treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath6kl / sdio.c
blobbb50680580f35f90d218a378d8ba066b0dc84e6f
1 /*
2 * Copyright (c) 2004-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <linux/module.h>
19 #include <linux/mmc/card.h>
20 #include <linux/mmc/mmc.h>
21 #include <linux/mmc/host.h>
22 #include <linux/mmc/sdio_func.h>
23 #include <linux/mmc/sdio_ids.h>
24 #include <linux/mmc/sdio.h>
25 #include <linux/mmc/sd.h>
26 #include "hif.h"
27 #include "hif-ops.h"
28 #include "target.h"
29 #include "debug.h"
30 #include "cfg80211.h"
31 #include "trace.h"
33 struct ath6kl_sdio {
34 struct sdio_func *func;
36 /* protects access to bus_req_freeq */
37 spinlock_t lock;
39 /* free list */
40 struct list_head bus_req_freeq;
42 /* available bus requests */
43 struct bus_request bus_req[BUS_REQUEST_MAX_NUM];
45 struct ath6kl *ar;
47 u8 *dma_buffer;
49 /* protects access to dma_buffer */
50 struct mutex dma_buffer_mutex;
52 /* scatter request list head */
53 struct list_head scat_req;
55 atomic_t irq_handling;
56 wait_queue_head_t irq_wq;
58 /* protects access to scat_req */
59 spinlock_t scat_lock;
61 bool scatter_enabled;
63 bool is_disabled;
64 const struct sdio_device_id *id;
65 struct work_struct wr_async_work;
66 struct list_head wr_asyncq;
68 /* protects access to wr_asyncq */
69 spinlock_t wr_async_lock;
72 #define CMD53_ARG_READ 0
73 #define CMD53_ARG_WRITE 1
74 #define CMD53_ARG_BLOCK_BASIS 1
75 #define CMD53_ARG_FIXED_ADDRESS 0
76 #define CMD53_ARG_INCR_ADDRESS 1
78 static int ath6kl_sdio_config(struct ath6kl *ar);
80 static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar)
82 return ar->hif_priv;
86 * Macro to check if DMA buffer is WORD-aligned and DMA-able.
87 * Most host controllers assume the buffer is DMA'able and will
88 * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid
89 * check fails on stack memory.
91 static inline bool buf_needs_bounce(u8 *buf)
93 return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf);
96 static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar)
98 struct ath6kl_mbox_info *mbox_info = &ar->mbox_info;
100 /* EP1 has an extended range */
101 mbox_info->htc_addr = HIF_MBOX_BASE_ADDR;
102 mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR;
103 mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH;
104 mbox_info->block_size = HIF_MBOX_BLOCK_SIZE;
105 mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR;
106 mbox_info->gmbox_sz = HIF_GMBOX_WIDTH;
109 static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func,
110 u8 mode, u8 opcode, u32 addr,
111 u16 blksz)
113 *arg = (((rw & 1) << 31) |
114 ((func & 0x7) << 28) |
115 ((mode & 1) << 27) |
116 ((opcode & 1) << 26) |
117 ((addr & 0x1FFFF) << 9) |
118 (blksz & 0x1FF));
121 static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
122 unsigned int address,
123 unsigned char val)
125 const u8 func = 0;
127 *arg = ((write & 1) << 31) |
128 ((func & 0x7) << 28) |
129 ((raw & 1) << 27) |
130 (1 << 26) |
131 ((address & 0x1FFFF) << 9) |
132 (1 << 8) |
133 (val & 0xFF);
136 static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
137 unsigned int address,
138 unsigned char byte)
140 struct mmc_command io_cmd;
142 memset(&io_cmd, 0, sizeof(io_cmd));
143 ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
144 io_cmd.opcode = SD_IO_RW_DIRECT;
145 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
147 return mmc_wait_for_cmd(card->host, &io_cmd, 0);
150 static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr,
151 u8 *buf, u32 len)
153 int ret = 0;
155 sdio_claim_host(func);
157 if (request & HIF_WRITE) {
158 /* FIXME: looks like ugly workaround for something */
159 if (addr >= HIF_MBOX_BASE_ADDR &&
160 addr <= HIF_MBOX_END_ADDR)
161 addr += (HIF_MBOX_WIDTH - len);
163 /* FIXME: this also looks like ugly workaround */
164 if (addr == HIF_MBOX0_EXT_BASE_ADDR)
165 addr += HIF_MBOX0_EXT_WIDTH - len;
167 if (request & HIF_FIXED_ADDRESS)
168 ret = sdio_writesb(func, addr, buf, len);
169 else
170 ret = sdio_memcpy_toio(func, addr, buf, len);
171 } else {
172 if (request & HIF_FIXED_ADDRESS)
173 ret = sdio_readsb(func, buf, addr, len);
174 else
175 ret = sdio_memcpy_fromio(func, buf, addr, len);
178 sdio_release_host(func);
180 ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n",
181 request & HIF_WRITE ? "wr" : "rd", addr,
182 request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len);
183 ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len);
185 trace_ath6kl_sdio(addr, request, buf, len);
187 return ret;
190 static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio)
192 struct bus_request *bus_req;
194 spin_lock_bh(&ar_sdio->lock);
196 if (list_empty(&ar_sdio->bus_req_freeq)) {
197 spin_unlock_bh(&ar_sdio->lock);
198 return NULL;
201 bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
202 struct bus_request, list);
203 list_del(&bus_req->list);
205 spin_unlock_bh(&ar_sdio->lock);
206 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
207 __func__, bus_req);
209 return bus_req;
212 static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio,
213 struct bus_request *bus_req)
215 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
216 __func__, bus_req);
218 spin_lock_bh(&ar_sdio->lock);
219 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
220 spin_unlock_bh(&ar_sdio->lock);
223 static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req,
224 struct mmc_data *data)
226 struct scatterlist *sg;
227 int i;
229 data->blksz = HIF_MBOX_BLOCK_SIZE;
230 data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE;
232 ath6kl_dbg(ATH6KL_DBG_SCATTER,
233 "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n",
234 (scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr,
235 data->blksz, data->blocks, scat_req->len,
236 scat_req->scat_entries);
238 data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE :
239 MMC_DATA_READ;
241 /* fill SG entries */
242 sg = scat_req->sgentries;
243 sg_init_table(sg, scat_req->scat_entries);
245 /* assemble SG list */
246 for (i = 0; i < scat_req->scat_entries; i++, sg++) {
247 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n",
248 i, scat_req->scat_list[i].buf,
249 scat_req->scat_list[i].len);
251 sg_set_buf(sg, scat_req->scat_list[i].buf,
252 scat_req->scat_list[i].len);
255 /* set scatter-gather table for request */
256 data->sg = scat_req->sgentries;
257 data->sg_len = scat_req->scat_entries;
260 static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio,
261 struct bus_request *req)
263 struct mmc_request mmc_req;
264 struct mmc_command cmd;
265 struct mmc_data data;
266 struct hif_scatter_req *scat_req;
267 u8 opcode, rw;
268 int status, len;
270 scat_req = req->scat_req;
272 if (scat_req->virt_scat) {
273 len = scat_req->len;
274 if (scat_req->req & HIF_BLOCK_BASIS)
275 len = round_down(len, HIF_MBOX_BLOCK_SIZE);
277 status = ath6kl_sdio_io(ar_sdio->func, scat_req->req,
278 scat_req->addr, scat_req->virt_dma_buf,
279 len);
280 goto scat_complete;
283 memset(&mmc_req, 0, sizeof(struct mmc_request));
284 memset(&cmd, 0, sizeof(struct mmc_command));
285 memset(&data, 0, sizeof(struct mmc_data));
287 ath6kl_sdio_setup_scat_data(scat_req, &data);
289 opcode = (scat_req->req & HIF_FIXED_ADDRESS) ?
290 CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS;
292 rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ;
294 /* Fixup the address so that the last byte will fall on MBOX EOM */
295 if (scat_req->req & HIF_WRITE) {
296 if (scat_req->addr == HIF_MBOX_BASE_ADDR)
297 scat_req->addr += HIF_MBOX_WIDTH - scat_req->len;
298 else
299 /* Uses extended address range */
300 scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len;
303 /* set command argument */
304 ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num,
305 CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr,
306 data.blocks);
308 cmd.opcode = SD_IO_RW_EXTENDED;
309 cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
311 mmc_req.cmd = &cmd;
312 mmc_req.data = &data;
314 sdio_claim_host(ar_sdio->func);
316 mmc_set_data_timeout(&data, ar_sdio->func->card);
318 trace_ath6kl_sdio_scat(scat_req->addr,
319 scat_req->req,
320 scat_req->len,
321 scat_req->scat_entries,
322 scat_req->scat_list);
324 /* synchronous call to process request */
325 mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req);
327 sdio_release_host(ar_sdio->func);
329 status = cmd.error ? cmd.error : data.error;
331 scat_complete:
332 scat_req->status = status;
334 if (scat_req->status)
335 ath6kl_err("Scatter write request failed:%d\n",
336 scat_req->status);
338 if (scat_req->req & HIF_ASYNCHRONOUS)
339 scat_req->complete(ar_sdio->ar->htc_target, scat_req);
341 return status;
344 static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio,
345 int n_scat_entry, int n_scat_req,
346 bool virt_scat)
348 struct hif_scatter_req *s_req;
349 struct bus_request *bus_req;
350 int i, scat_req_sz, scat_list_sz, size;
351 u8 *virt_buf;
353 scat_list_sz = n_scat_entry * sizeof(struct hif_scatter_item);
354 scat_req_sz = sizeof(*s_req) + scat_list_sz;
356 if (!virt_scat)
357 size = sizeof(struct scatterlist) * n_scat_entry;
358 else
359 size = 2 * L1_CACHE_BYTES +
360 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
362 for (i = 0; i < n_scat_req; i++) {
363 /* allocate the scatter request */
364 s_req = kzalloc(scat_req_sz, GFP_KERNEL);
365 if (!s_req)
366 return -ENOMEM;
368 if (virt_scat) {
369 virt_buf = kzalloc(size, GFP_KERNEL);
370 if (!virt_buf) {
371 kfree(s_req);
372 return -ENOMEM;
375 s_req->virt_dma_buf =
376 (u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf);
377 } else {
378 /* allocate sglist */
379 s_req->sgentries = kzalloc(size, GFP_KERNEL);
381 if (!s_req->sgentries) {
382 kfree(s_req);
383 return -ENOMEM;
387 /* allocate a bus request for this scatter request */
388 bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
389 if (!bus_req) {
390 kfree(s_req->sgentries);
391 kfree(s_req->virt_dma_buf);
392 kfree(s_req);
393 return -ENOMEM;
396 /* assign the scatter request to this bus request */
397 bus_req->scat_req = s_req;
398 s_req->busrequest = bus_req;
400 s_req->virt_scat = virt_scat;
402 /* add it to the scatter pool */
403 hif_scatter_req_add(ar_sdio->ar, s_req);
406 return 0;
409 static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf,
410 u32 len, u32 request)
412 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
413 u8 *tbuf = NULL;
414 int ret;
415 bool bounced = false;
417 if (request & HIF_BLOCK_BASIS)
418 len = round_down(len, HIF_MBOX_BLOCK_SIZE);
420 if (buf_needs_bounce(buf)) {
421 if (!ar_sdio->dma_buffer)
422 return -ENOMEM;
423 mutex_lock(&ar_sdio->dma_buffer_mutex);
424 tbuf = ar_sdio->dma_buffer;
426 if (request & HIF_WRITE)
427 memcpy(tbuf, buf, len);
429 bounced = true;
430 } else {
431 tbuf = buf;
434 ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len);
435 if ((request & HIF_READ) && bounced)
436 memcpy(buf, tbuf, len);
438 if (bounced)
439 mutex_unlock(&ar_sdio->dma_buffer_mutex);
441 return ret;
444 static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio,
445 struct bus_request *req)
447 if (req->scat_req) {
448 ath6kl_sdio_scat_rw(ar_sdio, req);
449 } else {
450 void *context;
451 int status;
453 status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address,
454 req->buffer, req->length,
455 req->request);
456 context = req->packet;
457 ath6kl_sdio_free_bus_req(ar_sdio, req);
458 ath6kl_hif_rw_comp_handler(context, status);
462 static void ath6kl_sdio_write_async_work(struct work_struct *work)
464 struct ath6kl_sdio *ar_sdio;
465 struct bus_request *req, *tmp_req;
467 ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work);
469 spin_lock_bh(&ar_sdio->wr_async_lock);
470 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
471 list_del(&req->list);
472 spin_unlock_bh(&ar_sdio->wr_async_lock);
473 __ath6kl_sdio_write_async(ar_sdio, req);
474 spin_lock_bh(&ar_sdio->wr_async_lock);
476 spin_unlock_bh(&ar_sdio->wr_async_lock);
479 static void ath6kl_sdio_irq_handler(struct sdio_func *func)
481 int status;
482 struct ath6kl_sdio *ar_sdio;
484 ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n");
486 ar_sdio = sdio_get_drvdata(func);
487 atomic_set(&ar_sdio->irq_handling, 1);
489 * Release the host during interrups so we can pick it back up when
490 * we process commands.
492 sdio_release_host(ar_sdio->func);
494 status = ath6kl_hif_intr_bh_handler(ar_sdio->ar);
495 sdio_claim_host(ar_sdio->func);
497 atomic_set(&ar_sdio->irq_handling, 0);
498 wake_up(&ar_sdio->irq_wq);
500 WARN_ON(status && status != -ECANCELED);
503 static int ath6kl_sdio_power_on(struct ath6kl *ar)
505 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
506 struct sdio_func *func = ar_sdio->func;
507 int ret = 0;
509 if (!ar_sdio->is_disabled)
510 return 0;
512 ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n");
514 sdio_claim_host(func);
516 ret = sdio_enable_func(func);
517 if (ret) {
518 ath6kl_err("Unable to enable sdio func: %d)\n", ret);
519 sdio_release_host(func);
520 return ret;
523 sdio_release_host(func);
526 * Wait for hardware to initialise. It should take a lot less than
527 * 10 ms but let's be conservative here.
529 msleep(10);
531 ret = ath6kl_sdio_config(ar);
532 if (ret) {
533 ath6kl_err("Failed to config sdio: %d\n", ret);
534 goto out;
537 ar_sdio->is_disabled = false;
539 out:
540 return ret;
543 static int ath6kl_sdio_power_off(struct ath6kl *ar)
545 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
546 int ret;
548 if (ar_sdio->is_disabled)
549 return 0;
551 ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n");
553 /* Disable the card */
554 sdio_claim_host(ar_sdio->func);
555 ret = sdio_disable_func(ar_sdio->func);
556 sdio_release_host(ar_sdio->func);
558 if (ret)
559 return ret;
561 ar_sdio->is_disabled = true;
563 return ret;
566 static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer,
567 u32 length, u32 request,
568 struct htc_packet *packet)
570 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
571 struct bus_request *bus_req;
573 bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
575 if (WARN_ON_ONCE(!bus_req))
576 return -ENOMEM;
578 bus_req->address = address;
579 bus_req->buffer = buffer;
580 bus_req->length = length;
581 bus_req->request = request;
582 bus_req->packet = packet;
584 spin_lock_bh(&ar_sdio->wr_async_lock);
585 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
586 spin_unlock_bh(&ar_sdio->wr_async_lock);
587 queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
589 return 0;
592 static void ath6kl_sdio_irq_enable(struct ath6kl *ar)
594 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
595 int ret;
597 sdio_claim_host(ar_sdio->func);
599 /* Register the isr */
600 ret = sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler);
601 if (ret)
602 ath6kl_err("Failed to claim sdio irq: %d\n", ret);
604 sdio_release_host(ar_sdio->func);
607 static bool ath6kl_sdio_is_on_irq(struct ath6kl *ar)
609 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
611 return !atomic_read(&ar_sdio->irq_handling);
614 static void ath6kl_sdio_irq_disable(struct ath6kl *ar)
616 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
617 int ret;
619 sdio_claim_host(ar_sdio->func);
621 if (atomic_read(&ar_sdio->irq_handling)) {
622 sdio_release_host(ar_sdio->func);
624 ret = wait_event_interruptible(ar_sdio->irq_wq,
625 ath6kl_sdio_is_on_irq(ar));
626 if (ret)
627 return;
629 sdio_claim_host(ar_sdio->func);
632 ret = sdio_release_irq(ar_sdio->func);
633 if (ret)
634 ath6kl_err("Failed to release sdio irq: %d\n", ret);
636 sdio_release_host(ar_sdio->func);
639 static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar)
641 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
642 struct hif_scatter_req *node = NULL;
644 spin_lock_bh(&ar_sdio->scat_lock);
646 if (!list_empty(&ar_sdio->scat_req)) {
647 node = list_first_entry(&ar_sdio->scat_req,
648 struct hif_scatter_req, list);
649 list_del(&node->list);
651 node->scat_q_depth = get_queue_depth(&ar_sdio->scat_req);
654 spin_unlock_bh(&ar_sdio->scat_lock);
656 return node;
659 static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar,
660 struct hif_scatter_req *s_req)
662 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
664 spin_lock_bh(&ar_sdio->scat_lock);
666 list_add_tail(&s_req->list, &ar_sdio->scat_req);
668 spin_unlock_bh(&ar_sdio->scat_lock);
671 /* scatter gather read write request */
672 static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar,
673 struct hif_scatter_req *scat_req)
675 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
676 u32 request = scat_req->req;
677 int status = 0;
679 if (!scat_req->len)
680 return -EINVAL;
682 ath6kl_dbg(ATH6KL_DBG_SCATTER,
683 "hif-scatter: total len: %d scatter entries: %d\n",
684 scat_req->len, scat_req->scat_entries);
686 if (request & HIF_SYNCHRONOUS) {
687 status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest);
688 } else {
689 spin_lock_bh(&ar_sdio->wr_async_lock);
690 list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq);
691 spin_unlock_bh(&ar_sdio->wr_async_lock);
692 queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
695 return status;
698 /* clean up scatter support */
699 static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar)
701 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
702 struct hif_scatter_req *s_req, *tmp_req;
704 /* empty the free list */
705 spin_lock_bh(&ar_sdio->scat_lock);
706 list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) {
707 list_del(&s_req->list);
708 spin_unlock_bh(&ar_sdio->scat_lock);
711 * FIXME: should we also call completion handler with
712 * ath6kl_hif_rw_comp_handler() with status -ECANCELED so
713 * that the packet is properly freed?
715 if (s_req->busrequest) {
716 s_req->busrequest->scat_req = NULL;
717 ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest);
719 kfree(s_req->virt_dma_buf);
720 kfree(s_req->sgentries);
721 kfree(s_req);
723 spin_lock_bh(&ar_sdio->scat_lock);
725 spin_unlock_bh(&ar_sdio->scat_lock);
727 ar_sdio->scatter_enabled = false;
730 /* setup of HIF scatter resources */
731 static int ath6kl_sdio_enable_scatter(struct ath6kl *ar)
733 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
734 struct htc_target *target = ar->htc_target;
735 int ret = 0;
736 bool virt_scat = false;
738 if (ar_sdio->scatter_enabled)
739 return 0;
741 ar_sdio->scatter_enabled = true;
743 /* check if host supports scatter and it meets our requirements */
744 if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) {
745 ath6kl_err("host only supports scatter of :%d entries, need: %d\n",
746 ar_sdio->func->card->host->max_segs,
747 MAX_SCATTER_ENTRIES_PER_REQ);
748 virt_scat = true;
751 if (!virt_scat) {
752 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
753 MAX_SCATTER_ENTRIES_PER_REQ,
754 MAX_SCATTER_REQUESTS, virt_scat);
756 if (!ret) {
757 ath6kl_dbg(ATH6KL_DBG_BOOT,
758 "hif-scatter enabled requests %d entries %d\n",
759 MAX_SCATTER_REQUESTS,
760 MAX_SCATTER_ENTRIES_PER_REQ);
762 target->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ;
763 target->max_xfer_szper_scatreq =
764 MAX_SCATTER_REQ_TRANSFER_SIZE;
765 } else {
766 ath6kl_sdio_cleanup_scatter(ar);
767 ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n");
771 if (virt_scat || ret) {
772 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
773 ATH6KL_SCATTER_ENTRIES_PER_REQ,
774 ATH6KL_SCATTER_REQS, virt_scat);
776 if (ret) {
777 ath6kl_err("failed to alloc virtual scatter resources !\n");
778 ath6kl_sdio_cleanup_scatter(ar);
779 return ret;
782 ath6kl_dbg(ATH6KL_DBG_BOOT,
783 "virtual scatter enabled requests %d entries %d\n",
784 ATH6KL_SCATTER_REQS, ATH6KL_SCATTER_ENTRIES_PER_REQ);
786 target->max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ;
787 target->max_xfer_szper_scatreq =
788 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
791 return 0;
794 static int ath6kl_sdio_config(struct ath6kl *ar)
796 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
797 struct sdio_func *func = ar_sdio->func;
798 int ret;
800 sdio_claim_host(func);
802 if ((ar_sdio->id->device & MANUFACTURER_ID_ATH6KL_BASE_MASK) >=
803 MANUFACTURER_ID_AR6003_BASE) {
804 /* enable 4-bit ASYNC interrupt on AR6003 or later */
805 ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card,
806 CCCR_SDIO_IRQ_MODE_REG,
807 SDIO_IRQ_MODE_ASYNC_4BIT_IRQ);
808 if (ret) {
809 ath6kl_err("Failed to enable 4-bit async irq mode %d\n",
810 ret);
811 goto out;
814 ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n");
817 /* give us some time to enable, in ms */
818 func->enable_timeout = 100;
820 ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE);
821 if (ret) {
822 ath6kl_err("Set sdio block size %d failed: %d)\n",
823 HIF_MBOX_BLOCK_SIZE, ret);
824 goto out;
827 out:
828 sdio_release_host(func);
830 return ret;
833 static int ath6kl_set_sdio_pm_caps(struct ath6kl *ar)
835 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
836 struct sdio_func *func = ar_sdio->func;
837 mmc_pm_flag_t flags;
838 int ret;
840 flags = sdio_get_host_pm_caps(func);
842 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags);
844 if (!(flags & MMC_PM_WAKE_SDIO_IRQ) ||
845 !(flags & MMC_PM_KEEP_POWER))
846 return -EINVAL;
848 ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
849 if (ret) {
850 ath6kl_err("set sdio keep pwr flag failed: %d\n", ret);
851 return ret;
854 /* sdio irq wakes up host */
855 ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ);
856 if (ret)
857 ath6kl_err("set sdio wake irq flag failed: %d\n", ret);
859 return ret;
862 static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow)
864 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
865 struct sdio_func *func = ar_sdio->func;
866 mmc_pm_flag_t flags;
867 bool try_deepsleep = false;
868 int ret;
870 if (ar->suspend_mode == WLAN_POWER_STATE_WOW ||
871 (!ar->suspend_mode && wow)) {
872 ret = ath6kl_set_sdio_pm_caps(ar);
873 if (ret)
874 goto cut_pwr;
876 ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_WOW, wow);
877 if (ret && ret != -ENOTCONN)
878 ath6kl_err("wow suspend failed: %d\n", ret);
880 if (ret &&
881 (!ar->wow_suspend_mode ||
882 ar->wow_suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP))
883 try_deepsleep = true;
884 else if (ret &&
885 ar->wow_suspend_mode == WLAN_POWER_STATE_CUT_PWR)
886 goto cut_pwr;
887 if (!ret)
888 return 0;
891 if (ar->suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP ||
892 !ar->suspend_mode || try_deepsleep) {
893 flags = sdio_get_host_pm_caps(func);
894 if (!(flags & MMC_PM_KEEP_POWER))
895 goto cut_pwr;
897 ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
898 if (ret)
899 goto cut_pwr;
902 * Workaround to support Deep Sleep with MSM, set the host pm
903 * flag as MMC_PM_WAKE_SDIO_IRQ to allow SDCC deiver to disable
904 * the sdc2_clock and internally allows MSM to enter
905 * TCXO shutdown properly.
907 if ((flags & MMC_PM_WAKE_SDIO_IRQ)) {
908 ret = sdio_set_host_pm_flags(func,
909 MMC_PM_WAKE_SDIO_IRQ);
910 if (ret)
911 goto cut_pwr;
914 ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_DEEPSLEEP,
915 NULL);
916 if (ret)
917 goto cut_pwr;
919 return 0;
922 cut_pwr:
923 if (func->card && func->card->host)
924 func->card->host->pm_flags &= ~MMC_PM_KEEP_POWER;
926 return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_CUTPOWER, NULL);
929 static int ath6kl_sdio_resume(struct ath6kl *ar)
931 switch (ar->state) {
932 case ATH6KL_STATE_OFF:
933 case ATH6KL_STATE_CUTPOWER:
934 ath6kl_dbg(ATH6KL_DBG_SUSPEND,
935 "sdio resume configuring sdio\n");
937 /* need to set sdio settings after power is cut from sdio */
938 ath6kl_sdio_config(ar);
939 break;
941 case ATH6KL_STATE_ON:
942 break;
944 case ATH6KL_STATE_DEEPSLEEP:
945 break;
947 case ATH6KL_STATE_WOW:
948 break;
950 case ATH6KL_STATE_SUSPENDING:
951 break;
953 case ATH6KL_STATE_RESUMING:
954 break;
956 case ATH6KL_STATE_RECOVERY:
957 break;
960 ath6kl_cfg80211_resume(ar);
962 return 0;
965 /* set the window address register (using 4-byte register access ). */
966 static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
968 int status;
969 u8 addr_val[4];
970 s32 i;
973 * Write bytes 1,2,3 of the register to set the upper address bytes,
974 * the LSB is written last to initiate the access cycle
977 for (i = 1; i <= 3; i++) {
979 * Fill the buffer with the address byte value we want to
980 * hit 4 times.
982 memset(addr_val, ((u8 *)&addr)[i], 4);
985 * Hit each byte of the register address with a 4-byte
986 * write operation to the same address, this is a harmless
987 * operation.
989 status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val,
990 4, HIF_WR_SYNC_BYTE_FIX);
991 if (status)
992 break;
995 if (status) {
996 ath6kl_err("%s: failed to write initial bytes of 0x%x to window reg: 0x%X\n",
997 __func__, addr, reg_addr);
998 return status;
1002 * Write the address register again, this time write the whole
1003 * 4-byte value. The effect here is that the LSB write causes the
1004 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
1005 * effect since we are writing the same values again
1007 status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr),
1008 4, HIF_WR_SYNC_BYTE_INC);
1010 if (status) {
1011 ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n",
1012 __func__, addr, reg_addr);
1013 return status;
1016 return 0;
1019 static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data)
1021 int status;
1023 /* set window register to start read cycle */
1024 status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS,
1025 address);
1027 if (status)
1028 return status;
1030 /* read the data */
1031 status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1032 (u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC);
1033 if (status) {
1034 ath6kl_err("%s: failed to read from window data addr\n",
1035 __func__);
1036 return status;
1039 return status;
1042 static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address,
1043 __le32 data)
1045 int status;
1046 u32 val = (__force u32) data;
1048 /* set write data */
1049 status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1050 (u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC);
1051 if (status) {
1052 ath6kl_err("%s: failed to write 0x%x to window data addr\n",
1053 __func__, data);
1054 return status;
1057 /* set window register, which starts the write cycle */
1058 return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
1059 address);
1062 static int ath6kl_sdio_bmi_credits(struct ath6kl *ar)
1064 u32 addr;
1065 unsigned long timeout;
1066 int ret;
1068 ar->bmi.cmd_credits = 0;
1070 /* Read the counter register to get the command credits */
1071 addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4;
1073 timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1074 while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) {
1076 * Hit the credit counter with a 4-byte access, the first byte
1077 * read will hit the counter and cause a decrement, while the
1078 * remaining 3 bytes has no effect. The rationale behind this
1079 * is to make all HIF accesses 4-byte aligned.
1081 ret = ath6kl_sdio_read_write_sync(ar, addr,
1082 (u8 *)&ar->bmi.cmd_credits, 4,
1083 HIF_RD_SYNC_BYTE_INC);
1084 if (ret) {
1085 ath6kl_err("Unable to decrement the command credit count register: %d\n",
1086 ret);
1087 return ret;
1090 /* The counter is only 8 bits.
1091 * Ignore anything in the upper 3 bytes
1093 ar->bmi.cmd_credits &= 0xFF;
1096 if (!ar->bmi.cmd_credits) {
1097 ath6kl_err("bmi communication timeout\n");
1098 return -ETIMEDOUT;
1101 return 0;
1104 static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar)
1106 unsigned long timeout;
1107 u32 rx_word = 0;
1108 int ret = 0;
1110 timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1111 while ((time_before(jiffies, timeout)) && !rx_word) {
1112 ret = ath6kl_sdio_read_write_sync(ar,
1113 RX_LOOKAHEAD_VALID_ADDRESS,
1114 (u8 *)&rx_word, sizeof(rx_word),
1115 HIF_RD_SYNC_BYTE_INC);
1116 if (ret) {
1117 ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n");
1118 return ret;
1121 /* all we really want is one bit */
1122 rx_word &= (1 << ENDPOINT1);
1125 if (!rx_word) {
1126 ath6kl_err("bmi_recv_buf FIFO empty\n");
1127 return -EINVAL;
1130 return ret;
1133 static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len)
1135 int ret;
1136 u32 addr;
1138 ret = ath6kl_sdio_bmi_credits(ar);
1139 if (ret)
1140 return ret;
1142 addr = ar->mbox_info.htc_addr;
1144 ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1145 HIF_WR_SYNC_BYTE_INC);
1146 if (ret) {
1147 ath6kl_err("unable to send the bmi data to the device\n");
1148 return ret;
1151 return 0;
1154 static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len)
1156 int ret;
1157 u32 addr;
1160 * During normal bootup, small reads may be required.
1161 * Rather than issue an HIF Read and then wait as the Target
1162 * adds successive bytes to the FIFO, we wait here until
1163 * we know that response data is available.
1165 * This allows us to cleanly timeout on an unexpected
1166 * Target failure rather than risk problems at the HIF level.
1167 * In particular, this avoids SDIO timeouts and possibly garbage
1168 * data on some host controllers. And on an interconnect
1169 * such as Compact Flash (as well as some SDIO masters) which
1170 * does not provide any indication on data timeout, it avoids
1171 * a potential hang or garbage response.
1173 * Synchronization is more difficult for reads larger than the
1174 * size of the MBOX FIFO (128B), because the Target is unable
1175 * to push the 129th byte of data until AFTER the Host posts an
1176 * HIF Read and removes some FIFO data. So for large reads the
1177 * Host proceeds to post an HIF Read BEFORE all the data is
1178 * actually available to read. Fortunately, large BMI reads do
1179 * not occur in practice -- they're supported for debug/development.
1181 * So Host/Target BMI synchronization is divided into these cases:
1182 * CASE 1: length < 4
1183 * Should not happen
1185 * CASE 2: 4 <= length <= 128
1186 * Wait for first 4 bytes to be in FIFO
1187 * If CONSERVATIVE_BMI_READ is enabled, also wait for
1188 * a BMI command credit, which indicates that the ENTIRE
1189 * response is available in the the FIFO
1191 * CASE 3: length > 128
1192 * Wait for the first 4 bytes to be in FIFO
1194 * For most uses, a small timeout should be sufficient and we will
1195 * usually see a response quickly; but there may be some unusual
1196 * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1197 * For now, we use an unbounded busy loop while waiting for
1198 * BMI_EXECUTE.
1200 * If BMI_EXECUTE ever needs to support longer-latency execution,
1201 * especially in production, this code needs to be enhanced to sleep
1202 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently
1203 * a function of Host processor speed.
1205 if (len >= 4) { /* NB: Currently, always true */
1206 ret = ath6kl_bmi_get_rx_lkahd(ar);
1207 if (ret)
1208 return ret;
1211 addr = ar->mbox_info.htc_addr;
1212 ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1213 HIF_RD_SYNC_BYTE_INC);
1214 if (ret) {
1215 ath6kl_err("Unable to read the bmi data from the device: %d\n",
1216 ret);
1217 return ret;
1220 return 0;
1223 static void ath6kl_sdio_stop(struct ath6kl *ar)
1225 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
1226 struct bus_request *req, *tmp_req;
1227 void *context;
1229 /* FIXME: make sure that wq is not queued again */
1231 cancel_work_sync(&ar_sdio->wr_async_work);
1233 spin_lock_bh(&ar_sdio->wr_async_lock);
1235 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1236 list_del(&req->list);
1238 if (req->scat_req) {
1239 /* this is a scatter gather request */
1240 req->scat_req->status = -ECANCELED;
1241 req->scat_req->complete(ar_sdio->ar->htc_target,
1242 req->scat_req);
1243 } else {
1244 context = req->packet;
1245 ath6kl_sdio_free_bus_req(ar_sdio, req);
1246 ath6kl_hif_rw_comp_handler(context, -ECANCELED);
1250 spin_unlock_bh(&ar_sdio->wr_async_lock);
1252 WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4);
1255 static const struct ath6kl_hif_ops ath6kl_sdio_ops = {
1256 .read_write_sync = ath6kl_sdio_read_write_sync,
1257 .write_async = ath6kl_sdio_write_async,
1258 .irq_enable = ath6kl_sdio_irq_enable,
1259 .irq_disable = ath6kl_sdio_irq_disable,
1260 .scatter_req_get = ath6kl_sdio_scatter_req_get,
1261 .scatter_req_add = ath6kl_sdio_scatter_req_add,
1262 .enable_scatter = ath6kl_sdio_enable_scatter,
1263 .scat_req_rw = ath6kl_sdio_async_rw_scatter,
1264 .cleanup_scatter = ath6kl_sdio_cleanup_scatter,
1265 .suspend = ath6kl_sdio_suspend,
1266 .resume = ath6kl_sdio_resume,
1267 .diag_read32 = ath6kl_sdio_diag_read32,
1268 .diag_write32 = ath6kl_sdio_diag_write32,
1269 .bmi_read = ath6kl_sdio_bmi_read,
1270 .bmi_write = ath6kl_sdio_bmi_write,
1271 .power_on = ath6kl_sdio_power_on,
1272 .power_off = ath6kl_sdio_power_off,
1273 .stop = ath6kl_sdio_stop,
1276 #ifdef CONFIG_PM_SLEEP
1279 * Empty handlers so that mmc subsystem doesn't remove us entirely during
1280 * suspend. We instead follow cfg80211 suspend/resume handlers.
1282 static int ath6kl_sdio_pm_suspend(struct device *device)
1284 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n");
1286 return 0;
1289 static int ath6kl_sdio_pm_resume(struct device *device)
1291 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n");
1293 return 0;
1296 static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend,
1297 ath6kl_sdio_pm_resume);
1299 #define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops)
1301 #else
1303 #define ATH6KL_SDIO_PM_OPS NULL
1305 #endif /* CONFIG_PM_SLEEP */
1307 static int ath6kl_sdio_probe(struct sdio_func *func,
1308 const struct sdio_device_id *id)
1310 int ret;
1311 struct ath6kl_sdio *ar_sdio;
1312 struct ath6kl *ar;
1313 int count;
1315 ath6kl_dbg(ATH6KL_DBG_BOOT,
1316 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
1317 func->num, func->vendor, func->device,
1318 func->max_blksize, func->cur_blksize);
1320 ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL);
1321 if (!ar_sdio)
1322 return -ENOMEM;
1324 ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL);
1325 if (!ar_sdio->dma_buffer) {
1326 ret = -ENOMEM;
1327 goto err_hif;
1330 ar_sdio->func = func;
1331 sdio_set_drvdata(func, ar_sdio);
1333 ar_sdio->id = id;
1334 ar_sdio->is_disabled = true;
1336 spin_lock_init(&ar_sdio->lock);
1337 spin_lock_init(&ar_sdio->scat_lock);
1338 spin_lock_init(&ar_sdio->wr_async_lock);
1339 mutex_init(&ar_sdio->dma_buffer_mutex);
1341 INIT_LIST_HEAD(&ar_sdio->scat_req);
1342 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
1343 INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
1345 INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work);
1347 init_waitqueue_head(&ar_sdio->irq_wq);
1349 for (count = 0; count < BUS_REQUEST_MAX_NUM; count++)
1350 ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]);
1352 ar = ath6kl_core_create(&ar_sdio->func->dev);
1353 if (!ar) {
1354 ath6kl_err("Failed to alloc ath6kl core\n");
1355 ret = -ENOMEM;
1356 goto err_dma;
1359 ar_sdio->ar = ar;
1360 ar->hif_type = ATH6KL_HIF_TYPE_SDIO;
1361 ar->hif_priv = ar_sdio;
1362 ar->hif_ops = &ath6kl_sdio_ops;
1363 ar->bmi.max_data_size = 256;
1365 ath6kl_sdio_set_mbox_info(ar);
1367 ret = ath6kl_sdio_config(ar);
1368 if (ret) {
1369 ath6kl_err("Failed to config sdio: %d\n", ret);
1370 goto err_core_alloc;
1373 ret = ath6kl_core_init(ar, ATH6KL_HTC_TYPE_MBOX);
1374 if (ret) {
1375 ath6kl_err("Failed to init ath6kl core\n");
1376 goto err_core_alloc;
1379 return ret;
1381 err_core_alloc:
1382 ath6kl_core_destroy(ar_sdio->ar);
1383 err_dma:
1384 kfree(ar_sdio->dma_buffer);
1385 err_hif:
1386 kfree(ar_sdio);
1388 return ret;
1391 static void ath6kl_sdio_remove(struct sdio_func *func)
1393 struct ath6kl_sdio *ar_sdio;
1395 ath6kl_dbg(ATH6KL_DBG_BOOT,
1396 "sdio removed func %d vendor 0x%x device 0x%x\n",
1397 func->num, func->vendor, func->device);
1399 ar_sdio = sdio_get_drvdata(func);
1401 ath6kl_stop_txrx(ar_sdio->ar);
1402 cancel_work_sync(&ar_sdio->wr_async_work);
1404 ath6kl_core_cleanup(ar_sdio->ar);
1405 ath6kl_core_destroy(ar_sdio->ar);
1407 kfree(ar_sdio->dma_buffer);
1408 kfree(ar_sdio);
1411 static const struct sdio_device_id ath6kl_sdio_devices[] = {
1412 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x0))},
1413 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x1))},
1414 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x0))},
1415 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x1))},
1416 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x2))},
1417 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x18))},
1418 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x19))},
1422 MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices);
1424 static struct sdio_driver ath6kl_sdio_driver = {
1425 .name = "ath6kl_sdio",
1426 .id_table = ath6kl_sdio_devices,
1427 .probe = ath6kl_sdio_probe,
1428 .remove = ath6kl_sdio_remove,
1429 .drv.pm = ATH6KL_SDIO_PM_OPS,
1432 static int __init ath6kl_sdio_init(void)
1434 int ret;
1436 ret = sdio_register_driver(&ath6kl_sdio_driver);
1437 if (ret)
1438 ath6kl_err("sdio driver registration failed: %d\n", ret);
1440 return ret;
1443 static void __exit ath6kl_sdio_exit(void)
1445 sdio_unregister_driver(&ath6kl_sdio_driver);
1448 module_init(ath6kl_sdio_init);
1449 module_exit(ath6kl_sdio_exit);
1451 MODULE_AUTHOR("Atheros Communications, Inc.");
1452 MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices");
1453 MODULE_LICENSE("Dual BSD/GPL");
1455 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_OTP_FILE);
1456 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_FIRMWARE_FILE);
1457 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_PATCH_FILE);
1458 MODULE_FIRMWARE(AR6003_HW_2_0_BOARD_DATA_FILE);
1459 MODULE_FIRMWARE(AR6003_HW_2_0_DEFAULT_BOARD_DATA_FILE);
1460 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_OTP_FILE);
1461 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_FIRMWARE_FILE);
1462 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_PATCH_FILE);
1463 MODULE_FIRMWARE(AR6003_HW_2_1_1_BOARD_DATA_FILE);
1464 MODULE_FIRMWARE(AR6003_HW_2_1_1_DEFAULT_BOARD_DATA_FILE);
1465 MODULE_FIRMWARE(AR6004_HW_1_0_FW_DIR "/" AR6004_HW_1_0_FIRMWARE_FILE);
1466 MODULE_FIRMWARE(AR6004_HW_1_0_BOARD_DATA_FILE);
1467 MODULE_FIRMWARE(AR6004_HW_1_0_DEFAULT_BOARD_DATA_FILE);
1468 MODULE_FIRMWARE(AR6004_HW_1_1_FW_DIR "/" AR6004_HW_1_1_FIRMWARE_FILE);
1469 MODULE_FIRMWARE(AR6004_HW_1_1_BOARD_DATA_FILE);
1470 MODULE_FIRMWARE(AR6004_HW_1_1_DEFAULT_BOARD_DATA_FILE);
1471 MODULE_FIRMWARE(AR6004_HW_1_2_FW_DIR "/" AR6004_HW_1_2_FIRMWARE_FILE);
1472 MODULE_FIRMWARE(AR6004_HW_1_2_BOARD_DATA_FILE);
1473 MODULE_FIRMWARE(AR6004_HW_1_2_DEFAULT_BOARD_DATA_FILE);
1474 MODULE_FIRMWARE(AR6004_HW_1_3_FW_DIR "/" AR6004_HW_1_3_FIRMWARE_FILE);
1475 MODULE_FIRMWARE(AR6004_HW_1_3_BOARD_DATA_FILE);
1476 MODULE_FIRMWARE(AR6004_HW_1_3_DEFAULT_BOARD_DATA_FILE);