treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / wireless / ath / wil6210 / txrx.c
blobbc8c15fb609dc12ec1f238c94b96c22c9a54fa63
1 // SPDX-License-Identifier: ISC
2 /*
3 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
4 * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
5 */
7 #include <linux/etherdevice.h>
8 #include <net/ieee80211_radiotap.h>
9 #include <linux/if_arp.h>
10 #include <linux/moduleparam.h>
11 #include <linux/ip.h>
12 #include <linux/ipv6.h>
13 #include <linux/if_vlan.h>
14 #include <net/ipv6.h>
15 #include <linux/prefetch.h>
17 #include "wil6210.h"
18 #include "wmi.h"
19 #include "txrx.h"
20 #include "trace.h"
21 #include "txrx_edma.h"
23 bool rx_align_2;
24 module_param(rx_align_2, bool, 0444);
25 MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no");
27 bool rx_large_buf;
28 module_param(rx_large_buf, bool, 0444);
29 MODULE_PARM_DESC(rx_large_buf, " allocate 8KB RX buffers, default - no");
31 /* Drop Tx packets in case Tx ring is full */
32 bool drop_if_ring_full;
34 static inline uint wil_rx_snaplen(void)
36 return rx_align_2 ? 6 : 0;
39 /* wil_ring_wmark_low - low watermark for available descriptor space */
40 static inline int wil_ring_wmark_low(struct wil_ring *ring)
42 return ring->size / 8;
45 /* wil_ring_wmark_high - high watermark for available descriptor space */
46 static inline int wil_ring_wmark_high(struct wil_ring *ring)
48 return ring->size / 4;
51 /* returns true if num avail descriptors is lower than wmark_low */
52 static inline int wil_ring_avail_low(struct wil_ring *ring)
54 return wil_ring_avail_tx(ring) < wil_ring_wmark_low(ring);
57 /* returns true if num avail descriptors is higher than wmark_high */
58 static inline int wil_ring_avail_high(struct wil_ring *ring)
60 return wil_ring_avail_tx(ring) > wil_ring_wmark_high(ring);
63 /* returns true when all tx vrings are empty */
64 bool wil_is_tx_idle(struct wil6210_priv *wil)
66 int i;
67 unsigned long data_comp_to;
68 int min_ring_id = wil_get_min_tx_ring_id(wil);
70 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
71 struct wil_ring *vring = &wil->ring_tx[i];
72 int vring_index = vring - wil->ring_tx;
73 struct wil_ring_tx_data *txdata =
74 &wil->ring_tx_data[vring_index];
76 spin_lock(&txdata->lock);
78 if (!vring->va || !txdata->enabled) {
79 spin_unlock(&txdata->lock);
80 continue;
83 data_comp_to = jiffies + msecs_to_jiffies(
84 WIL_DATA_COMPLETION_TO_MS);
85 if (test_bit(wil_status_napi_en, wil->status)) {
86 while (!wil_ring_is_empty(vring)) {
87 if (time_after(jiffies, data_comp_to)) {
88 wil_dbg_pm(wil,
89 "TO waiting for idle tx\n");
90 spin_unlock(&txdata->lock);
91 return false;
93 wil_dbg_ratelimited(wil,
94 "tx vring is not empty -> NAPI\n");
95 spin_unlock(&txdata->lock);
96 napi_synchronize(&wil->napi_tx);
97 msleep(20);
98 spin_lock(&txdata->lock);
99 if (!vring->va || !txdata->enabled)
100 break;
104 spin_unlock(&txdata->lock);
107 return true;
110 static int wil_vring_alloc(struct wil6210_priv *wil, struct wil_ring *vring)
112 struct device *dev = wil_to_dev(wil);
113 size_t sz = vring->size * sizeof(vring->va[0]);
114 uint i;
116 wil_dbg_misc(wil, "vring_alloc:\n");
118 BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
120 vring->swhead = 0;
121 vring->swtail = 0;
122 vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL);
123 if (!vring->ctx) {
124 vring->va = NULL;
125 return -ENOMEM;
128 /* vring->va should be aligned on its size rounded up to power of 2
129 * This is granted by the dma_alloc_coherent.
131 * HW has limitation that all vrings addresses must share the same
132 * upper 16 msb bits part of 48 bits address. To workaround that,
133 * if we are using more than 32 bit addresses switch to 32 bit
134 * allocation before allocating vring memory.
136 * There's no check for the return value of dma_set_mask_and_coherent,
137 * since we assume if we were able to set the mask during
138 * initialization in this system it will not fail if we set it again
140 if (wil->dma_addr_size > 32)
141 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
143 vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
144 if (!vring->va) {
145 kfree(vring->ctx);
146 vring->ctx = NULL;
147 return -ENOMEM;
150 if (wil->dma_addr_size > 32)
151 dma_set_mask_and_coherent(dev,
152 DMA_BIT_MASK(wil->dma_addr_size));
154 /* initially, all descriptors are SW owned
155 * For Tx and Rx, ownership bit is at the same location, thus
156 * we can use any
158 for (i = 0; i < vring->size; i++) {
159 volatile struct vring_tx_desc *_d =
160 &vring->va[i].tx.legacy;
162 _d->dma.status = TX_DMA_STATUS_DU;
165 wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size,
166 vring->va, &vring->pa, vring->ctx);
168 return 0;
171 static void wil_txdesc_unmap(struct device *dev, union wil_tx_desc *desc,
172 struct wil_ctx *ctx)
174 struct vring_tx_desc *d = &desc->legacy;
175 dma_addr_t pa = wil_desc_addr(&d->dma.addr);
176 u16 dmalen = le16_to_cpu(d->dma.length);
178 switch (ctx->mapped_as) {
179 case wil_mapped_as_single:
180 dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
181 break;
182 case wil_mapped_as_page:
183 dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
184 break;
185 default:
186 break;
190 static void wil_vring_free(struct wil6210_priv *wil, struct wil_ring *vring)
192 struct device *dev = wil_to_dev(wil);
193 size_t sz = vring->size * sizeof(vring->va[0]);
195 lockdep_assert_held(&wil->mutex);
196 if (!vring->is_rx) {
197 int vring_index = vring - wil->ring_tx;
199 wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n",
200 vring_index, vring->size, vring->va,
201 &vring->pa, vring->ctx);
202 } else {
203 wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n",
204 vring->size, vring->va,
205 &vring->pa, vring->ctx);
208 while (!wil_ring_is_empty(vring)) {
209 dma_addr_t pa;
210 u16 dmalen;
211 struct wil_ctx *ctx;
213 if (!vring->is_rx) {
214 struct vring_tx_desc dd, *d = &dd;
215 volatile struct vring_tx_desc *_d =
216 &vring->va[vring->swtail].tx.legacy;
218 ctx = &vring->ctx[vring->swtail];
219 if (!ctx) {
220 wil_dbg_txrx(wil,
221 "ctx(%d) was already completed\n",
222 vring->swtail);
223 vring->swtail = wil_ring_next_tail(vring);
224 continue;
226 *d = *_d;
227 wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
228 if (ctx->skb)
229 dev_kfree_skb_any(ctx->skb);
230 vring->swtail = wil_ring_next_tail(vring);
231 } else { /* rx */
232 struct vring_rx_desc dd, *d = &dd;
233 volatile struct vring_rx_desc *_d =
234 &vring->va[vring->swhead].rx.legacy;
236 ctx = &vring->ctx[vring->swhead];
237 *d = *_d;
238 pa = wil_desc_addr(&d->dma.addr);
239 dmalen = le16_to_cpu(d->dma.length);
240 dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE);
241 kfree_skb(ctx->skb);
242 wil_ring_advance_head(vring, 1);
245 dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
246 kfree(vring->ctx);
247 vring->pa = 0;
248 vring->va = NULL;
249 vring->ctx = NULL;
253 * Allocate one skb for Rx VRING
255 * Safe to call from IRQ
257 static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct wil_ring *vring,
258 u32 i, int headroom)
260 struct device *dev = wil_to_dev(wil);
261 unsigned int sz = wil->rx_buf_len + ETH_HLEN + wil_rx_snaplen();
262 struct vring_rx_desc dd, *d = &dd;
263 volatile struct vring_rx_desc *_d = &vring->va[i].rx.legacy;
264 dma_addr_t pa;
265 struct sk_buff *skb = dev_alloc_skb(sz + headroom);
267 if (unlikely(!skb))
268 return -ENOMEM;
270 skb_reserve(skb, headroom);
271 skb_put(skb, sz);
274 * Make sure that the network stack calculates checksum for packets
275 * which failed the HW checksum calculation
277 skb->ip_summed = CHECKSUM_NONE;
279 pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
280 if (unlikely(dma_mapping_error(dev, pa))) {
281 kfree_skb(skb);
282 return -ENOMEM;
285 d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT;
286 wil_desc_addr_set(&d->dma.addr, pa);
287 /* ip_length don't care */
288 /* b11 don't care */
289 /* error don't care */
290 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
291 d->dma.length = cpu_to_le16(sz);
292 *_d = *d;
293 vring->ctx[i].skb = skb;
295 return 0;
299 * Adds radiotap header
301 * Any error indicated as "Bad FCS"
303 * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
304 * - Rx descriptor: 32 bytes
305 * - Phy info
307 static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
308 struct sk_buff *skb)
310 struct wil6210_rtap {
311 struct ieee80211_radiotap_header rthdr;
312 /* fields should be in the order of bits in rthdr.it_present */
313 /* flags */
314 u8 flags;
315 /* channel */
316 __le16 chnl_freq __aligned(2);
317 __le16 chnl_flags;
318 /* MCS */
319 u8 mcs_present;
320 u8 mcs_flags;
321 u8 mcs_index;
322 } __packed;
323 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
324 struct wil6210_rtap *rtap;
325 int rtap_len = sizeof(struct wil6210_rtap);
326 struct ieee80211_channel *ch = wil->monitor_chandef.chan;
328 if (skb_headroom(skb) < rtap_len &&
329 pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
330 wil_err(wil, "Unable to expand headroom to %d\n", rtap_len);
331 return;
334 rtap = skb_push(skb, rtap_len);
335 memset(rtap, 0, rtap_len);
337 rtap->rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
338 rtap->rthdr.it_len = cpu_to_le16(rtap_len);
339 rtap->rthdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
340 (1 << IEEE80211_RADIOTAP_CHANNEL) |
341 (1 << IEEE80211_RADIOTAP_MCS));
342 if (d->dma.status & RX_DMA_STATUS_ERROR)
343 rtap->flags |= IEEE80211_RADIOTAP_F_BADFCS;
345 rtap->chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
346 rtap->chnl_flags = cpu_to_le16(0);
348 rtap->mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
349 rtap->mcs_flags = 0;
350 rtap->mcs_index = wil_rxdesc_mcs(d);
353 static bool wil_is_rx_idle(struct wil6210_priv *wil)
355 struct vring_rx_desc *_d;
356 struct wil_ring *ring = &wil->ring_rx;
358 _d = (struct vring_rx_desc *)&ring->va[ring->swhead].rx.legacy;
359 if (_d->dma.status & RX_DMA_STATUS_DU)
360 return false;
362 return true;
365 static int wil_rx_get_cid_by_skb(struct wil6210_priv *wil, struct sk_buff *skb)
367 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
368 int mid = wil_rxdesc_mid(d);
369 struct wil6210_vif *vif = wil->vifs[mid];
370 /* cid from DMA descriptor is limited to 3 bits.
371 * In case of cid>=8, the value would be cid modulo 8 and we need to
372 * find real cid by locating the transmitter (ta) inside sta array
374 int cid = wil_rxdesc_cid(d);
375 unsigned int snaplen = wil_rx_snaplen();
376 struct ieee80211_hdr_3addr *hdr;
377 int i;
378 unsigned char *ta;
379 u8 ftype;
381 /* in monitor mode there are no connections */
382 if (vif->wdev.iftype == NL80211_IFTYPE_MONITOR)
383 return cid;
385 ftype = wil_rxdesc_ftype(d) << 2;
386 if (likely(ftype == IEEE80211_FTYPE_DATA)) {
387 if (unlikely(skb->len < ETH_HLEN + snaplen)) {
388 wil_err_ratelimited(wil,
389 "Short data frame, len = %d\n",
390 skb->len);
391 return -ENOENT;
393 ta = wil_skb_get_sa(skb);
394 } else {
395 if (unlikely(skb->len < sizeof(struct ieee80211_hdr_3addr))) {
396 wil_err_ratelimited(wil, "Short frame, len = %d\n",
397 skb->len);
398 return -ENOENT;
400 hdr = (void *)skb->data;
401 ta = hdr->addr2;
404 if (wil->max_assoc_sta <= WIL6210_RX_DESC_MAX_CID)
405 return cid;
407 /* assuming no concurrency between AP interfaces and STA interfaces.
408 * multista is used only in P2P_GO or AP mode. In other modes return
409 * cid from the rx descriptor
411 if (vif->wdev.iftype != NL80211_IFTYPE_P2P_GO &&
412 vif->wdev.iftype != NL80211_IFTYPE_AP)
413 return cid;
415 /* For Rx packets cid from rx descriptor is limited to 3 bits (0..7),
416 * to find the real cid, compare transmitter address with the stored
417 * stations mac address in the driver sta array
419 for (i = cid; i < wil->max_assoc_sta; i += WIL6210_RX_DESC_MAX_CID) {
420 if (wil->sta[i].status != wil_sta_unused &&
421 ether_addr_equal(wil->sta[i].addr, ta)) {
422 cid = i;
423 break;
426 if (i >= wil->max_assoc_sta) {
427 wil_err_ratelimited(wil, "Could not find cid for frame with transmit addr = %pM, iftype = %d, frametype = %d, len = %d\n",
428 ta, vif->wdev.iftype, ftype, skb->len);
429 cid = -ENOENT;
432 return cid;
436 * reap 1 frame from @swhead
438 * Rx descriptor copied to skb->cb
440 * Safe to call from IRQ
442 static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
443 struct wil_ring *vring)
445 struct device *dev = wil_to_dev(wil);
446 struct wil6210_vif *vif;
447 struct net_device *ndev;
448 volatile struct vring_rx_desc *_d;
449 struct vring_rx_desc *d;
450 struct sk_buff *skb;
451 dma_addr_t pa;
452 unsigned int snaplen = wil_rx_snaplen();
453 unsigned int sz = wil->rx_buf_len + ETH_HLEN + snaplen;
454 u16 dmalen;
455 u8 ftype;
456 int cid, mid;
457 int i;
458 struct wil_net_stats *stats;
460 BUILD_BUG_ON(sizeof(struct skb_rx_info) > sizeof(skb->cb));
462 again:
463 if (unlikely(wil_ring_is_empty(vring)))
464 return NULL;
466 i = (int)vring->swhead;
467 _d = &vring->va[i].rx.legacy;
468 if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) {
469 /* it is not error, we just reached end of Rx done area */
470 return NULL;
473 skb = vring->ctx[i].skb;
474 vring->ctx[i].skb = NULL;
475 wil_ring_advance_head(vring, 1);
476 if (!skb) {
477 wil_err(wil, "No Rx skb at [%d]\n", i);
478 goto again;
480 d = wil_skb_rxdesc(skb);
481 *d = *_d;
482 pa = wil_desc_addr(&d->dma.addr);
484 dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
485 dmalen = le16_to_cpu(d->dma.length);
487 trace_wil6210_rx(i, d);
488 wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen);
489 wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
490 (const void *)d, sizeof(*d), false);
492 mid = wil_rxdesc_mid(d);
493 vif = wil->vifs[mid];
495 if (unlikely(!vif)) {
496 wil_dbg_txrx(wil, "skipped RX descriptor with invalid mid %d",
497 mid);
498 kfree_skb(skb);
499 goto again;
501 ndev = vif_to_ndev(vif);
502 if (unlikely(dmalen > sz)) {
503 wil_err_ratelimited(wil, "Rx size too large: %d bytes!\n",
504 dmalen);
505 kfree_skb(skb);
506 goto again;
508 skb_trim(skb, dmalen);
510 prefetch(skb->data);
512 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
513 skb->data, skb_headlen(skb), false);
515 cid = wil_rx_get_cid_by_skb(wil, skb);
516 if (cid == -ENOENT) {
517 kfree_skb(skb);
518 goto again;
520 wil_skb_set_cid(skb, (u8)cid);
521 stats = &wil->sta[cid].stats;
523 stats->last_mcs_rx = wil_rxdesc_mcs(d);
524 if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs))
525 stats->rx_per_mcs[stats->last_mcs_rx]++;
527 /* use radiotap header only if required */
528 if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
529 wil_rx_add_radiotap_header(wil, skb);
531 /* no extra checks if in sniffer mode */
532 if (ndev->type != ARPHRD_ETHER)
533 return skb;
534 /* Non-data frames may be delivered through Rx DMA channel (ex: BAR)
535 * Driver should recognize it by frame type, that is found
536 * in Rx descriptor. If type is not data, it is 802.11 frame as is
538 ftype = wil_rxdesc_ftype(d) << 2;
539 if (unlikely(ftype != IEEE80211_FTYPE_DATA)) {
540 u8 fc1 = wil_rxdesc_fc1(d);
541 int tid = wil_rxdesc_tid(d);
542 u16 seq = wil_rxdesc_seq(d);
544 wil_dbg_txrx(wil,
545 "Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
546 fc1, mid, cid, tid, seq);
547 stats->rx_non_data_frame++;
548 if (wil_is_back_req(fc1)) {
549 wil_dbg_txrx(wil,
550 "BAR: MID %d CID %d TID %d Seq 0x%03x\n",
551 mid, cid, tid, seq);
552 wil_rx_bar(wil, vif, cid, tid, seq);
553 } else {
554 /* print again all info. One can enable only this
555 * without overhead for printing every Rx frame
557 wil_dbg_txrx(wil,
558 "Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
559 fc1, mid, cid, tid, seq);
560 wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
561 (const void *)d, sizeof(*d), false);
562 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
563 skb->data, skb_headlen(skb), false);
565 kfree_skb(skb);
566 goto again;
569 /* L4 IDENT is on when HW calculated checksum, check status
570 * and in case of error drop the packet
571 * higher stack layers will handle retransmission (if required)
573 if (likely(d->dma.status & RX_DMA_STATUS_L4I)) {
574 /* L4 protocol identified, csum calculated */
575 if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0))
576 skb->ip_summed = CHECKSUM_UNNECESSARY;
577 /* If HW reports bad checksum, let IP stack re-check it
578 * For example, HW don't understand Microsoft IP stack that
579 * mis-calculates TCP checksum - if it should be 0x0,
580 * it writes 0xffff in violation of RFC 1624
582 else
583 stats->rx_csum_err++;
586 if (snaplen) {
587 /* Packet layout
588 * +-------+-------+---------+------------+------+
589 * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA |
590 * +-------+-------+---------+------------+------+
591 * Need to remove SNAP, shifting SA and DA forward
593 memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN);
594 skb_pull(skb, snaplen);
597 return skb;
601 * allocate and fill up to @count buffers in rx ring
602 * buffers posted at @swtail
603 * Note: we have a single RX queue for servicing all VIFs, but we
604 * allocate skbs with headroom according to main interface only. This
605 * means it will not work with monitor interface together with other VIFs.
606 * Currently we only support monitor interface on its own without other VIFs,
607 * and we will need to fix this code once we add support.
609 static int wil_rx_refill(struct wil6210_priv *wil, int count)
611 struct net_device *ndev = wil->main_ndev;
612 struct wil_ring *v = &wil->ring_rx;
613 u32 next_tail;
614 int rc = 0;
615 int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
616 WIL6210_RTAP_SIZE : 0;
618 for (; next_tail = wil_ring_next_tail(v),
619 (next_tail != v->swhead) && (count-- > 0);
620 v->swtail = next_tail) {
621 rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
622 if (unlikely(rc)) {
623 wil_err_ratelimited(wil, "Error %d in rx refill[%d]\n",
624 rc, v->swtail);
625 break;
629 /* make sure all writes to descriptors (shared memory) are done before
630 * committing them to HW
632 wmb();
634 wil_w(wil, v->hwtail, v->swtail);
636 return rc;
640 * reverse_memcmp - Compare two areas of memory, in reverse order
641 * @cs: One area of memory
642 * @ct: Another area of memory
643 * @count: The size of the area.
645 * Cut'n'paste from original memcmp (see lib/string.c)
646 * with minimal modifications
648 int reverse_memcmp(const void *cs, const void *ct, size_t count)
650 const unsigned char *su1, *su2;
651 int res = 0;
653 for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0;
654 --su1, --su2, count--) {
655 res = *su1 - *su2;
656 if (res)
657 break;
659 return res;
662 static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb)
664 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
665 int cid = wil_skb_get_cid(skb);
666 int tid = wil_rxdesc_tid(d);
667 int key_id = wil_rxdesc_key_id(d);
668 int mc = wil_rxdesc_mcast(d);
669 struct wil_sta_info *s = &wil->sta[cid];
670 struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx :
671 &s->tid_crypto_rx[tid];
672 struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id];
673 const u8 *pn = (u8 *)&d->mac.pn_15_0;
675 if (!cc->key_set) {
676 wil_err_ratelimited(wil,
677 "Key missing. CID %d TID %d MCast %d KEY_ID %d\n",
678 cid, tid, mc, key_id);
679 return -EINVAL;
682 if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) {
683 wil_err_ratelimited(wil,
684 "Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n",
685 cid, tid, mc, key_id, pn, cc->pn);
686 return -EINVAL;
688 memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN);
690 return 0;
693 static int wil_rx_error_check(struct wil6210_priv *wil, struct sk_buff *skb,
694 struct wil_net_stats *stats)
696 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
698 if ((d->dma.status & RX_DMA_STATUS_ERROR) &&
699 (d->dma.error & RX_DMA_ERROR_MIC)) {
700 stats->rx_mic_error++;
701 wil_dbg_txrx(wil, "MIC error, dropping packet\n");
702 return -EFAULT;
705 return 0;
708 static void wil_get_netif_rx_params(struct sk_buff *skb, int *cid,
709 int *security)
711 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
713 *cid = wil_skb_get_cid(skb);
714 *security = wil_rxdesc_security(d);
718 * Check if skb is ptk eapol key message
720 * returns a pointer to the start of the eapol key structure, NULL
721 * if frame is not PTK eapol key
723 static struct wil_eapol_key *wil_is_ptk_eapol_key(struct wil6210_priv *wil,
724 struct sk_buff *skb)
726 u8 *buf;
727 const struct wil_1x_hdr *hdr;
728 struct wil_eapol_key *key;
729 u16 key_info;
730 int len = skb->len;
732 if (!skb_mac_header_was_set(skb)) {
733 wil_err(wil, "mac header was not set\n");
734 return NULL;
737 len -= skb_mac_offset(skb);
739 if (len < sizeof(struct ethhdr) + sizeof(struct wil_1x_hdr) +
740 sizeof(struct wil_eapol_key))
741 return NULL;
743 buf = skb_mac_header(skb) + sizeof(struct ethhdr);
745 hdr = (const struct wil_1x_hdr *)buf;
746 if (hdr->type != WIL_1X_TYPE_EAPOL_KEY)
747 return NULL;
749 key = (struct wil_eapol_key *)(buf + sizeof(struct wil_1x_hdr));
750 if (key->type != WIL_EAPOL_KEY_TYPE_WPA &&
751 key->type != WIL_EAPOL_KEY_TYPE_RSN)
752 return NULL;
754 key_info = be16_to_cpu(key->key_info);
755 if (!(key_info & WIL_KEY_INFO_KEY_TYPE)) /* check if pairwise */
756 return NULL;
758 return key;
761 static bool wil_skb_is_eap_3(struct wil6210_priv *wil, struct sk_buff *skb)
763 struct wil_eapol_key *key;
764 u16 key_info;
766 key = wil_is_ptk_eapol_key(wil, skb);
767 if (!key)
768 return false;
770 key_info = be16_to_cpu(key->key_info);
771 if (key_info & (WIL_KEY_INFO_MIC |
772 WIL_KEY_INFO_ENCR_KEY_DATA)) {
773 /* 3/4 of 4-Way Handshake */
774 wil_dbg_misc(wil, "EAPOL key message 3\n");
775 return true;
777 /* 1/4 of 4-Way Handshake */
778 wil_dbg_misc(wil, "EAPOL key message 1\n");
780 return false;
783 static bool wil_skb_is_eap_4(struct wil6210_priv *wil, struct sk_buff *skb)
785 struct wil_eapol_key *key;
786 u32 *nonce, i;
788 key = wil_is_ptk_eapol_key(wil, skb);
789 if (!key)
790 return false;
792 nonce = (u32 *)key->key_nonce;
793 for (i = 0; i < WIL_EAP_NONCE_LEN / sizeof(u32); i++, nonce++) {
794 if (*nonce != 0) {
795 /* message 2/4 */
796 wil_dbg_misc(wil, "EAPOL key message 2\n");
797 return false;
800 wil_dbg_misc(wil, "EAPOL key message 4\n");
802 return true;
805 void wil_enable_tx_key_worker(struct work_struct *work)
807 struct wil6210_vif *vif = container_of(work,
808 struct wil6210_vif, enable_tx_key_worker);
809 struct wil6210_priv *wil = vif_to_wil(vif);
810 int rc, cid;
812 rtnl_lock();
813 if (vif->ptk_rekey_state != WIL_REKEY_WAIT_M4_SENT) {
814 wil_dbg_misc(wil, "Invalid rekey state = %d\n",
815 vif->ptk_rekey_state);
816 rtnl_unlock();
817 return;
820 cid = wil_find_cid_by_idx(wil, vif->mid, 0);
821 if (!wil_cid_valid(wil, cid)) {
822 wil_err(wil, "Invalid cid = %d\n", cid);
823 rtnl_unlock();
824 return;
827 wil_dbg_misc(wil, "Apply PTK key after eapol was sent out\n");
828 rc = wmi_add_cipher_key(vif, 0, wil->sta[cid].addr, 0, NULL,
829 WMI_KEY_USE_APPLY_PTK);
831 vif->ptk_rekey_state = WIL_REKEY_IDLE;
832 rtnl_unlock();
834 if (rc)
835 wil_err(wil, "Apply PTK key failed %d\n", rc);
838 void wil_tx_complete_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb)
840 struct wil6210_priv *wil = vif_to_wil(vif);
841 struct wireless_dev *wdev = vif_to_wdev(vif);
842 bool q = false;
844 if (wdev->iftype != NL80211_IFTYPE_STATION ||
845 !test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities))
846 return;
848 /* check if skb is an EAP message 4/4 */
849 if (!wil_skb_is_eap_4(wil, skb))
850 return;
852 spin_lock_bh(&wil->eap_lock);
853 switch (vif->ptk_rekey_state) {
854 case WIL_REKEY_IDLE:
855 /* ignore idle state, can happen due to M4 retransmission */
856 break;
857 case WIL_REKEY_M3_RECEIVED:
858 vif->ptk_rekey_state = WIL_REKEY_IDLE;
859 break;
860 case WIL_REKEY_WAIT_M4_SENT:
861 q = true;
862 break;
863 default:
864 wil_err(wil, "Unknown rekey state = %d",
865 vif->ptk_rekey_state);
867 spin_unlock_bh(&wil->eap_lock);
869 if (q) {
870 q = queue_work(wil->wmi_wq, &vif->enable_tx_key_worker);
871 wil_dbg_misc(wil, "queue_work of enable_tx_key_worker -> %d\n",
876 static void wil_rx_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb)
878 struct wil6210_priv *wil = vif_to_wil(vif);
879 struct wireless_dev *wdev = vif_to_wdev(vif);
881 if (wdev->iftype != NL80211_IFTYPE_STATION ||
882 !test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities))
883 return;
885 /* check if skb is a EAP message 3/4 */
886 if (!wil_skb_is_eap_3(wil, skb))
887 return;
889 if (vif->ptk_rekey_state == WIL_REKEY_IDLE)
890 vif->ptk_rekey_state = WIL_REKEY_M3_RECEIVED;
894 * Pass Rx packet to the netif. Update statistics.
895 * Called in softirq context (NAPI poll).
897 void wil_netif_rx(struct sk_buff *skb, struct net_device *ndev, int cid,
898 struct wil_net_stats *stats, bool gro)
900 gro_result_t rc = GRO_NORMAL;
901 struct wil6210_vif *vif = ndev_to_vif(ndev);
902 struct wil6210_priv *wil = ndev_to_wil(ndev);
903 struct wireless_dev *wdev = vif_to_wdev(vif);
904 unsigned int len = skb->len;
905 u8 *sa, *da = wil_skb_get_da(skb);
906 /* here looking for DA, not A1, thus Rxdesc's 'mcast' indication
907 * is not suitable, need to look at data
909 int mcast = is_multicast_ether_addr(da);
910 struct sk_buff *xmit_skb = NULL;
911 static const char * const gro_res_str[] = {
912 [GRO_MERGED] = "GRO_MERGED",
913 [GRO_MERGED_FREE] = "GRO_MERGED_FREE",
914 [GRO_HELD] = "GRO_HELD",
915 [GRO_NORMAL] = "GRO_NORMAL",
916 [GRO_DROP] = "GRO_DROP",
917 [GRO_CONSUMED] = "GRO_CONSUMED",
920 if (wdev->iftype == NL80211_IFTYPE_STATION) {
921 sa = wil_skb_get_sa(skb);
922 if (mcast && ether_addr_equal(sa, ndev->dev_addr)) {
923 /* mcast packet looped back to us */
924 rc = GRO_DROP;
925 dev_kfree_skb(skb);
926 goto stats;
928 } else if (wdev->iftype == NL80211_IFTYPE_AP && !vif->ap_isolate) {
929 if (mcast) {
930 /* send multicast frames both to higher layers in
931 * local net stack and back to the wireless medium
933 xmit_skb = skb_copy(skb, GFP_ATOMIC);
934 } else {
935 int xmit_cid = wil_find_cid(wil, vif->mid, da);
937 if (xmit_cid >= 0) {
938 /* The destination station is associated to
939 * this AP (in this VLAN), so send the frame
940 * directly to it and do not pass it to local
941 * net stack.
943 xmit_skb = skb;
944 skb = NULL;
948 if (xmit_skb) {
949 /* Send to wireless media and increase priority by 256 to
950 * keep the received priority instead of reclassifying
951 * the frame (see cfg80211_classify8021d).
953 xmit_skb->dev = ndev;
954 xmit_skb->priority += 256;
955 xmit_skb->protocol = htons(ETH_P_802_3);
956 skb_reset_network_header(xmit_skb);
957 skb_reset_mac_header(xmit_skb);
958 wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len);
959 dev_queue_xmit(xmit_skb);
962 if (skb) { /* deliver to local stack */
963 skb->protocol = eth_type_trans(skb, ndev);
964 skb->dev = ndev;
966 if (skb->protocol == cpu_to_be16(ETH_P_PAE))
967 wil_rx_handle_eapol(vif, skb);
969 if (gro)
970 rc = napi_gro_receive(&wil->napi_rx, skb);
971 else
972 netif_rx_ni(skb);
973 wil_dbg_txrx(wil, "Rx complete %d bytes => %s\n",
974 len, gro_res_str[rc]);
976 stats:
977 /* statistics. rc set to GRO_NORMAL for AP bridging */
978 if (unlikely(rc == GRO_DROP)) {
979 ndev->stats.rx_dropped++;
980 stats->rx_dropped++;
981 wil_dbg_txrx(wil, "Rx drop %d bytes\n", len);
982 } else {
983 ndev->stats.rx_packets++;
984 stats->rx_packets++;
985 ndev->stats.rx_bytes += len;
986 stats->rx_bytes += len;
987 if (mcast)
988 ndev->stats.multicast++;
992 void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
994 int cid, security;
995 struct wil6210_priv *wil = ndev_to_wil(ndev);
996 struct wil_net_stats *stats;
998 wil->txrx_ops.get_netif_rx_params(skb, &cid, &security);
1000 stats = &wil->sta[cid].stats;
1002 skb_orphan(skb);
1004 if (security && (wil->txrx_ops.rx_crypto_check(wil, skb) != 0)) {
1005 wil_dbg_txrx(wil, "Rx drop %d bytes\n", skb->len);
1006 dev_kfree_skb(skb);
1007 ndev->stats.rx_dropped++;
1008 stats->rx_replay++;
1009 stats->rx_dropped++;
1010 return;
1013 /* check errors reported by HW and update statistics */
1014 if (unlikely(wil->txrx_ops.rx_error_check(wil, skb, stats))) {
1015 dev_kfree_skb(skb);
1016 return;
1019 wil_netif_rx(skb, ndev, cid, stats, true);
1023 * Proceed all completed skb's from Rx VRING
1025 * Safe to call from NAPI poll, i.e. softirq with interrupts enabled
1027 void wil_rx_handle(struct wil6210_priv *wil, int *quota)
1029 struct net_device *ndev = wil->main_ndev;
1030 struct wireless_dev *wdev = ndev->ieee80211_ptr;
1031 struct wil_ring *v = &wil->ring_rx;
1032 struct sk_buff *skb;
1034 if (unlikely(!v->va)) {
1035 wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
1036 return;
1038 wil_dbg_txrx(wil, "rx_handle\n");
1039 while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) {
1040 (*quota)--;
1042 /* monitor is currently supported on main interface only */
1043 if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
1044 skb->dev = ndev;
1045 skb_reset_mac_header(skb);
1046 skb->ip_summed = CHECKSUM_UNNECESSARY;
1047 skb->pkt_type = PACKET_OTHERHOST;
1048 skb->protocol = htons(ETH_P_802_2);
1049 wil_netif_rx_any(skb, ndev);
1050 } else {
1051 wil_rx_reorder(wil, skb);
1054 wil_rx_refill(wil, v->size);
1057 static void wil_rx_buf_len_init(struct wil6210_priv *wil)
1059 wil->rx_buf_len = rx_large_buf ?
1060 WIL_MAX_ETH_MTU : TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
1061 if (mtu_max > wil->rx_buf_len) {
1062 /* do not allow RX buffers to be smaller than mtu_max, for
1063 * backward compatibility (mtu_max parameter was also used
1064 * to support receiving large packets)
1066 wil_info(wil, "Override RX buffer to mtu_max(%d)\n", mtu_max);
1067 wil->rx_buf_len = mtu_max;
1071 static int wil_rx_init(struct wil6210_priv *wil, uint order)
1073 struct wil_ring *vring = &wil->ring_rx;
1074 int rc;
1076 wil_dbg_misc(wil, "rx_init\n");
1078 if (vring->va) {
1079 wil_err(wil, "Rx ring already allocated\n");
1080 return -EINVAL;
1083 wil_rx_buf_len_init(wil);
1085 vring->size = 1 << order;
1086 vring->is_rx = true;
1087 rc = wil_vring_alloc(wil, vring);
1088 if (rc)
1089 return rc;
1091 rc = wmi_rx_chain_add(wil, vring);
1092 if (rc)
1093 goto err_free;
1095 rc = wil_rx_refill(wil, vring->size);
1096 if (rc)
1097 goto err_free;
1099 return 0;
1100 err_free:
1101 wil_vring_free(wil, vring);
1103 return rc;
1106 static void wil_rx_fini(struct wil6210_priv *wil)
1108 struct wil_ring *vring = &wil->ring_rx;
1110 wil_dbg_misc(wil, "rx_fini\n");
1112 if (vring->va)
1113 wil_vring_free(wil, vring);
1116 static int wil_tx_desc_map(union wil_tx_desc *desc, dma_addr_t pa,
1117 u32 len, int vring_index)
1119 struct vring_tx_desc *d = &desc->legacy;
1121 wil_desc_addr_set(&d->dma.addr, pa);
1122 d->dma.ip_length = 0;
1123 /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
1124 d->dma.b11 = 0/*14 | BIT(7)*/;
1125 d->dma.error = 0;
1126 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
1127 d->dma.length = cpu_to_le16((u16)len);
1128 d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
1129 d->mac.d[0] = 0;
1130 d->mac.d[1] = 0;
1131 d->mac.d[2] = 0;
1132 d->mac.ucode_cmd = 0;
1133 /* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */
1134 d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
1135 (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
1137 return 0;
1140 void wil_tx_data_init(struct wil_ring_tx_data *txdata)
1142 spin_lock_bh(&txdata->lock);
1143 txdata->dot1x_open = false;
1144 txdata->enabled = 0;
1145 txdata->idle = 0;
1146 txdata->last_idle = 0;
1147 txdata->begin = 0;
1148 txdata->agg_wsize = 0;
1149 txdata->agg_timeout = 0;
1150 txdata->agg_amsdu = 0;
1151 txdata->addba_in_progress = false;
1152 txdata->mid = U8_MAX;
1153 spin_unlock_bh(&txdata->lock);
1156 static int wil_vring_init_tx(struct wil6210_vif *vif, int id, int size,
1157 int cid, int tid)
1159 struct wil6210_priv *wil = vif_to_wil(vif);
1160 int rc;
1161 struct wmi_vring_cfg_cmd cmd = {
1162 .action = cpu_to_le32(WMI_VRING_CMD_ADD),
1163 .vring_cfg = {
1164 .tx_sw_ring = {
1165 .max_mpdu_size =
1166 cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1167 .ring_size = cpu_to_le16(size),
1169 .ringid = id,
1170 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1171 .mac_ctrl = 0,
1172 .to_resolution = 0,
1173 .agg_max_wsize = 0,
1174 .schd_params = {
1175 .priority = cpu_to_le16(0),
1176 .timeslot_us = cpu_to_le16(0xfff),
1180 struct {
1181 struct wmi_cmd_hdr wmi;
1182 struct wmi_vring_cfg_done_event cmd;
1183 } __packed reply = {
1184 .cmd = {.status = WMI_FW_STATUS_FAILURE},
1186 struct wil_ring *vring = &wil->ring_tx[id];
1187 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
1189 if (cid >= WIL6210_RX_DESC_MAX_CID) {
1190 cmd.vring_cfg.cidxtid = CIDXTID_EXTENDED_CID_TID;
1191 cmd.vring_cfg.cid = cid;
1192 cmd.vring_cfg.tid = tid;
1193 } else {
1194 cmd.vring_cfg.cidxtid = mk_cidxtid(cid, tid);
1197 wil_dbg_misc(wil, "vring_init_tx: max_mpdu_size %d\n",
1198 cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1199 lockdep_assert_held(&wil->mutex);
1201 if (vring->va) {
1202 wil_err(wil, "Tx ring [%d] already allocated\n", id);
1203 rc = -EINVAL;
1204 goto out;
1207 wil_tx_data_init(txdata);
1208 vring->is_rx = false;
1209 vring->size = size;
1210 rc = wil_vring_alloc(wil, vring);
1211 if (rc)
1212 goto out;
1214 wil->ring2cid_tid[id][0] = cid;
1215 wil->ring2cid_tid[id][1] = tid;
1217 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1219 if (!vif->privacy)
1220 txdata->dot1x_open = true;
1221 rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1222 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1223 WIL_WMI_CALL_GENERAL_TO_MS);
1224 if (rc)
1225 goto out_free;
1227 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1228 wil_err(wil, "Tx config failed, status 0x%02x\n",
1229 reply.cmd.status);
1230 rc = -EINVAL;
1231 goto out_free;
1234 spin_lock_bh(&txdata->lock);
1235 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1236 txdata->mid = vif->mid;
1237 txdata->enabled = 1;
1238 spin_unlock_bh(&txdata->lock);
1240 if (txdata->dot1x_open && (agg_wsize >= 0))
1241 wil_addba_tx_request(wil, id, agg_wsize);
1243 return 0;
1244 out_free:
1245 spin_lock_bh(&txdata->lock);
1246 txdata->dot1x_open = false;
1247 txdata->enabled = 0;
1248 spin_unlock_bh(&txdata->lock);
1249 wil_vring_free(wil, vring);
1250 wil->ring2cid_tid[id][0] = wil->max_assoc_sta;
1251 wil->ring2cid_tid[id][1] = 0;
1253 out:
1255 return rc;
1258 static int wil_tx_vring_modify(struct wil6210_vif *vif, int ring_id, int cid,
1259 int tid)
1261 struct wil6210_priv *wil = vif_to_wil(vif);
1262 int rc;
1263 struct wmi_vring_cfg_cmd cmd = {
1264 .action = cpu_to_le32(WMI_VRING_CMD_MODIFY),
1265 .vring_cfg = {
1266 .tx_sw_ring = {
1267 .max_mpdu_size =
1268 cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1269 .ring_size = 0,
1271 .ringid = ring_id,
1272 .cidxtid = mk_cidxtid(cid, tid),
1273 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1274 .mac_ctrl = 0,
1275 .to_resolution = 0,
1276 .agg_max_wsize = 0,
1277 .schd_params = {
1278 .priority = cpu_to_le16(0),
1279 .timeslot_us = cpu_to_le16(0xfff),
1283 struct {
1284 struct wmi_cmd_hdr wmi;
1285 struct wmi_vring_cfg_done_event cmd;
1286 } __packed reply = {
1287 .cmd = {.status = WMI_FW_STATUS_FAILURE},
1289 struct wil_ring *vring = &wil->ring_tx[ring_id];
1290 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id];
1292 wil_dbg_misc(wil, "vring_modify: ring %d cid %d tid %d\n", ring_id,
1293 cid, tid);
1294 lockdep_assert_held(&wil->mutex);
1296 if (!vring->va) {
1297 wil_err(wil, "Tx ring [%d] not allocated\n", ring_id);
1298 return -EINVAL;
1301 if (wil->ring2cid_tid[ring_id][0] != cid ||
1302 wil->ring2cid_tid[ring_id][1] != tid) {
1303 wil_err(wil, "ring info does not match cid=%u tid=%u\n",
1304 wil->ring2cid_tid[ring_id][0],
1305 wil->ring2cid_tid[ring_id][1]);
1308 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1310 rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1311 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1312 WIL_WMI_CALL_GENERAL_TO_MS);
1313 if (rc)
1314 goto fail;
1316 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1317 wil_err(wil, "Tx modify failed, status 0x%02x\n",
1318 reply.cmd.status);
1319 rc = -EINVAL;
1320 goto fail;
1323 /* set BA aggregation window size to 0 to force a new BA with the
1324 * new AP
1326 txdata->agg_wsize = 0;
1327 if (txdata->dot1x_open && agg_wsize >= 0)
1328 wil_addba_tx_request(wil, ring_id, agg_wsize);
1330 return 0;
1331 fail:
1332 spin_lock_bh(&txdata->lock);
1333 txdata->dot1x_open = false;
1334 txdata->enabled = 0;
1335 spin_unlock_bh(&txdata->lock);
1336 wil->ring2cid_tid[ring_id][0] = wil->max_assoc_sta;
1337 wil->ring2cid_tid[ring_id][1] = 0;
1338 return rc;
1341 int wil_vring_init_bcast(struct wil6210_vif *vif, int id, int size)
1343 struct wil6210_priv *wil = vif_to_wil(vif);
1344 int rc;
1345 struct wmi_bcast_vring_cfg_cmd cmd = {
1346 .action = cpu_to_le32(WMI_VRING_CMD_ADD),
1347 .vring_cfg = {
1348 .tx_sw_ring = {
1349 .max_mpdu_size =
1350 cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1351 .ring_size = cpu_to_le16(size),
1353 .ringid = id,
1354 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1357 struct {
1358 struct wmi_cmd_hdr wmi;
1359 struct wmi_vring_cfg_done_event cmd;
1360 } __packed reply = {
1361 .cmd = {.status = WMI_FW_STATUS_FAILURE},
1363 struct wil_ring *vring = &wil->ring_tx[id];
1364 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
1366 wil_dbg_misc(wil, "vring_init_bcast: max_mpdu_size %d\n",
1367 cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1368 lockdep_assert_held(&wil->mutex);
1370 if (vring->va) {
1371 wil_err(wil, "Tx ring [%d] already allocated\n", id);
1372 rc = -EINVAL;
1373 goto out;
1376 wil_tx_data_init(txdata);
1377 vring->is_rx = false;
1378 vring->size = size;
1379 rc = wil_vring_alloc(wil, vring);
1380 if (rc)
1381 goto out;
1383 wil->ring2cid_tid[id][0] = wil->max_assoc_sta; /* CID */
1384 wil->ring2cid_tid[id][1] = 0; /* TID */
1386 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1388 if (!vif->privacy)
1389 txdata->dot1x_open = true;
1390 rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, vif->mid,
1391 &cmd, sizeof(cmd),
1392 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1393 WIL_WMI_CALL_GENERAL_TO_MS);
1394 if (rc)
1395 goto out_free;
1397 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1398 wil_err(wil, "Tx config failed, status 0x%02x\n",
1399 reply.cmd.status);
1400 rc = -EINVAL;
1401 goto out_free;
1404 spin_lock_bh(&txdata->lock);
1405 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1406 txdata->mid = vif->mid;
1407 txdata->enabled = 1;
1408 spin_unlock_bh(&txdata->lock);
1410 return 0;
1411 out_free:
1412 spin_lock_bh(&txdata->lock);
1413 txdata->enabled = 0;
1414 txdata->dot1x_open = false;
1415 spin_unlock_bh(&txdata->lock);
1416 wil_vring_free(wil, vring);
1417 out:
1419 return rc;
1422 static struct wil_ring *wil_find_tx_ucast(struct wil6210_priv *wil,
1423 struct wil6210_vif *vif,
1424 struct sk_buff *skb)
1426 int i, cid;
1427 const u8 *da = wil_skb_get_da(skb);
1428 int min_ring_id = wil_get_min_tx_ring_id(wil);
1430 cid = wil_find_cid(wil, vif->mid, da);
1432 if (cid < 0 || cid >= wil->max_assoc_sta)
1433 return NULL;
1435 /* TODO: fix for multiple TID */
1436 for (i = min_ring_id; i < ARRAY_SIZE(wil->ring2cid_tid); i++) {
1437 if (!wil->ring_tx_data[i].dot1x_open &&
1438 skb->protocol != cpu_to_be16(ETH_P_PAE))
1439 continue;
1440 if (wil->ring2cid_tid[i][0] == cid) {
1441 struct wil_ring *v = &wil->ring_tx[i];
1442 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i];
1444 wil_dbg_txrx(wil, "find_tx_ucast: (%pM) -> [%d]\n",
1445 da, i);
1446 if (v->va && txdata->enabled) {
1447 return v;
1448 } else {
1449 wil_dbg_txrx(wil,
1450 "find_tx_ucast: vring[%d] not valid\n",
1452 return NULL;
1457 return NULL;
1460 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
1461 struct wil_ring *ring, struct sk_buff *skb);
1463 static struct wil_ring *wil_find_tx_ring_sta(struct wil6210_priv *wil,
1464 struct wil6210_vif *vif,
1465 struct sk_buff *skb)
1467 struct wil_ring *ring;
1468 int i;
1469 u8 cid;
1470 struct wil_ring_tx_data *txdata;
1471 int min_ring_id = wil_get_min_tx_ring_id(wil);
1473 /* In the STA mode, it is expected to have only 1 VRING
1474 * for the AP we connected to.
1475 * find 1-st vring eligible for this skb and use it.
1477 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1478 ring = &wil->ring_tx[i];
1479 txdata = &wil->ring_tx_data[i];
1480 if (!ring->va || !txdata->enabled || txdata->mid != vif->mid)
1481 continue;
1483 cid = wil->ring2cid_tid[i][0];
1484 if (cid >= wil->max_assoc_sta) /* skip BCAST */
1485 continue;
1487 if (!wil->ring_tx_data[i].dot1x_open &&
1488 skb->protocol != cpu_to_be16(ETH_P_PAE))
1489 continue;
1491 wil_dbg_txrx(wil, "Tx -> ring %d\n", i);
1493 return ring;
1496 wil_dbg_txrx(wil, "Tx while no rings active?\n");
1498 return NULL;
1501 /* Use one of 2 strategies:
1503 * 1. New (real broadcast):
1504 * use dedicated broadcast vring
1505 * 2. Old (pseudo-DMS):
1506 * Find 1-st vring and return it;
1507 * duplicate skb and send it to other active vrings;
1508 * in all cases override dest address to unicast peer's address
1509 * Use old strategy when new is not supported yet:
1510 * - for PBSS
1512 static struct wil_ring *wil_find_tx_bcast_1(struct wil6210_priv *wil,
1513 struct wil6210_vif *vif,
1514 struct sk_buff *skb)
1516 struct wil_ring *v;
1517 struct wil_ring_tx_data *txdata;
1518 int i = vif->bcast_ring;
1520 if (i < 0)
1521 return NULL;
1522 v = &wil->ring_tx[i];
1523 txdata = &wil->ring_tx_data[i];
1524 if (!v->va || !txdata->enabled)
1525 return NULL;
1526 if (!wil->ring_tx_data[i].dot1x_open &&
1527 skb->protocol != cpu_to_be16(ETH_P_PAE))
1528 return NULL;
1530 return v;
1533 /* apply multicast to unicast only for ARP and IP packets
1534 * (see NL80211_CMD_SET_MULTICAST_TO_UNICAST for more info)
1536 static bool wil_check_multicast_to_unicast(struct wil6210_priv *wil,
1537 struct sk_buff *skb)
1539 const struct ethhdr *eth = (void *)skb->data;
1540 const struct vlan_ethhdr *ethvlan = (void *)skb->data;
1541 __be16 ethertype;
1543 if (!wil->multicast_to_unicast)
1544 return false;
1546 /* multicast to unicast conversion only for some payload */
1547 ethertype = eth->h_proto;
1548 if (ethertype == htons(ETH_P_8021Q) && skb->len >= VLAN_ETH_HLEN)
1549 ethertype = ethvlan->h_vlan_encapsulated_proto;
1550 switch (ethertype) {
1551 case htons(ETH_P_ARP):
1552 case htons(ETH_P_IP):
1553 case htons(ETH_P_IPV6):
1554 break;
1555 default:
1556 return false;
1559 return true;
1562 static void wil_set_da_for_vring(struct wil6210_priv *wil,
1563 struct sk_buff *skb, int vring_index)
1565 u8 *da = wil_skb_get_da(skb);
1566 int cid = wil->ring2cid_tid[vring_index][0];
1568 ether_addr_copy(da, wil->sta[cid].addr);
1571 static struct wil_ring *wil_find_tx_bcast_2(struct wil6210_priv *wil,
1572 struct wil6210_vif *vif,
1573 struct sk_buff *skb)
1575 struct wil_ring *v, *v2;
1576 struct sk_buff *skb2;
1577 int i;
1578 u8 cid;
1579 const u8 *src = wil_skb_get_sa(skb);
1580 struct wil_ring_tx_data *txdata, *txdata2;
1581 int min_ring_id = wil_get_min_tx_ring_id(wil);
1583 /* find 1-st vring eligible for data */
1584 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1585 v = &wil->ring_tx[i];
1586 txdata = &wil->ring_tx_data[i];
1587 if (!v->va || !txdata->enabled || txdata->mid != vif->mid)
1588 continue;
1590 cid = wil->ring2cid_tid[i][0];
1591 if (cid >= wil->max_assoc_sta) /* skip BCAST */
1592 continue;
1593 if (!wil->ring_tx_data[i].dot1x_open &&
1594 skb->protocol != cpu_to_be16(ETH_P_PAE))
1595 continue;
1597 /* don't Tx back to source when re-routing Rx->Tx at the AP */
1598 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1599 continue;
1601 goto found;
1604 wil_dbg_txrx(wil, "Tx while no vrings active?\n");
1606 return NULL;
1608 found:
1609 wil_dbg_txrx(wil, "BCAST -> ring %d\n", i);
1610 wil_set_da_for_vring(wil, skb, i);
1612 /* find other active vrings and duplicate skb for each */
1613 for (i++; i < WIL6210_MAX_TX_RINGS; i++) {
1614 v2 = &wil->ring_tx[i];
1615 txdata2 = &wil->ring_tx_data[i];
1616 if (!v2->va || txdata2->mid != vif->mid)
1617 continue;
1618 cid = wil->ring2cid_tid[i][0];
1619 if (cid >= wil->max_assoc_sta) /* skip BCAST */
1620 continue;
1621 if (!wil->ring_tx_data[i].dot1x_open &&
1622 skb->protocol != cpu_to_be16(ETH_P_PAE))
1623 continue;
1625 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1626 continue;
1628 skb2 = skb_copy(skb, GFP_ATOMIC);
1629 if (skb2) {
1630 wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i);
1631 wil_set_da_for_vring(wil, skb2, i);
1632 wil_tx_ring(wil, vif, v2, skb2);
1633 /* successful call to wil_tx_ring takes skb2 ref */
1634 dev_kfree_skb_any(skb2);
1635 } else {
1636 wil_err(wil, "skb_copy failed\n");
1640 return v;
1643 static inline
1644 void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags)
1646 d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
1650 * Sets the descriptor @d up for csum and/or TSO offloading. The corresponding
1651 * @skb is used to obtain the protocol and headers length.
1652 * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data,
1653 * 2 - middle, 3 - last descriptor.
1656 static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d,
1657 struct sk_buff *skb,
1658 int tso_desc_type, bool is_ipv4,
1659 int tcp_hdr_len, int skb_net_hdr_len)
1661 d->dma.b11 = ETH_HLEN; /* MAC header length */
1662 d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS;
1664 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1665 /* L4 header len: TCP header length */
1666 d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1668 /* Setup TSO: bit and desc type */
1669 d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) |
1670 (tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS);
1671 d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS);
1673 d->dma.ip_length = skb_net_hdr_len;
1674 /* Enable TCP/UDP checksum */
1675 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1676 /* Calculate pseudo-header */
1677 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1681 * Sets the descriptor @d up for csum. The corresponding
1682 * @skb is used to obtain the protocol and headers length.
1683 * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6.
1684 * Note, if d==NULL, the function only returns the protocol result.
1686 * It is very similar to previous wil_tx_desc_offload_setup_tso. This
1687 * is "if unrolling" to optimize the critical path.
1690 static int wil_tx_desc_offload_setup(struct vring_tx_desc *d,
1691 struct sk_buff *skb){
1692 int protocol;
1694 if (skb->ip_summed != CHECKSUM_PARTIAL)
1695 return 0;
1697 d->dma.b11 = ETH_HLEN; /* MAC header length */
1699 switch (skb->protocol) {
1700 case cpu_to_be16(ETH_P_IP):
1701 protocol = ip_hdr(skb)->protocol;
1702 d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS);
1703 break;
1704 case cpu_to_be16(ETH_P_IPV6):
1705 protocol = ipv6_hdr(skb)->nexthdr;
1706 break;
1707 default:
1708 return -EINVAL;
1711 switch (protocol) {
1712 case IPPROTO_TCP:
1713 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1714 /* L4 header len: TCP header length */
1715 d->dma.d0 |=
1716 (tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1717 break;
1718 case IPPROTO_UDP:
1719 /* L4 header len: UDP header length */
1720 d->dma.d0 |=
1721 (sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1722 break;
1723 default:
1724 return -EINVAL;
1727 d->dma.ip_length = skb_network_header_len(skb);
1728 /* Enable TCP/UDP checksum */
1729 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1730 /* Calculate pseudo-header */
1731 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1733 return 0;
1736 static inline void wil_tx_last_desc(struct vring_tx_desc *d)
1738 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) |
1739 BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) |
1740 BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1743 static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d)
1745 d->dma.d0 |= wil_tso_type_lst <<
1746 DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS;
1749 static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct wil6210_vif *vif,
1750 struct wil_ring *vring, struct sk_buff *skb)
1752 struct device *dev = wil_to_dev(wil);
1754 /* point to descriptors in shared memory */
1755 volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc,
1756 *_first_desc = NULL;
1758 /* pointers to shadow descriptors */
1759 struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem,
1760 *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem,
1761 *first_desc = &first_desc_mem;
1763 /* pointer to shadow descriptors' context */
1764 struct wil_ctx *hdr_ctx, *first_ctx = NULL;
1766 int descs_used = 0; /* total number of used descriptors */
1767 int sg_desc_cnt = 0; /* number of descriptors for current mss*/
1769 u32 swhead = vring->swhead;
1770 int used, avail = wil_ring_avail_tx(vring);
1771 int nr_frags = skb_shinfo(skb)->nr_frags;
1772 int min_desc_required = nr_frags + 1;
1773 int mss = skb_shinfo(skb)->gso_size; /* payload size w/o headers */
1774 int f, len, hdrlen, headlen;
1775 int vring_index = vring - wil->ring_tx;
1776 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[vring_index];
1777 uint i = swhead;
1778 dma_addr_t pa;
1779 const skb_frag_t *frag = NULL;
1780 int rem_data = mss;
1781 int lenmss;
1782 int hdr_compensation_need = true;
1783 int desc_tso_type = wil_tso_type_first;
1784 bool is_ipv4;
1785 int tcp_hdr_len;
1786 int skb_net_hdr_len;
1787 int gso_type;
1788 int rc = -EINVAL;
1790 wil_dbg_txrx(wil, "tx_vring_tso: %d bytes to vring %d\n", skb->len,
1791 vring_index);
1793 if (unlikely(!txdata->enabled))
1794 return -EINVAL;
1796 /* A typical page 4K is 3-4 payloads, we assume each fragment
1797 * is a full payload, that's how min_desc_required has been
1798 * calculated. In real we might need more or less descriptors,
1799 * this is the initial check only.
1801 if (unlikely(avail < min_desc_required)) {
1802 wil_err_ratelimited(wil,
1803 "TSO: Tx ring[%2d] full. No space for %d fragments\n",
1804 vring_index, min_desc_required);
1805 return -ENOMEM;
1808 /* Header Length = MAC header len + IP header len + TCP header len*/
1809 hdrlen = ETH_HLEN +
1810 (int)skb_network_header_len(skb) +
1811 tcp_hdrlen(skb);
1813 gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4);
1814 switch (gso_type) {
1815 case SKB_GSO_TCPV4:
1816 /* TCP v4, zero out the IP length and IPv4 checksum fields
1817 * as required by the offloading doc
1819 ip_hdr(skb)->tot_len = 0;
1820 ip_hdr(skb)->check = 0;
1821 is_ipv4 = true;
1822 break;
1823 case SKB_GSO_TCPV6:
1824 /* TCP v6, zero out the payload length */
1825 ipv6_hdr(skb)->payload_len = 0;
1826 is_ipv4 = false;
1827 break;
1828 default:
1829 /* other than TCPv4 or TCPv6 types are not supported for TSO.
1830 * It is also illegal for both to be set simultaneously
1832 return -EINVAL;
1835 if (skb->ip_summed != CHECKSUM_PARTIAL)
1836 return -EINVAL;
1838 /* tcp header length and skb network header length are fixed for all
1839 * packet's descriptors - read then once here
1841 tcp_hdr_len = tcp_hdrlen(skb);
1842 skb_net_hdr_len = skb_network_header_len(skb);
1844 _hdr_desc = &vring->va[i].tx.legacy;
1846 pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE);
1847 if (unlikely(dma_mapping_error(dev, pa))) {
1848 wil_err(wil, "TSO: Skb head DMA map error\n");
1849 goto err_exit;
1852 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)hdr_desc, pa,
1853 hdrlen, vring_index);
1854 wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4,
1855 tcp_hdr_len, skb_net_hdr_len);
1856 wil_tx_last_desc(hdr_desc);
1858 vring->ctx[i].mapped_as = wil_mapped_as_single;
1859 hdr_ctx = &vring->ctx[i];
1861 descs_used++;
1862 headlen = skb_headlen(skb) - hdrlen;
1864 for (f = headlen ? -1 : 0; f < nr_frags; f++) {
1865 if (headlen) {
1866 len = headlen;
1867 wil_dbg_txrx(wil, "TSO: process skb head, len %u\n",
1868 len);
1869 } else {
1870 frag = &skb_shinfo(skb)->frags[f];
1871 len = skb_frag_size(frag);
1872 wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len);
1875 while (len) {
1876 wil_dbg_txrx(wil,
1877 "TSO: len %d, rem_data %d, descs_used %d\n",
1878 len, rem_data, descs_used);
1880 if (descs_used == avail) {
1881 wil_err_ratelimited(wil, "TSO: ring overflow\n");
1882 rc = -ENOMEM;
1883 goto mem_error;
1886 lenmss = min_t(int, rem_data, len);
1887 i = (swhead + descs_used) % vring->size;
1888 wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i);
1890 if (!headlen) {
1891 pa = skb_frag_dma_map(dev, frag,
1892 skb_frag_size(frag) - len,
1893 lenmss, DMA_TO_DEVICE);
1894 vring->ctx[i].mapped_as = wil_mapped_as_page;
1895 } else {
1896 pa = dma_map_single(dev,
1897 skb->data +
1898 skb_headlen(skb) - headlen,
1899 lenmss,
1900 DMA_TO_DEVICE);
1901 vring->ctx[i].mapped_as = wil_mapped_as_single;
1902 headlen -= lenmss;
1905 if (unlikely(dma_mapping_error(dev, pa))) {
1906 wil_err(wil, "TSO: DMA map page error\n");
1907 goto mem_error;
1910 _desc = &vring->va[i].tx.legacy;
1912 if (!_first_desc) {
1913 _first_desc = _desc;
1914 first_ctx = &vring->ctx[i];
1915 d = first_desc;
1916 } else {
1917 d = &desc_mem;
1920 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
1921 pa, lenmss, vring_index);
1922 wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type,
1923 is_ipv4, tcp_hdr_len,
1924 skb_net_hdr_len);
1926 /* use tso_type_first only once */
1927 desc_tso_type = wil_tso_type_mid;
1929 descs_used++; /* desc used so far */
1930 sg_desc_cnt++; /* desc used for this segment */
1931 len -= lenmss;
1932 rem_data -= lenmss;
1934 wil_dbg_txrx(wil,
1935 "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n",
1936 len, rem_data, descs_used, sg_desc_cnt);
1938 /* Close the segment if reached mss size or last frag*/
1939 if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) {
1940 if (hdr_compensation_need) {
1941 /* first segment include hdr desc for
1942 * release
1944 hdr_ctx->nr_frags = sg_desc_cnt;
1945 wil_tx_desc_set_nr_frags(first_desc,
1946 sg_desc_cnt +
1948 hdr_compensation_need = false;
1949 } else {
1950 wil_tx_desc_set_nr_frags(first_desc,
1951 sg_desc_cnt);
1953 first_ctx->nr_frags = sg_desc_cnt - 1;
1955 wil_tx_last_desc(d);
1957 /* first descriptor may also be the last
1958 * for this mss - make sure not to copy
1959 * it twice
1961 if (first_desc != d)
1962 *_first_desc = *first_desc;
1964 /*last descriptor will be copied at the end
1965 * of this TS processing
1967 if (f < nr_frags - 1 || len > 0)
1968 *_desc = *d;
1970 rem_data = mss;
1971 _first_desc = NULL;
1972 sg_desc_cnt = 0;
1973 } else if (first_desc != d) /* update mid descriptor */
1974 *_desc = *d;
1978 if (!_desc)
1979 goto mem_error;
1981 /* first descriptor may also be the last.
1982 * in this case d pointer is invalid
1984 if (_first_desc == _desc)
1985 d = first_desc;
1987 /* Last data descriptor */
1988 wil_set_tx_desc_last_tso(d);
1989 *_desc = *d;
1991 /* Fill the total number of descriptors in first desc (hdr)*/
1992 wil_tx_desc_set_nr_frags(hdr_desc, descs_used);
1993 *_hdr_desc = *hdr_desc;
1995 /* hold reference to skb
1996 * to prevent skb release before accounting
1997 * in case of immediate "tx done"
1999 vring->ctx[i].skb = skb_get(skb);
2001 /* performance monitoring */
2002 used = wil_ring_used_tx(vring);
2003 if (wil_val_in_range(wil->ring_idle_trsh,
2004 used, used + descs_used)) {
2005 txdata->idle += get_cycles() - txdata->last_idle;
2006 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n",
2007 vring_index, used, used + descs_used);
2010 /* Make sure to advance the head only after descriptor update is done.
2011 * This will prevent a race condition where the completion thread
2012 * will see the DU bit set from previous run and will handle the
2013 * skb before it was completed.
2015 wmb();
2017 /* advance swhead */
2018 wil_ring_advance_head(vring, descs_used);
2019 wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead);
2021 /* make sure all writes to descriptors (shared memory) are done before
2022 * committing them to HW
2024 wmb();
2026 if (wil->tx_latency)
2027 *(ktime_t *)&skb->cb = ktime_get();
2028 else
2029 memset(skb->cb, 0, sizeof(ktime_t));
2031 wil_w(wil, vring->hwtail, vring->swhead);
2032 return 0;
2034 mem_error:
2035 while (descs_used > 0) {
2036 struct wil_ctx *ctx;
2038 i = (swhead + descs_used - 1) % vring->size;
2039 d = (struct vring_tx_desc *)&vring->va[i].tx.legacy;
2040 _desc = &vring->va[i].tx.legacy;
2041 *d = *_desc;
2042 _desc->dma.status = TX_DMA_STATUS_DU;
2043 ctx = &vring->ctx[i];
2044 wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
2045 memset(ctx, 0, sizeof(*ctx));
2046 descs_used--;
2048 err_exit:
2049 return rc;
2052 static int __wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
2053 struct wil_ring *ring, struct sk_buff *skb)
2055 struct device *dev = wil_to_dev(wil);
2056 struct vring_tx_desc dd, *d = &dd;
2057 volatile struct vring_tx_desc *_d;
2058 u32 swhead = ring->swhead;
2059 int avail = wil_ring_avail_tx(ring);
2060 int nr_frags = skb_shinfo(skb)->nr_frags;
2061 uint f = 0;
2062 int ring_index = ring - wil->ring_tx;
2063 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index];
2064 uint i = swhead;
2065 dma_addr_t pa;
2066 int used;
2067 bool mcast = (ring_index == vif->bcast_ring);
2068 uint len = skb_headlen(skb);
2070 wil_dbg_txrx(wil, "tx_ring: %d bytes to ring %d, nr_frags %d\n",
2071 skb->len, ring_index, nr_frags);
2073 if (unlikely(!txdata->enabled))
2074 return -EINVAL;
2076 if (unlikely(avail < 1 + nr_frags)) {
2077 wil_err_ratelimited(wil,
2078 "Tx ring[%2d] full. No space for %d fragments\n",
2079 ring_index, 1 + nr_frags);
2080 return -ENOMEM;
2082 _d = &ring->va[i].tx.legacy;
2084 pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
2086 wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", ring_index,
2087 skb_headlen(skb), skb->data, &pa);
2088 wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
2089 skb->data, skb_headlen(skb), false);
2091 if (unlikely(dma_mapping_error(dev, pa)))
2092 return -EINVAL;
2093 ring->ctx[i].mapped_as = wil_mapped_as_single;
2094 /* 1-st segment */
2095 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, pa, len,
2096 ring_index);
2097 if (unlikely(mcast)) {
2098 d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */
2099 if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */
2100 d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS);
2102 /* Process TCP/UDP checksum offloading */
2103 if (unlikely(wil_tx_desc_offload_setup(d, skb))) {
2104 wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n",
2105 ring_index);
2106 goto dma_error;
2109 ring->ctx[i].nr_frags = nr_frags;
2110 wil_tx_desc_set_nr_frags(d, nr_frags + 1);
2112 /* middle segments */
2113 for (; f < nr_frags; f++) {
2114 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2115 int len = skb_frag_size(frag);
2117 *_d = *d;
2118 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
2119 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
2120 (const void *)d, sizeof(*d), false);
2121 i = (swhead + f + 1) % ring->size;
2122 _d = &ring->va[i].tx.legacy;
2123 pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
2124 DMA_TO_DEVICE);
2125 if (unlikely(dma_mapping_error(dev, pa))) {
2126 wil_err(wil, "Tx[%2d] failed to map fragment\n",
2127 ring_index);
2128 goto dma_error;
2130 ring->ctx[i].mapped_as = wil_mapped_as_page;
2131 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
2132 pa, len, ring_index);
2133 /* no need to check return code -
2134 * if it succeeded for 1-st descriptor,
2135 * it will succeed here too
2137 wil_tx_desc_offload_setup(d, skb);
2139 /* for the last seg only */
2140 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
2141 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS);
2142 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
2143 *_d = *d;
2144 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
2145 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
2146 (const void *)d, sizeof(*d), false);
2148 /* hold reference to skb
2149 * to prevent skb release before accounting
2150 * in case of immediate "tx done"
2152 ring->ctx[i].skb = skb_get(skb);
2154 /* performance monitoring */
2155 used = wil_ring_used_tx(ring);
2156 if (wil_val_in_range(wil->ring_idle_trsh,
2157 used, used + nr_frags + 1)) {
2158 txdata->idle += get_cycles() - txdata->last_idle;
2159 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n",
2160 ring_index, used, used + nr_frags + 1);
2163 /* Make sure to advance the head only after descriptor update is done.
2164 * This will prevent a race condition where the completion thread
2165 * will see the DU bit set from previous run and will handle the
2166 * skb before it was completed.
2168 wmb();
2170 /* advance swhead */
2171 wil_ring_advance_head(ring, nr_frags + 1);
2172 wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", ring_index, swhead,
2173 ring->swhead);
2174 trace_wil6210_tx(ring_index, swhead, skb->len, nr_frags);
2176 /* make sure all writes to descriptors (shared memory) are done before
2177 * committing them to HW
2179 wmb();
2181 if (wil->tx_latency)
2182 *(ktime_t *)&skb->cb = ktime_get();
2183 else
2184 memset(skb->cb, 0, sizeof(ktime_t));
2186 wil_w(wil, ring->hwtail, ring->swhead);
2188 return 0;
2189 dma_error:
2190 /* unmap what we have mapped */
2191 nr_frags = f + 1; /* frags mapped + one for skb head */
2192 for (f = 0; f < nr_frags; f++) {
2193 struct wil_ctx *ctx;
2195 i = (swhead + f) % ring->size;
2196 ctx = &ring->ctx[i];
2197 _d = &ring->va[i].tx.legacy;
2198 *d = *_d;
2199 _d->dma.status = TX_DMA_STATUS_DU;
2200 wil->txrx_ops.tx_desc_unmap(dev,
2201 (union wil_tx_desc *)d,
2202 ctx);
2204 memset(ctx, 0, sizeof(*ctx));
2207 return -EINVAL;
2210 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
2211 struct wil_ring *ring, struct sk_buff *skb)
2213 int ring_index = ring - wil->ring_tx;
2214 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index];
2215 int rc;
2217 spin_lock(&txdata->lock);
2219 if (test_bit(wil_status_suspending, wil->status) ||
2220 test_bit(wil_status_suspended, wil->status) ||
2221 test_bit(wil_status_resuming, wil->status)) {
2222 wil_dbg_txrx(wil,
2223 "suspend/resume in progress. drop packet\n");
2224 spin_unlock(&txdata->lock);
2225 return -EINVAL;
2228 rc = (skb_is_gso(skb) ? wil->txrx_ops.tx_ring_tso : __wil_tx_ring)
2229 (wil, vif, ring, skb);
2231 spin_unlock(&txdata->lock);
2233 return rc;
2237 * Check status of tx vrings and stop/wake net queues if needed
2238 * It will start/stop net queues of a specific VIF net_device.
2240 * This function does one of two checks:
2241 * In case check_stop is true, will check if net queues need to be stopped. If
2242 * the conditions for stopping are met, netif_tx_stop_all_queues() is called.
2243 * In case check_stop is false, will check if net queues need to be waked. If
2244 * the conditions for waking are met, netif_tx_wake_all_queues() is called.
2245 * vring is the vring which is currently being modified by either adding
2246 * descriptors (tx) into it or removing descriptors (tx complete) from it. Can
2247 * be null when irrelevant (e.g. connect/disconnect events).
2249 * The implementation is to stop net queues if modified vring has low
2250 * descriptor availability. Wake if all vrings are not in low descriptor
2251 * availability and modified vring has high descriptor availability.
2253 static inline void __wil_update_net_queues(struct wil6210_priv *wil,
2254 struct wil6210_vif *vif,
2255 struct wil_ring *ring,
2256 bool check_stop)
2258 int i;
2259 int min_ring_id = wil_get_min_tx_ring_id(wil);
2261 if (unlikely(!vif))
2262 return;
2264 if (ring)
2265 wil_dbg_txrx(wil, "vring %d, mid %d, check_stop=%d, stopped=%d",
2266 (int)(ring - wil->ring_tx), vif->mid, check_stop,
2267 vif->net_queue_stopped);
2268 else
2269 wil_dbg_txrx(wil, "check_stop=%d, mid=%d, stopped=%d",
2270 check_stop, vif->mid, vif->net_queue_stopped);
2272 if (ring && drop_if_ring_full)
2273 /* no need to stop/wake net queues */
2274 return;
2276 if (check_stop == vif->net_queue_stopped)
2277 /* net queues already in desired state */
2278 return;
2280 if (check_stop) {
2281 if (!ring || unlikely(wil_ring_avail_low(ring))) {
2282 /* not enough room in the vring */
2283 netif_tx_stop_all_queues(vif_to_ndev(vif));
2284 vif->net_queue_stopped = true;
2285 wil_dbg_txrx(wil, "netif_tx_stop called\n");
2287 return;
2290 /* Do not wake the queues in suspend flow */
2291 if (test_bit(wil_status_suspending, wil->status) ||
2292 test_bit(wil_status_suspended, wil->status))
2293 return;
2295 /* check wake */
2296 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
2297 struct wil_ring *cur_ring = &wil->ring_tx[i];
2298 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i];
2300 if (txdata->mid != vif->mid || !cur_ring->va ||
2301 !txdata->enabled || cur_ring == ring)
2302 continue;
2304 if (wil_ring_avail_low(cur_ring)) {
2305 wil_dbg_txrx(wil, "ring %d full, can't wake\n",
2306 (int)(cur_ring - wil->ring_tx));
2307 return;
2311 if (!ring || wil_ring_avail_high(ring)) {
2312 /* enough room in the ring */
2313 wil_dbg_txrx(wil, "calling netif_tx_wake\n");
2314 netif_tx_wake_all_queues(vif_to_ndev(vif));
2315 vif->net_queue_stopped = false;
2319 void wil_update_net_queues(struct wil6210_priv *wil, struct wil6210_vif *vif,
2320 struct wil_ring *ring, bool check_stop)
2322 spin_lock(&wil->net_queue_lock);
2323 __wil_update_net_queues(wil, vif, ring, check_stop);
2324 spin_unlock(&wil->net_queue_lock);
2327 void wil_update_net_queues_bh(struct wil6210_priv *wil, struct wil6210_vif *vif,
2328 struct wil_ring *ring, bool check_stop)
2330 spin_lock_bh(&wil->net_queue_lock);
2331 __wil_update_net_queues(wil, vif, ring, check_stop);
2332 spin_unlock_bh(&wil->net_queue_lock);
2335 netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2337 struct wil6210_vif *vif = ndev_to_vif(ndev);
2338 struct wil6210_priv *wil = vif_to_wil(vif);
2339 const u8 *da = wil_skb_get_da(skb);
2340 bool bcast = is_multicast_ether_addr(da);
2341 struct wil_ring *ring;
2342 static bool pr_once_fw;
2343 int rc;
2345 wil_dbg_txrx(wil, "start_xmit\n");
2346 if (unlikely(!test_bit(wil_status_fwready, wil->status))) {
2347 if (!pr_once_fw) {
2348 wil_err(wil, "FW not ready\n");
2349 pr_once_fw = true;
2351 goto drop;
2353 if (unlikely(!test_bit(wil_vif_fwconnected, vif->status))) {
2354 wil_dbg_ratelimited(wil,
2355 "VIF not connected, packet dropped\n");
2356 goto drop;
2358 if (unlikely(vif->wdev.iftype == NL80211_IFTYPE_MONITOR)) {
2359 wil_err(wil, "Xmit in monitor mode not supported\n");
2360 goto drop;
2362 pr_once_fw = false;
2364 /* find vring */
2365 if (vif->wdev.iftype == NL80211_IFTYPE_STATION && !vif->pbss) {
2366 /* in STA mode (ESS), all to same VRING (to AP) */
2367 ring = wil_find_tx_ring_sta(wil, vif, skb);
2368 } else if (bcast) {
2369 if (vif->pbss || wil_check_multicast_to_unicast(wil, skb))
2370 /* in pbss, no bcast VRING - duplicate skb in
2371 * all stations VRINGs
2373 ring = wil_find_tx_bcast_2(wil, vif, skb);
2374 else if (vif->wdev.iftype == NL80211_IFTYPE_AP)
2375 /* AP has a dedicated bcast VRING */
2376 ring = wil_find_tx_bcast_1(wil, vif, skb);
2377 else
2378 /* unexpected combination, fallback to duplicating
2379 * the skb in all stations VRINGs
2381 ring = wil_find_tx_bcast_2(wil, vif, skb);
2382 } else {
2383 /* unicast, find specific VRING by dest. address */
2384 ring = wil_find_tx_ucast(wil, vif, skb);
2386 if (unlikely(!ring)) {
2387 wil_dbg_txrx(wil, "No Tx RING found for %pM\n", da);
2388 goto drop;
2390 /* set up vring entry */
2391 rc = wil_tx_ring(wil, vif, ring, skb);
2393 switch (rc) {
2394 case 0:
2395 /* shall we stop net queues? */
2396 wil_update_net_queues_bh(wil, vif, ring, true);
2397 /* statistics will be updated on the tx_complete */
2398 dev_kfree_skb_any(skb);
2399 return NETDEV_TX_OK;
2400 case -ENOMEM:
2401 if (drop_if_ring_full)
2402 goto drop;
2403 return NETDEV_TX_BUSY;
2404 default:
2405 break; /* goto drop; */
2407 drop:
2408 ndev->stats.tx_dropped++;
2409 dev_kfree_skb_any(skb);
2411 return NET_XMIT_DROP;
2414 void wil_tx_latency_calc(struct wil6210_priv *wil, struct sk_buff *skb,
2415 struct wil_sta_info *sta)
2417 int skb_time_us;
2418 int bin;
2420 if (!wil->tx_latency)
2421 return;
2423 if (ktime_to_ms(*(ktime_t *)&skb->cb) == 0)
2424 return;
2426 skb_time_us = ktime_us_delta(ktime_get(), *(ktime_t *)&skb->cb);
2427 bin = skb_time_us / wil->tx_latency_res;
2428 bin = min_t(int, bin, WIL_NUM_LATENCY_BINS - 1);
2430 wil_dbg_txrx(wil, "skb time %dus => bin %d\n", skb_time_us, bin);
2431 sta->tx_latency_bins[bin]++;
2432 sta->stats.tx_latency_total_us += skb_time_us;
2433 if (skb_time_us < sta->stats.tx_latency_min_us)
2434 sta->stats.tx_latency_min_us = skb_time_us;
2435 if (skb_time_us > sta->stats.tx_latency_max_us)
2436 sta->stats.tx_latency_max_us = skb_time_us;
2440 * Clean up transmitted skb's from the Tx VRING
2442 * Return number of descriptors cleared
2444 * Safe to call from IRQ
2446 int wil_tx_complete(struct wil6210_vif *vif, int ringid)
2448 struct wil6210_priv *wil = vif_to_wil(vif);
2449 struct net_device *ndev = vif_to_ndev(vif);
2450 struct device *dev = wil_to_dev(wil);
2451 struct wil_ring *vring = &wil->ring_tx[ringid];
2452 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ringid];
2453 int done = 0;
2454 int cid = wil->ring2cid_tid[ringid][0];
2455 struct wil_net_stats *stats = NULL;
2456 volatile struct vring_tx_desc *_d;
2457 int used_before_complete;
2458 int used_new;
2460 if (unlikely(!vring->va)) {
2461 wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
2462 return 0;
2465 if (unlikely(!txdata->enabled)) {
2466 wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid);
2467 return 0;
2470 wil_dbg_txrx(wil, "tx_complete: (%d)\n", ringid);
2472 used_before_complete = wil_ring_used_tx(vring);
2474 if (cid < wil->max_assoc_sta)
2475 stats = &wil->sta[cid].stats;
2477 while (!wil_ring_is_empty(vring)) {
2478 int new_swtail;
2479 struct wil_ctx *ctx = &vring->ctx[vring->swtail];
2481 * For the fragmented skb, HW will set DU bit only for the
2482 * last fragment. look for it.
2483 * In TSO the first DU will include hdr desc
2485 int lf = (vring->swtail + ctx->nr_frags) % vring->size;
2486 /* TODO: check we are not past head */
2488 _d = &vring->va[lf].tx.legacy;
2489 if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU)))
2490 break;
2492 new_swtail = (lf + 1) % vring->size;
2493 while (vring->swtail != new_swtail) {
2494 struct vring_tx_desc dd, *d = &dd;
2495 u16 dmalen;
2496 struct sk_buff *skb;
2498 ctx = &vring->ctx[vring->swtail];
2499 skb = ctx->skb;
2500 _d = &vring->va[vring->swtail].tx.legacy;
2502 *d = *_d;
2504 dmalen = le16_to_cpu(d->dma.length);
2505 trace_wil6210_tx_done(ringid, vring->swtail, dmalen,
2506 d->dma.error);
2507 wil_dbg_txrx(wil,
2508 "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n",
2509 ringid, vring->swtail, dmalen,
2510 d->dma.status, d->dma.error);
2511 wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4,
2512 (const void *)d, sizeof(*d), false);
2514 wil->txrx_ops.tx_desc_unmap(dev,
2515 (union wil_tx_desc *)d,
2516 ctx);
2518 if (skb) {
2519 if (likely(d->dma.error == 0)) {
2520 ndev->stats.tx_packets++;
2521 ndev->stats.tx_bytes += skb->len;
2522 if (stats) {
2523 stats->tx_packets++;
2524 stats->tx_bytes += skb->len;
2526 wil_tx_latency_calc(wil, skb,
2527 &wil->sta[cid]);
2529 } else {
2530 ndev->stats.tx_errors++;
2531 if (stats)
2532 stats->tx_errors++;
2535 if (skb->protocol == cpu_to_be16(ETH_P_PAE))
2536 wil_tx_complete_handle_eapol(vif, skb);
2538 wil_consume_skb(skb, d->dma.error == 0);
2540 memset(ctx, 0, sizeof(*ctx));
2541 /* Make sure the ctx is zeroed before updating the tail
2542 * to prevent a case where wil_tx_ring will see
2543 * this descriptor as used and handle it before ctx zero
2544 * is completed.
2546 wmb();
2547 /* There is no need to touch HW descriptor:
2548 * - ststus bit TX_DMA_STATUS_DU is set by design,
2549 * so hardware will not try to process this desc.,
2550 * - rest of descriptor will be initialized on Tx.
2552 vring->swtail = wil_ring_next_tail(vring);
2553 done++;
2557 /* performance monitoring */
2558 used_new = wil_ring_used_tx(vring);
2559 if (wil_val_in_range(wil->ring_idle_trsh,
2560 used_new, used_before_complete)) {
2561 wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n",
2562 ringid, used_before_complete, used_new);
2563 txdata->last_idle = get_cycles();
2566 /* shall we wake net queues? */
2567 if (done)
2568 wil_update_net_queues(wil, vif, vring, false);
2570 return done;
2573 static inline int wil_tx_init(struct wil6210_priv *wil)
2575 return 0;
2578 static inline void wil_tx_fini(struct wil6210_priv *wil) {}
2580 static void wil_get_reorder_params(struct wil6210_priv *wil,
2581 struct sk_buff *skb, int *tid, int *cid,
2582 int *mid, u16 *seq, int *mcast, int *retry)
2584 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
2586 *tid = wil_rxdesc_tid(d);
2587 *cid = wil_skb_get_cid(skb);
2588 *mid = wil_rxdesc_mid(d);
2589 *seq = wil_rxdesc_seq(d);
2590 *mcast = wil_rxdesc_mcast(d);
2591 *retry = wil_rxdesc_retry(d);
2594 void wil_init_txrx_ops_legacy_dma(struct wil6210_priv *wil)
2596 wil->txrx_ops.configure_interrupt_moderation =
2597 wil_configure_interrupt_moderation;
2598 /* TX ops */
2599 wil->txrx_ops.tx_desc_map = wil_tx_desc_map;
2600 wil->txrx_ops.tx_desc_unmap = wil_txdesc_unmap;
2601 wil->txrx_ops.tx_ring_tso = __wil_tx_vring_tso;
2602 wil->txrx_ops.ring_init_tx = wil_vring_init_tx;
2603 wil->txrx_ops.ring_fini_tx = wil_vring_free;
2604 wil->txrx_ops.ring_init_bcast = wil_vring_init_bcast;
2605 wil->txrx_ops.tx_init = wil_tx_init;
2606 wil->txrx_ops.tx_fini = wil_tx_fini;
2607 wil->txrx_ops.tx_ring_modify = wil_tx_vring_modify;
2608 /* RX ops */
2609 wil->txrx_ops.rx_init = wil_rx_init;
2610 wil->txrx_ops.wmi_addba_rx_resp = wmi_addba_rx_resp;
2611 wil->txrx_ops.get_reorder_params = wil_get_reorder_params;
2612 wil->txrx_ops.get_netif_rx_params =
2613 wil_get_netif_rx_params;
2614 wil->txrx_ops.rx_crypto_check = wil_rx_crypto_check;
2615 wil->txrx_ops.rx_error_check = wil_rx_error_check;
2616 wil->txrx_ops.is_rx_idle = wil_is_rx_idle;
2617 wil->txrx_ops.rx_fini = wil_rx_fini;