2 * Intel Wireless WiMAX Connection 2400m
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
38 * - Initial implementation
43 * The 2400m and derived devices work in two modes: boot-mode or
44 * normal mode. In boot mode we can execute only a handful of commands
45 * targeted at uploading the firmware and launching it.
47 * The 2400m enters boot mode when it is first connected to the
48 * system, when it crashes and when you ask it to reboot. There are
49 * two submodes of the boot mode: signed and non-signed. Signed takes
50 * firmwares signed with a certain private key, non-signed takes any
51 * firmware. Normal hardware takes only signed firmware.
53 * On boot mode, in USB, we write to the device using the bulk out
54 * endpoint and read from it in the notification endpoint.
56 * Upon entrance to boot mode, the device sends (preceded with a few
57 * zero length packets (ZLPs) on the notification endpoint in USB) a
58 * reboot barker (4 le32 words with the same value). We ack it by
59 * sending the same barker to the device. The device acks with a
60 * reboot ack barker (4 le32 words with value I2400M_ACK_BARKER) and
61 * then is fully booted. At this point we can upload the firmware.
63 * Note that different iterations of the device and EEPROM
64 * configurations will send different [re]boot barkers; these are
65 * collected in i2400m_barker_db along with the firmware
66 * characteristics they require.
68 * This process is accomplished by the i2400m_bootrom_init()
69 * function. All the device interaction happens through the
70 * i2400m_bm_cmd() [boot mode command]. Special return values will
71 * indicate if the device did reset during the process.
73 * After this, we read the MAC address and then (if needed)
74 * reinitialize the device. We need to read it ahead of time because
75 * in the future, we might not upload the firmware until userspace
76 * 'ifconfig up's the device.
78 * We can then upload the firmware file. The file is composed of a BCF
79 * header (basic data, keys and signatures) and a list of write
80 * commands and payloads. Optionally more BCF headers might follow the
81 * main payload. We first upload the header [i2400m_dnload_init()] and
82 * then pass the commands and payloads verbatim to the i2400m_bm_cmd()
83 * function [i2400m_dnload_bcf()]. Then we tell the device to jump to
84 * the new firmware [i2400m_dnload_finalize()].
86 * Once firmware is uploaded, we are good to go :)
88 * When we don't know in which mode we are, we first try by sending a
89 * warm reset request that will take us to boot-mode. If we time out
90 * waiting for a reboot barker, that means maybe we are already in
91 * boot mode, so we send a reboot barker.
95 * This code (and process) is single threaded; for executing commands,
96 * we post a URB to the notification endpoint, post the command, wait
97 * for data on the notification buffer. We don't need to worry about
98 * others as we know we are the only ones in there.
100 * BACKEND IMPLEMENTATION
102 * This code is bus-generic; the bus-specific driver provides back end
103 * implementations to send a boot mode command to the device and to
104 * read an acknolwedgement from it (or an asynchronous notification)
109 * Note that in some cases, we can't just load a firmware file (for
110 * example, when resuming). For that, we might cache the firmware
111 * file. Thus, when doing the bootstrap, if there is a cache firmware
112 * file, it is used; if not, loading from disk is attempted.
116 * i2400m_barker_db_init Called by i2400m_driver_init()
117 * i2400m_barker_db_add
119 * i2400m_barker_db_exit Called by i2400m_driver_exit()
121 * i2400m_dev_bootstrap Called by __i2400m_dev_start()
123 * i2400m_fw_bootstrap
125 * i2400m_fw_hdr_check
130 * i2400m_bootrom_init
134 * i2400m_dnload_init_signed
135 * i2400m_dnload_init_nonsigned
136 * i2400m_download_chunk
140 * i2400m_dnload_finalize
144 * i2400m->bus_bm_cmd_send()
145 * i2400m->bus_bm_wait_for_ack
146 * __i2400m_bm_ack_verify
147 * i2400m_is_boot_barker
149 * i2400m_bm_cmd_prepare Used by bus-drivers to prep
150 * commands before sending
152 * i2400m_pm_notifier Called on Power Management events
156 #include <linux/firmware.h>
157 #include <linux/sched.h>
158 #include <linux/slab.h>
159 #include <linux/usb.h>
160 #include <linux/export.h>
164 #define D_SUBMODULE fw
165 #include "debug-levels.h"
168 static const __le32 i2400m_ACK_BARKER
[4] = {
169 cpu_to_le32(I2400M_ACK_BARKER
),
170 cpu_to_le32(I2400M_ACK_BARKER
),
171 cpu_to_le32(I2400M_ACK_BARKER
),
172 cpu_to_le32(I2400M_ACK_BARKER
)
177 * Prepare a boot-mode command for delivery
179 * @cmd: pointer to bootrom header to prepare
181 * Computes checksum if so needed. After calling this function, DO NOT
182 * modify the command or header as the checksum won't work anymore.
184 * We do it from here because some times we cannot do it in the
185 * original context the command was sent (it is a const), so when we
186 * copy it to our staging buffer, we add the checksum there.
188 void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header
*cmd
)
190 if (i2400m_brh_get_use_checksum(cmd
)) {
193 const u32
*checksum_ptr
= (void *) cmd
->payload
;
194 for (i
= 0; i
< cmd
->data_size
/ 4; i
++)
195 checksum
+= cpu_to_le32(*checksum_ptr
++);
196 checksum
+= cmd
->command
+ cmd
->target_addr
+ cmd
->data_size
;
197 cmd
->block_checksum
= cpu_to_le32(checksum
);
200 EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare
);
204 * Database of known barkers.
206 * A barker is what the device sends indicating he is ready to be
207 * bootloaded. Different versions of the device will send different
208 * barkers. Depending on the barker, it might mean the device wants
209 * some kind of firmware or the other.
211 static struct i2400m_barker_db
{
214 static size_t i2400m_barker_db_used
, i2400m_barker_db_size
;
218 int i2400m_zrealloc_2x(void **ptr
, size_t *_count
, size_t el_size
,
221 size_t old_count
= *_count
,
222 new_count
= old_count
? 2 * old_count
: 2,
223 old_size
= el_size
* old_count
,
224 new_size
= el_size
* new_count
;
225 void *nptr
= krealloc(*ptr
, new_size
, gfp_flags
);
227 /* zero the other half or the whole thing if old_count
230 memset(nptr
, 0, new_size
);
232 memset(nptr
+ old_size
, 0, old_size
);
242 * Add a barker to the database
244 * This cannot used outside of this module and only at at module_init
245 * time. This is to avoid the need to do locking.
248 int i2400m_barker_db_add(u32 barker_id
)
252 struct i2400m_barker_db
*barker
;
253 if (i2400m_barker_db_used
>= i2400m_barker_db_size
) {
254 result
= i2400m_zrealloc_2x(
255 (void **) &i2400m_barker_db
, &i2400m_barker_db_size
,
256 sizeof(i2400m_barker_db
[0]), GFP_KERNEL
);
260 barker
= i2400m_barker_db
+ i2400m_barker_db_used
++;
261 barker
->data
[0] = le32_to_cpu(barker_id
);
262 barker
->data
[1] = le32_to_cpu(barker_id
);
263 barker
->data
[2] = le32_to_cpu(barker_id
);
264 barker
->data
[3] = le32_to_cpu(barker_id
);
269 void i2400m_barker_db_exit(void)
271 kfree(i2400m_barker_db
);
272 i2400m_barker_db
= NULL
;
273 i2400m_barker_db_size
= 0;
274 i2400m_barker_db_used
= 0;
279 * Helper function to add all the known stable barkers to the barker
283 int i2400m_barker_db_known_barkers(void)
287 result
= i2400m_barker_db_add(I2400M_NBOOT_BARKER
);
290 result
= i2400m_barker_db_add(I2400M_SBOOT_BARKER
);
293 result
= i2400m_barker_db_add(I2400M_SBOOT_BARKER_6050
);
302 * Initialize the barker database
304 * This can only be used from the module_init function for this
305 * module; this is to avoid the need to do locking.
307 * @options: command line argument with extra barkers to
308 * recognize. This is a comma-separated list of 32-bit hex
309 * numbers. They are appended to the existing list. Setting 0
310 * cleans the existing list and starts a new one.
312 int i2400m_barker_db_init(const char *_options
)
315 char *options
= NULL
, *options_orig
, *token
;
317 i2400m_barker_db
= NULL
;
318 i2400m_barker_db_size
= 0;
319 i2400m_barker_db_used
= 0;
321 result
= i2400m_barker_db_known_barkers();
324 /* parse command line options from i2400m.barkers */
325 if (_options
!= NULL
) {
328 options_orig
= kstrdup(_options
, GFP_KERNEL
);
329 if (options_orig
== NULL
) {
333 options
= options_orig
;
335 while ((token
= strsep(&options
, ",")) != NULL
) {
336 if (*token
== '\0') /* eat joint commas */
338 if (sscanf(token
, "%x", &barker
) != 1
339 || barker
> 0xffffffff) {
340 printk(KERN_ERR
"%s: can't recognize "
341 "i2400m.barkers value '%s' as "
348 /* clean list and start new */
349 i2400m_barker_db_exit();
352 result
= i2400m_barker_db_add(barker
);
354 goto error_parse_add
;
364 kfree(i2400m_barker_db
);
370 * Recognize a boot barker
372 * @buf: buffer where the boot barker.
373 * @buf_size: size of the buffer (has to be 16 bytes). It is passed
374 * here so the function can check it for the caller.
376 * Note that as a side effect, upon identifying the obtained boot
377 * barker, this function will set i2400m->barker to point to the right
378 * barker database entry. Subsequent calls to the function will result
379 * in verifying that the same type of boot barker is returned when the
380 * device [re]boots (as long as the same device instance is used).
382 * Return: 0 if @buf matches a known boot barker. -ENOENT if the
383 * buffer in @buf doesn't match any boot barker in the database or
384 * -EILSEQ if the buffer doesn't have the right size.
386 int i2400m_is_boot_barker(struct i2400m
*i2400m
,
387 const void *buf
, size_t buf_size
)
390 struct device
*dev
= i2400m_dev(i2400m
);
391 struct i2400m_barker_db
*barker
;
395 if (buf_size
!= sizeof(i2400m_barker_db
[i
].data
))
398 /* Short circuit if we have already discovered the barker
399 * associated with the device. */
400 if (i2400m
->barker
&&
401 !memcmp(buf
, i2400m
->barker
, sizeof(i2400m
->barker
->data
)))
404 for (i
= 0; i
< i2400m_barker_db_used
; i
++) {
405 barker
= &i2400m_barker_db
[i
];
406 BUILD_BUG_ON(sizeof(barker
->data
) != 16);
407 if (memcmp(buf
, barker
->data
, sizeof(barker
->data
)))
410 if (i2400m
->barker
== NULL
) {
411 i2400m
->barker
= barker
;
412 d_printf(1, dev
, "boot barker set to #%u/%08x\n",
413 i
, le32_to_cpu(barker
->data
[0]));
414 if (barker
->data
[0] == le32_to_cpu(I2400M_NBOOT_BARKER
))
418 } else if (i2400m
->barker
!= barker
) {
419 dev_err(dev
, "HW inconsistency: device "
420 "reports a different boot barker "
421 "than set (from %08x to %08x)\n",
422 le32_to_cpu(i2400m
->barker
->data
[0]),
423 le32_to_cpu(barker
->data
[0]));
426 d_printf(2, dev
, "boot barker confirmed #%u/%08x\n",
427 i
, le32_to_cpu(barker
->data
[0]));
433 EXPORT_SYMBOL_GPL(i2400m_is_boot_barker
);
437 * Verify the ack data received
439 * Given a reply to a boot mode command, chew it and verify everything
442 * @opcode: opcode which generated this ack. For error messages.
443 * @ack: pointer to ack data we received
444 * @ack_size: size of that data buffer
445 * @flags: I2400M_BM_CMD_* flags we called the command with.
447 * Way too long function -- maybe it should be further split
450 ssize_t
__i2400m_bm_ack_verify(struct i2400m
*i2400m
, int opcode
,
451 struct i2400m_bootrom_header
*ack
,
452 size_t ack_size
, int flags
)
454 ssize_t result
= -ENOMEM
;
455 struct device
*dev
= i2400m_dev(i2400m
);
457 d_fnstart(8, dev
, "(i2400m %p opcode %d ack %p size %zu)\n",
458 i2400m
, opcode
, ack
, ack_size
);
459 if (ack_size
< sizeof(*ack
)) {
461 dev_err(dev
, "boot-mode cmd %d: HW BUG? notification didn't "
462 "return enough data (%zu bytes vs %zu expected)\n",
463 opcode
, ack_size
, sizeof(*ack
));
464 goto error_ack_short
;
466 result
= i2400m_is_boot_barker(i2400m
, ack
, ack_size
);
468 result
= -ERESTARTSYS
;
469 d_printf(6, dev
, "boot-mode cmd %d: HW boot barker\n", opcode
);
472 if (ack_size
== sizeof(i2400m_ACK_BARKER
)
473 && memcmp(ack
, i2400m_ACK_BARKER
, sizeof(*ack
)) == 0) {
475 d_printf(3, dev
, "boot-mode cmd %d: HW reboot ack barker\n",
477 goto error_reboot_ack
;
480 if (flags
& I2400M_BM_CMD_RAW
)
482 ack
->data_size
= le32_to_cpu(ack
->data_size
);
483 ack
->target_addr
= le32_to_cpu(ack
->target_addr
);
484 ack
->block_checksum
= le32_to_cpu(ack
->block_checksum
);
485 d_printf(5, dev
, "boot-mode cmd %d: notification for opcode %u "
486 "response %u csum %u rr %u da %u\n",
487 opcode
, i2400m_brh_get_opcode(ack
),
488 i2400m_brh_get_response(ack
),
489 i2400m_brh_get_use_checksum(ack
),
490 i2400m_brh_get_response_required(ack
),
491 i2400m_brh_get_direct_access(ack
));
493 if (i2400m_brh_get_signature(ack
) != 0xcbbc) {
494 dev_err(dev
, "boot-mode cmd %d: HW BUG? wrong signature "
495 "0x%04x\n", opcode
, i2400m_brh_get_signature(ack
));
496 goto error_ack_signature
;
498 if (opcode
!= -1 && opcode
!= i2400m_brh_get_opcode(ack
)) {
499 dev_err(dev
, "boot-mode cmd %d: HW BUG? "
500 "received response for opcode %u, expected %u\n",
501 opcode
, i2400m_brh_get_opcode(ack
), opcode
);
502 goto error_ack_opcode
;
504 if (i2400m_brh_get_response(ack
) != 0) { /* failed? */
505 dev_err(dev
, "boot-mode cmd %d: error; hw response %u\n",
506 opcode
, i2400m_brh_get_response(ack
));
507 goto error_ack_failed
;
509 if (ack_size
< ack
->data_size
+ sizeof(*ack
)) {
510 dev_err(dev
, "boot-mode cmd %d: SW BUG "
511 "driver provided only %zu bytes for %zu bytes "
512 "of data\n", opcode
, ack_size
,
513 (size_t) le32_to_cpu(ack
->data_size
) + sizeof(*ack
));
514 goto error_ack_short_buffer
;
517 /* Don't you love this stack of empty targets? Well, I don't
518 * either, but it helps track exactly who comes in here and
520 error_ack_short_buffer
:
528 d_fnend(8, dev
, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
529 i2400m
, opcode
, ack
, ack_size
, (int) result
);
535 * i2400m_bm_cmd - Execute a boot mode command
537 * @cmd: buffer containing the command data (pointing at the header).
538 * This data can be ANYWHERE (for USB, we will copy it to an
539 * specific buffer). Make sure everything is in proper little
542 * A raw buffer can be also sent, just cast it and set flags to
545 * This function will generate a checksum for you if the
546 * checksum bit in the command is set (unless I2400M_BM_CMD_RAW
549 * You can use the i2400m->bm_cmd_buf to stage your commands and
552 * If NULL, no command is sent (we just wait for an ack).
554 * @cmd_size: size of the command. Will be auto padded to the
555 * bus-specific drivers padding requirements.
557 * @ack: buffer where to place the acknowledgement. If it is a regular
558 * command response, all fields will be returned with the right,
561 * You *cannot* use i2400m->bm_ack_buf for this buffer.
563 * @ack_size: size of @ack, 16 aligned; you need to provide at least
564 * sizeof(*ack) bytes and then enough to contain the return data
567 * @flags: see I2400M_BM_CMD_* above.
569 * @returns: bytes received by the notification; if < 0, an errno code
570 * denoting an error or:
572 * -ERESTARTSYS The device has rebooted
574 * Executes a boot-mode command and waits for a response, doing basic
575 * validation on it; if a zero length response is received, it retries
576 * waiting for a response until a non-zero one is received (timing out
577 * after %I2400M_BOOT_RETRIES retries).
580 ssize_t
i2400m_bm_cmd(struct i2400m
*i2400m
,
581 const struct i2400m_bootrom_header
*cmd
, size_t cmd_size
,
582 struct i2400m_bootrom_header
*ack
, size_t ack_size
,
585 ssize_t result
= -ENOMEM
, rx_bytes
;
586 struct device
*dev
= i2400m_dev(i2400m
);
587 int opcode
= cmd
== NULL
? -1 : i2400m_brh_get_opcode(cmd
);
589 d_fnstart(6, dev
, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
590 i2400m
, cmd
, cmd_size
, ack
, ack_size
);
591 BUG_ON(ack_size
< sizeof(*ack
));
592 BUG_ON(i2400m
->boot_mode
== 0);
594 if (cmd
!= NULL
) { /* send the command */
595 result
= i2400m
->bus_bm_cmd_send(i2400m
, cmd
, cmd_size
, flags
);
598 if ((flags
& I2400M_BM_CMD_RAW
) == 0)
600 "boot-mode cmd %d csum %u rr %u da %u: "
601 "addr 0x%04x size %u block csum 0x%04x\n",
602 opcode
, i2400m_brh_get_use_checksum(cmd
),
603 i2400m_brh_get_response_required(cmd
),
604 i2400m_brh_get_direct_access(cmd
),
605 cmd
->target_addr
, cmd
->data_size
,
606 cmd
->block_checksum
);
608 result
= i2400m
->bus_bm_wait_for_ack(i2400m
, ack
, ack_size
);
610 dev_err(dev
, "boot-mode cmd %d: error waiting for an ack: %d\n",
611 opcode
, (int) result
); /* bah, %zd doesn't work */
612 goto error_wait_for_ack
;
615 /* verify the ack and read more if necessary [result is the
616 * final amount of bytes we get in the ack] */
617 result
= __i2400m_bm_ack_verify(i2400m
, opcode
, ack
, ack_size
, flags
);
620 /* Don't you love this stack of empty targets? Well, I don't
621 * either, but it helps track exactly who comes in here and
627 d_fnend(6, dev
, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
628 i2400m
, cmd
, cmd_size
, ack
, ack_size
, (int) result
);
634 * i2400m_download_chunk - write a single chunk of data to the device's memory
636 * @i2400m: device descriptor
637 * @buf: the buffer to write
638 * @buf_len: length of the buffer to write
639 * @addr: address in the device memory space
640 * @direct: bootrom write mode
641 * @do_csum: should a checksum validation be performed
643 static int i2400m_download_chunk(struct i2400m
*i2400m
, const void *chunk
,
644 size_t __chunk_len
, unsigned long addr
,
645 unsigned int direct
, unsigned int do_csum
)
648 size_t chunk_len
= ALIGN(__chunk_len
, I2400M_PL_ALIGN
);
649 struct device
*dev
= i2400m_dev(i2400m
);
651 struct i2400m_bootrom_header cmd
;
654 struct i2400m_bootrom_header ack
;
656 d_fnstart(5, dev
, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
657 "direct %u do_csum %u)\n", i2400m
, chunk
, __chunk_len
,
658 addr
, direct
, do_csum
);
659 buf
= i2400m
->bm_cmd_buf
;
660 memcpy(buf
->cmd_payload
, chunk
, __chunk_len
);
661 memset(buf
->cmd_payload
+ __chunk_len
, 0xad, chunk_len
- __chunk_len
);
663 buf
->cmd
.command
= i2400m_brh_command(I2400M_BRH_WRITE
,
664 __chunk_len
& 0x3 ? 0 : do_csum
,
665 __chunk_len
& 0xf ? 0 : direct
);
666 buf
->cmd
.target_addr
= cpu_to_le32(addr
);
667 buf
->cmd
.data_size
= cpu_to_le32(__chunk_len
);
668 ret
= i2400m_bm_cmd(i2400m
, &buf
->cmd
, sizeof(buf
->cmd
) + chunk_len
,
669 &ack
, sizeof(ack
), 0);
672 d_fnend(5, dev
, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
673 "direct %u do_csum %u) = %d\n", i2400m
, chunk
, __chunk_len
,
674 addr
, direct
, do_csum
, ret
);
680 * Download a BCF file's sections to the device
682 * @i2400m: device descriptor
683 * @bcf: pointer to firmware data (first header followed by the
684 * payloads). Assumed verified and consistent.
685 * @bcf_len: length (in bytes) of the @bcf buffer.
687 * Returns: < 0 errno code on error or the offset to the jump instruction.
689 * Given a BCF file, downloads each section (a command and a payload)
690 * to the device's address space. Actually, it just executes each
691 * command i the BCF file.
693 * The section size has to be aligned to 4 bytes AND the padding has
694 * to be taken from the firmware file, as the signature takes it into
698 ssize_t
i2400m_dnload_bcf(struct i2400m
*i2400m
,
699 const struct i2400m_bcf_hdr
*bcf
, size_t bcf_len
)
702 struct device
*dev
= i2400m_dev(i2400m
);
703 size_t offset
, /* iterator offset */
704 data_size
, /* Size of the data payload */
705 section_size
, /* Size of the whole section (cmd + payload) */
707 const struct i2400m_bootrom_header
*bh
;
708 struct i2400m_bootrom_header ack
;
710 d_fnstart(3, dev
, "(i2400m %p bcf %p bcf_len %zu)\n",
711 i2400m
, bcf
, bcf_len
);
712 /* Iterate over the command blocks in the BCF file that start
713 * after the header */
714 offset
= le32_to_cpu(bcf
->header_len
) * sizeof(u32
);
715 while (1) { /* start sending the file */
716 bh
= (void *) bcf
+ offset
;
717 data_size
= le32_to_cpu(bh
->data_size
);
718 section_size
= ALIGN(sizeof(*bh
) + data_size
, 4);
720 "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
721 section
, offset
, sizeof(*bh
) + data_size
,
722 le32_to_cpu(bh
->target_addr
));
724 * We look for JUMP cmd from the bootmode header,
725 * either I2400M_BRH_SIGNED_JUMP for secure boot
726 * or I2400M_BRH_JUMP for unsecure boot, the last chunk
727 * should be the bootmode header with JUMP cmd.
729 if (i2400m_brh_get_opcode(bh
) == I2400M_BRH_SIGNED_JUMP
||
730 i2400m_brh_get_opcode(bh
) == I2400M_BRH_JUMP
) {
731 d_printf(5, dev
, "jump found @%zu\n", offset
);
734 if (offset
+ section_size
> bcf_len
) {
735 dev_err(dev
, "fw %s: bad section #%zu, "
736 "end (@%zu) beyond EOF (@%zu)\n",
737 i2400m
->fw_name
, section
,
738 offset
+ section_size
, bcf_len
);
740 goto error_section_beyond_eof
;
743 ret
= i2400m_bm_cmd(i2400m
, bh
, section_size
,
744 &ack
, sizeof(ack
), I2400M_BM_CMD_RAW
);
746 dev_err(dev
, "fw %s: section #%zu (@%zu %zu B) "
747 "failed %d\n", i2400m
->fw_name
, section
,
748 offset
, sizeof(*bh
) + data_size
, (int) ret
);
751 offset
+= section_size
;
755 error_section_beyond_eof
:
757 d_fnend(3, dev
, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
758 i2400m
, bcf
, bcf_len
, (int) ret
);
764 * Indicate if the device emitted a reboot barker that indicates
768 unsigned i2400m_boot_is_signed(struct i2400m
*i2400m
)
770 return likely(i2400m
->sboot
);
775 * Do the final steps of uploading firmware
777 * @bcf_hdr: BCF header we are actually using
778 * @bcf: pointer to the firmware image (which matches the first header
779 * that is followed by the actual payloads).
780 * @offset: [byte] offset into @bcf for the command we need to send.
782 * Depending on the boot mode (signed vs non-signed), different
783 * actions need to be taken.
786 int i2400m_dnload_finalize(struct i2400m
*i2400m
,
787 const struct i2400m_bcf_hdr
*bcf_hdr
,
788 const struct i2400m_bcf_hdr
*bcf
, size_t offset
)
791 struct device
*dev
= i2400m_dev(i2400m
);
792 struct i2400m_bootrom_header
*cmd
, ack
;
794 struct i2400m_bootrom_header cmd
;
797 size_t signature_block_offset
, signature_block_size
;
799 d_fnstart(3, dev
, "offset %zu\n", offset
);
800 cmd
= (void *) bcf
+ offset
;
801 if (i2400m_boot_is_signed(i2400m
) == 0) {
802 struct i2400m_bootrom_header jump_ack
;
803 d_printf(1, dev
, "unsecure boot, jumping to 0x%08x\n",
804 le32_to_cpu(cmd
->target_addr
));
805 cmd_buf
= i2400m
->bm_cmd_buf
;
806 memcpy(&cmd_buf
->cmd
, cmd
, sizeof(*cmd
));
808 /* now cmd points to the actual bootrom_header in cmd_buf */
809 i2400m_brh_set_opcode(cmd
, I2400M_BRH_JUMP
);
811 ret
= i2400m_bm_cmd(i2400m
, cmd
, sizeof(*cmd
),
812 &jump_ack
, sizeof(jump_ack
), 0);
814 d_printf(1, dev
, "secure boot, jumping to 0x%08x\n",
815 le32_to_cpu(cmd
->target_addr
));
816 cmd_buf
= i2400m
->bm_cmd_buf
;
817 memcpy(&cmd_buf
->cmd
, cmd
, sizeof(*cmd
));
818 signature_block_offset
=
820 + le32_to_cpu(bcf_hdr
->key_size
) * sizeof(u32
)
821 + le32_to_cpu(bcf_hdr
->exponent_size
) * sizeof(u32
);
822 signature_block_size
=
823 le32_to_cpu(bcf_hdr
->modulus_size
) * sizeof(u32
);
824 memcpy(cmd_buf
->cmd_pl
,
825 (void *) bcf_hdr
+ signature_block_offset
,
826 signature_block_size
);
827 ret
= i2400m_bm_cmd(i2400m
, &cmd_buf
->cmd
,
828 sizeof(cmd_buf
->cmd
) + signature_block_size
,
829 &ack
, sizeof(ack
), I2400M_BM_CMD_RAW
);
831 d_fnend(3, dev
, "returning %d\n", ret
);
837 * i2400m_bootrom_init - Reboots a powered device into boot mode
839 * @i2400m: device descriptor
841 * I2400M_BRI_SOFT: a reboot barker has been seen
842 * already, so don't wait for it.
844 * I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
845 * for a reboot barker notification. This is a one shot; if
846 * the state machine needs to send a reboot command it will.
850 * < 0 errno code on error, 0 if ok.
854 * Tries hard enough to put the device in boot-mode. There are two
855 * main phases to this:
857 * a. (1) send a reboot command and (2) get a reboot barker
859 * b. (1) echo/ack the reboot sending the reboot barker back and (2)
860 * getting an ack barker in return
862 * We want to skip (a) in some cases [soft]. The state machine is
863 * horrible, but it is basically: on each phase, send what has to be
864 * sent (if any), wait for the answer and act on the answer. We might
865 * have to backtrack and retry, so we keep a max tries counter for
868 * It sucks because we don't know ahead of time which is going to be
869 * the reboot barker (the device might send different ones depending
870 * on its EEPROM config) and once the device reboots and waits for the
871 * echo/ack reboot barker being sent back, it doesn't understand
872 * anything else. So we can be left at the point where we don't know
873 * what to send to it -- cold reset and bus reset seem to have little
874 * effect. So the function iterates (in this case) through all the
875 * known barkers and tries them all until an ACK is
876 * received. Otherwise, it gives up.
878 * If we get a timeout after sending a warm reset, we do it again.
880 int i2400m_bootrom_init(struct i2400m
*i2400m
, enum i2400m_bri flags
)
883 struct device
*dev
= i2400m_dev(i2400m
);
884 struct i2400m_bootrom_header
*cmd
;
885 struct i2400m_bootrom_header ack
;
886 int count
= i2400m
->bus_bm_retries
;
887 int ack_timeout_cnt
= 1;
890 BUILD_BUG_ON(sizeof(*cmd
) != sizeof(i2400m_barker_db
[0].data
));
891 BUILD_BUG_ON(sizeof(ack
) != sizeof(i2400m_ACK_BARKER
));
893 d_fnstart(4, dev
, "(i2400m %p flags 0x%08x)\n", i2400m
, flags
);
895 cmd
= i2400m
->bm_cmd_buf
;
896 if (flags
& I2400M_BRI_SOFT
)
902 d_printf(4, dev
, "device reboot: reboot command [%d # left]\n",
904 if ((flags
& I2400M_BRI_NO_REBOOT
) == 0)
905 i2400m_reset(i2400m
, I2400M_RT_WARM
);
906 result
= i2400m_bm_cmd(i2400m
, NULL
, 0, &ack
, sizeof(ack
),
908 flags
&= ~I2400M_BRI_NO_REBOOT
;
912 * at this point, i2400m_bm_cmd(), through
913 * __i2400m_bm_ack_process(), has updated
914 * i2400m->barker and we are good to go.
916 d_printf(4, dev
, "device reboot: got reboot barker\n");
918 case -EISCONN
: /* we don't know how it got here...but we follow it */
919 d_printf(4, dev
, "device reboot: got ack barker - whatever\n");
923 * Device has timed out, we might be in boot mode
924 * already and expecting an ack; if we don't know what
925 * the barker is, we just send them all. Cold reset
926 * and bus reset don't work. Beats me.
928 if (i2400m
->barker
!= NULL
) {
929 dev_err(dev
, "device boot: reboot barker timed out, "
930 "trying (set) %08x echo/ack\n",
931 le32_to_cpu(i2400m
->barker
->data
[0]));
934 for (i
= 0; i
< i2400m_barker_db_used
; i
++) {
935 struct i2400m_barker_db
*barker
= &i2400m_barker_db
[i
];
936 memcpy(cmd
, barker
->data
, sizeof(barker
->data
));
937 result
= i2400m_bm_cmd(i2400m
, cmd
, sizeof(*cmd
),
940 if (result
== -EISCONN
) {
941 dev_warn(dev
, "device boot: got ack barker "
942 "after sending echo/ack barker "
943 "#%d/%08x; rebooting j.i.c.\n",
944 i
, le32_to_cpu(barker
->data
[0]));
945 flags
&= ~I2400M_BRI_NO_REBOOT
;
949 dev_err(dev
, "device boot: tried all the echo/acks, could "
950 "not get device to respond; giving up");
953 case -ESHUTDOWN
: /* dev is gone */
954 case -EINTR
: /* user cancelled */
957 dev_err(dev
, "device reboot: error %d while waiting "
958 "for reboot barker - rebooting\n", result
);
959 d_dump(1, dev
, &ack
, result
);
962 /* At this point we ack back with 4 REBOOT barkers and expect
963 * 4 ACK barkers. This is ugly, as we send a raw command --
964 * hence the cast. _bm_cmd() will catch the reboot ack
965 * notification and report it as -EISCONN. */
967 d_printf(4, dev
, "device reboot ack: sending ack [%d # left]\n", count
);
968 memcpy(cmd
, i2400m
->barker
->data
, sizeof(i2400m
->barker
->data
));
969 result
= i2400m_bm_cmd(i2400m
, cmd
, sizeof(*cmd
),
970 &ack
, sizeof(ack
), I2400M_BM_CMD_RAW
);
973 d_printf(4, dev
, "reboot ack: got reboot barker - retrying\n");
978 d_printf(4, dev
, "reboot ack: got ack barker - good\n");
980 case -ETIMEDOUT
: /* no response, maybe it is the other type? */
981 if (ack_timeout_cnt
-- < 0) {
982 d_printf(4, dev
, "reboot ack timedout: retrying\n");
985 dev_err(dev
, "reboot ack timedout too long: "
991 case -ESHUTDOWN
: /* dev is gone */
994 dev_err(dev
, "device reboot ack: error %d while waiting for "
995 "reboot ack barker - rebooting\n", result
);
998 d_printf(2, dev
, "device reboot ack: got ack barker - boot done\n");
1002 d_fnend(4, dev
, "(i2400m %p flags 0x%08x) = %d\n",
1003 i2400m
, flags
, result
);
1007 dev_err(dev
, "Timed out waiting for reboot ack\n");
1008 result
= -ETIMEDOUT
;
1016 * The position this function reads is fixed in device memory and
1017 * always available, even without firmware.
1019 * Note we specify we want to read only six bytes, but provide space
1020 * for 16, as we always get it rounded up.
1022 int i2400m_read_mac_addr(struct i2400m
*i2400m
)
1025 struct device
*dev
= i2400m_dev(i2400m
);
1026 struct net_device
*net_dev
= i2400m
->wimax_dev
.net_dev
;
1027 struct i2400m_bootrom_header
*cmd
;
1029 struct i2400m_bootrom_header ack
;
1033 d_fnstart(5, dev
, "(i2400m %p)\n", i2400m
);
1034 cmd
= i2400m
->bm_cmd_buf
;
1035 cmd
->command
= i2400m_brh_command(I2400M_BRH_READ
, 0, 1);
1036 cmd
->target_addr
= cpu_to_le32(0x00203fe8);
1037 cmd
->data_size
= cpu_to_le32(6);
1038 result
= i2400m_bm_cmd(i2400m
, cmd
, sizeof(*cmd
),
1039 &ack_buf
.ack
, sizeof(ack_buf
), 0);
1041 dev_err(dev
, "BM: read mac addr failed: %d\n", result
);
1042 goto error_read_mac
;
1044 d_printf(2, dev
, "mac addr is %pM\n", ack_buf
.ack_pl
);
1045 if (i2400m
->bus_bm_mac_addr_impaired
== 1) {
1046 ack_buf
.ack_pl
[0] = 0x00;
1047 ack_buf
.ack_pl
[1] = 0x16;
1048 ack_buf
.ack_pl
[2] = 0xd3;
1049 get_random_bytes(&ack_buf
.ack_pl
[3], 3);
1050 dev_err(dev
, "BM is MAC addr impaired, faking MAC addr to "
1051 "mac addr is %pM\n", ack_buf
.ack_pl
);
1054 net_dev
->addr_len
= ETH_ALEN
;
1055 memcpy(net_dev
->dev_addr
, ack_buf
.ack_pl
, ETH_ALEN
);
1057 d_fnend(5, dev
, "(i2400m %p) = %d\n", i2400m
, result
);
1063 * Initialize a non signed boot
1065 * This implies sending some magic values to the device's memory. Note
1066 * we convert the values to little endian in the same array
1070 int i2400m_dnload_init_nonsigned(struct i2400m
*i2400m
)
1074 struct device
*dev
= i2400m_dev(i2400m
);
1075 d_fnstart(5, dev
, "(i2400m %p)\n", i2400m
);
1076 if (i2400m
->bus_bm_pokes_table
) {
1077 while (i2400m
->bus_bm_pokes_table
[i
].address
) {
1078 ret
= i2400m_download_chunk(
1080 &i2400m
->bus_bm_pokes_table
[i
].data
,
1081 sizeof(i2400m
->bus_bm_pokes_table
[i
].data
),
1082 i2400m
->bus_bm_pokes_table
[i
].address
, 1, 1);
1088 d_fnend(5, dev
, "(i2400m %p) = %d\n", i2400m
, ret
);
1094 * Initialize the signed boot process
1096 * @i2400m: device descriptor
1098 * @bcf_hdr: pointer to the firmware header; assumes it is fully in
1099 * memory (it has gone through basic validation).
1101 * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
1104 * This writes the firmware BCF header to the device using the
1105 * HASH_PAYLOAD_ONLY command.
1108 int i2400m_dnload_init_signed(struct i2400m
*i2400m
,
1109 const struct i2400m_bcf_hdr
*bcf_hdr
)
1112 struct device
*dev
= i2400m_dev(i2400m
);
1114 struct i2400m_bootrom_header cmd
;
1115 struct i2400m_bcf_hdr cmd_pl
;
1116 } __packed
*cmd_buf
;
1117 struct i2400m_bootrom_header ack
;
1119 d_fnstart(5, dev
, "(i2400m %p bcf_hdr %p)\n", i2400m
, bcf_hdr
);
1120 cmd_buf
= i2400m
->bm_cmd_buf
;
1121 cmd_buf
->cmd
.command
=
1122 i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY
, 0, 0);
1123 cmd_buf
->cmd
.target_addr
= 0;
1124 cmd_buf
->cmd
.data_size
= cpu_to_le32(sizeof(cmd_buf
->cmd_pl
));
1125 memcpy(&cmd_buf
->cmd_pl
, bcf_hdr
, sizeof(*bcf_hdr
));
1126 ret
= i2400m_bm_cmd(i2400m
, &cmd_buf
->cmd
, sizeof(*cmd_buf
),
1127 &ack
, sizeof(ack
), 0);
1130 d_fnend(5, dev
, "(i2400m %p bcf_hdr %p) = %d\n", i2400m
, bcf_hdr
, ret
);
1136 * Initialize the firmware download at the device size
1138 * Multiplex to the one that matters based on the device's mode
1139 * (signed or non-signed).
1142 int i2400m_dnload_init(struct i2400m
*i2400m
,
1143 const struct i2400m_bcf_hdr
*bcf_hdr
)
1146 struct device
*dev
= i2400m_dev(i2400m
);
1148 if (i2400m_boot_is_signed(i2400m
)) {
1149 d_printf(1, dev
, "signed boot\n");
1150 result
= i2400m_dnload_init_signed(i2400m
, bcf_hdr
);
1151 if (result
== -ERESTARTSYS
)
1154 dev_err(dev
, "firmware %s: signed boot download "
1155 "initialization failed: %d\n",
1156 i2400m
->fw_name
, result
);
1158 /* non-signed boot process without pokes */
1159 d_printf(1, dev
, "non-signed boot\n");
1160 result
= i2400m_dnload_init_nonsigned(i2400m
);
1161 if (result
== -ERESTARTSYS
)
1164 dev_err(dev
, "firmware %s: non-signed download "
1165 "initialization failed: %d\n",
1166 i2400m
->fw_name
, result
);
1173 * Run consistency tests on the firmware file and load up headers
1175 * Check for the firmware being made for the i2400m device,
1176 * etc...These checks are mostly informative, as the device will make
1177 * them too; but the driver's response is more informative on what
1180 * This will also look at all the headers present on the firmware
1181 * file, and update i2400m->fw_bcf_hdr to point to them.
1184 int i2400m_fw_hdr_check(struct i2400m
*i2400m
,
1185 const struct i2400m_bcf_hdr
*bcf_hdr
,
1186 size_t index
, size_t offset
)
1188 struct device
*dev
= i2400m_dev(i2400m
);
1190 unsigned module_type
, header_len
, major_version
, minor_version
,
1191 module_id
, module_vendor
, date
, size
;
1193 module_type
= le32_to_cpu(bcf_hdr
->module_type
);
1194 header_len
= sizeof(u32
) * le32_to_cpu(bcf_hdr
->header_len
);
1195 major_version
= (le32_to_cpu(bcf_hdr
->header_version
) & 0xffff0000)
1197 minor_version
= le32_to_cpu(bcf_hdr
->header_version
) & 0x0000ffff;
1198 module_id
= le32_to_cpu(bcf_hdr
->module_id
);
1199 module_vendor
= le32_to_cpu(bcf_hdr
->module_vendor
);
1200 date
= le32_to_cpu(bcf_hdr
->date
);
1201 size
= sizeof(u32
) * le32_to_cpu(bcf_hdr
->size
);
1203 d_printf(1, dev
, "firmware %s #%zd@%08zx: BCF header "
1204 "type:vendor:id 0x%x:%x:%x v%u.%u (%u/%u B) built %08x\n",
1205 i2400m
->fw_name
, index
, offset
,
1206 module_type
, module_vendor
, module_id
,
1207 major_version
, minor_version
, header_len
, size
, date
);
1210 if (major_version
!= 1) {
1211 dev_err(dev
, "firmware %s #%zd@%08zx: major header version "
1212 "v%u.%u not supported\n",
1213 i2400m
->fw_name
, index
, offset
,
1214 major_version
, minor_version
);
1218 if (module_type
!= 6) { /* built for the right hardware? */
1219 dev_err(dev
, "firmware %s #%zd@%08zx: unexpected module "
1220 "type 0x%x; aborting\n",
1221 i2400m
->fw_name
, index
, offset
,
1226 if (module_vendor
!= 0x8086) {
1227 dev_err(dev
, "firmware %s #%zd@%08zx: unexpected module "
1228 "vendor 0x%x; aborting\n",
1229 i2400m
->fw_name
, index
, offset
, module_vendor
);
1233 if (date
< 0x20080300)
1234 dev_warn(dev
, "firmware %s #%zd@%08zx: build date %08x "
1235 "too old; unsupported\n",
1236 i2400m
->fw_name
, index
, offset
, date
);
1242 * Run consistency tests on the firmware file and load up headers
1244 * Check for the firmware being made for the i2400m device,
1245 * etc...These checks are mostly informative, as the device will make
1246 * them too; but the driver's response is more informative on what
1249 * This will also look at all the headers present on the firmware
1250 * file, and update i2400m->fw_hdrs to point to them.
1253 int i2400m_fw_check(struct i2400m
*i2400m
, const void *bcf
, size_t bcf_size
)
1256 struct device
*dev
= i2400m_dev(i2400m
);
1258 const struct i2400m_bcf_hdr
*bcf_hdr
;
1259 const void *itr
, *next
, *top
;
1260 size_t slots
= 0, used_slots
= 0;
1262 for (itr
= bcf
, top
= itr
+ bcf_size
;
1264 headers
++, itr
= next
) {
1265 size_t leftover
, offset
, header_len
, size
;
1267 leftover
= top
- itr
;
1269 if (leftover
<= sizeof(*bcf_hdr
)) {
1270 dev_err(dev
, "firmware %s: %zu B left at @%zx, "
1271 "not enough for BCF header\n",
1272 i2400m
->fw_name
, leftover
, offset
);
1276 /* Only the first header is supposed to be followed by
1278 header_len
= sizeof(u32
) * le32_to_cpu(bcf_hdr
->header_len
);
1279 size
= sizeof(u32
) * le32_to_cpu(bcf_hdr
->size
);
1283 next
= itr
+ header_len
;
1285 result
= i2400m_fw_hdr_check(i2400m
, bcf_hdr
, headers
, offset
);
1288 if (used_slots
+ 1 >= slots
) {
1289 /* +1 -> we need to account for the one we'll
1290 * occupy and at least an extra one for
1291 * always being NULL */
1292 result
= i2400m_zrealloc_2x(
1293 (void **) &i2400m
->fw_hdrs
, &slots
,
1294 sizeof(i2400m
->fw_hdrs
[0]),
1297 goto error_zrealloc
;
1299 i2400m
->fw_hdrs
[used_slots
] = bcf_hdr
;
1303 dev_err(dev
, "firmware %s: no usable headers found\n",
1314 * Match a barker to a BCF header module ID
1316 * The device sends a barker which tells the firmware loader which
1317 * header in the BCF file has to be used. This does the matching.
1320 unsigned i2400m_bcf_hdr_match(struct i2400m
*i2400m
,
1321 const struct i2400m_bcf_hdr
*bcf_hdr
)
1323 u32 barker
= le32_to_cpu(i2400m
->barker
->data
[0])
1325 u32 module_id
= le32_to_cpu(bcf_hdr
->module_id
)
1326 & 0x7fffffff; /* high bit used for something else */
1328 /* special case for 5x50 */
1329 if (barker
== I2400M_SBOOT_BARKER
&& module_id
== 0)
1331 if (module_id
== barker
)
1337 const struct i2400m_bcf_hdr
*i2400m_bcf_hdr_find(struct i2400m
*i2400m
)
1339 struct device
*dev
= i2400m_dev(i2400m
);
1340 const struct i2400m_bcf_hdr
**bcf_itr
, *bcf_hdr
;
1342 u32 barker
= le32_to_cpu(i2400m
->barker
->data
[0]);
1344 d_printf(2, dev
, "finding BCF header for barker %08x\n", barker
);
1345 if (barker
== I2400M_NBOOT_BARKER
) {
1346 bcf_hdr
= i2400m
->fw_hdrs
[0];
1347 d_printf(1, dev
, "using BCF header #%u/%08x for non-signed "
1348 "barker\n", 0, le32_to_cpu(bcf_hdr
->module_id
));
1351 for (bcf_itr
= i2400m
->fw_hdrs
; *bcf_itr
!= NULL
; bcf_itr
++, i
++) {
1353 if (i2400m_bcf_hdr_match(i2400m
, bcf_hdr
)) {
1354 d_printf(1, dev
, "hit on BCF hdr #%u/%08x\n",
1355 i
, le32_to_cpu(bcf_hdr
->module_id
));
1358 d_printf(1, dev
, "miss on BCF hdr #%u/%08x\n",
1359 i
, le32_to_cpu(bcf_hdr
->module_id
));
1361 dev_err(dev
, "cannot find a matching BCF header for barker %08x\n",
1368 * Download the firmware to the device
1370 * @i2400m: device descriptor
1371 * @bcf: pointer to loaded (and minimally verified for consistency)
1373 * @bcf_size: size of the @bcf buffer (header plus payloads)
1375 * The process for doing this is described in this file's header.
1377 * Note we only reinitialize boot-mode if the flags say so. Some hw
1378 * iterations need it, some don't. In any case, if we loop, we always
1379 * need to reinitialize the boot room, hence the flags modification.
1382 int i2400m_fw_dnload(struct i2400m
*i2400m
, const struct i2400m_bcf_hdr
*bcf
,
1383 size_t fw_size
, enum i2400m_bri flags
)
1386 struct device
*dev
= i2400m_dev(i2400m
);
1387 int count
= i2400m
->bus_bm_retries
;
1388 const struct i2400m_bcf_hdr
*bcf_hdr
;
1391 d_fnstart(5, dev
, "(i2400m %p bcf %p fw size %zu)\n",
1392 i2400m
, bcf
, fw_size
);
1393 i2400m
->boot_mode
= 1;
1394 wmb(); /* Make sure other readers see it */
1398 dev_err(dev
, "device rebooted too many times, aborting\n");
1399 goto error_too_many_reboots
;
1401 if (flags
& I2400M_BRI_MAC_REINIT
) {
1402 ret
= i2400m_bootrom_init(i2400m
, flags
);
1404 dev_err(dev
, "bootrom init failed: %d\n", ret
);
1405 goto error_bootrom_init
;
1408 flags
|= I2400M_BRI_MAC_REINIT
;
1411 * Initialize the download, push the bytes to the device and
1412 * then jump to the new firmware. Note @ret is passed with the
1413 * offset of the jump instruction to _dnload_finalize()
1415 * Note we need to use the BCF header in the firmware image
1416 * that matches the barker that the device sent when it
1417 * rebooted, so it has to be passed along.
1420 bcf_hdr
= i2400m_bcf_hdr_find(i2400m
);
1421 if (bcf_hdr
== NULL
)
1422 goto error_bcf_hdr_find
;
1424 ret
= i2400m_dnload_init(i2400m
, bcf_hdr
);
1425 if (ret
== -ERESTARTSYS
)
1426 goto error_dev_rebooted
;
1428 goto error_dnload_init
;
1431 * bcf_size refers to one header size plus the fw sections size
1432 * indicated by the header,ie. if there are other extended headers
1433 * at the tail, they are not counted
1435 bcf_size
= sizeof(u32
) * le32_to_cpu(bcf_hdr
->size
);
1436 ret
= i2400m_dnload_bcf(i2400m
, bcf
, bcf_size
);
1437 if (ret
== -ERESTARTSYS
)
1438 goto error_dev_rebooted
;
1440 dev_err(dev
, "fw %s: download failed: %d\n",
1441 i2400m
->fw_name
, ret
);
1442 goto error_dnload_bcf
;
1445 ret
= i2400m_dnload_finalize(i2400m
, bcf_hdr
, bcf
, ret
);
1446 if (ret
== -ERESTARTSYS
)
1447 goto error_dev_rebooted
;
1449 dev_err(dev
, "fw %s: "
1450 "download finalization failed: %d\n",
1451 i2400m
->fw_name
, ret
);
1452 goto error_dnload_finalize
;
1455 d_printf(2, dev
, "fw %s successfully uploaded\n",
1457 i2400m
->boot_mode
= 0;
1458 wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */
1459 error_dnload_finalize
:
1464 error_too_many_reboots
:
1465 d_fnend(5, dev
, "(i2400m %p bcf %p size %zu) = %d\n",
1466 i2400m
, bcf
, fw_size
, ret
);
1470 dev_err(dev
, "device rebooted, %d tries left\n", count
);
1471 /* we got the notification already, no need to wait for it again */
1472 flags
|= I2400M_BRI_SOFT
;
1477 int i2400m_fw_bootstrap(struct i2400m
*i2400m
, const struct firmware
*fw
,
1478 enum i2400m_bri flags
)
1481 struct device
*dev
= i2400m_dev(i2400m
);
1482 const struct i2400m_bcf_hdr
*bcf
; /* Firmware data */
1484 d_fnstart(5, dev
, "(i2400m %p)\n", i2400m
);
1485 bcf
= (void *) fw
->data
;
1486 ret
= i2400m_fw_check(i2400m
, bcf
, fw
->size
);
1488 ret
= i2400m_fw_dnload(i2400m
, bcf
, fw
->size
, flags
);
1490 dev_err(dev
, "%s: cannot use: %d, skipping\n",
1491 i2400m
->fw_name
, ret
);
1492 kfree(i2400m
->fw_hdrs
);
1493 i2400m
->fw_hdrs
= NULL
;
1494 d_fnend(5, dev
, "(i2400m %p) = %d\n", i2400m
, ret
);
1499 /* Refcounted container for firmware data */
1502 const struct firmware
*fw
;
1507 void i2400m_fw_destroy(struct kref
*kref
)
1509 struct i2400m_fw
*i2400m_fw
=
1510 container_of(kref
, struct i2400m_fw
, kref
);
1511 release_firmware(i2400m_fw
->fw
);
1517 struct i2400m_fw
*i2400m_fw_get(struct i2400m_fw
*i2400m_fw
)
1519 if (i2400m_fw
!= NULL
&& i2400m_fw
!= (void *) ~0)
1520 kref_get(&i2400m_fw
->kref
);
1526 void i2400m_fw_put(struct i2400m_fw
*i2400m_fw
)
1528 kref_put(&i2400m_fw
->kref
, i2400m_fw_destroy
);
1533 * i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
1535 * @i2400m: device descriptor
1537 * Returns: >= 0 if ok, < 0 errno code on error.
1539 * This sets up the firmware upload environment, loads the firmware
1540 * file from disk, verifies and then calls the firmware upload process
1543 * Can be called either from probe, or after a warm reset. Can not be
1544 * called from within an interrupt. All the flow in this code is
1545 * single-threade; all I/Os are synchronous.
1547 int i2400m_dev_bootstrap(struct i2400m
*i2400m
, enum i2400m_bri flags
)
1550 struct device
*dev
= i2400m_dev(i2400m
);
1551 struct i2400m_fw
*i2400m_fw
;
1552 const struct firmware
*fw
;
1553 const char *fw_name
;
1555 d_fnstart(5, dev
, "(i2400m %p)\n", i2400m
);
1558 spin_lock(&i2400m
->rx_lock
);
1559 i2400m_fw
= i2400m_fw_get(i2400m
->fw_cached
);
1560 spin_unlock(&i2400m
->rx_lock
);
1561 if (i2400m_fw
== (void *) ~0) {
1562 dev_err(dev
, "can't load firmware now!");
1564 } else if (i2400m_fw
!= NULL
) {
1565 dev_info(dev
, "firmware %s: loading from cache\n",
1567 ret
= i2400m_fw_bootstrap(i2400m
, i2400m_fw
->fw
, flags
);
1568 i2400m_fw_put(i2400m_fw
);
1572 /* Load firmware files to memory. */
1573 for (itr
= 0, ret
= -ENOENT
; ; itr
++) {
1574 fw_name
= i2400m
->bus_fw_names
[itr
];
1575 if (fw_name
== NULL
) {
1576 dev_err(dev
, "Could not find a usable firmware image\n");
1579 d_printf(1, dev
, "trying firmware %s (%d)\n", fw_name
, itr
);
1580 ret
= request_firmware(&fw
, fw_name
, dev
);
1582 dev_err(dev
, "fw %s: cannot load file: %d\n",
1586 i2400m
->fw_name
= fw_name
;
1587 ret
= i2400m_fw_bootstrap(i2400m
, fw
, flags
);
1588 release_firmware(fw
);
1589 if (ret
>= 0) /* firmware loaded successfully */
1591 i2400m
->fw_name
= NULL
;
1594 d_fnend(5, dev
, "(i2400m %p) = %d\n", i2400m
, ret
);
1597 EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap
);
1600 void i2400m_fw_cache(struct i2400m
*i2400m
)
1603 struct i2400m_fw
*i2400m_fw
;
1604 struct device
*dev
= i2400m_dev(i2400m
);
1606 /* if there is anything there, free it -- now, this'd be weird */
1607 spin_lock(&i2400m
->rx_lock
);
1608 i2400m_fw
= i2400m
->fw_cached
;
1609 spin_unlock(&i2400m
->rx_lock
);
1610 if (i2400m_fw
!= NULL
&& i2400m_fw
!= (void *) ~0) {
1611 i2400m_fw_put(i2400m_fw
);
1612 WARN(1, "%s:%u: still cached fw still present?\n",
1613 __func__
, __LINE__
);
1616 if (i2400m
->fw_name
== NULL
) {
1617 dev_err(dev
, "firmware n/a: can't cache\n");
1618 i2400m_fw
= (void *) ~0;
1622 i2400m_fw
= kzalloc(sizeof(*i2400m_fw
), GFP_ATOMIC
);
1623 if (i2400m_fw
== NULL
)
1625 kref_init(&i2400m_fw
->kref
);
1626 result
= request_firmware(&i2400m_fw
->fw
, i2400m
->fw_name
, dev
);
1628 dev_err(dev
, "firmware %s: failed to cache: %d\n",
1629 i2400m
->fw_name
, result
);
1631 i2400m_fw
= (void *) ~0;
1633 dev_info(dev
, "firmware %s: cached\n", i2400m
->fw_name
);
1635 spin_lock(&i2400m
->rx_lock
);
1636 i2400m
->fw_cached
= i2400m_fw
;
1637 spin_unlock(&i2400m
->rx_lock
);
1641 void i2400m_fw_uncache(struct i2400m
*i2400m
)
1643 struct i2400m_fw
*i2400m_fw
;
1645 spin_lock(&i2400m
->rx_lock
);
1646 i2400m_fw
= i2400m
->fw_cached
;
1647 i2400m
->fw_cached
= NULL
;
1648 spin_unlock(&i2400m
->rx_lock
);
1650 if (i2400m_fw
!= NULL
&& i2400m_fw
!= (void *) ~0)
1651 i2400m_fw_put(i2400m_fw
);