treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath9k / ar9002_phy.c
blob6f32b8d2ec7f99b0b0d8e8b840848720dbdaa35e
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 /**
18 * DOC: Programming Atheros 802.11n analog front end radios
20 * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
21 * devices have either an external AR2133 analog front end radio for single
22 * band 2.4 GHz communication or an AR5133 analog front end radio for dual
23 * band 2.4 GHz / 5 GHz communication.
25 * All devices after the AR5416 and AR5418 family starting with the AR9280
26 * have their analog front radios, MAC/BB and host PCIe/USB interface embedded
27 * into a single-chip and require less programming.
29 * The following single-chips exist with a respective embedded radio:
31 * AR9280 - 11n dual-band 2x2 MIMO for PCIe
32 * AR9281 - 11n single-band 1x2 MIMO for PCIe
33 * AR9285 - 11n single-band 1x1 for PCIe
34 * AR9287 - 11n single-band 2x2 MIMO for PCIe
36 * AR9220 - 11n dual-band 2x2 MIMO for PCI
37 * AR9223 - 11n single-band 2x2 MIMO for PCI
39 * AR9287 - 11n single-band 1x1 MIMO for USB
42 #include "hw.h"
43 #include "ar9002_phy.h"
45 /**
46 * ar9002_hw_set_channel - set channel on single-chip device
47 * @ah: atheros hardware structure
48 * @chan:
50 * This is the function to change channel on single-chip devices, that is
51 * all devices after ar9280.
53 * This function takes the channel value in MHz and sets
54 * hardware channel value. Assumes writes have been enabled to analog bus.
56 * Actual Expression,
58 * For 2GHz channel,
59 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
60 * (freq_ref = 40MHz)
62 * For 5GHz channel,
63 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
64 * (freq_ref = 40MHz/(24>>amodeRefSel))
66 static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
68 u16 bMode, fracMode, aModeRefSel = 0;
69 u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
70 struct chan_centers centers;
71 u32 refDivA = 24;
73 ath9k_hw_get_channel_centers(ah, chan, &centers);
74 freq = centers.synth_center;
76 reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
77 reg32 &= 0xc0000000;
79 if (freq < 4800) { /* 2 GHz, fractional mode */
80 u32 txctl;
81 int regWrites = 0;
83 bMode = 1;
84 fracMode = 1;
85 aModeRefSel = 0;
86 channelSel = CHANSEL_2G(freq);
88 if (AR_SREV_9287_11_OR_LATER(ah)) {
89 if (freq == 2484) {
90 /* Enable channel spreading for channel 14 */
91 REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
92 1, regWrites);
93 } else {
94 REG_WRITE_ARRAY(&ah->iniCckfirNormal,
95 1, regWrites);
97 } else {
98 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
99 if (freq == 2484) {
100 /* Enable channel spreading for channel 14 */
101 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
102 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
103 } else {
104 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105 txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
108 } else {
109 bMode = 0;
110 fracMode = 0;
112 switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
113 case 0:
114 if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
115 aModeRefSel = 0;
116 else if ((freq % 20) == 0)
117 aModeRefSel = 3;
118 else if ((freq % 10) == 0)
119 aModeRefSel = 2;
120 if (aModeRefSel)
121 break;
122 /* fall through */
123 case 1:
124 default:
125 aModeRefSel = 0;
127 * Enable 2G (fractional) mode for channels
128 * which are 5MHz spaced.
130 fracMode = 1;
131 refDivA = 1;
132 channelSel = CHANSEL_5G(freq);
134 /* RefDivA setting */
135 ath9k_hw_analog_shift_rmw(ah, AR_AN_SYNTH9,
136 AR_AN_SYNTH9_REFDIVA,
137 AR_AN_SYNTH9_REFDIVA_S, refDivA);
141 if (!fracMode) {
142 ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
143 channelSel = ndiv & 0x1ff;
144 channelFrac = (ndiv & 0xfffffe00) * 2;
145 channelSel = (channelSel << 17) | channelFrac;
149 reg32 = reg32 |
150 (bMode << 29) |
151 (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
153 REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
155 ah->curchan = chan;
157 return 0;
161 * ar9002_hw_spur_mitigate - convert baseband spur frequency
162 * @ah: atheros hardware structure
163 * @chan:
165 * For single-chip solutions. Converts to baseband spur frequency given the
166 * input channel frequency and compute register settings below.
168 static void ar9002_hw_spur_mitigate(struct ath_hw *ah,
169 struct ath9k_channel *chan)
171 int bb_spur = AR_NO_SPUR;
172 int freq;
173 int bin;
174 int bb_spur_off, spur_subchannel_sd;
175 int spur_freq_sd;
176 int spur_delta_phase;
177 int denominator;
178 int tmp, newVal;
179 int i;
180 struct chan_centers centers;
182 int cur_bb_spur;
183 bool is2GHz = IS_CHAN_2GHZ(chan);
185 ath9k_hw_get_channel_centers(ah, chan, &centers);
186 freq = centers.synth_center;
188 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
189 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
191 if (AR_NO_SPUR == cur_bb_spur)
192 break;
194 if (is2GHz)
195 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
196 else
197 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
199 cur_bb_spur = cur_bb_spur - freq;
201 if (IS_CHAN_HT40(chan)) {
202 if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
203 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
204 bb_spur = cur_bb_spur;
205 break;
207 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
208 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
209 bb_spur = cur_bb_spur;
210 break;
214 if (AR_NO_SPUR == bb_spur) {
215 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
216 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
217 return;
218 } else {
219 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
220 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
223 bin = bb_spur * 320;
225 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
227 ENABLE_REGWRITE_BUFFER(ah);
229 newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
230 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
231 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
232 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
233 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
235 newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
236 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
237 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
238 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
239 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
240 REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
242 if (IS_CHAN_HT40(chan)) {
243 if (bb_spur < 0) {
244 spur_subchannel_sd = 1;
245 bb_spur_off = bb_spur + 10;
246 } else {
247 spur_subchannel_sd = 0;
248 bb_spur_off = bb_spur - 10;
250 } else {
251 spur_subchannel_sd = 0;
252 bb_spur_off = bb_spur;
255 if (IS_CHAN_HT40(chan))
256 spur_delta_phase =
257 ((bb_spur * 262144) /
258 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
259 else
260 spur_delta_phase =
261 ((bb_spur * 524288) /
262 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
264 denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
265 spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
267 newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
268 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
269 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
270 REG_WRITE(ah, AR_PHY_TIMING11, newVal);
272 newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
273 REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
275 ar5008_hw_cmn_spur_mitigate(ah, chan, bin);
277 REGWRITE_BUFFER_FLUSH(ah);
280 static void ar9002_olc_init(struct ath_hw *ah)
282 u32 i;
284 if (!OLC_FOR_AR9280_20_LATER)
285 return;
287 if (OLC_FOR_AR9287_10_LATER) {
288 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
289 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
290 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
291 AR9287_AN_TXPC0_TXPCMODE,
292 AR9287_AN_TXPC0_TXPCMODE_S,
293 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
294 udelay(100);
295 } else {
296 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
297 ah->originalGain[i] =
298 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
299 AR_PHY_TX_GAIN);
300 ah->PDADCdelta = 0;
304 static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah,
305 struct ath9k_channel *chan)
307 int ref_div = 5;
308 int pll_div = 0x2c;
309 u32 pll;
311 if (chan && IS_CHAN_5GHZ(chan) && !IS_CHAN_A_FAST_CLOCK(ah, chan)) {
312 if (AR_SREV_9280_20(ah)) {
313 ref_div = 10;
314 pll_div = 0x50;
315 } else {
316 pll_div = 0x28;
320 pll = SM(ref_div, AR_RTC_9160_PLL_REFDIV);
321 pll |= SM(pll_div, AR_RTC_9160_PLL_DIV);
323 if (chan && IS_CHAN_HALF_RATE(chan))
324 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
325 else if (chan && IS_CHAN_QUARTER_RATE(chan))
326 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
328 return pll;
331 static void ar9002_hw_do_getnf(struct ath_hw *ah,
332 int16_t nfarray[NUM_NF_READINGS])
334 int16_t nf;
336 nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
337 nfarray[0] = sign_extend32(nf, 8);
339 nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
340 if (IS_CHAN_HT40(ah->curchan))
341 nfarray[3] = sign_extend32(nf, 8);
343 if (!(ah->rxchainmask & BIT(1)))
344 return;
346 nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
347 nfarray[1] = sign_extend32(nf, 8);
349 nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
350 if (IS_CHAN_HT40(ah->curchan))
351 nfarray[4] = sign_extend32(nf, 8);
354 static void ar9002_hw_set_nf_limits(struct ath_hw *ah)
356 if (AR_SREV_9285(ah)) {
357 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ;
358 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ;
359 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ;
360 } else if (AR_SREV_9287(ah)) {
361 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ;
362 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ;
363 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ;
364 } else if (AR_SREV_9271(ah)) {
365 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ;
366 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ;
367 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ;
368 } else {
369 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ;
370 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ;
371 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ;
372 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ;
373 ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ;
374 ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ;
378 static void ar9002_hw_antdiv_comb_conf_get(struct ath_hw *ah,
379 struct ath_hw_antcomb_conf *antconf)
381 u32 regval;
383 regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
384 antconf->main_lna_conf = (regval & AR_PHY_9285_ANT_DIV_MAIN_LNACONF) >>
385 AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S;
386 antconf->alt_lna_conf = (regval & AR_PHY_9285_ANT_DIV_ALT_LNACONF) >>
387 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S;
388 antconf->fast_div_bias = (regval & AR_PHY_9285_FAST_DIV_BIAS) >>
389 AR_PHY_9285_FAST_DIV_BIAS_S;
390 antconf->lna1_lna2_switch_delta = -1;
391 antconf->lna1_lna2_delta = -3;
392 antconf->div_group = 0;
395 static void ar9002_hw_antdiv_comb_conf_set(struct ath_hw *ah,
396 struct ath_hw_antcomb_conf *antconf)
398 u32 regval;
400 regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
401 regval &= ~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
402 AR_PHY_9285_ANT_DIV_ALT_LNACONF |
403 AR_PHY_9285_FAST_DIV_BIAS);
404 regval |= ((antconf->main_lna_conf << AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S)
405 & AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
406 regval |= ((antconf->alt_lna_conf << AR_PHY_9285_ANT_DIV_ALT_LNACONF_S)
407 & AR_PHY_9285_ANT_DIV_ALT_LNACONF);
408 regval |= ((antconf->fast_div_bias << AR_PHY_9285_FAST_DIV_BIAS_S)
409 & AR_PHY_9285_FAST_DIV_BIAS);
411 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
414 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
416 static void ar9002_hw_set_bt_ant_diversity(struct ath_hw *ah, bool enable)
418 struct ath_btcoex_hw *btcoex = &ah->btcoex_hw;
419 u8 antdiv_ctrl1, antdiv_ctrl2;
420 u32 regval;
422 if (enable) {
423 antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_ENABLE;
424 antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_ENABLE;
427 * Don't disable BT ant to allow BB to control SWCOM.
429 btcoex->bt_coex_mode2 &= (~(AR_BT_DISABLE_BT_ANT));
430 REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2);
432 REG_WRITE(ah, AR_PHY_SWITCH_COM, ATH_BT_COEX_ANT_DIV_SWITCH_COM);
433 REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000);
434 } else {
436 * Disable antenna diversity, use LNA1 only.
438 antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_FIXED_A;
439 antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_FIXED_A;
442 * Disable BT Ant. to allow concurrent BT and WLAN receive.
444 btcoex->bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
445 REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2);
448 * Program SWCOM table to make sure RF switch always parks
449 * at BT side.
451 REG_WRITE(ah, AR_PHY_SWITCH_COM, 0);
452 REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000);
455 regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
456 regval &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
458 * Clear ant_fast_div_bias [14:9] since for WB195,
459 * the main LNA is always LNA1.
461 regval &= (~(AR_PHY_9285_FAST_DIV_BIAS));
462 regval |= SM(antdiv_ctrl1, AR_PHY_9285_ANT_DIV_CTL);
463 regval |= SM(antdiv_ctrl2, AR_PHY_9285_ANT_DIV_ALT_LNACONF);
464 regval |= SM((antdiv_ctrl2 >> 2), AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
465 regval |= SM((antdiv_ctrl1 >> 1), AR_PHY_9285_ANT_DIV_ALT_GAINTB);
466 regval |= SM((antdiv_ctrl1 >> 2), AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
467 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
469 regval = REG_READ(ah, AR_PHY_CCK_DETECT);
470 regval &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
471 regval |= SM((antdiv_ctrl1 >> 3), AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
472 REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
475 #endif
477 static void ar9002_hw_spectral_scan_config(struct ath_hw *ah,
478 struct ath_spec_scan *param)
480 u32 repeat_bit;
481 u8 count;
483 if (!param->enabled) {
484 REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
485 AR_PHY_SPECTRAL_SCAN_ENABLE);
486 return;
488 REG_SET_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_FFT_ENA);
489 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
491 if (AR_SREV_9280(ah))
492 repeat_bit = AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT;
493 else
494 repeat_bit = AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT_KIWI;
496 if (param->short_repeat)
497 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, repeat_bit);
498 else
499 REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN, repeat_bit);
501 /* on AR92xx, the highest bit of count will make the the chip send
502 * spectral samples endlessly. Check if this really was intended,
503 * and fix otherwise.
505 count = param->count;
506 if (param->endless) {
507 if (AR_SREV_9280(ah))
508 count = 0x80;
509 else
510 count = 0;
511 } else if (count & 0x80)
512 count = 0x7f;
513 else if (!count)
514 count = 1;
516 if (AR_SREV_9280(ah)) {
517 REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
518 AR_PHY_SPECTRAL_SCAN_COUNT, count);
519 } else {
520 REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
521 AR_PHY_SPECTRAL_SCAN_COUNT_KIWI, count);
522 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
523 AR_PHY_SPECTRAL_SCAN_PHYERR_MASK_SELECT);
526 REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
527 AR_PHY_SPECTRAL_SCAN_PERIOD, param->period);
528 REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
529 AR_PHY_SPECTRAL_SCAN_FFT_PERIOD, param->fft_period);
531 return;
534 static void ar9002_hw_spectral_scan_trigger(struct ath_hw *ah)
536 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
537 /* Activate spectral scan */
538 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
539 AR_PHY_SPECTRAL_SCAN_ACTIVE);
542 static void ar9002_hw_spectral_scan_wait(struct ath_hw *ah)
544 struct ath_common *common = ath9k_hw_common(ah);
546 /* Poll for spectral scan complete */
547 if (!ath9k_hw_wait(ah, AR_PHY_SPECTRAL_SCAN,
548 AR_PHY_SPECTRAL_SCAN_ACTIVE,
549 0, AH_WAIT_TIMEOUT)) {
550 ath_err(common, "spectral scan wait failed\n");
551 return;
555 static void ar9002_hw_tx99_start(struct ath_hw *ah, u32 qnum)
557 REG_SET_BIT(ah, 0x9864, 0x7f000);
558 REG_SET_BIT(ah, 0x9924, 0x7f00fe);
559 REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
560 REG_WRITE(ah, AR_CR, AR_CR_RXD);
561 REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
562 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20);
563 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
564 REG_WRITE(ah, AR_D_FPCTL, 0x10|qnum);
565 REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
566 REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
567 REG_SET_BIT(ah, AR_QMISC(qnum), AR_Q_MISC_DCU_EARLY_TERM_REQ);
570 static void ar9002_hw_tx99_stop(struct ath_hw *ah)
572 REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
575 void ar9002_hw_attach_phy_ops(struct ath_hw *ah)
577 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
578 struct ath_hw_ops *ops = ath9k_hw_ops(ah);
580 priv_ops->set_rf_regs = NULL;
581 priv_ops->rf_set_freq = ar9002_hw_set_channel;
582 priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate;
583 priv_ops->olc_init = ar9002_olc_init;
584 priv_ops->compute_pll_control = ar9002_hw_compute_pll_control;
585 priv_ops->do_getnf = ar9002_hw_do_getnf;
587 ops->antdiv_comb_conf_get = ar9002_hw_antdiv_comb_conf_get;
588 ops->antdiv_comb_conf_set = ar9002_hw_antdiv_comb_conf_set;
589 ops->spectral_scan_config = ar9002_hw_spectral_scan_config;
590 ops->spectral_scan_trigger = ar9002_hw_spectral_scan_trigger;
591 ops->spectral_scan_wait = ar9002_hw_spectral_scan_wait;
593 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
594 ops->set_bt_ant_diversity = ar9002_hw_set_bt_ant_diversity;
595 #endif
596 ops->tx99_start = ar9002_hw_tx99_start;
597 ops->tx99_stop = ar9002_hw_tx99_stop;
599 ar9002_hw_set_nf_limits(ah);