 if (gp->phy_type == phy_mii_mdio0 ||
1713 gp->phy_type == phy_mii_mdio1) {
1714 val = PCS_DMODE_MGM;
1715 } else if (gp->phy_type == phy_serialink) {
1716 val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1717 } else {
1718 val = PCS_DMODE_ESM;
1721 writel(val, gp->regs + PCS_DMODE);
1724 if (gp->phy_type == phy_mii_mdio0 ||
1725 gp->phy_type == phy_mii_mdio1) {
1726 /* Reset and detect MII PHY */
1727 sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1729 /* Init PHY */
1730 if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1731 gp->phy_mii.def->ops->init(&gp->phy_mii);
1732 } else {
1733 gem_pcs_reset(gp);
1734 gem_pcs_reinit_adv(gp);
1737 /* Default aneg parameters */
1738 gp->timer_ticks = 0;
1739 gp->lstate = link_down;
1740 netif_carrier_off(gp->dev);
1742 /* Print things out */
1743 if (gp->phy_type == phy_mii_mdio0 ||
1744 gp->phy_type == phy_mii_mdio1)
1745 netdev_info(gp->dev, "Found %s PHY\n",
1746 gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1748 gem_begin_auto_negotiation(gp, NULL);
1751 static void gem_init_dma(struct gem *gp)
1753 u64 desc_dma = (u64) gp->gblock_dvma;
1754 u32 val;
1756 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1757 writel(val, gp->regs + TXDMA_CFG);
1759 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1760 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1761 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1763 writel(0, gp->regs + TXDMA_KICK);
1765 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1766 (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
1767 writel(val, gp->regs + RXDMA_CFG);
1769 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1770 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1772 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1774 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1775 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1776 writel(val, gp->regs + RXDMA_PTHRESH);
1778 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1779 writel(((5 & RXDMA_BLANK_IPKTS) |
1780 ((8 << 12) & RXDMA_BLANK_ITIME)),
1781 gp->regs + RXDMA_BLANK);
1782 else
1783 writel(((5 & RXDMA_BLANK_IPKTS) |
1784 ((4 << 12) & RXDMA_BLANK_ITIME)),
1785 gp->regs + RXDMA_BLANK);
1788 static u32 gem_setup_multicast(struct gem *gp)
1790 u32 rxcfg = 0;
1791 int i;
1793 if ((gp->dev->flags & IFF_ALLMULTI) ||
1794 (netdev_mc_count(gp->dev) > 256)) {
1795 for (i=0; i<16; i++)
1796 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1797 rxcfg |= MAC_RXCFG_HFE;
1798 } else if (gp->dev->flags & IFF_PROMISC) {
1799 rxcfg |= MAC_RXCFG_PROM;
1800 } else {
1801 u16 hash_table[16];
1802 u32 crc;
1803 struct netdev_hw_addr *ha;
1804 int i;
1806 memset(hash_table, 0, sizeof(hash_table));
1807 netdev_for_each_mc_addr(ha, gp->dev) {
1808 crc = ether_crc_le(6, ha->addr);
1809 crc >>= 24;
1810 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1812 for (i=0; i<16; i++)
1813 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1814 rxcfg |= MAC_RXCFG_HFE;
1817 return rxcfg;
1820 static void gem_init_mac(struct gem *gp)
1822 unsigned char *e = &gp->dev->dev_addr[0];
1824 writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1826 writel(0x00, gp->regs + MAC_IPG0);
1827 writel(0x08, gp->regs + MAC_IPG1);
1828 writel(0x04, gp->regs + MAC_IPG2);
1829 writel(0x40, gp->regs + MAC_STIME);
1830 writel(0x40, gp->regs + MAC_MINFSZ);
1832 /* Ethernet payload + header + FCS + optional VLAN tag. */
1833 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1835 writel(0x07, gp->regs + MAC_PASIZE);
1836 writel(0x04, gp->regs + MAC_JAMSIZE);
1837 writel(0x10, gp->regs + MAC_ATTLIM);
1838 writel(0x8808, gp->regs + MAC_MCTYPE);
1840 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1842 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1843 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1844 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1846 writel(0, gp->regs + MAC_ADDR3);
1847 writel(0, gp->regs + MAC_ADDR4);
1848 writel(0, gp->regs + MAC_ADDR5);
1850 writel(0x0001, gp->regs + MAC_ADDR6);
1851 writel(0xc200, gp->regs + MAC_ADDR7);
1852 writel(0x0180, gp->regs + MAC_ADDR8);
1854 writel(0, gp->regs + MAC_AFILT0);
1855 writel(0, gp->regs + MAC_AFILT1);
1856 writel(0, gp->regs + MAC_AFILT2);
1857 writel(0, gp->regs + MAC_AF21MSK);
1858 writel(0, gp->regs + MAC_AF0MSK);
1860 gp->mac_rx_cfg = gem_setup_multicast(gp);
1861 #ifdef STRIP_FCS
1862 gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1863 #endif
1864 writel(0, gp->regs + MAC_NCOLL);
1865 writel(0, gp->regs + MAC_FASUCC);
1866 writel(0, gp->regs + MAC_ECOLL);
1867 writel(0, gp->regs + MAC_LCOLL);
1868 writel(0, gp->regs + MAC_DTIMER);
1869 writel(0, gp->regs + MAC_PATMPS);
1870 writel(0, gp->regs + MAC_RFCTR);
1871 writel(0, gp->regs + MAC_LERR);
1872 writel(0, gp->regs + MAC_AERR);
1873 writel(0, gp->regs + MAC_FCSERR);
1874 writel(0, gp->regs + MAC_RXCVERR);
1876 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1877 * them once a link is established.
1879 writel(0, gp->regs + MAC_TXCFG);
1880 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1881 writel(0, gp->regs + MAC_MCCFG);
1882 writel(0, gp->regs + MAC_XIFCFG);
1884 /* Setup MAC interrupts. We want to get all of the interesting
1885 * counter expiration events, but we do not want to hear about
1886 * normal rx/tx as the DMA engine tells us that.
1888 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1889 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1891 /* Don't enable even the PAUSE interrupts for now, we
1892 * make no use of those events other than to record them.
1894 writel(0xffffffff, gp->regs + MAC_MCMASK);
1896 /* Don't enable GEM's WOL in normal operations
1898 if (gp->has_wol)
1899 writel(0, gp->regs + WOL_WAKECSR);
1902 static void gem_init_pause_thresholds(struct gem *gp)
1904 u32 cfg;
1906 /* Calculate pause thresholds. Setting the OFF threshold to the
1907 * full RX fifo size effectively disables PAUSE generation which
1908 * is what we do for 10/100 only GEMs which have FIFOs too small
1909 * to make real gains from PAUSE.
1911 if (gp->rx_fifo_sz <= (2 * 1024)) {
1912 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1913 } else {
1914 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1915 int off = (gp->rx_fifo_sz - (max_frame * 2));
1916 int on = off - max_frame;
1918 gp->rx_pause_off = off;
1919 gp->rx_pause_on = on;
1923 /* Configure the chip "burst" DMA mode & enable some
1924 * HW bug fixes on Apple version
1926 cfg = 0;
1927 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1928 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1929 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1930 cfg |= GREG_CFG_IBURST;
1931 #endif
1932 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1933 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1934 writel(cfg, gp->regs + GREG_CFG);
1936 /* If Infinite Burst didn't stick, then use different
1937 * thresholds (and Apple bug fixes don't exist)
1939 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1940 cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1941 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1942 writel(cfg, gp->regs + GREG_CFG);
1946 static int gem_check_invariants(struct gem *gp)
1948 struct pci_dev *pdev = gp->pdev;
1949 u32 mif_cfg;
1951 /* On Apple's sungem, we can't rely on registers as the chip
1952 * was been powered down by the firmware. The PHY is looked
1953 * up later on.
1955 if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1956 gp->phy_type = phy_mii_mdio0;
1957 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1958 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1959 gp->swrst_base = 0;
1961 mif_cfg = readl(gp->regs + MIF_CFG);
1962 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1963 mif_cfg |= MIF_CFG_MDI0;
1964 writel(mif_cfg, gp->regs + MIF_CFG);
1965 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1966 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1968 /* We hard-code the PHY address so we can properly bring it out of
1969 * reset later on, we can't really probe it at this point, though
1970 * that isn't an issue.
1972 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1973 gp->mii_phy_addr = 1;
1974 else
1975 gp->mii_phy_addr = 0;
1977 return 0;
1980 mif_cfg = readl(gp->regs + MIF_CFG);
1982 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1983 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1984 /* One of the MII PHYs _must_ be present
1985 * as this chip has no gigabit PHY.
1987 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1988 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1989 mif_cfg);
1990 return -1;
1994 /* Determine initial PHY interface type guess. MDIO1 is the
1995 * external PHY and thus takes precedence over MDIO0.
1998 if (mif_cfg & MIF_CFG_MDI1) {
1999 gp->phy_type = phy_mii_mdio1;
2000 mif_cfg |= MIF_CFG_PSELECT;
2001 writel(mif_cfg, gp->regs + MIF_CFG);
2002 } else if (mif_cfg & MIF_CFG_MDI0) {
2003 gp->phy_type = phy_mii_mdio0;
2004 mif_cfg &= ~MIF_CFG_PSELECT;
2005 writel(mif_cfg, gp->regs + MIF_CFG);
2006 } else {
2007 #ifdef CONFIG_SPARC
2008 const char *p;
2010 p = of_get_property(gp->of_node, "shared-pins", NULL);
2011 if (p && !strcmp(p, "serdes"))
2012 gp->phy_type = phy_serdes;
2013 else
2014 #endif
2015 gp->phy_type = phy_serialink;
2017 if (gp->phy_type == phy_mii_mdio1 ||
2018 gp->phy_type == phy_mii_mdio0) {
2019 int i;
2021 for (i = 0; i < 32; i++) {
2022 gp->mii_phy_addr = i;
2023 if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
2024 break;
2026 if (i == 32) {
2027 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2028 pr_err("RIO MII phy will not respond\n");
2029 return -1;
2031 gp->phy_type = phy_serdes;
2035 /* Fetch the FIFO configurations now too. */
2036 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2037 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2039 if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2040 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2041 if (gp->tx_fifo_sz != (9 * 1024) ||
2042 gp->rx_fifo_sz != (20 * 1024)) {
2043 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2044 gp->tx_fifo_sz, gp->rx_fifo_sz);
2045 return -1;
2047 gp->swrst_base = 0;
2048 } else {
2049 if (gp->tx_fifo_sz != (2 * 1024) ||
2050 gp->rx_fifo_sz != (2 * 1024)) {
2051 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2052 gp->tx_fifo_sz, gp->rx_fifo_sz);
2053 return -1;
2055 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2059 return 0;
2062 static void gem_reinit_chip(struct gem *gp)
2064 /* Reset the chip */
2065 gem_reset(gp);
2067 /* Make sure ints are disabled */
2068 gem_disable_ints(gp);
2070 /* Allocate & setup ring buffers */
2071 gem_init_rings(gp);
2073 /* Configure pause thresholds */
2074 gem_init_pause_thresholds(gp);
2076 /* Init DMA & MAC engines */
2077 gem_init_dma(gp);
2078 gem_init_mac(gp);
2082 static void gem_stop_phy(struct gem *gp, int wol)
2084 u32 mifcfg;
2086 /* Let the chip settle down a bit, it seems that helps
2087 * for sleep mode on some models
2089 msleep(10);
2091 /* Make sure we aren't polling PHY status change. We
2092 * don't currently use that feature though
2094 mifcfg = readl(gp->regs + MIF_CFG);
2095 mifcfg &= ~MIF_CFG_POLL;
2096 writel(mifcfg, gp->regs + MIF_CFG);
2098 if (wol && gp->has_wol) {
2099 unsigned char *e = &gp->dev->dev_addr[0];
2100 u32 csr;
2102 /* Setup wake-on-lan for MAGIC packet */
2103 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2104 gp->regs + MAC_RXCFG);
2105 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2106 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2107 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2109 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2110 csr = WOL_WAKECSR_ENABLE;
2111 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2112 csr |= WOL_WAKECSR_MII;
2113 writel(csr, gp->regs + WOL_WAKECSR);
2114 } else {
2115 writel(0, gp->regs + MAC_RXCFG);
2116 (void)readl(gp->regs + MAC_RXCFG);
2117 /* Machine sleep will die in strange ways if we
2118 * dont wait a bit here, looks like the chip takes
2119 * some time to really shut down
2121 msleep(10);
2124 writel(0, gp->regs + MAC_TXCFG);
2125 writel(0, gp->regs + MAC_XIFCFG);
2126 writel(0, gp->regs + TXDMA_CFG);
2127 writel(0, gp->regs + RXDMA_CFG);
2129 if (!wol) {
2130 gem_reset(gp);
2131 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2132 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2134 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2135 gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2137 /* According to Apple, we must set the MDIO pins to this begnign
2138 * state or we may 1) eat more current, 2) damage some PHYs
2140 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2141 writel(0, gp->regs + MIF_BBCLK);
2142 writel(0, gp->regs + MIF_BBDATA);
2143 writel(0, gp->regs + MIF_BBOENAB);
2144 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2145 (void) readl(gp->regs + MAC_XIFCFG);
2149 static int gem_do_start(struct net_device *dev)
2151 struct gem *gp = netdev_priv(dev);
2152 int rc;
2154 /* Enable the cell */
2155 gem_get_cell(gp);
2157 /* Make sure PCI access and bus master are enabled */
2158 rc = pci_enable_device(gp->pdev);
2159 if (rc) {
2160 netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2162 /* Put cell and forget it for now, it will be considered as
2163 * still asleep, a new sleep cycle may bring it back
2165 gem_put_cell(gp);
2166 return -ENXIO;
2168 pci_set_master(gp->pdev);
2170 /* Init & setup chip hardware */
2171 gem_reinit_chip(gp);
2173 /* An interrupt might come in handy */
2174 rc = request_irq(gp->pdev->irq, gem_interrupt,
2175 IRQF_SHARED, dev->name, (void *)dev);
2176 if (rc) {
2177 netdev_err(dev, "failed to request irq !\n");
2179 gem_reset(gp);
2180 gem_clean_rings(gp);
2181 gem_put_cell(gp);
2182 return rc;
2185 /* Mark us as attached again if we come from resume(), this has
2186 * no effect if we weren't detached and needs to be done now.
2188 netif_device_attach(dev);
2190 /* Restart NAPI & queues */
2191 gem_netif_start(gp);
2193 /* Detect & init PHY, start autoneg etc... this will
2194 * eventually result in starting DMA operations when
2195 * the link is up
2197 gem_init_phy(gp);
2199 return 0;
2202 static void gem_do_stop(struct net_device *dev, int wol)
2204 struct gem *gp = netdev_priv(dev);
2206 /* Stop NAPI and stop tx queue */
2207 gem_netif_stop(gp);
2209 /* Make sure ints are disabled. We don't care about
2210 * synchronizing as NAPI is disabled, thus a stray
2211 * interrupt will do nothing bad (our irq handler
2212 * just schedules NAPI)
2214 gem_disable_ints(gp);
2216 /* Stop the link timer */
2217 del_timer_sync(&gp->link_timer);
2219 /* We cannot cancel the reset task while holding the
2220 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2221 * if we did. This is not an issue however as the reset
2222 * task is synchronized vs. us (rtnl_lock) and will do
2223 * nothing if the device is down or suspended. We do
2224 * still clear reset_task_pending to avoid a spurrious
2225 * reset later on in case we do resume before it gets
2226 * scheduled.
2228 gp->reset_task_pending = 0;
2230 /* If we are going to sleep with WOL */
2231 gem_stop_dma(gp);
2232 msleep(10);
2233 if (!wol)
2234 gem_reset(gp);
2235 msleep(10);
2237 /* Get rid of rings */
2238 gem_clean_rings(gp);
2240 /* No irq needed anymore */
2241 free_irq(gp->pdev->irq, (void *) dev);
2243 /* Shut the PHY down eventually and setup WOL */
2244 gem_stop_phy(gp, wol);
2246 /* Make sure bus master is disabled */
2247 pci_disable_device(gp->pdev);
2249 /* Cell not needed neither if no WOL */
2250 if (!wol)
2251 gem_put_cell(gp);
2254 static void gem_reset_task(struct work_struct *work)
2256 struct gem *gp = container_of(work, struct gem, reset_task);
2258 /* Lock out the network stack (essentially shield ourselves
2259 * against a racing open, close, control call, or suspend
2261 rtnl_lock();
2263 /* Skip the reset task if suspended or closed, or if it's
2264 * been cancelled by gem_do_stop (see comment there)
2266 if (!netif_device_present(gp->dev) ||
2267 !netif_running(gp->dev) ||
2268 !gp->reset_task_pending) {
2269 rtnl_unlock();
2270 return;
2273 /* Stop the link timer */
2274 del_timer_sync(&gp->link_timer);
2276 /* Stop NAPI and tx */
2277 gem_netif_stop(gp);
2279 /* Reset the chip & rings */
2280 gem_reinit_chip(gp);
2281 if (gp->lstate == link_up)
2282 gem_set_link_modes(gp);
2284 /* Restart NAPI and Tx */
2285 gem_netif_start(gp);
2287 /* We are back ! */
2288 gp->reset_task_pending = 0;
2290 /* If the link is not up, restart autoneg, else restart the
2291 * polling timer
2293 if (gp->lstate != link_up)
2294 gem_begin_auto_negotiation(gp, NULL);
2295 else
2296 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2298 rtnl_unlock();
2301 static int gem_open(struct net_device *dev)
2303 /* We allow open while suspended, we just do nothing,
2304 * the chip will be initialized in resume()
2306 if (netif_device_present(dev))
2307 return gem_do_start(dev);
2308 return 0;
2311 static int gem_close(struct net_device *dev)
2313 if (netif_device_present(dev))
2314 gem_do_stop(dev, 0);
2316 return 0;
2319 #ifdef CONFIG_PM
2320 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2322 struct net_device *dev = pci_get_drvdata(pdev);
2323 struct gem *gp = netdev_priv(dev);
2325 /* Lock the network stack first to avoid racing with open/close,
2326 * reset task and setting calls
2328 rtnl_lock();
2330 /* Not running, mark ourselves non-present, no need for
2331 * a lock here
2333 if (!netif_running(dev)) {
2334 netif_device_detach(dev);
2335 rtnl_unlock();
2336 return 0;
2338 netdev_info(dev, "suspending, WakeOnLan %s\n",
2339 (gp->wake_on_lan && netif_running(dev)) ?
2340 "enabled" : "disabled");
2342 /* Tell the network stack we're gone. gem_do_stop() below will
2343 * synchronize with TX, stop NAPI etc...
2345 netif_device_detach(dev);
2347 /* Switch off chip, remember WOL setting */
2348 gp->asleep_wol = !!gp->wake_on_lan;
2349 gem_do_stop(dev, gp->asleep_wol);
2351 /* Unlock the network stack */
2352 rtnl_unlock();
2354 return 0;
2357 static int gem_resume(struct pci_dev *pdev)
2359 struct net_device *dev = pci_get_drvdata(pdev);
2360 struct gem *gp = netdev_priv(dev);
2362 /* See locking comment in gem_suspend */
2363 rtnl_lock();
2365 /* Not running, mark ourselves present, no need for
2366 * a lock here
2368 if (!netif_running(dev)) {
2369 netif_device_attach(dev);
2370 rtnl_unlock();
2371 return 0;
2374 /* Restart chip. If that fails there isn't much we can do, we
2375 * leave things stopped.
2377 gem_do_start(dev);
2379 /* If we had WOL enabled, the cell clock was never turned off during
2380 * sleep, so we end up beeing unbalanced. Fix that here
2382 if (gp->asleep_wol)
2383 gem_put_cell(gp);
2385 /* Unlock the network stack */
2386 rtnl_unlock();
2388 return 0;
2390 #endif /* CONFIG_PM */
2392 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2394 struct gem *gp = netdev_priv(dev);
2396 /* I have seen this being called while the PM was in progress,
2397 * so we shield against this. Let's also not poke at registers
2398 * while the reset task is going on.
2400 * TODO: Move stats collection elsewhere (link timer ?) and
2401 * make this a nop to avoid all those synchro issues
2403 if (!netif_device_present(dev) || !netif_running(dev))
2404 goto bail;
2406 /* Better safe than sorry... */
2407 if (WARN_ON(!gp->cell_enabled))
2408 goto bail;
2410 dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2411 writel(0, gp->regs + MAC_FCSERR);
2413 dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2414 writel(0, gp->regs + MAC_AERR);
2416 dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2417 writel(0, gp->regs + MAC_LERR);
2419 dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2420 dev->stats.collisions +=
2421 (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2422 writel(0, gp->regs + MAC_ECOLL);
2423 writel(0, gp->regs + MAC_LCOLL);
2424 bail:
2425 return &dev->stats;
2428 static int gem_set_mac_address(struct net_device *dev, void *addr)
2430 struct sockaddr *macaddr = (struct sockaddr *) addr;
2431 struct gem *gp = netdev_priv(dev);
2432 unsigned char *e = &dev->dev_addr[0];
2434 if (!is_valid_ether_addr(macaddr->sa_data))
2435 return -EADDRNOTAVAIL;
2437 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2439 /* We'll just catch it later when the device is up'd or resumed */
2440 if (!netif_running(dev) || !netif_device_present(dev))
2441 return 0;
2443 /* Better safe than sorry... */
2444 if (WARN_ON(!gp->cell_enabled))
2445 return 0;
2447 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2448 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2449 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2451 return 0;
2454 static void gem_set_multicast(struct net_device *dev)
2456 struct gem *gp = netdev_priv(dev);
2457 u32 rxcfg, rxcfg_new;
2458 int limit = 10000;
2460 if (!netif_running(dev) || !netif_device_present(dev))
2461 return;
2463 /* Better safe than sorry... */
2464 if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2465 return;
2467 rxcfg = readl(gp->regs + MAC_RXCFG);
2468 rxcfg_new = gem_setup_multicast(gp);
2469 #ifdef STRIP_FCS
2470 rxcfg_new |= MAC_RXCFG_SFCS;
2471 #endif
2472 gp->mac_rx_cfg = rxcfg_new;
2474 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2475 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2476 if (!limit--)
2477 break;
2478 udelay(10);
2481 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2482 rxcfg |= rxcfg_new;
2484 writel(rxcfg, gp->regs + MAC_RXCFG);
2487 /* Jumbo-grams don't seem to work :-( */
2488 #define GEM_MIN_MTU ETH_MIN_MTU
2489 #if 1
2490 #define GEM_MAX_MTU ETH_DATA_LEN
2491 #else
2492 #define GEM_MAX_MTU 9000
2493 #endif
2495 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2497 struct gem *gp = netdev_priv(dev);
2499 dev->mtu = new_mtu;
2501 /* We'll just catch it later when the device is up'd or resumed */
2502 if (!netif_running(dev) || !netif_device_present(dev))
2503 return 0;
2505 /* Better safe than sorry... */
2506 if (WARN_ON(!gp->cell_enabled))
2507 return 0;
2509 gem_netif_stop(gp);
2510 gem_reinit_chip(gp);
2511 if (gp->lstate == link_up)
2512 gem_set_link_modes(gp);
2513 gem_netif_start(gp);
2515 return 0;
2518 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2520 struct gem *gp = netdev_priv(dev);
2522 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2523 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2524 strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2527 static int gem_get_link_ksettings(struct net_device *dev,
2528 struct ethtool_link_ksettings *cmd)
2530 struct gem *gp = netdev_priv(dev);
2531 u32 supported, advertising;
2533 if (gp->phy_type == phy_mii_mdio0 ||
2534 gp->phy_type == phy_mii_mdio1) {
2535 if (gp->phy_mii.def)
2536 supported = gp->phy_mii.def->features;
2537 else
2538 supported = (SUPPORTED_10baseT_Half |
2539 SUPPORTED_10baseT_Full);
2541 /* XXX hardcoded stuff for now */
2542 cmd->base.port = PORT_MII;
2543 cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2545 /* Return current PHY settings */
2546 cmd->base.autoneg = gp->want_autoneg;
2547 cmd->base.speed = gp->phy_mii.speed;
2548 cmd->base.duplex = gp->phy_mii.duplex;
2549 advertising = gp->phy_mii.advertising;
2551 /* If we started with a forced mode, we don't have a default
2552 * advertise set, we need to return something sensible so
2553 * userland can re-enable autoneg properly.
2555 if (advertising == 0)
2556 advertising = supported;
2557 } else { // XXX PCS ?
2558 supported =
2559 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2560 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2561 SUPPORTED_Autoneg);
2562 advertising = supported;
2563 cmd->base.speed = 0;
2564 cmd->base.duplex = 0;
2565 cmd->base.port = 0;
2566 cmd->base.phy_address = 0;
2567 cmd->base.autoneg = 0;
2569 /* serdes means usually a Fibre connector, with most fixed */
2570 if (gp->phy_type == phy_serdes) {
2571 cmd->base.port = PORT_FIBRE;
2572 supported = (SUPPORTED_1000baseT_Half |
2573 SUPPORTED_1000baseT_Full |
2574 SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2575 SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2576 advertising = supported;
2577 if (gp->lstate == link_up)
2578 cmd->base.speed = SPEED_1000;
2579 cmd->base.duplex = DUPLEX_FULL;
2580 cmd->base.autoneg = 1;
2584 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2585 supported);
2586 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
2587 advertising);
2589 return 0;
2592 static int gem_set_link_ksettings(struct net_device *dev,
2593 const struct ethtool_link_ksettings *cmd)
2595 struct gem *gp = netdev_priv(dev);
2596 u32 speed = cmd->base.speed;
2597 u32 advertising;
2599 ethtool_convert_link_mode_to_legacy_u32(&advertising,
2600 cmd->link_modes.advertising);
2602 /* Verify the settings we care about. */
2603 if (cmd->base.autoneg != AUTONEG_ENABLE &&
2604 cmd->base.autoneg != AUTONEG_DISABLE)
2605 return -EINVAL;
2607 if (cmd->base.autoneg == AUTONEG_ENABLE &&
2608 advertising == 0)
2609 return -EINVAL;
2611 if (cmd->base.autoneg == AUTONEG_DISABLE &&
2612 ((speed != SPEED_1000 &&
2613 speed != SPEED_100 &&
2614 speed != SPEED_10) ||
2615 (cmd->base.duplex != DUPLEX_HALF &&
2616 cmd->base.duplex != DUPLEX_FULL)))
2617 return -EINVAL;
2619 /* Apply settings and restart link process. */
2620 if (netif_device_present(gp->dev)) {
2621 del_timer_sync(&gp->link_timer);
2622 gem_begin_auto_negotiation(gp, cmd);
2625 return 0;
2628 static int gem_nway_reset(struct net_device *dev)
2630 struct gem *gp = netdev_priv(dev);
2632 if (!gp->want_autoneg)
2633 return -EINVAL;
2635 /* Restart link process */
2636 if (netif_device_present(gp->dev)) {
2637 del_timer_sync(&gp->link_timer);
2638 gem_begin_auto_negotiation(gp, NULL);
2641 return 0;
2644 static u32 gem_get_msglevel(struct net_device *dev)
2646 struct gem *gp = netdev_priv(dev);
2647 return gp->msg_enable;
2650 static void gem_set_msglevel(struct net_device *dev, u32 value)
2652 struct gem *gp = netdev_priv(dev);
2653 gp->msg_enable = value;
2657 /* Add more when I understand how to program the chip */
2658 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2660 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2662 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2664 struct gem *gp = netdev_priv(dev);
2666 /* Add more when I understand how to program the chip */
2667 if (gp->has_wol) {
2668 wol->supported = WOL_SUPPORTED_MASK;
2669 wol->wolopts = gp->wake_on_lan;
2670 } else {
2671 wol->supported = 0;
2672 wol->wolopts = 0;
2676 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2678 struct gem *gp = netdev_priv(dev);
2680 if (!gp->has_wol)
2681 return -EOPNOTSUPP;
2682 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2683 return 0;
2686 static const struct ethtool_ops gem_ethtool_ops = {
2687 .get_drvinfo = gem_get_drvinfo,
2688 .get_link = ethtool_op_get_link,
2689 .nway_reset = gem_nway_reset,
2690 .get_msglevel = gem_get_msglevel,
2691 .set_msglevel = gem_set_msglevel,
2692 .get_wol = gem_get_wol,
2693 .set_wol = gem_set_wol,
2694 .get_link_ksettings = gem_get_link_ksettings,
2695 .set_link_ksettings = gem_set_link_ksettings,
2698 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2700 struct gem *gp = netdev_priv(dev);
2701 struct mii_ioctl_data *data = if_mii(ifr);
2702 int rc = -EOPNOTSUPP;
2704 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2705 * netif_device_present() is true and holds rtnl_lock for us
2706 * so we have nothing to worry about
2709 switch (cmd) {
2710 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2711 data->phy_id = gp->mii_phy_addr;
2712 /* Fallthrough... */
2714 case SIOCGMIIREG: /* Read MII PHY register. */
2715 data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
2716 data->reg_num & 0x1f);
2717 rc = 0;
2718 break;
2720 case SIOCSMIIREG: /* Write MII PHY register. */
2721 __sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2722 data->val_in);
2723 rc = 0;
2724 break;
2726 return rc;
2729 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2730 /* Fetch MAC address from vital product data of PCI ROM. */
2731 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2733 int this_offset;
2735 for (this_offset = 0x20; this_offset < len; this_offset++) {
2736 void __iomem *p = rom_base + this_offset;
2737 int i;
2739 if (readb(p + 0) != 0x90 ||
2740 readb(p + 1) != 0x00 ||
2741 readb(p + 2) != 0x09 ||
2742 readb(p + 3) != 0x4e ||
2743 readb(p + 4) != 0x41 ||
2744 readb(p + 5) != 0x06)
2745 continue;
2747 this_offset += 6;
2748 p += 6;
2750 for (i = 0; i < 6; i++)
2751 dev_addr[i] = readb(p + i);
2752 return 1;
2754 return 0;
2757 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2759 size_t size;
2760 void __iomem *p = pci_map_rom(pdev, &size);
2762 if (p) {
2763 int found;
2765 found = readb(p) == 0x55 &&
2766 readb(p + 1) == 0xaa &&
2767 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2768 pci_unmap_rom(pdev, p);
2769 if (found)
2770 return;
2773 /* Sun MAC prefix then 3 random bytes. */
2774 dev_addr[0] = 0x08;
2775 dev_addr[1] = 0x00;
2776 dev_addr[2] = 0x20;
2777 get_random_bytes(dev_addr + 3, 3);
2779 #endif /* not Sparc and not PPC */
2781 static int gem_get_device_address(struct gem *gp)
2783 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2784 struct net_device *dev = gp->dev;
2785 const unsigned char *addr;
2787 addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2788 if (addr == NULL) {
2789 #ifdef CONFIG_SPARC
2790 addr = idprom->id_ethaddr;
2791 #else
2792 printk("\n");
2793 pr_err("%s: can't get mac-address\n", dev->name);
2794 return -1;
2795 #endif
2797 memcpy(dev->dev_addr, addr, ETH_ALEN);
2798 #else
2799 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2800 #endif
2801 return 0;
2804 static void gem_remove_one(struct pci_dev *pdev)
2806 struct net_device *dev = pci_get_drvdata(pdev);
2808 if (dev) {
2809 struct gem *gp = netdev_priv(dev);
2811 unregister_netdev(dev);
2813 /* Ensure reset task is truly gone */
2814 cancel_work_sync(&gp->reset_task);
2816 /* Free resources */
2817 pci_free_consistent(pdev,
2818 sizeof(struct gem_init_block),
2819 gp->init_block,
2820 gp->gblock_dvma);
2821 iounmap(gp->regs);
2822 pci_release_regions(pdev);
2823 free_netdev(dev);
2827 static const struct net_device_ops gem_netdev_ops = {
2828 .ndo_open = gem_open,
2829 .ndo_stop = gem_close,
2830 .ndo_start_xmit = gem_start_xmit,
2831 .ndo_get_stats = gem_get_stats,
2832 .ndo_set_rx_mode = gem_set_multicast,
2833 .ndo_do_ioctl = gem_ioctl,
2834 .ndo_tx_timeout = gem_tx_timeout,
2835 .ndo_change_mtu = gem_change_mtu,
2836 .ndo_validate_addr = eth_validate_addr,
2837 .ndo_set_mac_address = gem_set_mac_address,
2838 #ifdef CONFIG_NET_POLL_CONTROLLER
2839 .ndo_poll_controller = gem_poll_controller,
2840 #endif
2843 static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2845 unsigned long gemreg_base, gemreg_len;
2846 struct net_device *dev;
2847 struct gem *gp;
2848 int err, pci_using_dac;
2850 printk_once(KERN_INFO "%s", version);
2852 /* Apple gmac note: during probe, the chip is powered up by
2853 * the arch code to allow the code below to work (and to let
2854 * the chip be probed on the config space. It won't stay powered
2855 * up until the interface is brought up however, so we can't rely
2856 * on register configuration done at this point.
2858 err = pci_enable_device(pdev);
2859 if (err) {
2860 pr_err("Cannot enable MMIO operation, aborting\n");
2861 return err;
2863 pci_set_master(pdev);
2865 /* Configure DMA attributes. */
2867 /* All of the GEM documentation states that 64-bit DMA addressing
2868 * is fully supported and should work just fine. However the
2869 * front end for RIO based GEMs is different and only supports
2870 * 32-bit addressing.
2872 * For now we assume the various PPC GEMs are 32-bit only as well.
2874 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2875 pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2876 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
2877 pci_using_dac = 1;
2878 } else {
2879 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2880 if (err) {
2881 pr_err("No usable DMA configuration, aborting\n");
2882 goto err_disable_device;
2884 pci_using_dac = 0;
2887 gemreg_base = pci_resource_start(pdev, 0);
2888 gemreg_len = pci_resource_len(pdev, 0);
2890 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2891 pr_err("Cannot find proper PCI device base address, aborting\n");
2892 err = -ENODEV;
2893 goto err_disable_device;
2896 dev = alloc_etherdev(sizeof(*gp));
2897 if (!dev) {
2898 err = -ENOMEM;
2899 goto err_disable_device;
2901 SET_NETDEV_DEV(dev, &pdev->dev);
2903 gp = netdev_priv(dev);
2905 err = pci_request_regions(pdev, DRV_NAME);
2906 if (err) {
2907 pr_err("Cannot obtain PCI resources, aborting\n");
2908 goto err_out_free_netdev;
2911 gp->pdev = pdev;
2912 gp->dev = dev;
2914 gp->msg_enable = DEFAULT_MSG;
2916 timer_setup(&gp->link_timer, gem_link_timer, 0);
2918 INIT_WORK(&gp->reset_task, gem_reset_task);
2920 gp->lstate = link_down;
2921 gp->timer_ticks = 0;
2922 netif_carrier_off(dev);
2924 gp->regs = ioremap(gemreg_base, gemreg_len);
2925 if (!gp->regs) {
2926 pr_err("Cannot map device registers, aborting\n");
2927 err = -EIO;
2928 goto err_out_free_res;
2931 /* On Apple, we want a reference to the Open Firmware device-tree
2932 * node. We use it for clock control.
2934 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2935 gp->of_node = pci_device_to_OF_node(pdev);
2936 #endif
2938 /* Only Apple version supports WOL afaik */
2939 if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2940 gp->has_wol = 1;
2942 /* Make sure cell is enabled */
2943 gem_get_cell(gp);
2945 /* Make sure everything is stopped and in init state */
2946 gem_reset(gp);
2948 /* Fill up the mii_phy structure (even if we won't use it) */
2949 gp->phy_mii.dev = dev;
2950 gp->phy_mii.mdio_read = _sungem_phy_read;
2951 gp->phy_mii.mdio_write = _sungem_phy_write;
2952 #ifdef CONFIG_PPC_PMAC
2953 gp->phy_mii.platform_data = gp->of_node;
2954 #endif
2955 /* By default, we start with autoneg */
2956 gp->want_autoneg = 1;
2958 /* Check fifo sizes, PHY type, etc... */
2959 if (gem_check_invariants(gp)) {
2960 err = -ENODEV;
2961 goto err_out_iounmap;
2964 /* It is guaranteed that the returned buffer will be at least
2965 * PAGE_SIZE aligned.
2967 gp->init_block = (struct gem_init_block *)
2968 pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
2969 &gp->gblock_dvma);
2970 if (!gp->init_block) {
2971 pr_err("Cannot allocate init block, aborting\n");
2972 err = -ENOMEM;
2973 goto err_out_iounmap;
2976 err = gem_get_device_address(gp);
2977 if (err)
2978 goto err_out_free_consistent;
2980 dev->netdev_ops = &gem_netdev_ops;
2981 netif_napi_add(dev, &gp->napi, gem_poll, 64);
2982 dev->ethtool_ops = &gem_ethtool_ops;
2983 dev->watchdog_timeo = 5 * HZ;
2984 dev->dma = 0;
2986 /* Set that now, in case PM kicks in now */
2987 pci_set_drvdata(pdev, dev);
2989 /* We can do scatter/gather and HW checksum */
2990 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
2991 dev->features = dev->hw_features;
2992 if (pci_using_dac)
2993 dev->features |= NETIF_F_HIGHDMA;
2995 /* MTU range: 68 - 1500 (Jumbo mode is broken) */
2996 dev->min_mtu = GEM_MIN_MTU;
2997 dev->max_mtu = GEM_MAX_MTU;
2999 /* Register with kernel */
3000 if (register_netdev(dev)) {
3001 pr_err("Cannot register net device, aborting\n");
3002 err = -ENOMEM;
3003 goto err_out_free_consistent;
3006 /* Undo the get_cell with appropriate locking (we could use
3007 * ndo_init/uninit but that would be even more clumsy imho)
3009 rtnl_lock();
3010 gem_put_cell(gp);
3011 rtnl_unlock();
3013 netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3014 dev->dev_addr);
3015 return 0;
3017 err_out_free_consistent:
3018 gem_remove_one(pdev);
3019 err_out_iounmap:
3020 gem_put_cell(gp);
3021 iounmap(gp->regs);
3023 err_out_free_res:
3024 pci_release_regions(pdev);
3026 err_out_free_netdev:
3027 free_netdev(dev);
3028 err_disable_device:
3029 pci_disable_device(pdev);
3030 return err;
3035 static struct pci_driver gem_driver = {
3036 .name = GEM_MODULE_NAME,
3037 .id_table = gem_pci_tbl,
3038 .probe = gem_init_one,
3039 .remove = gem_remove_one,
3040 #ifdef CONFIG_PM
3041 .suspend = gem_suspend,
3042 .resume = gem_resume,
3043 #endif /* CONFIG_PM */
3046 module_pci_driver(gem_driver);