treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / wireless / intel / ipw2x00 / ipw2200.c
blob5ef6f87a48ac738c919fbf492263b7c21bba636b
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
4 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
6 802.11 status code portion of this file from ethereal-0.10.6:
7 Copyright 2000, Axis Communications AB
8 Ethereal - Network traffic analyzer
9 By Gerald Combs <gerald@ethereal.com>
10 Copyright 1998 Gerald Combs
13 Contact Information:
14 Intel Linux Wireless <ilw@linux.intel.com>
15 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17 ******************************************************************************/
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <net/cfg80211-wext.h>
22 #include "ipw2200.h"
23 #include "ipw.h"
26 #ifndef KBUILD_EXTMOD
27 #define VK "k"
28 #else
29 #define VK
30 #endif
32 #ifdef CONFIG_IPW2200_DEBUG
33 #define VD "d"
34 #else
35 #define VD
36 #endif
38 #ifdef CONFIG_IPW2200_MONITOR
39 #define VM "m"
40 #else
41 #define VM
42 #endif
44 #ifdef CONFIG_IPW2200_PROMISCUOUS
45 #define VP "p"
46 #else
47 #define VP
48 #endif
50 #ifdef CONFIG_IPW2200_RADIOTAP
51 #define VR "r"
52 #else
53 #define VR
54 #endif
56 #ifdef CONFIG_IPW2200_QOS
57 #define VQ "q"
58 #else
59 #define VQ
60 #endif
62 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
63 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
64 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
65 #define DRV_VERSION IPW2200_VERSION
67 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
69 MODULE_DESCRIPTION(DRV_DESCRIPTION);
70 MODULE_VERSION(DRV_VERSION);
71 MODULE_AUTHOR(DRV_COPYRIGHT);
72 MODULE_LICENSE("GPL");
73 MODULE_FIRMWARE("ipw2200-ibss.fw");
74 #ifdef CONFIG_IPW2200_MONITOR
75 MODULE_FIRMWARE("ipw2200-sniffer.fw");
76 #endif
77 MODULE_FIRMWARE("ipw2200-bss.fw");
79 static int cmdlog = 0;
80 static int debug = 0;
81 static int default_channel = 0;
82 static int network_mode = 0;
84 static u32 ipw_debug_level;
85 static int associate;
86 static int auto_create = 1;
87 static int led_support = 1;
88 static int disable = 0;
89 static int bt_coexist = 0;
90 static int hwcrypto = 0;
91 static int roaming = 1;
92 static const char ipw_modes[] = {
93 'a', 'b', 'g', '?'
95 static int antenna = CFG_SYS_ANTENNA_BOTH;
97 #ifdef CONFIG_IPW2200_PROMISCUOUS
98 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
99 #endif
101 static struct ieee80211_rate ipw2200_rates[] = {
102 { .bitrate = 10 },
103 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
104 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
105 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
106 { .bitrate = 60 },
107 { .bitrate = 90 },
108 { .bitrate = 120 },
109 { .bitrate = 180 },
110 { .bitrate = 240 },
111 { .bitrate = 360 },
112 { .bitrate = 480 },
113 { .bitrate = 540 }
116 #define ipw2200_a_rates (ipw2200_rates + 4)
117 #define ipw2200_num_a_rates 8
118 #define ipw2200_bg_rates (ipw2200_rates + 0)
119 #define ipw2200_num_bg_rates 12
121 /* Ugly macro to convert literal channel numbers into their mhz equivalents
122 * There are certianly some conditions that will break this (like feeding it '30')
123 * but they shouldn't arise since nothing talks on channel 30. */
124 #define ieee80211chan2mhz(x) \
125 (((x) <= 14) ? \
126 (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
127 ((x) + 1000) * 5)
129 #ifdef CONFIG_IPW2200_QOS
130 static int qos_enable = 0;
131 static int qos_burst_enable = 0;
132 static int qos_no_ack_mask = 0;
133 static int burst_duration_CCK = 0;
134 static int burst_duration_OFDM = 0;
136 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
137 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
138 QOS_TX3_CW_MIN_OFDM},
139 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
140 QOS_TX3_CW_MAX_OFDM},
141 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
142 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
143 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
144 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
147 static struct libipw_qos_parameters def_qos_parameters_CCK = {
148 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
149 QOS_TX3_CW_MIN_CCK},
150 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
151 QOS_TX3_CW_MAX_CCK},
152 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
153 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
154 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
155 QOS_TX3_TXOP_LIMIT_CCK}
158 static struct libipw_qos_parameters def_parameters_OFDM = {
159 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
160 DEF_TX3_CW_MIN_OFDM},
161 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
162 DEF_TX3_CW_MAX_OFDM},
163 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
164 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
165 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
166 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
169 static struct libipw_qos_parameters def_parameters_CCK = {
170 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
171 DEF_TX3_CW_MIN_CCK},
172 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
173 DEF_TX3_CW_MAX_CCK},
174 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
175 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
176 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
177 DEF_TX3_TXOP_LIMIT_CCK}
180 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
182 static int from_priority_to_tx_queue[] = {
183 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
184 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
187 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
189 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
190 *qos_param);
191 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
192 *qos_param);
193 #endif /* CONFIG_IPW2200_QOS */
195 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
196 static void ipw_remove_current_network(struct ipw_priv *priv);
197 static void ipw_rx(struct ipw_priv *priv);
198 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
199 struct clx2_tx_queue *txq, int qindex);
200 static int ipw_queue_reset(struct ipw_priv *priv);
202 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
203 int len, int sync);
205 static void ipw_tx_queue_free(struct ipw_priv *);
207 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
208 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
209 static void ipw_rx_queue_replenish(void *);
210 static int ipw_up(struct ipw_priv *);
211 static void ipw_bg_up(struct work_struct *work);
212 static void ipw_down(struct ipw_priv *);
213 static void ipw_bg_down(struct work_struct *work);
214 static int ipw_config(struct ipw_priv *);
215 static int init_supported_rates(struct ipw_priv *priv,
216 struct ipw_supported_rates *prates);
217 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
218 static void ipw_send_wep_keys(struct ipw_priv *, int);
220 static int snprint_line(char *buf, size_t count,
221 const u8 * data, u32 len, u32 ofs)
223 int out, i, j, l;
224 char c;
226 out = snprintf(buf, count, "%08X", ofs);
228 for (l = 0, i = 0; i < 2; i++) {
229 out += snprintf(buf + out, count - out, " ");
230 for (j = 0; j < 8 && l < len; j++, l++)
231 out += snprintf(buf + out, count - out, "%02X ",
232 data[(i * 8 + j)]);
233 for (; j < 8; j++)
234 out += snprintf(buf + out, count - out, " ");
237 out += snprintf(buf + out, count - out, " ");
238 for (l = 0, i = 0; i < 2; i++) {
239 out += snprintf(buf + out, count - out, " ");
240 for (j = 0; j < 8 && l < len; j++, l++) {
241 c = data[(i * 8 + j)];
242 if (!isascii(c) || !isprint(c))
243 c = '.';
245 out += snprintf(buf + out, count - out, "%c", c);
248 for (; j < 8; j++)
249 out += snprintf(buf + out, count - out, " ");
252 return out;
255 static void printk_buf(int level, const u8 * data, u32 len)
257 char line[81];
258 u32 ofs = 0;
259 if (!(ipw_debug_level & level))
260 return;
262 while (len) {
263 snprint_line(line, sizeof(line), &data[ofs],
264 min(len, 16U), ofs);
265 printk(KERN_DEBUG "%s\n", line);
266 ofs += 16;
267 len -= min(len, 16U);
271 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
273 size_t out = size;
274 u32 ofs = 0;
275 int total = 0;
277 while (size && len) {
278 out = snprint_line(output, size, &data[ofs],
279 min_t(size_t, len, 16U), ofs);
281 ofs += 16;
282 output += out;
283 size -= out;
284 len -= min_t(size_t, len, 16U);
285 total += out;
287 return total;
290 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
291 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
292 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
294 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
295 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
296 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
298 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
299 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
300 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
302 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
303 __LINE__, (u32) (b), (u32) (c));
304 _ipw_write_reg8(a, b, c);
307 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
308 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
309 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
311 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
312 __LINE__, (u32) (b), (u32) (c));
313 _ipw_write_reg16(a, b, c);
316 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
317 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
318 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
320 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
321 __LINE__, (u32) (b), (u32) (c));
322 _ipw_write_reg32(a, b, c);
325 /* 8-bit direct write (low 4K) */
326 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
327 u8 val)
329 writeb(val, ipw->hw_base + ofs);
332 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
333 #define ipw_write8(ipw, ofs, val) do { \
334 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
335 __LINE__, (u32)(ofs), (u32)(val)); \
336 _ipw_write8(ipw, ofs, val); \
337 } while (0)
339 /* 16-bit direct write (low 4K) */
340 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
341 u16 val)
343 writew(val, ipw->hw_base + ofs);
346 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write16(ipw, ofs, val) do { \
348 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
349 __LINE__, (u32)(ofs), (u32)(val)); \
350 _ipw_write16(ipw, ofs, val); \
351 } while (0)
353 /* 32-bit direct write (low 4K) */
354 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
355 u32 val)
357 writel(val, ipw->hw_base + ofs);
360 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write32(ipw, ofs, val) do { \
362 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
363 __LINE__, (u32)(ofs), (u32)(val)); \
364 _ipw_write32(ipw, ofs, val); \
365 } while (0)
367 /* 8-bit direct read (low 4K) */
368 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
370 return readb(ipw->hw_base + ofs);
373 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
374 #define ipw_read8(ipw, ofs) ({ \
375 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
376 (u32)(ofs)); \
377 _ipw_read8(ipw, ofs); \
380 /* 16-bit direct read (low 4K) */
381 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
383 return readw(ipw->hw_base + ofs);
386 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
387 #define ipw_read16(ipw, ofs) ({ \
388 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
389 (u32)(ofs)); \
390 _ipw_read16(ipw, ofs); \
393 /* 32-bit direct read (low 4K) */
394 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
396 return readl(ipw->hw_base + ofs);
399 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
400 #define ipw_read32(ipw, ofs) ({ \
401 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
402 (u32)(ofs)); \
403 _ipw_read32(ipw, ofs); \
406 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
407 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
408 #define ipw_read_indirect(a, b, c, d) ({ \
409 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
410 __LINE__, (u32)(b), (u32)(d)); \
411 _ipw_read_indirect(a, b, c, d); \
414 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
415 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
416 int num);
417 #define ipw_write_indirect(a, b, c, d) do { \
418 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
419 __LINE__, (u32)(b), (u32)(d)); \
420 _ipw_write_indirect(a, b, c, d); \
421 } while (0)
423 /* 32-bit indirect write (above 4K) */
424 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
426 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
427 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
428 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
431 /* 8-bit indirect write (above 4K) */
432 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
434 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
435 u32 dif_len = reg - aligned_addr;
437 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
438 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
439 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
442 /* 16-bit indirect write (above 4K) */
443 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
445 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
446 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
448 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
449 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
450 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
453 /* 8-bit indirect read (above 4K) */
454 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
456 u32 word;
457 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
458 IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
459 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
460 return (word >> ((reg & 0x3) * 8)) & 0xff;
463 /* 32-bit indirect read (above 4K) */
464 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
466 u32 value;
468 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
470 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
471 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
472 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
473 return value;
476 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
477 /* for area above 1st 4K of SRAM/reg space */
478 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
479 int num)
481 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
482 u32 dif_len = addr - aligned_addr;
483 u32 i;
485 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
487 if (num <= 0) {
488 return;
491 /* Read the first dword (or portion) byte by byte */
492 if (unlikely(dif_len)) {
493 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
494 /* Start reading at aligned_addr + dif_len */
495 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
496 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
497 aligned_addr += 4;
500 /* Read all of the middle dwords as dwords, with auto-increment */
501 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
502 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
503 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
505 /* Read the last dword (or portion) byte by byte */
506 if (unlikely(num)) {
507 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508 for (i = 0; num > 0; i++, num--)
509 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
513 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
514 /* for area above 1st 4K of SRAM/reg space */
515 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
516 int num)
518 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
519 u32 dif_len = addr - aligned_addr;
520 u32 i;
522 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
524 if (num <= 0) {
525 return;
528 /* Write the first dword (or portion) byte by byte */
529 if (unlikely(dif_len)) {
530 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
531 /* Start writing at aligned_addr + dif_len */
532 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
533 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
534 aligned_addr += 4;
537 /* Write all of the middle dwords as dwords, with auto-increment */
538 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
539 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
540 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
542 /* Write the last dword (or portion) byte by byte */
543 if (unlikely(num)) {
544 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545 for (i = 0; num > 0; i++, num--, buf++)
546 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
550 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
551 /* for 1st 4K of SRAM/regs space */
552 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
553 int num)
555 memcpy_toio((priv->hw_base + addr), buf, num);
558 /* Set bit(s) in low 4K of SRAM/regs */
559 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
561 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
564 /* Clear bit(s) in low 4K of SRAM/regs */
565 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
567 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
570 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
572 if (priv->status & STATUS_INT_ENABLED)
573 return;
574 priv->status |= STATUS_INT_ENABLED;
575 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
578 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
580 if (!(priv->status & STATUS_INT_ENABLED))
581 return;
582 priv->status &= ~STATUS_INT_ENABLED;
583 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
586 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
588 unsigned long flags;
590 spin_lock_irqsave(&priv->irq_lock, flags);
591 __ipw_enable_interrupts(priv);
592 spin_unlock_irqrestore(&priv->irq_lock, flags);
595 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
597 unsigned long flags;
599 spin_lock_irqsave(&priv->irq_lock, flags);
600 __ipw_disable_interrupts(priv);
601 spin_unlock_irqrestore(&priv->irq_lock, flags);
604 static char *ipw_error_desc(u32 val)
606 switch (val) {
607 case IPW_FW_ERROR_OK:
608 return "ERROR_OK";
609 case IPW_FW_ERROR_FAIL:
610 return "ERROR_FAIL";
611 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
612 return "MEMORY_UNDERFLOW";
613 case IPW_FW_ERROR_MEMORY_OVERFLOW:
614 return "MEMORY_OVERFLOW";
615 case IPW_FW_ERROR_BAD_PARAM:
616 return "BAD_PARAM";
617 case IPW_FW_ERROR_BAD_CHECKSUM:
618 return "BAD_CHECKSUM";
619 case IPW_FW_ERROR_NMI_INTERRUPT:
620 return "NMI_INTERRUPT";
621 case IPW_FW_ERROR_BAD_DATABASE:
622 return "BAD_DATABASE";
623 case IPW_FW_ERROR_ALLOC_FAIL:
624 return "ALLOC_FAIL";
625 case IPW_FW_ERROR_DMA_UNDERRUN:
626 return "DMA_UNDERRUN";
627 case IPW_FW_ERROR_DMA_STATUS:
628 return "DMA_STATUS";
629 case IPW_FW_ERROR_DINO_ERROR:
630 return "DINO_ERROR";
631 case IPW_FW_ERROR_EEPROM_ERROR:
632 return "EEPROM_ERROR";
633 case IPW_FW_ERROR_SYSASSERT:
634 return "SYSASSERT";
635 case IPW_FW_ERROR_FATAL_ERROR:
636 return "FATAL_ERROR";
637 default:
638 return "UNKNOWN_ERROR";
642 static void ipw_dump_error_log(struct ipw_priv *priv,
643 struct ipw_fw_error *error)
645 u32 i;
647 if (!error) {
648 IPW_ERROR("Error allocating and capturing error log. "
649 "Nothing to dump.\n");
650 return;
653 IPW_ERROR("Start IPW Error Log Dump:\n");
654 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
655 error->status, error->config);
657 for (i = 0; i < error->elem_len; i++)
658 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
659 ipw_error_desc(error->elem[i].desc),
660 error->elem[i].time,
661 error->elem[i].blink1,
662 error->elem[i].blink2,
663 error->elem[i].link1,
664 error->elem[i].link2, error->elem[i].data);
665 for (i = 0; i < error->log_len; i++)
666 IPW_ERROR("%i\t0x%08x\t%i\n",
667 error->log[i].time,
668 error->log[i].data, error->log[i].event);
671 static inline int ipw_is_init(struct ipw_priv *priv)
673 return (priv->status & STATUS_INIT) ? 1 : 0;
676 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
678 u32 addr, field_info, field_len, field_count, total_len;
680 IPW_DEBUG_ORD("ordinal = %i\n", ord);
682 if (!priv || !val || !len) {
683 IPW_DEBUG_ORD("Invalid argument\n");
684 return -EINVAL;
687 /* verify device ordinal tables have been initialized */
688 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
689 IPW_DEBUG_ORD("Access ordinals before initialization\n");
690 return -EINVAL;
693 switch (IPW_ORD_TABLE_ID_MASK & ord) {
694 case IPW_ORD_TABLE_0_MASK:
696 * TABLE 0: Direct access to a table of 32 bit values
698 * This is a very simple table with the data directly
699 * read from the table
702 /* remove the table id from the ordinal */
703 ord &= IPW_ORD_TABLE_VALUE_MASK;
705 /* boundary check */
706 if (ord > priv->table0_len) {
707 IPW_DEBUG_ORD("ordinal value (%i) longer then "
708 "max (%i)\n", ord, priv->table0_len);
709 return -EINVAL;
712 /* verify we have enough room to store the value */
713 if (*len < sizeof(u32)) {
714 IPW_DEBUG_ORD("ordinal buffer length too small, "
715 "need %zd\n", sizeof(u32));
716 return -EINVAL;
719 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
720 ord, priv->table0_addr + (ord << 2));
722 *len = sizeof(u32);
723 ord <<= 2;
724 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
725 break;
727 case IPW_ORD_TABLE_1_MASK:
729 * TABLE 1: Indirect access to a table of 32 bit values
731 * This is a fairly large table of u32 values each
732 * representing starting addr for the data (which is
733 * also a u32)
736 /* remove the table id from the ordinal */
737 ord &= IPW_ORD_TABLE_VALUE_MASK;
739 /* boundary check */
740 if (ord > priv->table1_len) {
741 IPW_DEBUG_ORD("ordinal value too long\n");
742 return -EINVAL;
745 /* verify we have enough room to store the value */
746 if (*len < sizeof(u32)) {
747 IPW_DEBUG_ORD("ordinal buffer length too small, "
748 "need %zd\n", sizeof(u32));
749 return -EINVAL;
752 *((u32 *) val) =
753 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
754 *len = sizeof(u32);
755 break;
757 case IPW_ORD_TABLE_2_MASK:
759 * TABLE 2: Indirect access to a table of variable sized values
761 * This table consist of six values, each containing
762 * - dword containing the starting offset of the data
763 * - dword containing the lengh in the first 16bits
764 * and the count in the second 16bits
767 /* remove the table id from the ordinal */
768 ord &= IPW_ORD_TABLE_VALUE_MASK;
770 /* boundary check */
771 if (ord > priv->table2_len) {
772 IPW_DEBUG_ORD("ordinal value too long\n");
773 return -EINVAL;
776 /* get the address of statistic */
777 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
779 /* get the second DW of statistics ;
780 * two 16-bit words - first is length, second is count */
781 field_info =
782 ipw_read_reg32(priv,
783 priv->table2_addr + (ord << 3) +
784 sizeof(u32));
786 /* get each entry length */
787 field_len = *((u16 *) & field_info);
789 /* get number of entries */
790 field_count = *(((u16 *) & field_info) + 1);
792 /* abort if not enough memory */
793 total_len = field_len * field_count;
794 if (total_len > *len) {
795 *len = total_len;
796 return -EINVAL;
799 *len = total_len;
800 if (!total_len)
801 return 0;
803 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
804 "field_info = 0x%08x\n",
805 addr, total_len, field_info);
806 ipw_read_indirect(priv, addr, val, total_len);
807 break;
809 default:
810 IPW_DEBUG_ORD("Invalid ordinal!\n");
811 return -EINVAL;
815 return 0;
818 static void ipw_init_ordinals(struct ipw_priv *priv)
820 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
821 priv->table0_len = ipw_read32(priv, priv->table0_addr);
823 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
824 priv->table0_addr, priv->table0_len);
826 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
827 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
829 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
830 priv->table1_addr, priv->table1_len);
832 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
833 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
834 priv->table2_len &= 0x0000ffff; /* use first two bytes */
836 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
837 priv->table2_addr, priv->table2_len);
841 static u32 ipw_register_toggle(u32 reg)
843 reg &= ~IPW_START_STANDBY;
844 if (reg & IPW_GATE_ODMA)
845 reg &= ~IPW_GATE_ODMA;
846 if (reg & IPW_GATE_IDMA)
847 reg &= ~IPW_GATE_IDMA;
848 if (reg & IPW_GATE_ADMA)
849 reg &= ~IPW_GATE_ADMA;
850 return reg;
854 * LED behavior:
855 * - On radio ON, turn on any LEDs that require to be on during start
856 * - On initialization, start unassociated blink
857 * - On association, disable unassociated blink
858 * - On disassociation, start unassociated blink
859 * - On radio OFF, turn off any LEDs started during radio on
862 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
863 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
864 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
866 static void ipw_led_link_on(struct ipw_priv *priv)
868 unsigned long flags;
869 u32 led;
871 /* If configured to not use LEDs, or nic_type is 1,
872 * then we don't toggle a LINK led */
873 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
874 return;
876 spin_lock_irqsave(&priv->lock, flags);
878 if (!(priv->status & STATUS_RF_KILL_MASK) &&
879 !(priv->status & STATUS_LED_LINK_ON)) {
880 IPW_DEBUG_LED("Link LED On\n");
881 led = ipw_read_reg32(priv, IPW_EVENT_REG);
882 led |= priv->led_association_on;
884 led = ipw_register_toggle(led);
886 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
887 ipw_write_reg32(priv, IPW_EVENT_REG, led);
889 priv->status |= STATUS_LED_LINK_ON;
891 /* If we aren't associated, schedule turning the LED off */
892 if (!(priv->status & STATUS_ASSOCIATED))
893 schedule_delayed_work(&priv->led_link_off,
894 LD_TIME_LINK_ON);
897 spin_unlock_irqrestore(&priv->lock, flags);
900 static void ipw_bg_led_link_on(struct work_struct *work)
902 struct ipw_priv *priv =
903 container_of(work, struct ipw_priv, led_link_on.work);
904 mutex_lock(&priv->mutex);
905 ipw_led_link_on(priv);
906 mutex_unlock(&priv->mutex);
909 static void ipw_led_link_off(struct ipw_priv *priv)
911 unsigned long flags;
912 u32 led;
914 /* If configured not to use LEDs, or nic type is 1,
915 * then we don't goggle the LINK led. */
916 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
917 return;
919 spin_lock_irqsave(&priv->lock, flags);
921 if (priv->status & STATUS_LED_LINK_ON) {
922 led = ipw_read_reg32(priv, IPW_EVENT_REG);
923 led &= priv->led_association_off;
924 led = ipw_register_toggle(led);
926 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
927 ipw_write_reg32(priv, IPW_EVENT_REG, led);
929 IPW_DEBUG_LED("Link LED Off\n");
931 priv->status &= ~STATUS_LED_LINK_ON;
933 /* If we aren't associated and the radio is on, schedule
934 * turning the LED on (blink while unassociated) */
935 if (!(priv->status & STATUS_RF_KILL_MASK) &&
936 !(priv->status & STATUS_ASSOCIATED))
937 schedule_delayed_work(&priv->led_link_on,
938 LD_TIME_LINK_OFF);
942 spin_unlock_irqrestore(&priv->lock, flags);
945 static void ipw_bg_led_link_off(struct work_struct *work)
947 struct ipw_priv *priv =
948 container_of(work, struct ipw_priv, led_link_off.work);
949 mutex_lock(&priv->mutex);
950 ipw_led_link_off(priv);
951 mutex_unlock(&priv->mutex);
954 static void __ipw_led_activity_on(struct ipw_priv *priv)
956 u32 led;
958 if (priv->config & CFG_NO_LED)
959 return;
961 if (priv->status & STATUS_RF_KILL_MASK)
962 return;
964 if (!(priv->status & STATUS_LED_ACT_ON)) {
965 led = ipw_read_reg32(priv, IPW_EVENT_REG);
966 led |= priv->led_activity_on;
968 led = ipw_register_toggle(led);
970 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
971 ipw_write_reg32(priv, IPW_EVENT_REG, led);
973 IPW_DEBUG_LED("Activity LED On\n");
975 priv->status |= STATUS_LED_ACT_ON;
977 cancel_delayed_work(&priv->led_act_off);
978 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
979 } else {
980 /* Reschedule LED off for full time period */
981 cancel_delayed_work(&priv->led_act_off);
982 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
986 #if 0
987 void ipw_led_activity_on(struct ipw_priv *priv)
989 unsigned long flags;
990 spin_lock_irqsave(&priv->lock, flags);
991 __ipw_led_activity_on(priv);
992 spin_unlock_irqrestore(&priv->lock, flags);
994 #endif /* 0 */
996 static void ipw_led_activity_off(struct ipw_priv *priv)
998 unsigned long flags;
999 u32 led;
1001 if (priv->config & CFG_NO_LED)
1002 return;
1004 spin_lock_irqsave(&priv->lock, flags);
1006 if (priv->status & STATUS_LED_ACT_ON) {
1007 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1008 led &= priv->led_activity_off;
1010 led = ipw_register_toggle(led);
1012 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1013 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1015 IPW_DEBUG_LED("Activity LED Off\n");
1017 priv->status &= ~STATUS_LED_ACT_ON;
1020 spin_unlock_irqrestore(&priv->lock, flags);
1023 static void ipw_bg_led_activity_off(struct work_struct *work)
1025 struct ipw_priv *priv =
1026 container_of(work, struct ipw_priv, led_act_off.work);
1027 mutex_lock(&priv->mutex);
1028 ipw_led_activity_off(priv);
1029 mutex_unlock(&priv->mutex);
1032 static void ipw_led_band_on(struct ipw_priv *priv)
1034 unsigned long flags;
1035 u32 led;
1037 /* Only nic type 1 supports mode LEDs */
1038 if (priv->config & CFG_NO_LED ||
1039 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1040 return;
1042 spin_lock_irqsave(&priv->lock, flags);
1044 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1045 if (priv->assoc_network->mode == IEEE_A) {
1046 led |= priv->led_ofdm_on;
1047 led &= priv->led_association_off;
1048 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1049 } else if (priv->assoc_network->mode == IEEE_G) {
1050 led |= priv->led_ofdm_on;
1051 led |= priv->led_association_on;
1052 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1053 } else {
1054 led &= priv->led_ofdm_off;
1055 led |= priv->led_association_on;
1056 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1059 led = ipw_register_toggle(led);
1061 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1062 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1064 spin_unlock_irqrestore(&priv->lock, flags);
1067 static void ipw_led_band_off(struct ipw_priv *priv)
1069 unsigned long flags;
1070 u32 led;
1072 /* Only nic type 1 supports mode LEDs */
1073 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1074 return;
1076 spin_lock_irqsave(&priv->lock, flags);
1078 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1079 led &= priv->led_ofdm_off;
1080 led &= priv->led_association_off;
1082 led = ipw_register_toggle(led);
1084 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1085 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1087 spin_unlock_irqrestore(&priv->lock, flags);
1090 static void ipw_led_radio_on(struct ipw_priv *priv)
1092 ipw_led_link_on(priv);
1095 static void ipw_led_radio_off(struct ipw_priv *priv)
1097 ipw_led_activity_off(priv);
1098 ipw_led_link_off(priv);
1101 static void ipw_led_link_up(struct ipw_priv *priv)
1103 /* Set the Link Led on for all nic types */
1104 ipw_led_link_on(priv);
1107 static void ipw_led_link_down(struct ipw_priv *priv)
1109 ipw_led_activity_off(priv);
1110 ipw_led_link_off(priv);
1112 if (priv->status & STATUS_RF_KILL_MASK)
1113 ipw_led_radio_off(priv);
1116 static void ipw_led_init(struct ipw_priv *priv)
1118 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1120 /* Set the default PINs for the link and activity leds */
1121 priv->led_activity_on = IPW_ACTIVITY_LED;
1122 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1124 priv->led_association_on = IPW_ASSOCIATED_LED;
1125 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1127 /* Set the default PINs for the OFDM leds */
1128 priv->led_ofdm_on = IPW_OFDM_LED;
1129 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1131 switch (priv->nic_type) {
1132 case EEPROM_NIC_TYPE_1:
1133 /* In this NIC type, the LEDs are reversed.... */
1134 priv->led_activity_on = IPW_ASSOCIATED_LED;
1135 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1136 priv->led_association_on = IPW_ACTIVITY_LED;
1137 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1139 if (!(priv->config & CFG_NO_LED))
1140 ipw_led_band_on(priv);
1142 /* And we don't blink link LEDs for this nic, so
1143 * just return here */
1144 return;
1146 case EEPROM_NIC_TYPE_3:
1147 case EEPROM_NIC_TYPE_2:
1148 case EEPROM_NIC_TYPE_4:
1149 case EEPROM_NIC_TYPE_0:
1150 break;
1152 default:
1153 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1154 priv->nic_type);
1155 priv->nic_type = EEPROM_NIC_TYPE_0;
1156 break;
1159 if (!(priv->config & CFG_NO_LED)) {
1160 if (priv->status & STATUS_ASSOCIATED)
1161 ipw_led_link_on(priv);
1162 else
1163 ipw_led_link_off(priv);
1167 static void ipw_led_shutdown(struct ipw_priv *priv)
1169 ipw_led_activity_off(priv);
1170 ipw_led_link_off(priv);
1171 ipw_led_band_off(priv);
1172 cancel_delayed_work(&priv->led_link_on);
1173 cancel_delayed_work(&priv->led_link_off);
1174 cancel_delayed_work(&priv->led_act_off);
1178 * The following adds a new attribute to the sysfs representation
1179 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1180 * used for controlling the debug level.
1182 * See the level definitions in ipw for details.
1184 static ssize_t debug_level_show(struct device_driver *d, char *buf)
1186 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1189 static ssize_t debug_level_store(struct device_driver *d, const char *buf,
1190 size_t count)
1192 char *p = (char *)buf;
1193 u32 val;
1195 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1196 p++;
1197 if (p[0] == 'x' || p[0] == 'X')
1198 p++;
1199 val = simple_strtoul(p, &p, 16);
1200 } else
1201 val = simple_strtoul(p, &p, 10);
1202 if (p == buf)
1203 printk(KERN_INFO DRV_NAME
1204 ": %s is not in hex or decimal form.\n", buf);
1205 else
1206 ipw_debug_level = val;
1208 return strnlen(buf, count);
1210 static DRIVER_ATTR_RW(debug_level);
1212 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1214 /* length = 1st dword in log */
1215 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1218 static void ipw_capture_event_log(struct ipw_priv *priv,
1219 u32 log_len, struct ipw_event *log)
1221 u32 base;
1223 if (log_len) {
1224 base = ipw_read32(priv, IPW_EVENT_LOG);
1225 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1226 (u8 *) log, sizeof(*log) * log_len);
1230 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1232 struct ipw_fw_error *error;
1233 u32 log_len = ipw_get_event_log_len(priv);
1234 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1235 u32 elem_len = ipw_read_reg32(priv, base);
1237 error = kmalloc(sizeof(*error) +
1238 sizeof(*error->elem) * elem_len +
1239 sizeof(*error->log) * log_len, GFP_ATOMIC);
1240 if (!error) {
1241 IPW_ERROR("Memory allocation for firmware error log "
1242 "failed.\n");
1243 return NULL;
1245 error->jiffies = jiffies;
1246 error->status = priv->status;
1247 error->config = priv->config;
1248 error->elem_len = elem_len;
1249 error->log_len = log_len;
1250 error->elem = (struct ipw_error_elem *)error->payload;
1251 error->log = (struct ipw_event *)(error->elem + elem_len);
1253 ipw_capture_event_log(priv, log_len, error->log);
1255 if (elem_len)
1256 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1257 sizeof(*error->elem) * elem_len);
1259 return error;
1262 static ssize_t show_event_log(struct device *d,
1263 struct device_attribute *attr, char *buf)
1265 struct ipw_priv *priv = dev_get_drvdata(d);
1266 u32 log_len = ipw_get_event_log_len(priv);
1267 u32 log_size;
1268 struct ipw_event *log;
1269 u32 len = 0, i;
1271 /* not using min() because of its strict type checking */
1272 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1273 sizeof(*log) * log_len : PAGE_SIZE;
1274 log = kzalloc(log_size, GFP_KERNEL);
1275 if (!log) {
1276 IPW_ERROR("Unable to allocate memory for log\n");
1277 return 0;
1279 log_len = log_size / sizeof(*log);
1280 ipw_capture_event_log(priv, log_len, log);
1282 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1283 for (i = 0; i < log_len; i++)
1284 len += snprintf(buf + len, PAGE_SIZE - len,
1285 "\n%08X%08X%08X",
1286 log[i].time, log[i].event, log[i].data);
1287 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1288 kfree(log);
1289 return len;
1292 static DEVICE_ATTR(event_log, 0444, show_event_log, NULL);
1294 static ssize_t show_error(struct device *d,
1295 struct device_attribute *attr, char *buf)
1297 struct ipw_priv *priv = dev_get_drvdata(d);
1298 u32 len = 0, i;
1299 if (!priv->error)
1300 return 0;
1301 len += snprintf(buf + len, PAGE_SIZE - len,
1302 "%08lX%08X%08X%08X",
1303 priv->error->jiffies,
1304 priv->error->status,
1305 priv->error->config, priv->error->elem_len);
1306 for (i = 0; i < priv->error->elem_len; i++)
1307 len += snprintf(buf + len, PAGE_SIZE - len,
1308 "\n%08X%08X%08X%08X%08X%08X%08X",
1309 priv->error->elem[i].time,
1310 priv->error->elem[i].desc,
1311 priv->error->elem[i].blink1,
1312 priv->error->elem[i].blink2,
1313 priv->error->elem[i].link1,
1314 priv->error->elem[i].link2,
1315 priv->error->elem[i].data);
1317 len += snprintf(buf + len, PAGE_SIZE - len,
1318 "\n%08X", priv->error->log_len);
1319 for (i = 0; i < priv->error->log_len; i++)
1320 len += snprintf(buf + len, PAGE_SIZE - len,
1321 "\n%08X%08X%08X",
1322 priv->error->log[i].time,
1323 priv->error->log[i].event,
1324 priv->error->log[i].data);
1325 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1326 return len;
1329 static ssize_t clear_error(struct device *d,
1330 struct device_attribute *attr,
1331 const char *buf, size_t count)
1333 struct ipw_priv *priv = dev_get_drvdata(d);
1335 kfree(priv->error);
1336 priv->error = NULL;
1337 return count;
1340 static DEVICE_ATTR(error, 0644, show_error, clear_error);
1342 static ssize_t show_cmd_log(struct device *d,
1343 struct device_attribute *attr, char *buf)
1345 struct ipw_priv *priv = dev_get_drvdata(d);
1346 u32 len = 0, i;
1347 if (!priv->cmdlog)
1348 return 0;
1349 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1350 (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
1351 i = (i + 1) % priv->cmdlog_len) {
1352 len +=
1353 snprintf(buf + len, PAGE_SIZE - len,
1354 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1355 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1356 priv->cmdlog[i].cmd.len);
1357 len +=
1358 snprintk_buf(buf + len, PAGE_SIZE - len,
1359 (u8 *) priv->cmdlog[i].cmd.param,
1360 priv->cmdlog[i].cmd.len);
1361 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1363 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1364 return len;
1367 static DEVICE_ATTR(cmd_log, 0444, show_cmd_log, NULL);
1369 #ifdef CONFIG_IPW2200_PROMISCUOUS
1370 static void ipw_prom_free(struct ipw_priv *priv);
1371 static int ipw_prom_alloc(struct ipw_priv *priv);
1372 static ssize_t store_rtap_iface(struct device *d,
1373 struct device_attribute *attr,
1374 const char *buf, size_t count)
1376 struct ipw_priv *priv = dev_get_drvdata(d);
1377 int rc = 0;
1379 if (count < 1)
1380 return -EINVAL;
1382 switch (buf[0]) {
1383 case '0':
1384 if (!rtap_iface)
1385 return count;
1387 if (netif_running(priv->prom_net_dev)) {
1388 IPW_WARNING("Interface is up. Cannot unregister.\n");
1389 return count;
1392 ipw_prom_free(priv);
1393 rtap_iface = 0;
1394 break;
1396 case '1':
1397 if (rtap_iface)
1398 return count;
1400 rc = ipw_prom_alloc(priv);
1401 if (!rc)
1402 rtap_iface = 1;
1403 break;
1405 default:
1406 return -EINVAL;
1409 if (rc) {
1410 IPW_ERROR("Failed to register promiscuous network "
1411 "device (error %d).\n", rc);
1414 return count;
1417 static ssize_t show_rtap_iface(struct device *d,
1418 struct device_attribute *attr,
1419 char *buf)
1421 struct ipw_priv *priv = dev_get_drvdata(d);
1422 if (rtap_iface)
1423 return sprintf(buf, "%s", priv->prom_net_dev->name);
1424 else {
1425 buf[0] = '-';
1426 buf[1] = '1';
1427 buf[2] = '\0';
1428 return 3;
1432 static DEVICE_ATTR(rtap_iface, 0600, show_rtap_iface, store_rtap_iface);
1434 static ssize_t store_rtap_filter(struct device *d,
1435 struct device_attribute *attr,
1436 const char *buf, size_t count)
1438 struct ipw_priv *priv = dev_get_drvdata(d);
1440 if (!priv->prom_priv) {
1441 IPW_ERROR("Attempting to set filter without "
1442 "rtap_iface enabled.\n");
1443 return -EPERM;
1446 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1448 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1449 BIT_ARG16(priv->prom_priv->filter));
1451 return count;
1454 static ssize_t show_rtap_filter(struct device *d,
1455 struct device_attribute *attr,
1456 char *buf)
1458 struct ipw_priv *priv = dev_get_drvdata(d);
1459 return sprintf(buf, "0x%04X",
1460 priv->prom_priv ? priv->prom_priv->filter : 0);
1463 static DEVICE_ATTR(rtap_filter, 0600, show_rtap_filter, store_rtap_filter);
1464 #endif
1466 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1467 char *buf)
1469 struct ipw_priv *priv = dev_get_drvdata(d);
1470 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1473 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1474 const char *buf, size_t count)
1476 struct ipw_priv *priv = dev_get_drvdata(d);
1477 struct net_device *dev = priv->net_dev;
1478 char buffer[] = "00000000";
1479 unsigned long len =
1480 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1481 unsigned long val;
1482 char *p = buffer;
1484 IPW_DEBUG_INFO("enter\n");
1486 strncpy(buffer, buf, len);
1487 buffer[len] = 0;
1489 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1490 p++;
1491 if (p[0] == 'x' || p[0] == 'X')
1492 p++;
1493 val = simple_strtoul(p, &p, 16);
1494 } else
1495 val = simple_strtoul(p, &p, 10);
1496 if (p == buffer) {
1497 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1498 } else {
1499 priv->ieee->scan_age = val;
1500 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1503 IPW_DEBUG_INFO("exit\n");
1504 return len;
1507 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
1509 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1510 char *buf)
1512 struct ipw_priv *priv = dev_get_drvdata(d);
1513 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1516 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1517 const char *buf, size_t count)
1519 struct ipw_priv *priv = dev_get_drvdata(d);
1521 IPW_DEBUG_INFO("enter\n");
1523 if (count == 0)
1524 return 0;
1526 if (*buf == 0) {
1527 IPW_DEBUG_LED("Disabling LED control.\n");
1528 priv->config |= CFG_NO_LED;
1529 ipw_led_shutdown(priv);
1530 } else {
1531 IPW_DEBUG_LED("Enabling LED control.\n");
1532 priv->config &= ~CFG_NO_LED;
1533 ipw_led_init(priv);
1536 IPW_DEBUG_INFO("exit\n");
1537 return count;
1540 static DEVICE_ATTR(led, 0644, show_led, store_led);
1542 static ssize_t show_status(struct device *d,
1543 struct device_attribute *attr, char *buf)
1545 struct ipw_priv *p = dev_get_drvdata(d);
1546 return sprintf(buf, "0x%08x\n", (int)p->status);
1549 static DEVICE_ATTR(status, 0444, show_status, NULL);
1551 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1552 char *buf)
1554 struct ipw_priv *p = dev_get_drvdata(d);
1555 return sprintf(buf, "0x%08x\n", (int)p->config);
1558 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
1560 static ssize_t show_nic_type(struct device *d,
1561 struct device_attribute *attr, char *buf)
1563 struct ipw_priv *priv = dev_get_drvdata(d);
1564 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1567 static DEVICE_ATTR(nic_type, 0444, show_nic_type, NULL);
1569 static ssize_t show_ucode_version(struct device *d,
1570 struct device_attribute *attr, char *buf)
1572 u32 len = sizeof(u32), tmp = 0;
1573 struct ipw_priv *p = dev_get_drvdata(d);
1575 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1576 return 0;
1578 return sprintf(buf, "0x%08x\n", tmp);
1581 static DEVICE_ATTR(ucode_version, 0644, show_ucode_version, NULL);
1583 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1584 char *buf)
1586 u32 len = sizeof(u32), tmp = 0;
1587 struct ipw_priv *p = dev_get_drvdata(d);
1589 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1590 return 0;
1592 return sprintf(buf, "0x%08x\n", tmp);
1595 static DEVICE_ATTR(rtc, 0644, show_rtc, NULL);
1598 * Add a device attribute to view/control the delay between eeprom
1599 * operations.
1601 static ssize_t show_eeprom_delay(struct device *d,
1602 struct device_attribute *attr, char *buf)
1604 struct ipw_priv *p = dev_get_drvdata(d);
1605 int n = p->eeprom_delay;
1606 return sprintf(buf, "%i\n", n);
1608 static ssize_t store_eeprom_delay(struct device *d,
1609 struct device_attribute *attr,
1610 const char *buf, size_t count)
1612 struct ipw_priv *p = dev_get_drvdata(d);
1613 sscanf(buf, "%i", &p->eeprom_delay);
1614 return strnlen(buf, count);
1617 static DEVICE_ATTR(eeprom_delay, 0644, show_eeprom_delay, store_eeprom_delay);
1619 static ssize_t show_command_event_reg(struct device *d,
1620 struct device_attribute *attr, char *buf)
1622 u32 reg = 0;
1623 struct ipw_priv *p = dev_get_drvdata(d);
1625 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1626 return sprintf(buf, "0x%08x\n", reg);
1628 static ssize_t store_command_event_reg(struct device *d,
1629 struct device_attribute *attr,
1630 const char *buf, size_t count)
1632 u32 reg;
1633 struct ipw_priv *p = dev_get_drvdata(d);
1635 sscanf(buf, "%x", &reg);
1636 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1637 return strnlen(buf, count);
1640 static DEVICE_ATTR(command_event_reg, 0644,
1641 show_command_event_reg, store_command_event_reg);
1643 static ssize_t show_mem_gpio_reg(struct device *d,
1644 struct device_attribute *attr, char *buf)
1646 u32 reg = 0;
1647 struct ipw_priv *p = dev_get_drvdata(d);
1649 reg = ipw_read_reg32(p, 0x301100);
1650 return sprintf(buf, "0x%08x\n", reg);
1652 static ssize_t store_mem_gpio_reg(struct device *d,
1653 struct device_attribute *attr,
1654 const char *buf, size_t count)
1656 u32 reg;
1657 struct ipw_priv *p = dev_get_drvdata(d);
1659 sscanf(buf, "%x", &reg);
1660 ipw_write_reg32(p, 0x301100, reg);
1661 return strnlen(buf, count);
1664 static DEVICE_ATTR(mem_gpio_reg, 0644, show_mem_gpio_reg, store_mem_gpio_reg);
1666 static ssize_t show_indirect_dword(struct device *d,
1667 struct device_attribute *attr, char *buf)
1669 u32 reg = 0;
1670 struct ipw_priv *priv = dev_get_drvdata(d);
1672 if (priv->status & STATUS_INDIRECT_DWORD)
1673 reg = ipw_read_reg32(priv, priv->indirect_dword);
1674 else
1675 reg = 0;
1677 return sprintf(buf, "0x%08x\n", reg);
1679 static ssize_t store_indirect_dword(struct device *d,
1680 struct device_attribute *attr,
1681 const char *buf, size_t count)
1683 struct ipw_priv *priv = dev_get_drvdata(d);
1685 sscanf(buf, "%x", &priv->indirect_dword);
1686 priv->status |= STATUS_INDIRECT_DWORD;
1687 return strnlen(buf, count);
1690 static DEVICE_ATTR(indirect_dword, 0644,
1691 show_indirect_dword, store_indirect_dword);
1693 static ssize_t show_indirect_byte(struct device *d,
1694 struct device_attribute *attr, char *buf)
1696 u8 reg = 0;
1697 struct ipw_priv *priv = dev_get_drvdata(d);
1699 if (priv->status & STATUS_INDIRECT_BYTE)
1700 reg = ipw_read_reg8(priv, priv->indirect_byte);
1701 else
1702 reg = 0;
1704 return sprintf(buf, "0x%02x\n", reg);
1706 static ssize_t store_indirect_byte(struct device *d,
1707 struct device_attribute *attr,
1708 const char *buf, size_t count)
1710 struct ipw_priv *priv = dev_get_drvdata(d);
1712 sscanf(buf, "%x", &priv->indirect_byte);
1713 priv->status |= STATUS_INDIRECT_BYTE;
1714 return strnlen(buf, count);
1717 static DEVICE_ATTR(indirect_byte, 0644,
1718 show_indirect_byte, store_indirect_byte);
1720 static ssize_t show_direct_dword(struct device *d,
1721 struct device_attribute *attr, char *buf)
1723 u32 reg = 0;
1724 struct ipw_priv *priv = dev_get_drvdata(d);
1726 if (priv->status & STATUS_DIRECT_DWORD)
1727 reg = ipw_read32(priv, priv->direct_dword);
1728 else
1729 reg = 0;
1731 return sprintf(buf, "0x%08x\n", reg);
1733 static ssize_t store_direct_dword(struct device *d,
1734 struct device_attribute *attr,
1735 const char *buf, size_t count)
1737 struct ipw_priv *priv = dev_get_drvdata(d);
1739 sscanf(buf, "%x", &priv->direct_dword);
1740 priv->status |= STATUS_DIRECT_DWORD;
1741 return strnlen(buf, count);
1744 static DEVICE_ATTR(direct_dword, 0644, show_direct_dword, store_direct_dword);
1746 static int rf_kill_active(struct ipw_priv *priv)
1748 if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1749 priv->status |= STATUS_RF_KILL_HW;
1750 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1751 } else {
1752 priv->status &= ~STATUS_RF_KILL_HW;
1753 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1756 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1759 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1760 char *buf)
1762 /* 0 - RF kill not enabled
1763 1 - SW based RF kill active (sysfs)
1764 2 - HW based RF kill active
1765 3 - Both HW and SW baed RF kill active */
1766 struct ipw_priv *priv = dev_get_drvdata(d);
1767 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1768 (rf_kill_active(priv) ? 0x2 : 0x0);
1769 return sprintf(buf, "%i\n", val);
1772 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1774 if ((disable_radio ? 1 : 0) ==
1775 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1776 return 0;
1778 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1779 disable_radio ? "OFF" : "ON");
1781 if (disable_radio) {
1782 priv->status |= STATUS_RF_KILL_SW;
1784 cancel_delayed_work(&priv->request_scan);
1785 cancel_delayed_work(&priv->request_direct_scan);
1786 cancel_delayed_work(&priv->request_passive_scan);
1787 cancel_delayed_work(&priv->scan_event);
1788 schedule_work(&priv->down);
1789 } else {
1790 priv->status &= ~STATUS_RF_KILL_SW;
1791 if (rf_kill_active(priv)) {
1792 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1793 "disabled by HW switch\n");
1794 /* Make sure the RF_KILL check timer is running */
1795 cancel_delayed_work(&priv->rf_kill);
1796 schedule_delayed_work(&priv->rf_kill,
1797 round_jiffies_relative(2 * HZ));
1798 } else
1799 schedule_work(&priv->up);
1802 return 1;
1805 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1806 const char *buf, size_t count)
1808 struct ipw_priv *priv = dev_get_drvdata(d);
1810 ipw_radio_kill_sw(priv, buf[0] == '1');
1812 return count;
1815 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
1817 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1818 char *buf)
1820 struct ipw_priv *priv = dev_get_drvdata(d);
1821 int pos = 0, len = 0;
1822 if (priv->config & CFG_SPEED_SCAN) {
1823 while (priv->speed_scan[pos] != 0)
1824 len += sprintf(&buf[len], "%d ",
1825 priv->speed_scan[pos++]);
1826 return len + sprintf(&buf[len], "\n");
1829 return sprintf(buf, "0\n");
1832 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1833 const char *buf, size_t count)
1835 struct ipw_priv *priv = dev_get_drvdata(d);
1836 int channel, pos = 0;
1837 const char *p = buf;
1839 /* list of space separated channels to scan, optionally ending with 0 */
1840 while ((channel = simple_strtol(p, NULL, 0))) {
1841 if (pos == MAX_SPEED_SCAN - 1) {
1842 priv->speed_scan[pos] = 0;
1843 break;
1846 if (libipw_is_valid_channel(priv->ieee, channel))
1847 priv->speed_scan[pos++] = channel;
1848 else
1849 IPW_WARNING("Skipping invalid channel request: %d\n",
1850 channel);
1851 p = strchr(p, ' ');
1852 if (!p)
1853 break;
1854 while (*p == ' ' || *p == '\t')
1855 p++;
1858 if (pos == 0)
1859 priv->config &= ~CFG_SPEED_SCAN;
1860 else {
1861 priv->speed_scan_pos = 0;
1862 priv->config |= CFG_SPEED_SCAN;
1865 return count;
1868 static DEVICE_ATTR(speed_scan, 0644, show_speed_scan, store_speed_scan);
1870 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1871 char *buf)
1873 struct ipw_priv *priv = dev_get_drvdata(d);
1874 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1877 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1878 const char *buf, size_t count)
1880 struct ipw_priv *priv = dev_get_drvdata(d);
1881 if (buf[0] == '1')
1882 priv->config |= CFG_NET_STATS;
1883 else
1884 priv->config &= ~CFG_NET_STATS;
1886 return count;
1889 static DEVICE_ATTR(net_stats, 0644, show_net_stats, store_net_stats);
1891 static ssize_t show_channels(struct device *d,
1892 struct device_attribute *attr,
1893 char *buf)
1895 struct ipw_priv *priv = dev_get_drvdata(d);
1896 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1897 int len = 0, i;
1899 len = sprintf(&buf[len],
1900 "Displaying %d channels in 2.4Ghz band "
1901 "(802.11bg):\n", geo->bg_channels);
1903 for (i = 0; i < geo->bg_channels; i++) {
1904 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1905 geo->bg[i].channel,
1906 geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1907 " (radar spectrum)" : "",
1908 ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1909 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1910 ? "" : ", IBSS",
1911 geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1912 "passive only" : "active/passive",
1913 geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1914 "B" : "B/G");
1917 len += sprintf(&buf[len],
1918 "Displaying %d channels in 5.2Ghz band "
1919 "(802.11a):\n", geo->a_channels);
1920 for (i = 0; i < geo->a_channels; i++) {
1921 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1922 geo->a[i].channel,
1923 geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1924 " (radar spectrum)" : "",
1925 ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1926 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1927 ? "" : ", IBSS",
1928 geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1929 "passive only" : "active/passive");
1932 return len;
1935 static DEVICE_ATTR(channels, 0400, show_channels, NULL);
1937 static void notify_wx_assoc_event(struct ipw_priv *priv)
1939 union iwreq_data wrqu;
1940 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1941 if (priv->status & STATUS_ASSOCIATED)
1942 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1943 else
1944 eth_zero_addr(wrqu.ap_addr.sa_data);
1945 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1948 static void ipw_irq_tasklet(unsigned long data)
1950 struct ipw_priv *priv = (struct ipw_priv *)data;
1951 u32 inta, inta_mask, handled = 0;
1952 unsigned long flags;
1953 int rc = 0;
1955 spin_lock_irqsave(&priv->irq_lock, flags);
1957 inta = ipw_read32(priv, IPW_INTA_RW);
1958 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1960 if (inta == 0xFFFFFFFF) {
1961 /* Hardware disappeared */
1962 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1963 /* Only handle the cached INTA values */
1964 inta = 0;
1966 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1968 /* Add any cached INTA values that need to be handled */
1969 inta |= priv->isr_inta;
1971 spin_unlock_irqrestore(&priv->irq_lock, flags);
1973 spin_lock_irqsave(&priv->lock, flags);
1975 /* handle all the justifications for the interrupt */
1976 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1977 ipw_rx(priv);
1978 handled |= IPW_INTA_BIT_RX_TRANSFER;
1981 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1982 IPW_DEBUG_HC("Command completed.\n");
1983 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1984 priv->status &= ~STATUS_HCMD_ACTIVE;
1985 wake_up_interruptible(&priv->wait_command_queue);
1986 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1989 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1990 IPW_DEBUG_TX("TX_QUEUE_1\n");
1991 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1992 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1995 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1996 IPW_DEBUG_TX("TX_QUEUE_2\n");
1997 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1998 handled |= IPW_INTA_BIT_TX_QUEUE_2;
2001 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2002 IPW_DEBUG_TX("TX_QUEUE_3\n");
2003 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2004 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2007 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2008 IPW_DEBUG_TX("TX_QUEUE_4\n");
2009 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2010 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2013 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2014 IPW_WARNING("STATUS_CHANGE\n");
2015 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2018 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2019 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2020 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2023 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2024 IPW_WARNING("HOST_CMD_DONE\n");
2025 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2028 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2029 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2030 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2033 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2034 IPW_WARNING("PHY_OFF_DONE\n");
2035 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2038 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2039 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2040 priv->status |= STATUS_RF_KILL_HW;
2041 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2042 wake_up_interruptible(&priv->wait_command_queue);
2043 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2044 cancel_delayed_work(&priv->request_scan);
2045 cancel_delayed_work(&priv->request_direct_scan);
2046 cancel_delayed_work(&priv->request_passive_scan);
2047 cancel_delayed_work(&priv->scan_event);
2048 schedule_work(&priv->link_down);
2049 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2050 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2053 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2054 IPW_WARNING("Firmware error detected. Restarting.\n");
2055 if (priv->error) {
2056 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2057 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2058 struct ipw_fw_error *error =
2059 ipw_alloc_error_log(priv);
2060 ipw_dump_error_log(priv, error);
2061 kfree(error);
2063 } else {
2064 priv->error = ipw_alloc_error_log(priv);
2065 if (priv->error)
2066 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2067 else
2068 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2069 "log.\n");
2070 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2071 ipw_dump_error_log(priv, priv->error);
2074 /* XXX: If hardware encryption is for WPA/WPA2,
2075 * we have to notify the supplicant. */
2076 if (priv->ieee->sec.encrypt) {
2077 priv->status &= ~STATUS_ASSOCIATED;
2078 notify_wx_assoc_event(priv);
2081 /* Keep the restart process from trying to send host
2082 * commands by clearing the INIT status bit */
2083 priv->status &= ~STATUS_INIT;
2085 /* Cancel currently queued command. */
2086 priv->status &= ~STATUS_HCMD_ACTIVE;
2087 wake_up_interruptible(&priv->wait_command_queue);
2089 schedule_work(&priv->adapter_restart);
2090 handled |= IPW_INTA_BIT_FATAL_ERROR;
2093 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2094 IPW_ERROR("Parity error\n");
2095 handled |= IPW_INTA_BIT_PARITY_ERROR;
2098 if (handled != inta) {
2099 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2102 spin_unlock_irqrestore(&priv->lock, flags);
2104 /* enable all interrupts */
2105 ipw_enable_interrupts(priv);
2108 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2109 static char *get_cmd_string(u8 cmd)
2111 switch (cmd) {
2112 IPW_CMD(HOST_COMPLETE);
2113 IPW_CMD(POWER_DOWN);
2114 IPW_CMD(SYSTEM_CONFIG);
2115 IPW_CMD(MULTICAST_ADDRESS);
2116 IPW_CMD(SSID);
2117 IPW_CMD(ADAPTER_ADDRESS);
2118 IPW_CMD(PORT_TYPE);
2119 IPW_CMD(RTS_THRESHOLD);
2120 IPW_CMD(FRAG_THRESHOLD);
2121 IPW_CMD(POWER_MODE);
2122 IPW_CMD(WEP_KEY);
2123 IPW_CMD(TGI_TX_KEY);
2124 IPW_CMD(SCAN_REQUEST);
2125 IPW_CMD(SCAN_REQUEST_EXT);
2126 IPW_CMD(ASSOCIATE);
2127 IPW_CMD(SUPPORTED_RATES);
2128 IPW_CMD(SCAN_ABORT);
2129 IPW_CMD(TX_FLUSH);
2130 IPW_CMD(QOS_PARAMETERS);
2131 IPW_CMD(DINO_CONFIG);
2132 IPW_CMD(RSN_CAPABILITIES);
2133 IPW_CMD(RX_KEY);
2134 IPW_CMD(CARD_DISABLE);
2135 IPW_CMD(SEED_NUMBER);
2136 IPW_CMD(TX_POWER);
2137 IPW_CMD(COUNTRY_INFO);
2138 IPW_CMD(AIRONET_INFO);
2139 IPW_CMD(AP_TX_POWER);
2140 IPW_CMD(CCKM_INFO);
2141 IPW_CMD(CCX_VER_INFO);
2142 IPW_CMD(SET_CALIBRATION);
2143 IPW_CMD(SENSITIVITY_CALIB);
2144 IPW_CMD(RETRY_LIMIT);
2145 IPW_CMD(IPW_PRE_POWER_DOWN);
2146 IPW_CMD(VAP_BEACON_TEMPLATE);
2147 IPW_CMD(VAP_DTIM_PERIOD);
2148 IPW_CMD(EXT_SUPPORTED_RATES);
2149 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2150 IPW_CMD(VAP_QUIET_INTERVALS);
2151 IPW_CMD(VAP_CHANNEL_SWITCH);
2152 IPW_CMD(VAP_MANDATORY_CHANNELS);
2153 IPW_CMD(VAP_CELL_PWR_LIMIT);
2154 IPW_CMD(VAP_CF_PARAM_SET);
2155 IPW_CMD(VAP_SET_BEACONING_STATE);
2156 IPW_CMD(MEASUREMENT);
2157 IPW_CMD(POWER_CAPABILITY);
2158 IPW_CMD(SUPPORTED_CHANNELS);
2159 IPW_CMD(TPC_REPORT);
2160 IPW_CMD(WME_INFO);
2161 IPW_CMD(PRODUCTION_COMMAND);
2162 default:
2163 return "UNKNOWN";
2167 #define HOST_COMPLETE_TIMEOUT HZ
2169 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2171 int rc = 0;
2172 unsigned long flags;
2173 unsigned long now, end;
2175 spin_lock_irqsave(&priv->lock, flags);
2176 if (priv->status & STATUS_HCMD_ACTIVE) {
2177 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2178 get_cmd_string(cmd->cmd));
2179 spin_unlock_irqrestore(&priv->lock, flags);
2180 return -EAGAIN;
2183 priv->status |= STATUS_HCMD_ACTIVE;
2185 if (priv->cmdlog) {
2186 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2187 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2188 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2189 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2190 cmd->len);
2191 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2194 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2195 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2196 priv->status);
2198 #ifndef DEBUG_CMD_WEP_KEY
2199 if (cmd->cmd == IPW_CMD_WEP_KEY)
2200 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2201 else
2202 #endif
2203 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2205 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2206 if (rc) {
2207 priv->status &= ~STATUS_HCMD_ACTIVE;
2208 IPW_ERROR("Failed to send %s: Reason %d\n",
2209 get_cmd_string(cmd->cmd), rc);
2210 spin_unlock_irqrestore(&priv->lock, flags);
2211 goto exit;
2213 spin_unlock_irqrestore(&priv->lock, flags);
2215 now = jiffies;
2216 end = now + HOST_COMPLETE_TIMEOUT;
2217 again:
2218 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2219 !(priv->
2220 status & STATUS_HCMD_ACTIVE),
2221 end - now);
2222 if (rc < 0) {
2223 now = jiffies;
2224 if (time_before(now, end))
2225 goto again;
2226 rc = 0;
2229 if (rc == 0) {
2230 spin_lock_irqsave(&priv->lock, flags);
2231 if (priv->status & STATUS_HCMD_ACTIVE) {
2232 IPW_ERROR("Failed to send %s: Command timed out.\n",
2233 get_cmd_string(cmd->cmd));
2234 priv->status &= ~STATUS_HCMD_ACTIVE;
2235 spin_unlock_irqrestore(&priv->lock, flags);
2236 rc = -EIO;
2237 goto exit;
2239 spin_unlock_irqrestore(&priv->lock, flags);
2240 } else
2241 rc = 0;
2243 if (priv->status & STATUS_RF_KILL_HW) {
2244 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2245 get_cmd_string(cmd->cmd));
2246 rc = -EIO;
2247 goto exit;
2250 exit:
2251 if (priv->cmdlog) {
2252 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2253 priv->cmdlog_pos %= priv->cmdlog_len;
2255 return rc;
2258 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2260 struct host_cmd cmd = {
2261 .cmd = command,
2264 return __ipw_send_cmd(priv, &cmd);
2267 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2268 void *data)
2270 struct host_cmd cmd = {
2271 .cmd = command,
2272 .len = len,
2273 .param = data,
2276 return __ipw_send_cmd(priv, &cmd);
2279 static int ipw_send_host_complete(struct ipw_priv *priv)
2281 if (!priv) {
2282 IPW_ERROR("Invalid args\n");
2283 return -1;
2286 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2289 static int ipw_send_system_config(struct ipw_priv *priv)
2291 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2292 sizeof(priv->sys_config),
2293 &priv->sys_config);
2296 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2298 if (!priv || !ssid) {
2299 IPW_ERROR("Invalid args\n");
2300 return -1;
2303 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2304 ssid);
2307 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2309 if (!priv || !mac) {
2310 IPW_ERROR("Invalid args\n");
2311 return -1;
2314 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2315 priv->net_dev->name, mac);
2317 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2320 static void ipw_adapter_restart(void *adapter)
2322 struct ipw_priv *priv = adapter;
2324 if (priv->status & STATUS_RF_KILL_MASK)
2325 return;
2327 ipw_down(priv);
2329 if (priv->assoc_network &&
2330 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2331 ipw_remove_current_network(priv);
2333 if (ipw_up(priv)) {
2334 IPW_ERROR("Failed to up device\n");
2335 return;
2339 static void ipw_bg_adapter_restart(struct work_struct *work)
2341 struct ipw_priv *priv =
2342 container_of(work, struct ipw_priv, adapter_restart);
2343 mutex_lock(&priv->mutex);
2344 ipw_adapter_restart(priv);
2345 mutex_unlock(&priv->mutex);
2348 static void ipw_abort_scan(struct ipw_priv *priv);
2350 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2352 static void ipw_scan_check(void *data)
2354 struct ipw_priv *priv = data;
2356 if (priv->status & STATUS_SCAN_ABORTING) {
2357 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2358 "adapter after (%dms).\n",
2359 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2360 schedule_work(&priv->adapter_restart);
2361 } else if (priv->status & STATUS_SCANNING) {
2362 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2363 "after (%dms).\n",
2364 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2365 ipw_abort_scan(priv);
2366 schedule_delayed_work(&priv->scan_check, HZ);
2370 static void ipw_bg_scan_check(struct work_struct *work)
2372 struct ipw_priv *priv =
2373 container_of(work, struct ipw_priv, scan_check.work);
2374 mutex_lock(&priv->mutex);
2375 ipw_scan_check(priv);
2376 mutex_unlock(&priv->mutex);
2379 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2380 struct ipw_scan_request_ext *request)
2382 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2383 sizeof(*request), request);
2386 static int ipw_send_scan_abort(struct ipw_priv *priv)
2388 if (!priv) {
2389 IPW_ERROR("Invalid args\n");
2390 return -1;
2393 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2396 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2398 struct ipw_sensitivity_calib calib = {
2399 .beacon_rssi_raw = cpu_to_le16(sens),
2402 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2403 &calib);
2406 static int ipw_send_associate(struct ipw_priv *priv,
2407 struct ipw_associate *associate)
2409 if (!priv || !associate) {
2410 IPW_ERROR("Invalid args\n");
2411 return -1;
2414 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2415 associate);
2418 static int ipw_send_supported_rates(struct ipw_priv *priv,
2419 struct ipw_supported_rates *rates)
2421 if (!priv || !rates) {
2422 IPW_ERROR("Invalid args\n");
2423 return -1;
2426 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2427 rates);
2430 static int ipw_set_random_seed(struct ipw_priv *priv)
2432 u32 val;
2434 if (!priv) {
2435 IPW_ERROR("Invalid args\n");
2436 return -1;
2439 get_random_bytes(&val, sizeof(val));
2441 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2444 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2446 __le32 v = cpu_to_le32(phy_off);
2447 if (!priv) {
2448 IPW_ERROR("Invalid args\n");
2449 return -1;
2452 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2455 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2457 if (!priv || !power) {
2458 IPW_ERROR("Invalid args\n");
2459 return -1;
2462 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2465 static int ipw_set_tx_power(struct ipw_priv *priv)
2467 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2468 struct ipw_tx_power tx_power;
2469 s8 max_power;
2470 int i;
2472 memset(&tx_power, 0, sizeof(tx_power));
2474 /* configure device for 'G' band */
2475 tx_power.ieee_mode = IPW_G_MODE;
2476 tx_power.num_channels = geo->bg_channels;
2477 for (i = 0; i < geo->bg_channels; i++) {
2478 max_power = geo->bg[i].max_power;
2479 tx_power.channels_tx_power[i].channel_number =
2480 geo->bg[i].channel;
2481 tx_power.channels_tx_power[i].tx_power = max_power ?
2482 min(max_power, priv->tx_power) : priv->tx_power;
2484 if (ipw_send_tx_power(priv, &tx_power))
2485 return -EIO;
2487 /* configure device to also handle 'B' band */
2488 tx_power.ieee_mode = IPW_B_MODE;
2489 if (ipw_send_tx_power(priv, &tx_power))
2490 return -EIO;
2492 /* configure device to also handle 'A' band */
2493 if (priv->ieee->abg_true) {
2494 tx_power.ieee_mode = IPW_A_MODE;
2495 tx_power.num_channels = geo->a_channels;
2496 for (i = 0; i < tx_power.num_channels; i++) {
2497 max_power = geo->a[i].max_power;
2498 tx_power.channels_tx_power[i].channel_number =
2499 geo->a[i].channel;
2500 tx_power.channels_tx_power[i].tx_power = max_power ?
2501 min(max_power, priv->tx_power) : priv->tx_power;
2503 if (ipw_send_tx_power(priv, &tx_power))
2504 return -EIO;
2506 return 0;
2509 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2511 struct ipw_rts_threshold rts_threshold = {
2512 .rts_threshold = cpu_to_le16(rts),
2515 if (!priv) {
2516 IPW_ERROR("Invalid args\n");
2517 return -1;
2520 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2521 sizeof(rts_threshold), &rts_threshold);
2524 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2526 struct ipw_frag_threshold frag_threshold = {
2527 .frag_threshold = cpu_to_le16(frag),
2530 if (!priv) {
2531 IPW_ERROR("Invalid args\n");
2532 return -1;
2535 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2536 sizeof(frag_threshold), &frag_threshold);
2539 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2541 __le32 param;
2543 if (!priv) {
2544 IPW_ERROR("Invalid args\n");
2545 return -1;
2548 /* If on battery, set to 3, if AC set to CAM, else user
2549 * level */
2550 switch (mode) {
2551 case IPW_POWER_BATTERY:
2552 param = cpu_to_le32(IPW_POWER_INDEX_3);
2553 break;
2554 case IPW_POWER_AC:
2555 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2556 break;
2557 default:
2558 param = cpu_to_le32(mode);
2559 break;
2562 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2563 &param);
2566 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2568 struct ipw_retry_limit retry_limit = {
2569 .short_retry_limit = slimit,
2570 .long_retry_limit = llimit
2573 if (!priv) {
2574 IPW_ERROR("Invalid args\n");
2575 return -1;
2578 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2579 &retry_limit);
2583 * The IPW device contains a Microwire compatible EEPROM that stores
2584 * various data like the MAC address. Usually the firmware has exclusive
2585 * access to the eeprom, but during device initialization (before the
2586 * device driver has sent the HostComplete command to the firmware) the
2587 * device driver has read access to the EEPROM by way of indirect addressing
2588 * through a couple of memory mapped registers.
2590 * The following is a simplified implementation for pulling data out of the
2591 * the eeprom, along with some helper functions to find information in
2592 * the per device private data's copy of the eeprom.
2594 * NOTE: To better understand how these functions work (i.e what is a chip
2595 * select and why do have to keep driving the eeprom clock?), read
2596 * just about any data sheet for a Microwire compatible EEPROM.
2599 /* write a 32 bit value into the indirect accessor register */
2600 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2602 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2604 /* the eeprom requires some time to complete the operation */
2605 udelay(p->eeprom_delay);
2608 /* perform a chip select operation */
2609 static void eeprom_cs(struct ipw_priv *priv)
2611 eeprom_write_reg(priv, 0);
2612 eeprom_write_reg(priv, EEPROM_BIT_CS);
2613 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2614 eeprom_write_reg(priv, EEPROM_BIT_CS);
2617 /* perform a chip select operation */
2618 static void eeprom_disable_cs(struct ipw_priv *priv)
2620 eeprom_write_reg(priv, EEPROM_BIT_CS);
2621 eeprom_write_reg(priv, 0);
2622 eeprom_write_reg(priv, EEPROM_BIT_SK);
2625 /* push a single bit down to the eeprom */
2626 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2628 int d = (bit ? EEPROM_BIT_DI : 0);
2629 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2630 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2633 /* push an opcode followed by an address down to the eeprom */
2634 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2636 int i;
2638 eeprom_cs(priv);
2639 eeprom_write_bit(priv, 1);
2640 eeprom_write_bit(priv, op & 2);
2641 eeprom_write_bit(priv, op & 1);
2642 for (i = 7; i >= 0; i--) {
2643 eeprom_write_bit(priv, addr & (1 << i));
2647 /* pull 16 bits off the eeprom, one bit at a time */
2648 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2650 int i;
2651 u16 r = 0;
2653 /* Send READ Opcode */
2654 eeprom_op(priv, EEPROM_CMD_READ, addr);
2656 /* Send dummy bit */
2657 eeprom_write_reg(priv, EEPROM_BIT_CS);
2659 /* Read the byte off the eeprom one bit at a time */
2660 for (i = 0; i < 16; i++) {
2661 u32 data = 0;
2662 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2663 eeprom_write_reg(priv, EEPROM_BIT_CS);
2664 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2665 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2668 /* Send another dummy bit */
2669 eeprom_write_reg(priv, 0);
2670 eeprom_disable_cs(priv);
2672 return r;
2675 /* helper function for pulling the mac address out of the private */
2676 /* data's copy of the eeprom data */
2677 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2679 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2682 static void ipw_read_eeprom(struct ipw_priv *priv)
2684 int i;
2685 __le16 *eeprom = (__le16 *) priv->eeprom;
2687 IPW_DEBUG_TRACE(">>\n");
2689 /* read entire contents of eeprom into private buffer */
2690 for (i = 0; i < 128; i++)
2691 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2693 IPW_DEBUG_TRACE("<<\n");
2697 * Either the device driver (i.e. the host) or the firmware can
2698 * load eeprom data into the designated region in SRAM. If neither
2699 * happens then the FW will shutdown with a fatal error.
2701 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2702 * bit needs region of shared SRAM needs to be non-zero.
2704 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2706 int i;
2708 IPW_DEBUG_TRACE(">>\n");
2711 If the data looks correct, then copy it to our private
2712 copy. Otherwise let the firmware know to perform the operation
2713 on its own.
2715 if (priv->eeprom[EEPROM_VERSION] != 0) {
2716 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2718 /* write the eeprom data to sram */
2719 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2720 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2722 /* Do not load eeprom data on fatal error or suspend */
2723 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2724 } else {
2725 IPW_DEBUG_INFO("Enabling FW initialization of SRAM\n");
2727 /* Load eeprom data on fatal error or suspend */
2728 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2731 IPW_DEBUG_TRACE("<<\n");
2734 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2736 count >>= 2;
2737 if (!count)
2738 return;
2739 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2740 while (count--)
2741 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2744 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2746 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2747 CB_NUMBER_OF_ELEMENTS_SMALL *
2748 sizeof(struct command_block));
2751 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2752 { /* start dma engine but no transfers yet */
2754 IPW_DEBUG_FW(">> :\n");
2756 /* Start the dma */
2757 ipw_fw_dma_reset_command_blocks(priv);
2759 /* Write CB base address */
2760 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2762 IPW_DEBUG_FW("<< :\n");
2763 return 0;
2766 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2768 u32 control = 0;
2770 IPW_DEBUG_FW(">> :\n");
2772 /* set the Stop and Abort bit */
2773 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2774 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2775 priv->sram_desc.last_cb_index = 0;
2777 IPW_DEBUG_FW("<<\n");
2780 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2781 struct command_block *cb)
2783 u32 address =
2784 IPW_SHARED_SRAM_DMA_CONTROL +
2785 (sizeof(struct command_block) * index);
2786 IPW_DEBUG_FW(">> :\n");
2788 ipw_write_indirect(priv, address, (u8 *) cb,
2789 (int)sizeof(struct command_block));
2791 IPW_DEBUG_FW("<< :\n");
2792 return 0;
2796 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2798 u32 control = 0;
2799 u32 index = 0;
2801 IPW_DEBUG_FW(">> :\n");
2803 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2804 ipw_fw_dma_write_command_block(priv, index,
2805 &priv->sram_desc.cb_list[index]);
2807 /* Enable the DMA in the CSR register */
2808 ipw_clear_bit(priv, IPW_RESET_REG,
2809 IPW_RESET_REG_MASTER_DISABLED |
2810 IPW_RESET_REG_STOP_MASTER);
2812 /* Set the Start bit. */
2813 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2814 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2816 IPW_DEBUG_FW("<< :\n");
2817 return 0;
2820 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2822 u32 address;
2823 u32 register_value = 0;
2824 u32 cb_fields_address = 0;
2826 IPW_DEBUG_FW(">> :\n");
2827 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2828 IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2830 /* Read the DMA Controlor register */
2831 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2832 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2834 /* Print the CB values */
2835 cb_fields_address = address;
2836 register_value = ipw_read_reg32(priv, cb_fields_address);
2837 IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2839 cb_fields_address += sizeof(u32);
2840 register_value = ipw_read_reg32(priv, cb_fields_address);
2841 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2843 cb_fields_address += sizeof(u32);
2844 register_value = ipw_read_reg32(priv, cb_fields_address);
2845 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2846 register_value);
2848 cb_fields_address += sizeof(u32);
2849 register_value = ipw_read_reg32(priv, cb_fields_address);
2850 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2852 IPW_DEBUG_FW(">> :\n");
2855 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2857 u32 current_cb_address = 0;
2858 u32 current_cb_index = 0;
2860 IPW_DEBUG_FW("<< :\n");
2861 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2863 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2864 sizeof(struct command_block);
2866 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2867 current_cb_index, current_cb_address);
2869 IPW_DEBUG_FW(">> :\n");
2870 return current_cb_index;
2874 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2875 u32 src_address,
2876 u32 dest_address,
2877 u32 length,
2878 int interrupt_enabled, int is_last)
2881 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2882 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2883 CB_DEST_SIZE_LONG;
2884 struct command_block *cb;
2885 u32 last_cb_element = 0;
2887 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2888 src_address, dest_address, length);
2890 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2891 return -1;
2893 last_cb_element = priv->sram_desc.last_cb_index;
2894 cb = &priv->sram_desc.cb_list[last_cb_element];
2895 priv->sram_desc.last_cb_index++;
2897 /* Calculate the new CB control word */
2898 if (interrupt_enabled)
2899 control |= CB_INT_ENABLED;
2901 if (is_last)
2902 control |= CB_LAST_VALID;
2904 control |= length;
2906 /* Calculate the CB Element's checksum value */
2907 cb->status = control ^ src_address ^ dest_address;
2909 /* Copy the Source and Destination addresses */
2910 cb->dest_addr = dest_address;
2911 cb->source_addr = src_address;
2913 /* Copy the Control Word last */
2914 cb->control = control;
2916 return 0;
2919 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2920 int nr, u32 dest_address, u32 len)
2922 int ret, i;
2923 u32 size;
2925 IPW_DEBUG_FW(">>\n");
2926 IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2927 nr, dest_address, len);
2929 for (i = 0; i < nr; i++) {
2930 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2931 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2932 dest_address +
2933 i * CB_MAX_LENGTH, size,
2934 0, 0);
2935 if (ret) {
2936 IPW_DEBUG_FW_INFO(": Failed\n");
2937 return -1;
2938 } else
2939 IPW_DEBUG_FW_INFO(": Added new cb\n");
2942 IPW_DEBUG_FW("<<\n");
2943 return 0;
2946 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2948 u32 current_index = 0, previous_index;
2949 u32 watchdog = 0;
2951 IPW_DEBUG_FW(">> :\n");
2953 current_index = ipw_fw_dma_command_block_index(priv);
2954 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2955 (int)priv->sram_desc.last_cb_index);
2957 while (current_index < priv->sram_desc.last_cb_index) {
2958 udelay(50);
2959 previous_index = current_index;
2960 current_index = ipw_fw_dma_command_block_index(priv);
2962 if (previous_index < current_index) {
2963 watchdog = 0;
2964 continue;
2966 if (++watchdog > 400) {
2967 IPW_DEBUG_FW_INFO("Timeout\n");
2968 ipw_fw_dma_dump_command_block(priv);
2969 ipw_fw_dma_abort(priv);
2970 return -1;
2974 ipw_fw_dma_abort(priv);
2976 /*Disable the DMA in the CSR register */
2977 ipw_set_bit(priv, IPW_RESET_REG,
2978 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2980 IPW_DEBUG_FW("<< dmaWaitSync\n");
2981 return 0;
2984 static void ipw_remove_current_network(struct ipw_priv *priv)
2986 struct list_head *element, *safe;
2987 struct libipw_network *network = NULL;
2988 unsigned long flags;
2990 spin_lock_irqsave(&priv->ieee->lock, flags);
2991 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2992 network = list_entry(element, struct libipw_network, list);
2993 if (ether_addr_equal(network->bssid, priv->bssid)) {
2994 list_del(element);
2995 list_add_tail(&network->list,
2996 &priv->ieee->network_free_list);
2999 spin_unlock_irqrestore(&priv->ieee->lock, flags);
3003 * Check that card is still alive.
3004 * Reads debug register from domain0.
3005 * If card is present, pre-defined value should
3006 * be found there.
3008 * @param priv
3009 * @return 1 if card is present, 0 otherwise
3011 static inline int ipw_alive(struct ipw_priv *priv)
3013 return ipw_read32(priv, 0x90) == 0xd55555d5;
3016 /* timeout in msec, attempted in 10-msec quanta */
3017 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3018 int timeout)
3020 int i = 0;
3022 do {
3023 if ((ipw_read32(priv, addr) & mask) == mask)
3024 return i;
3025 mdelay(10);
3026 i += 10;
3027 } while (i < timeout);
3029 return -ETIME;
3032 /* These functions load the firmware and micro code for the operation of
3033 * the ipw hardware. It assumes the buffer has all the bits for the
3034 * image and the caller is handling the memory allocation and clean up.
3037 static int ipw_stop_master(struct ipw_priv *priv)
3039 int rc;
3041 IPW_DEBUG_TRACE(">>\n");
3042 /* stop master. typical delay - 0 */
3043 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3045 /* timeout is in msec, polled in 10-msec quanta */
3046 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3047 IPW_RESET_REG_MASTER_DISABLED, 100);
3048 if (rc < 0) {
3049 IPW_ERROR("wait for stop master failed after 100ms\n");
3050 return -1;
3053 IPW_DEBUG_INFO("stop master %dms\n", rc);
3055 return rc;
3058 static void ipw_arc_release(struct ipw_priv *priv)
3060 IPW_DEBUG_TRACE(">>\n");
3061 mdelay(5);
3063 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3065 /* no one knows timing, for safety add some delay */
3066 mdelay(5);
3069 struct fw_chunk {
3070 __le32 address;
3071 __le32 length;
3074 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3076 int rc = 0, i, addr;
3077 u8 cr = 0;
3078 __le16 *image;
3080 image = (__le16 *) data;
3082 IPW_DEBUG_TRACE(">>\n");
3084 rc = ipw_stop_master(priv);
3086 if (rc < 0)
3087 return rc;
3089 for (addr = IPW_SHARED_LOWER_BOUND;
3090 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3091 ipw_write32(priv, addr, 0);
3094 /* no ucode (yet) */
3095 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3096 /* destroy DMA queues */
3097 /* reset sequence */
3099 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3100 ipw_arc_release(priv);
3101 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3102 mdelay(1);
3104 /* reset PHY */
3105 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3106 mdelay(1);
3108 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3109 mdelay(1);
3111 /* enable ucode store */
3112 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3113 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3114 mdelay(1);
3116 /* write ucode */
3118 * @bug
3119 * Do NOT set indirect address register once and then
3120 * store data to indirect data register in the loop.
3121 * It seems very reasonable, but in this case DINO do not
3122 * accept ucode. It is essential to set address each time.
3124 /* load new ipw uCode */
3125 for (i = 0; i < len / 2; i++)
3126 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3127 le16_to_cpu(image[i]));
3129 /* enable DINO */
3130 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3131 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3133 /* this is where the igx / win driver deveates from the VAP driver. */
3135 /* wait for alive response */
3136 for (i = 0; i < 100; i++) {
3137 /* poll for incoming data */
3138 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3139 if (cr & DINO_RXFIFO_DATA)
3140 break;
3141 mdelay(1);
3144 if (cr & DINO_RXFIFO_DATA) {
3145 /* alive_command_responce size is NOT multiple of 4 */
3146 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3148 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3149 response_buffer[i] =
3150 cpu_to_le32(ipw_read_reg32(priv,
3151 IPW_BASEBAND_RX_FIFO_READ));
3152 memcpy(&priv->dino_alive, response_buffer,
3153 sizeof(priv->dino_alive));
3154 if (priv->dino_alive.alive_command == 1
3155 && priv->dino_alive.ucode_valid == 1) {
3156 rc = 0;
3157 IPW_DEBUG_INFO
3158 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3159 "of %02d/%02d/%02d %02d:%02d\n",
3160 priv->dino_alive.software_revision,
3161 priv->dino_alive.software_revision,
3162 priv->dino_alive.device_identifier,
3163 priv->dino_alive.device_identifier,
3164 priv->dino_alive.time_stamp[0],
3165 priv->dino_alive.time_stamp[1],
3166 priv->dino_alive.time_stamp[2],
3167 priv->dino_alive.time_stamp[3],
3168 priv->dino_alive.time_stamp[4]);
3169 } else {
3170 IPW_DEBUG_INFO("Microcode is not alive\n");
3171 rc = -EINVAL;
3173 } else {
3174 IPW_DEBUG_INFO("No alive response from DINO\n");
3175 rc = -ETIME;
3178 /* disable DINO, otherwise for some reason
3179 firmware have problem getting alive resp. */
3180 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3182 return rc;
3185 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3187 int ret = -1;
3188 int offset = 0;
3189 struct fw_chunk *chunk;
3190 int total_nr = 0;
3191 int i;
3192 struct dma_pool *pool;
3193 void **virts;
3194 dma_addr_t *phys;
3196 IPW_DEBUG_TRACE("<< :\n");
3198 virts = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(void *),
3199 GFP_KERNEL);
3200 if (!virts)
3201 return -ENOMEM;
3203 phys = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(dma_addr_t),
3204 GFP_KERNEL);
3205 if (!phys) {
3206 kfree(virts);
3207 return -ENOMEM;
3209 pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0,
3211 if (!pool) {
3212 IPW_ERROR("dma_pool_create failed\n");
3213 kfree(phys);
3214 kfree(virts);
3215 return -ENOMEM;
3218 /* Start the Dma */
3219 ret = ipw_fw_dma_enable(priv);
3221 /* the DMA is already ready this would be a bug. */
3222 BUG_ON(priv->sram_desc.last_cb_index > 0);
3224 do {
3225 u32 chunk_len;
3226 u8 *start;
3227 int size;
3228 int nr = 0;
3230 chunk = (struct fw_chunk *)(data + offset);
3231 offset += sizeof(struct fw_chunk);
3232 chunk_len = le32_to_cpu(chunk->length);
3233 start = data + offset;
3235 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3236 for (i = 0; i < nr; i++) {
3237 virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL,
3238 &phys[total_nr]);
3239 if (!virts[total_nr]) {
3240 ret = -ENOMEM;
3241 goto out;
3243 size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3244 CB_MAX_LENGTH);
3245 memcpy(virts[total_nr], start, size);
3246 start += size;
3247 total_nr++;
3248 /* We don't support fw chunk larger than 64*8K */
3249 BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3252 /* build DMA packet and queue up for sending */
3253 /* dma to chunk->address, the chunk->length bytes from data +
3254 * offeset*/
3255 /* Dma loading */
3256 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3257 nr, le32_to_cpu(chunk->address),
3258 chunk_len);
3259 if (ret) {
3260 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3261 goto out;
3264 offset += chunk_len;
3265 } while (offset < len);
3267 /* Run the DMA and wait for the answer */
3268 ret = ipw_fw_dma_kick(priv);
3269 if (ret) {
3270 IPW_ERROR("dmaKick Failed\n");
3271 goto out;
3274 ret = ipw_fw_dma_wait(priv);
3275 if (ret) {
3276 IPW_ERROR("dmaWaitSync Failed\n");
3277 goto out;
3279 out:
3280 for (i = 0; i < total_nr; i++)
3281 dma_pool_free(pool, virts[i], phys[i]);
3283 dma_pool_destroy(pool);
3284 kfree(phys);
3285 kfree(virts);
3287 return ret;
3290 /* stop nic */
3291 static int ipw_stop_nic(struct ipw_priv *priv)
3293 int rc = 0;
3295 /* stop */
3296 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3298 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3299 IPW_RESET_REG_MASTER_DISABLED, 500);
3300 if (rc < 0) {
3301 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3302 return rc;
3305 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3307 return rc;
3310 static void ipw_start_nic(struct ipw_priv *priv)
3312 IPW_DEBUG_TRACE(">>\n");
3314 /* prvHwStartNic release ARC */
3315 ipw_clear_bit(priv, IPW_RESET_REG,
3316 IPW_RESET_REG_MASTER_DISABLED |
3317 IPW_RESET_REG_STOP_MASTER |
3318 CBD_RESET_REG_PRINCETON_RESET);
3320 /* enable power management */
3321 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3322 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3324 IPW_DEBUG_TRACE("<<\n");
3327 static int ipw_init_nic(struct ipw_priv *priv)
3329 int rc;
3331 IPW_DEBUG_TRACE(">>\n");
3332 /* reset */
3333 /*prvHwInitNic */
3334 /* set "initialization complete" bit to move adapter to D0 state */
3335 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3337 /* low-level PLL activation */
3338 ipw_write32(priv, IPW_READ_INT_REGISTER,
3339 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3341 /* wait for clock stabilization */
3342 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3343 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3344 if (rc < 0)
3345 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3347 /* assert SW reset */
3348 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3350 udelay(10);
3352 /* set "initialization complete" bit to move adapter to D0 state */
3353 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3355 IPW_DEBUG_TRACE(">>\n");
3356 return 0;
3359 /* Call this function from process context, it will sleep in request_firmware.
3360 * Probe is an ok place to call this from.
3362 static int ipw_reset_nic(struct ipw_priv *priv)
3364 int rc = 0;
3365 unsigned long flags;
3367 IPW_DEBUG_TRACE(">>\n");
3369 rc = ipw_init_nic(priv);
3371 spin_lock_irqsave(&priv->lock, flags);
3372 /* Clear the 'host command active' bit... */
3373 priv->status &= ~STATUS_HCMD_ACTIVE;
3374 wake_up_interruptible(&priv->wait_command_queue);
3375 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3376 wake_up_interruptible(&priv->wait_state);
3377 spin_unlock_irqrestore(&priv->lock, flags);
3379 IPW_DEBUG_TRACE("<<\n");
3380 return rc;
3384 struct ipw_fw {
3385 __le32 ver;
3386 __le32 boot_size;
3387 __le32 ucode_size;
3388 __le32 fw_size;
3389 u8 data[0];
3392 static int ipw_get_fw(struct ipw_priv *priv,
3393 const struct firmware **raw, const char *name)
3395 struct ipw_fw *fw;
3396 int rc;
3398 /* ask firmware_class module to get the boot firmware off disk */
3399 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3400 if (rc < 0) {
3401 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3402 return rc;
3405 if ((*raw)->size < sizeof(*fw)) {
3406 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3407 return -EINVAL;
3410 fw = (void *)(*raw)->data;
3412 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3413 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3414 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3415 name, (*raw)->size);
3416 return -EINVAL;
3419 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3420 name,
3421 le32_to_cpu(fw->ver) >> 16,
3422 le32_to_cpu(fw->ver) & 0xff,
3423 (*raw)->size - sizeof(*fw));
3424 return 0;
3427 #define IPW_RX_BUF_SIZE (3000)
3429 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3430 struct ipw_rx_queue *rxq)
3432 unsigned long flags;
3433 int i;
3435 spin_lock_irqsave(&rxq->lock, flags);
3437 INIT_LIST_HEAD(&rxq->rx_free);
3438 INIT_LIST_HEAD(&rxq->rx_used);
3440 /* Fill the rx_used queue with _all_ of the Rx buffers */
3441 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3442 /* In the reset function, these buffers may have been allocated
3443 * to an SKB, so we need to unmap and free potential storage */
3444 if (rxq->pool[i].skb != NULL) {
3445 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3446 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3447 dev_kfree_skb(rxq->pool[i].skb);
3448 rxq->pool[i].skb = NULL;
3450 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3453 /* Set us so that we have processed and used all buffers, but have
3454 * not restocked the Rx queue with fresh buffers */
3455 rxq->read = rxq->write = 0;
3456 rxq->free_count = 0;
3457 spin_unlock_irqrestore(&rxq->lock, flags);
3460 #ifdef CONFIG_PM
3461 static int fw_loaded = 0;
3462 static const struct firmware *raw = NULL;
3464 static void free_firmware(void)
3466 if (fw_loaded) {
3467 release_firmware(raw);
3468 raw = NULL;
3469 fw_loaded = 0;
3472 #else
3473 #define free_firmware() do {} while (0)
3474 #endif
3476 static int ipw_load(struct ipw_priv *priv)
3478 #ifndef CONFIG_PM
3479 const struct firmware *raw = NULL;
3480 #endif
3481 struct ipw_fw *fw;
3482 u8 *boot_img, *ucode_img, *fw_img;
3483 u8 *name = NULL;
3484 int rc = 0, retries = 3;
3486 switch (priv->ieee->iw_mode) {
3487 case IW_MODE_ADHOC:
3488 name = "ipw2200-ibss.fw";
3489 break;
3490 #ifdef CONFIG_IPW2200_MONITOR
3491 case IW_MODE_MONITOR:
3492 name = "ipw2200-sniffer.fw";
3493 break;
3494 #endif
3495 case IW_MODE_INFRA:
3496 name = "ipw2200-bss.fw";
3497 break;
3500 if (!name) {
3501 rc = -EINVAL;
3502 goto error;
3505 #ifdef CONFIG_PM
3506 if (!fw_loaded) {
3507 #endif
3508 rc = ipw_get_fw(priv, &raw, name);
3509 if (rc < 0)
3510 goto error;
3511 #ifdef CONFIG_PM
3513 #endif
3515 fw = (void *)raw->data;
3516 boot_img = &fw->data[0];
3517 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3518 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3519 le32_to_cpu(fw->ucode_size)];
3521 if (!priv->rxq)
3522 priv->rxq = ipw_rx_queue_alloc(priv);
3523 else
3524 ipw_rx_queue_reset(priv, priv->rxq);
3525 if (!priv->rxq) {
3526 IPW_ERROR("Unable to initialize Rx queue\n");
3527 rc = -ENOMEM;
3528 goto error;
3531 retry:
3532 /* Ensure interrupts are disabled */
3533 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3534 priv->status &= ~STATUS_INT_ENABLED;
3536 /* ack pending interrupts */
3537 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3539 ipw_stop_nic(priv);
3541 rc = ipw_reset_nic(priv);
3542 if (rc < 0) {
3543 IPW_ERROR("Unable to reset NIC\n");
3544 goto error;
3547 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3548 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3550 /* DMA the initial boot firmware into the device */
3551 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3552 if (rc < 0) {
3553 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3554 goto error;
3557 /* kick start the device */
3558 ipw_start_nic(priv);
3560 /* wait for the device to finish its initial startup sequence */
3561 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3562 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3563 if (rc < 0) {
3564 IPW_ERROR("device failed to boot initial fw image\n");
3565 goto error;
3567 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3569 /* ack fw init done interrupt */
3570 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3572 /* DMA the ucode into the device */
3573 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3574 if (rc < 0) {
3575 IPW_ERROR("Unable to load ucode: %d\n", rc);
3576 goto error;
3579 /* stop nic */
3580 ipw_stop_nic(priv);
3582 /* DMA bss firmware into the device */
3583 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3584 if (rc < 0) {
3585 IPW_ERROR("Unable to load firmware: %d\n", rc);
3586 goto error;
3588 #ifdef CONFIG_PM
3589 fw_loaded = 1;
3590 #endif
3592 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3594 rc = ipw_queue_reset(priv);
3595 if (rc < 0) {
3596 IPW_ERROR("Unable to initialize queues\n");
3597 goto error;
3600 /* Ensure interrupts are disabled */
3601 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3602 /* ack pending interrupts */
3603 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3605 /* kick start the device */
3606 ipw_start_nic(priv);
3608 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3609 if (retries > 0) {
3610 IPW_WARNING("Parity error. Retrying init.\n");
3611 retries--;
3612 goto retry;
3615 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3616 rc = -EIO;
3617 goto error;
3620 /* wait for the device */
3621 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3622 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3623 if (rc < 0) {
3624 IPW_ERROR("device failed to start within 500ms\n");
3625 goto error;
3627 IPW_DEBUG_INFO("device response after %dms\n", rc);
3629 /* ack fw init done interrupt */
3630 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3632 /* read eeprom data */
3633 priv->eeprom_delay = 1;
3634 ipw_read_eeprom(priv);
3635 /* initialize the eeprom region of sram */
3636 ipw_eeprom_init_sram(priv);
3638 /* enable interrupts */
3639 ipw_enable_interrupts(priv);
3641 /* Ensure our queue has valid packets */
3642 ipw_rx_queue_replenish(priv);
3644 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3646 /* ack pending interrupts */
3647 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3649 #ifndef CONFIG_PM
3650 release_firmware(raw);
3651 #endif
3652 return 0;
3654 error:
3655 if (priv->rxq) {
3656 ipw_rx_queue_free(priv, priv->rxq);
3657 priv->rxq = NULL;
3659 ipw_tx_queue_free(priv);
3660 release_firmware(raw);
3661 #ifdef CONFIG_PM
3662 fw_loaded = 0;
3663 raw = NULL;
3664 #endif
3666 return rc;
3670 * DMA services
3672 * Theory of operation
3674 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3675 * 2 empty entries always kept in the buffer to protect from overflow.
3677 * For Tx queue, there are low mark and high mark limits. If, after queuing
3678 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3679 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3680 * Tx queue resumed.
3682 * The IPW operates with six queues, one receive queue in the device's
3683 * sram, one transmit queue for sending commands to the device firmware,
3684 * and four transmit queues for data.
3686 * The four transmit queues allow for performing quality of service (qos)
3687 * transmissions as per the 802.11 protocol. Currently Linux does not
3688 * provide a mechanism to the user for utilizing prioritized queues, so
3689 * we only utilize the first data transmit queue (queue1).
3693 * Driver allocates buffers of this size for Rx
3697 * ipw_rx_queue_space - Return number of free slots available in queue.
3699 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3701 int s = q->read - q->write;
3702 if (s <= 0)
3703 s += RX_QUEUE_SIZE;
3704 /* keep some buffer to not confuse full and empty queue */
3705 s -= 2;
3706 if (s < 0)
3707 s = 0;
3708 return s;
3711 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3713 int s = q->last_used - q->first_empty;
3714 if (s <= 0)
3715 s += q->n_bd;
3716 s -= 2; /* keep some reserve to not confuse empty and full situations */
3717 if (s < 0)
3718 s = 0;
3719 return s;
3722 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3724 return (++index == n_bd) ? 0 : index;
3728 * Initialize common DMA queue structure
3730 * @param q queue to init
3731 * @param count Number of BD's to allocate. Should be power of 2
3732 * @param read_register Address for 'read' register
3733 * (not offset within BAR, full address)
3734 * @param write_register Address for 'write' register
3735 * (not offset within BAR, full address)
3736 * @param base_register Address for 'base' register
3737 * (not offset within BAR, full address)
3738 * @param size Address for 'size' register
3739 * (not offset within BAR, full address)
3741 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3742 int count, u32 read, u32 write, u32 base, u32 size)
3744 q->n_bd = count;
3746 q->low_mark = q->n_bd / 4;
3747 if (q->low_mark < 4)
3748 q->low_mark = 4;
3750 q->high_mark = q->n_bd / 8;
3751 if (q->high_mark < 2)
3752 q->high_mark = 2;
3754 q->first_empty = q->last_used = 0;
3755 q->reg_r = read;
3756 q->reg_w = write;
3758 ipw_write32(priv, base, q->dma_addr);
3759 ipw_write32(priv, size, count);
3760 ipw_write32(priv, read, 0);
3761 ipw_write32(priv, write, 0);
3763 _ipw_read32(priv, 0x90);
3766 static int ipw_queue_tx_init(struct ipw_priv *priv,
3767 struct clx2_tx_queue *q,
3768 int count, u32 read, u32 write, u32 base, u32 size)
3770 struct pci_dev *dev = priv->pci_dev;
3772 q->txb = kmalloc_array(count, sizeof(q->txb[0]), GFP_KERNEL);
3773 if (!q->txb) {
3774 IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3775 return -ENOMEM;
3778 q->bd =
3779 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3780 if (!q->bd) {
3781 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3782 sizeof(q->bd[0]) * count);
3783 kfree(q->txb);
3784 q->txb = NULL;
3785 return -ENOMEM;
3788 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3789 return 0;
3793 * Free one TFD, those at index [txq->q.last_used].
3794 * Do NOT advance any indexes
3796 * @param dev
3797 * @param txq
3799 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3800 struct clx2_tx_queue *txq)
3802 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3803 struct pci_dev *dev = priv->pci_dev;
3804 int i;
3806 /* classify bd */
3807 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3808 /* nothing to cleanup after for host commands */
3809 return;
3811 /* sanity check */
3812 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3813 IPW_ERROR("Too many chunks: %i\n",
3814 le32_to_cpu(bd->u.data.num_chunks));
3815 /** @todo issue fatal error, it is quite serious situation */
3816 return;
3819 /* unmap chunks if any */
3820 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3821 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3822 le16_to_cpu(bd->u.data.chunk_len[i]),
3823 PCI_DMA_TODEVICE);
3824 if (txq->txb[txq->q.last_used]) {
3825 libipw_txb_free(txq->txb[txq->q.last_used]);
3826 txq->txb[txq->q.last_used] = NULL;
3832 * Deallocate DMA queue.
3834 * Empty queue by removing and destroying all BD's.
3835 * Free all buffers.
3837 * @param dev
3838 * @param q
3840 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3842 struct clx2_queue *q = &txq->q;
3843 struct pci_dev *dev = priv->pci_dev;
3845 if (q->n_bd == 0)
3846 return;
3848 /* first, empty all BD's */
3849 for (; q->first_empty != q->last_used;
3850 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3851 ipw_queue_tx_free_tfd(priv, txq);
3854 /* free buffers belonging to queue itself */
3855 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3856 q->dma_addr);
3857 kfree(txq->txb);
3859 /* 0 fill whole structure */
3860 memset(txq, 0, sizeof(*txq));
3864 * Destroy all DMA queues and structures
3866 * @param priv
3868 static void ipw_tx_queue_free(struct ipw_priv *priv)
3870 /* Tx CMD queue */
3871 ipw_queue_tx_free(priv, &priv->txq_cmd);
3873 /* Tx queues */
3874 ipw_queue_tx_free(priv, &priv->txq[0]);
3875 ipw_queue_tx_free(priv, &priv->txq[1]);
3876 ipw_queue_tx_free(priv, &priv->txq[2]);
3877 ipw_queue_tx_free(priv, &priv->txq[3]);
3880 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3882 /* First 3 bytes are manufacturer */
3883 bssid[0] = priv->mac_addr[0];
3884 bssid[1] = priv->mac_addr[1];
3885 bssid[2] = priv->mac_addr[2];
3887 /* Last bytes are random */
3888 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3890 bssid[0] &= 0xfe; /* clear multicast bit */
3891 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3894 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3896 struct ipw_station_entry entry;
3897 int i;
3899 for (i = 0; i < priv->num_stations; i++) {
3900 if (ether_addr_equal(priv->stations[i], bssid)) {
3901 /* Another node is active in network */
3902 priv->missed_adhoc_beacons = 0;
3903 if (!(priv->config & CFG_STATIC_CHANNEL))
3904 /* when other nodes drop out, we drop out */
3905 priv->config &= ~CFG_ADHOC_PERSIST;
3907 return i;
3911 if (i == MAX_STATIONS)
3912 return IPW_INVALID_STATION;
3914 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3916 entry.reserved = 0;
3917 entry.support_mode = 0;
3918 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3919 memcpy(priv->stations[i], bssid, ETH_ALEN);
3920 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3921 &entry, sizeof(entry));
3922 priv->num_stations++;
3924 return i;
3927 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3929 int i;
3931 for (i = 0; i < priv->num_stations; i++)
3932 if (ether_addr_equal(priv->stations[i], bssid))
3933 return i;
3935 return IPW_INVALID_STATION;
3938 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3940 int err;
3942 if (priv->status & STATUS_ASSOCIATING) {
3943 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3944 schedule_work(&priv->disassociate);
3945 return;
3948 if (!(priv->status & STATUS_ASSOCIATED)) {
3949 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3950 return;
3953 IPW_DEBUG_ASSOC("Disassociation attempt from %pM "
3954 "on channel %d.\n",
3955 priv->assoc_request.bssid,
3956 priv->assoc_request.channel);
3958 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3959 priv->status |= STATUS_DISASSOCIATING;
3961 if (quiet)
3962 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3963 else
3964 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3966 err = ipw_send_associate(priv, &priv->assoc_request);
3967 if (err) {
3968 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3969 "failed.\n");
3970 return;
3975 static int ipw_disassociate(void *data)
3977 struct ipw_priv *priv = data;
3978 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3979 return 0;
3980 ipw_send_disassociate(data, 0);
3981 netif_carrier_off(priv->net_dev);
3982 return 1;
3985 static void ipw_bg_disassociate(struct work_struct *work)
3987 struct ipw_priv *priv =
3988 container_of(work, struct ipw_priv, disassociate);
3989 mutex_lock(&priv->mutex);
3990 ipw_disassociate(priv);
3991 mutex_unlock(&priv->mutex);
3994 static void ipw_system_config(struct work_struct *work)
3996 struct ipw_priv *priv =
3997 container_of(work, struct ipw_priv, system_config);
3999 #ifdef CONFIG_IPW2200_PROMISCUOUS
4000 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4001 priv->sys_config.accept_all_data_frames = 1;
4002 priv->sys_config.accept_non_directed_frames = 1;
4003 priv->sys_config.accept_all_mgmt_bcpr = 1;
4004 priv->sys_config.accept_all_mgmt_frames = 1;
4006 #endif
4008 ipw_send_system_config(priv);
4011 struct ipw_status_code {
4012 u16 status;
4013 const char *reason;
4016 static const struct ipw_status_code ipw_status_codes[] = {
4017 {0x00, "Successful"},
4018 {0x01, "Unspecified failure"},
4019 {0x0A, "Cannot support all requested capabilities in the "
4020 "Capability information field"},
4021 {0x0B, "Reassociation denied due to inability to confirm that "
4022 "association exists"},
4023 {0x0C, "Association denied due to reason outside the scope of this "
4024 "standard"},
4025 {0x0D,
4026 "Responding station does not support the specified authentication "
4027 "algorithm"},
4028 {0x0E,
4029 "Received an Authentication frame with authentication sequence "
4030 "transaction sequence number out of expected sequence"},
4031 {0x0F, "Authentication rejected because of challenge failure"},
4032 {0x10, "Authentication rejected due to timeout waiting for next "
4033 "frame in sequence"},
4034 {0x11, "Association denied because AP is unable to handle additional "
4035 "associated stations"},
4036 {0x12,
4037 "Association denied due to requesting station not supporting all "
4038 "of the datarates in the BSSBasicServiceSet Parameter"},
4039 {0x13,
4040 "Association denied due to requesting station not supporting "
4041 "short preamble operation"},
4042 {0x14,
4043 "Association denied due to requesting station not supporting "
4044 "PBCC encoding"},
4045 {0x15,
4046 "Association denied due to requesting station not supporting "
4047 "channel agility"},
4048 {0x19,
4049 "Association denied due to requesting station not supporting "
4050 "short slot operation"},
4051 {0x1A,
4052 "Association denied due to requesting station not supporting "
4053 "DSSS-OFDM operation"},
4054 {0x28, "Invalid Information Element"},
4055 {0x29, "Group Cipher is not valid"},
4056 {0x2A, "Pairwise Cipher is not valid"},
4057 {0x2B, "AKMP is not valid"},
4058 {0x2C, "Unsupported RSN IE version"},
4059 {0x2D, "Invalid RSN IE Capabilities"},
4060 {0x2E, "Cipher suite is rejected per security policy"},
4063 static const char *ipw_get_status_code(u16 status)
4065 int i;
4066 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4067 if (ipw_status_codes[i].status == (status & 0xff))
4068 return ipw_status_codes[i].reason;
4069 return "Unknown status value.";
4072 static inline void average_init(struct average *avg)
4074 memset(avg, 0, sizeof(*avg));
4077 #define DEPTH_RSSI 8
4078 #define DEPTH_NOISE 16
4079 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4081 return ((depth-1)*prev_avg + val)/depth;
4084 static void average_add(struct average *avg, s16 val)
4086 avg->sum -= avg->entries[avg->pos];
4087 avg->sum += val;
4088 avg->entries[avg->pos++] = val;
4089 if (unlikely(avg->pos == AVG_ENTRIES)) {
4090 avg->init = 1;
4091 avg->pos = 0;
4095 static s16 average_value(struct average *avg)
4097 if (!unlikely(avg->init)) {
4098 if (avg->pos)
4099 return avg->sum / avg->pos;
4100 return 0;
4103 return avg->sum / AVG_ENTRIES;
4106 static void ipw_reset_stats(struct ipw_priv *priv)
4108 u32 len = sizeof(u32);
4110 priv->quality = 0;
4112 average_init(&priv->average_missed_beacons);
4113 priv->exp_avg_rssi = -60;
4114 priv->exp_avg_noise = -85 + 0x100;
4116 priv->last_rate = 0;
4117 priv->last_missed_beacons = 0;
4118 priv->last_rx_packets = 0;
4119 priv->last_tx_packets = 0;
4120 priv->last_tx_failures = 0;
4122 /* Firmware managed, reset only when NIC is restarted, so we have to
4123 * normalize on the current value */
4124 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4125 &priv->last_rx_err, &len);
4126 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4127 &priv->last_tx_failures, &len);
4129 /* Driver managed, reset with each association */
4130 priv->missed_adhoc_beacons = 0;
4131 priv->missed_beacons = 0;
4132 priv->tx_packets = 0;
4133 priv->rx_packets = 0;
4137 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4139 u32 i = 0x80000000;
4140 u32 mask = priv->rates_mask;
4141 /* If currently associated in B mode, restrict the maximum
4142 * rate match to B rates */
4143 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4144 mask &= LIBIPW_CCK_RATES_MASK;
4146 /* TODO: Verify that the rate is supported by the current rates
4147 * list. */
4149 while (i && !(mask & i))
4150 i >>= 1;
4151 switch (i) {
4152 case LIBIPW_CCK_RATE_1MB_MASK:
4153 return 1000000;
4154 case LIBIPW_CCK_RATE_2MB_MASK:
4155 return 2000000;
4156 case LIBIPW_CCK_RATE_5MB_MASK:
4157 return 5500000;
4158 case LIBIPW_OFDM_RATE_6MB_MASK:
4159 return 6000000;
4160 case LIBIPW_OFDM_RATE_9MB_MASK:
4161 return 9000000;
4162 case LIBIPW_CCK_RATE_11MB_MASK:
4163 return 11000000;
4164 case LIBIPW_OFDM_RATE_12MB_MASK:
4165 return 12000000;
4166 case LIBIPW_OFDM_RATE_18MB_MASK:
4167 return 18000000;
4168 case LIBIPW_OFDM_RATE_24MB_MASK:
4169 return 24000000;
4170 case LIBIPW_OFDM_RATE_36MB_MASK:
4171 return 36000000;
4172 case LIBIPW_OFDM_RATE_48MB_MASK:
4173 return 48000000;
4174 case LIBIPW_OFDM_RATE_54MB_MASK:
4175 return 54000000;
4178 if (priv->ieee->mode == IEEE_B)
4179 return 11000000;
4180 else
4181 return 54000000;
4184 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4186 u32 rate, len = sizeof(rate);
4187 int err;
4189 if (!(priv->status & STATUS_ASSOCIATED))
4190 return 0;
4192 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4193 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4194 &len);
4195 if (err) {
4196 IPW_DEBUG_INFO("failed querying ordinals.\n");
4197 return 0;
4199 } else
4200 return ipw_get_max_rate(priv);
4202 switch (rate) {
4203 case IPW_TX_RATE_1MB:
4204 return 1000000;
4205 case IPW_TX_RATE_2MB:
4206 return 2000000;
4207 case IPW_TX_RATE_5MB:
4208 return 5500000;
4209 case IPW_TX_RATE_6MB:
4210 return 6000000;
4211 case IPW_TX_RATE_9MB:
4212 return 9000000;
4213 case IPW_TX_RATE_11MB:
4214 return 11000000;
4215 case IPW_TX_RATE_12MB:
4216 return 12000000;
4217 case IPW_TX_RATE_18MB:
4218 return 18000000;
4219 case IPW_TX_RATE_24MB:
4220 return 24000000;
4221 case IPW_TX_RATE_36MB:
4222 return 36000000;
4223 case IPW_TX_RATE_48MB:
4224 return 48000000;
4225 case IPW_TX_RATE_54MB:
4226 return 54000000;
4229 return 0;
4232 #define IPW_STATS_INTERVAL (2 * HZ)
4233 static void ipw_gather_stats(struct ipw_priv *priv)
4235 u32 rx_err, rx_err_delta, rx_packets_delta;
4236 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4237 u32 missed_beacons_percent, missed_beacons_delta;
4238 u32 quality = 0;
4239 u32 len = sizeof(u32);
4240 s16 rssi;
4241 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4242 rate_quality;
4243 u32 max_rate;
4245 if (!(priv->status & STATUS_ASSOCIATED)) {
4246 priv->quality = 0;
4247 return;
4250 /* Update the statistics */
4251 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4252 &priv->missed_beacons, &len);
4253 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4254 priv->last_missed_beacons = priv->missed_beacons;
4255 if (priv->assoc_request.beacon_interval) {
4256 missed_beacons_percent = missed_beacons_delta *
4257 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4258 (IPW_STATS_INTERVAL * 10);
4259 } else {
4260 missed_beacons_percent = 0;
4262 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4264 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4265 rx_err_delta = rx_err - priv->last_rx_err;
4266 priv->last_rx_err = rx_err;
4268 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4269 tx_failures_delta = tx_failures - priv->last_tx_failures;
4270 priv->last_tx_failures = tx_failures;
4272 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4273 priv->last_rx_packets = priv->rx_packets;
4275 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4276 priv->last_tx_packets = priv->tx_packets;
4278 /* Calculate quality based on the following:
4280 * Missed beacon: 100% = 0, 0% = 70% missed
4281 * Rate: 60% = 1Mbs, 100% = Max
4282 * Rx and Tx errors represent a straight % of total Rx/Tx
4283 * RSSI: 100% = > -50, 0% = < -80
4284 * Rx errors: 100% = 0, 0% = 50% missed
4286 * The lowest computed quality is used.
4289 #define BEACON_THRESHOLD 5
4290 beacon_quality = 100 - missed_beacons_percent;
4291 if (beacon_quality < BEACON_THRESHOLD)
4292 beacon_quality = 0;
4293 else
4294 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4295 (100 - BEACON_THRESHOLD);
4296 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4297 beacon_quality, missed_beacons_percent);
4299 priv->last_rate = ipw_get_current_rate(priv);
4300 max_rate = ipw_get_max_rate(priv);
4301 rate_quality = priv->last_rate * 40 / max_rate + 60;
4302 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4303 rate_quality, priv->last_rate / 1000000);
4305 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4306 rx_quality = 100 - (rx_err_delta * 100) /
4307 (rx_packets_delta + rx_err_delta);
4308 else
4309 rx_quality = 100;
4310 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4311 rx_quality, rx_err_delta, rx_packets_delta);
4313 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4314 tx_quality = 100 - (tx_failures_delta * 100) /
4315 (tx_packets_delta + tx_failures_delta);
4316 else
4317 tx_quality = 100;
4318 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4319 tx_quality, tx_failures_delta, tx_packets_delta);
4321 rssi = priv->exp_avg_rssi;
4322 signal_quality =
4323 (100 *
4324 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4325 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4326 (priv->ieee->perfect_rssi - rssi) *
4327 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4328 62 * (priv->ieee->perfect_rssi - rssi))) /
4329 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4330 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4331 if (signal_quality > 100)
4332 signal_quality = 100;
4333 else if (signal_quality < 1)
4334 signal_quality = 0;
4336 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4337 signal_quality, rssi);
4339 quality = min(rx_quality, signal_quality);
4340 quality = min(tx_quality, quality);
4341 quality = min(rate_quality, quality);
4342 quality = min(beacon_quality, quality);
4343 if (quality == beacon_quality)
4344 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4345 quality);
4346 if (quality == rate_quality)
4347 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4348 quality);
4349 if (quality == tx_quality)
4350 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4351 quality);
4352 if (quality == rx_quality)
4353 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4354 quality);
4355 if (quality == signal_quality)
4356 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4357 quality);
4359 priv->quality = quality;
4361 schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4364 static void ipw_bg_gather_stats(struct work_struct *work)
4366 struct ipw_priv *priv =
4367 container_of(work, struct ipw_priv, gather_stats.work);
4368 mutex_lock(&priv->mutex);
4369 ipw_gather_stats(priv);
4370 mutex_unlock(&priv->mutex);
4373 /* Missed beacon behavior:
4374 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4375 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4376 * Above disassociate threshold, give up and stop scanning.
4377 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4378 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4379 int missed_count)
4381 priv->notif_missed_beacons = missed_count;
4383 if (missed_count > priv->disassociate_threshold &&
4384 priv->status & STATUS_ASSOCIATED) {
4385 /* If associated and we've hit the missed
4386 * beacon threshold, disassociate, turn
4387 * off roaming, and abort any active scans */
4388 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4389 IPW_DL_STATE | IPW_DL_ASSOC,
4390 "Missed beacon: %d - disassociate\n", missed_count);
4391 priv->status &= ~STATUS_ROAMING;
4392 if (priv->status & STATUS_SCANNING) {
4393 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4394 IPW_DL_STATE,
4395 "Aborting scan with missed beacon.\n");
4396 schedule_work(&priv->abort_scan);
4399 schedule_work(&priv->disassociate);
4400 return;
4403 if (priv->status & STATUS_ROAMING) {
4404 /* If we are currently roaming, then just
4405 * print a debug statement... */
4406 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4407 "Missed beacon: %d - roam in progress\n",
4408 missed_count);
4409 return;
4412 if (roaming &&
4413 (missed_count > priv->roaming_threshold &&
4414 missed_count <= priv->disassociate_threshold)) {
4415 /* If we are not already roaming, set the ROAM
4416 * bit in the status and kick off a scan.
4417 * This can happen several times before we reach
4418 * disassociate_threshold. */
4419 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4420 "Missed beacon: %d - initiate "
4421 "roaming\n", missed_count);
4422 if (!(priv->status & STATUS_ROAMING)) {
4423 priv->status |= STATUS_ROAMING;
4424 if (!(priv->status & STATUS_SCANNING))
4425 schedule_delayed_work(&priv->request_scan, 0);
4427 return;
4430 if (priv->status & STATUS_SCANNING &&
4431 missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4432 /* Stop scan to keep fw from getting
4433 * stuck (only if we aren't roaming --
4434 * otherwise we'll never scan more than 2 or 3
4435 * channels..) */
4436 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4437 "Aborting scan with missed beacon.\n");
4438 schedule_work(&priv->abort_scan);
4441 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4444 static void ipw_scan_event(struct work_struct *work)
4446 union iwreq_data wrqu;
4448 struct ipw_priv *priv =
4449 container_of(work, struct ipw_priv, scan_event.work);
4451 wrqu.data.length = 0;
4452 wrqu.data.flags = 0;
4453 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4456 static void handle_scan_event(struct ipw_priv *priv)
4458 /* Only userspace-requested scan completion events go out immediately */
4459 if (!priv->user_requested_scan) {
4460 schedule_delayed_work(&priv->scan_event,
4461 round_jiffies_relative(msecs_to_jiffies(4000)));
4462 } else {
4463 priv->user_requested_scan = 0;
4464 mod_delayed_work(system_wq, &priv->scan_event, 0);
4469 * Handle host notification packet.
4470 * Called from interrupt routine
4472 static void ipw_rx_notification(struct ipw_priv *priv,
4473 struct ipw_rx_notification *notif)
4475 u16 size = le16_to_cpu(notif->size);
4477 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4479 switch (notif->subtype) {
4480 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4481 struct notif_association *assoc = &notif->u.assoc;
4483 switch (assoc->state) {
4484 case CMAS_ASSOCIATED:{
4485 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4486 IPW_DL_ASSOC,
4487 "associated: '%*pE' %pM\n",
4488 priv->essid_len, priv->essid,
4489 priv->bssid);
4491 switch (priv->ieee->iw_mode) {
4492 case IW_MODE_INFRA:
4493 memcpy(priv->ieee->bssid,
4494 priv->bssid, ETH_ALEN);
4495 break;
4497 case IW_MODE_ADHOC:
4498 memcpy(priv->ieee->bssid,
4499 priv->bssid, ETH_ALEN);
4501 /* clear out the station table */
4502 priv->num_stations = 0;
4504 IPW_DEBUG_ASSOC
4505 ("queueing adhoc check\n");
4506 schedule_delayed_work(
4507 &priv->adhoc_check,
4508 le16_to_cpu(priv->
4509 assoc_request.
4510 beacon_interval));
4511 break;
4514 priv->status &= ~STATUS_ASSOCIATING;
4515 priv->status |= STATUS_ASSOCIATED;
4516 schedule_work(&priv->system_config);
4518 #ifdef CONFIG_IPW2200_QOS
4519 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4520 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4521 if ((priv->status & STATUS_AUTH) &&
4522 (IPW_GET_PACKET_STYPE(&notif->u.raw)
4523 == IEEE80211_STYPE_ASSOC_RESP)) {
4524 if ((sizeof
4525 (struct
4526 libipw_assoc_response)
4527 <= size)
4528 && (size <= 2314)) {
4529 struct
4530 libipw_rx_stats
4531 stats = {
4532 .len = size - 1,
4535 IPW_DEBUG_QOS
4536 ("QoS Associate "
4537 "size %d\n", size);
4538 libipw_rx_mgt(priv->
4539 ieee,
4540 (struct
4541 libipw_hdr_4addr
4543 &notif->u.raw, &stats);
4546 #endif
4548 schedule_work(&priv->link_up);
4550 break;
4553 case CMAS_AUTHENTICATED:{
4554 if (priv->
4555 status & (STATUS_ASSOCIATED |
4556 STATUS_AUTH)) {
4557 struct notif_authenticate *auth
4558 = &notif->u.auth;
4559 IPW_DEBUG(IPW_DL_NOTIF |
4560 IPW_DL_STATE |
4561 IPW_DL_ASSOC,
4562 "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4563 priv->essid_len,
4564 priv->essid,
4565 priv->bssid,
4566 le16_to_cpu(auth->status),
4567 ipw_get_status_code
4568 (le16_to_cpu
4569 (auth->status)));
4571 priv->status &=
4572 ~(STATUS_ASSOCIATING |
4573 STATUS_AUTH |
4574 STATUS_ASSOCIATED);
4576 schedule_work(&priv->link_down);
4577 break;
4580 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4581 IPW_DL_ASSOC,
4582 "authenticated: '%*pE' %pM\n",
4583 priv->essid_len, priv->essid,
4584 priv->bssid);
4585 break;
4588 case CMAS_INIT:{
4589 if (priv->status & STATUS_AUTH) {
4590 struct
4591 libipw_assoc_response
4592 *resp;
4593 resp =
4594 (struct
4595 libipw_assoc_response
4596 *)&notif->u.raw;
4597 IPW_DEBUG(IPW_DL_NOTIF |
4598 IPW_DL_STATE |
4599 IPW_DL_ASSOC,
4600 "association failed (0x%04X): %s\n",
4601 le16_to_cpu(resp->status),
4602 ipw_get_status_code
4603 (le16_to_cpu
4604 (resp->status)));
4607 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4608 IPW_DL_ASSOC,
4609 "disassociated: '%*pE' %pM\n",
4610 priv->essid_len, priv->essid,
4611 priv->bssid);
4613 priv->status &=
4614 ~(STATUS_DISASSOCIATING |
4615 STATUS_ASSOCIATING |
4616 STATUS_ASSOCIATED | STATUS_AUTH);
4617 if (priv->assoc_network
4618 && (priv->assoc_network->
4619 capability &
4620 WLAN_CAPABILITY_IBSS))
4621 ipw_remove_current_network
4622 (priv);
4624 schedule_work(&priv->link_down);
4626 break;
4629 case CMAS_RX_ASSOC_RESP:
4630 break;
4632 default:
4633 IPW_ERROR("assoc: unknown (%d)\n",
4634 assoc->state);
4635 break;
4638 break;
4641 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4642 struct notif_authenticate *auth = &notif->u.auth;
4643 switch (auth->state) {
4644 case CMAS_AUTHENTICATED:
4645 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4646 "authenticated: '%*pE' %pM\n",
4647 priv->essid_len, priv->essid,
4648 priv->bssid);
4649 priv->status |= STATUS_AUTH;
4650 break;
4652 case CMAS_INIT:
4653 if (priv->status & STATUS_AUTH) {
4654 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4655 IPW_DL_ASSOC,
4656 "authentication failed (0x%04X): %s\n",
4657 le16_to_cpu(auth->status),
4658 ipw_get_status_code(le16_to_cpu
4659 (auth->
4660 status)));
4662 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4663 IPW_DL_ASSOC,
4664 "deauthenticated: '%*pE' %pM\n",
4665 priv->essid_len, priv->essid,
4666 priv->bssid);
4668 priv->status &= ~(STATUS_ASSOCIATING |
4669 STATUS_AUTH |
4670 STATUS_ASSOCIATED);
4672 schedule_work(&priv->link_down);
4673 break;
4675 case CMAS_TX_AUTH_SEQ_1:
4676 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4677 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4678 break;
4679 case CMAS_RX_AUTH_SEQ_2:
4680 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4681 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4682 break;
4683 case CMAS_AUTH_SEQ_1_PASS:
4684 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4685 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4686 break;
4687 case CMAS_AUTH_SEQ_1_FAIL:
4688 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4689 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4690 break;
4691 case CMAS_TX_AUTH_SEQ_3:
4692 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4693 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4694 break;
4695 case CMAS_RX_AUTH_SEQ_4:
4696 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4697 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4698 break;
4699 case CMAS_AUTH_SEQ_2_PASS:
4700 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4701 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4702 break;
4703 case CMAS_AUTH_SEQ_2_FAIL:
4704 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4705 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4706 break;
4707 case CMAS_TX_ASSOC:
4708 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4709 IPW_DL_ASSOC, "TX_ASSOC\n");
4710 break;
4711 case CMAS_RX_ASSOC_RESP:
4712 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4713 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4715 break;
4716 case CMAS_ASSOCIATED:
4717 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4718 IPW_DL_ASSOC, "ASSOCIATED\n");
4719 break;
4720 default:
4721 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4722 auth->state);
4723 break;
4725 break;
4728 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4729 struct notif_channel_result *x =
4730 &notif->u.channel_result;
4732 if (size == sizeof(*x)) {
4733 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4734 x->channel_num);
4735 } else {
4736 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4737 "(should be %zd)\n",
4738 size, sizeof(*x));
4740 break;
4743 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4744 struct notif_scan_complete *x = &notif->u.scan_complete;
4745 if (size == sizeof(*x)) {
4746 IPW_DEBUG_SCAN
4747 ("Scan completed: type %d, %d channels, "
4748 "%d status\n", x->scan_type,
4749 x->num_channels, x->status);
4750 } else {
4751 IPW_ERROR("Scan completed of wrong size %d "
4752 "(should be %zd)\n",
4753 size, sizeof(*x));
4756 priv->status &=
4757 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4759 wake_up_interruptible(&priv->wait_state);
4760 cancel_delayed_work(&priv->scan_check);
4762 if (priv->status & STATUS_EXIT_PENDING)
4763 break;
4765 priv->ieee->scans++;
4767 #ifdef CONFIG_IPW2200_MONITOR
4768 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4769 priv->status |= STATUS_SCAN_FORCED;
4770 schedule_delayed_work(&priv->request_scan, 0);
4771 break;
4773 priv->status &= ~STATUS_SCAN_FORCED;
4774 #endif /* CONFIG_IPW2200_MONITOR */
4776 /* Do queued direct scans first */
4777 if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4778 schedule_delayed_work(&priv->request_direct_scan, 0);
4780 if (!(priv->status & (STATUS_ASSOCIATED |
4781 STATUS_ASSOCIATING |
4782 STATUS_ROAMING |
4783 STATUS_DISASSOCIATING)))
4784 schedule_work(&priv->associate);
4785 else if (priv->status & STATUS_ROAMING) {
4786 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4787 /* If a scan completed and we are in roam mode, then
4788 * the scan that completed was the one requested as a
4789 * result of entering roam... so, schedule the
4790 * roam work */
4791 schedule_work(&priv->roam);
4792 else
4793 /* Don't schedule if we aborted the scan */
4794 priv->status &= ~STATUS_ROAMING;
4795 } else if (priv->status & STATUS_SCAN_PENDING)
4796 schedule_delayed_work(&priv->request_scan, 0);
4797 else if (priv->config & CFG_BACKGROUND_SCAN
4798 && priv->status & STATUS_ASSOCIATED)
4799 schedule_delayed_work(&priv->request_scan,
4800 round_jiffies_relative(HZ));
4802 /* Send an empty event to user space.
4803 * We don't send the received data on the event because
4804 * it would require us to do complex transcoding, and
4805 * we want to minimise the work done in the irq handler
4806 * Use a request to extract the data.
4807 * Also, we generate this even for any scan, regardless
4808 * on how the scan was initiated. User space can just
4809 * sync on periodic scan to get fresh data...
4810 * Jean II */
4811 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4812 handle_scan_event(priv);
4813 break;
4816 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4817 struct notif_frag_length *x = &notif->u.frag_len;
4819 if (size == sizeof(*x))
4820 IPW_ERROR("Frag length: %d\n",
4821 le16_to_cpu(x->frag_length));
4822 else
4823 IPW_ERROR("Frag length of wrong size %d "
4824 "(should be %zd)\n",
4825 size, sizeof(*x));
4826 break;
4829 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4830 struct notif_link_deterioration *x =
4831 &notif->u.link_deterioration;
4833 if (size == sizeof(*x)) {
4834 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4835 "link deterioration: type %d, cnt %d\n",
4836 x->silence_notification_type,
4837 x->silence_count);
4838 memcpy(&priv->last_link_deterioration, x,
4839 sizeof(*x));
4840 } else {
4841 IPW_ERROR("Link Deterioration of wrong size %d "
4842 "(should be %zd)\n",
4843 size, sizeof(*x));
4845 break;
4848 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4849 IPW_ERROR("Dino config\n");
4850 if (priv->hcmd
4851 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4852 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4854 break;
4857 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4858 struct notif_beacon_state *x = &notif->u.beacon_state;
4859 if (size != sizeof(*x)) {
4860 IPW_ERROR
4861 ("Beacon state of wrong size %d (should "
4862 "be %zd)\n", size, sizeof(*x));
4863 break;
4866 if (le32_to_cpu(x->state) ==
4867 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4868 ipw_handle_missed_beacon(priv,
4869 le32_to_cpu(x->
4870 number));
4872 break;
4875 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4876 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4877 if (size == sizeof(*x)) {
4878 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4879 "0x%02x station %d\n",
4880 x->key_state, x->security_type,
4881 x->station_index);
4882 break;
4885 IPW_ERROR
4886 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4887 size, sizeof(*x));
4888 break;
4891 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4892 struct notif_calibration *x = &notif->u.calibration;
4894 if (size == sizeof(*x)) {
4895 memcpy(&priv->calib, x, sizeof(*x));
4896 IPW_DEBUG_INFO("TODO: Calibration\n");
4897 break;
4900 IPW_ERROR
4901 ("Calibration of wrong size %d (should be %zd)\n",
4902 size, sizeof(*x));
4903 break;
4906 case HOST_NOTIFICATION_NOISE_STATS:{
4907 if (size == sizeof(u32)) {
4908 priv->exp_avg_noise =
4909 exponential_average(priv->exp_avg_noise,
4910 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4911 DEPTH_NOISE);
4912 break;
4915 IPW_ERROR
4916 ("Noise stat is wrong size %d (should be %zd)\n",
4917 size, sizeof(u32));
4918 break;
4921 default:
4922 IPW_DEBUG_NOTIF("Unknown notification: "
4923 "subtype=%d,flags=0x%2x,size=%d\n",
4924 notif->subtype, notif->flags, size);
4929 * Destroys all DMA structures and initialise them again
4931 * @param priv
4932 * @return error code
4934 static int ipw_queue_reset(struct ipw_priv *priv)
4936 int rc = 0;
4937 /** @todo customize queue sizes */
4938 int nTx = 64, nTxCmd = 8;
4939 ipw_tx_queue_free(priv);
4940 /* Tx CMD queue */
4941 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4942 IPW_TX_CMD_QUEUE_READ_INDEX,
4943 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4944 IPW_TX_CMD_QUEUE_BD_BASE,
4945 IPW_TX_CMD_QUEUE_BD_SIZE);
4946 if (rc) {
4947 IPW_ERROR("Tx Cmd queue init failed\n");
4948 goto error;
4950 /* Tx queue(s) */
4951 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4952 IPW_TX_QUEUE_0_READ_INDEX,
4953 IPW_TX_QUEUE_0_WRITE_INDEX,
4954 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4955 if (rc) {
4956 IPW_ERROR("Tx 0 queue init failed\n");
4957 goto error;
4959 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4960 IPW_TX_QUEUE_1_READ_INDEX,
4961 IPW_TX_QUEUE_1_WRITE_INDEX,
4962 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4963 if (rc) {
4964 IPW_ERROR("Tx 1 queue init failed\n");
4965 goto error;
4967 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4968 IPW_TX_QUEUE_2_READ_INDEX,
4969 IPW_TX_QUEUE_2_WRITE_INDEX,
4970 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4971 if (rc) {
4972 IPW_ERROR("Tx 2 queue init failed\n");
4973 goto error;
4975 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4976 IPW_TX_QUEUE_3_READ_INDEX,
4977 IPW_TX_QUEUE_3_WRITE_INDEX,
4978 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4979 if (rc) {
4980 IPW_ERROR("Tx 3 queue init failed\n");
4981 goto error;
4983 /* statistics */
4984 priv->rx_bufs_min = 0;
4985 priv->rx_pend_max = 0;
4986 return rc;
4988 error:
4989 ipw_tx_queue_free(priv);
4990 return rc;
4994 * Reclaim Tx queue entries no more used by NIC.
4996 * When FW advances 'R' index, all entries between old and
4997 * new 'R' index need to be reclaimed. As result, some free space
4998 * forms. If there is enough free space (> low mark), wake Tx queue.
5000 * @note Need to protect against garbage in 'R' index
5001 * @param priv
5002 * @param txq
5003 * @param qindex
5004 * @return Number of used entries remains in the queue
5006 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5007 struct clx2_tx_queue *txq, int qindex)
5009 u32 hw_tail;
5010 int used;
5011 struct clx2_queue *q = &txq->q;
5013 hw_tail = ipw_read32(priv, q->reg_r);
5014 if (hw_tail >= q->n_bd) {
5015 IPW_ERROR
5016 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5017 hw_tail, q->n_bd);
5018 goto done;
5020 for (; q->last_used != hw_tail;
5021 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5022 ipw_queue_tx_free_tfd(priv, txq);
5023 priv->tx_packets++;
5025 done:
5026 if ((ipw_tx_queue_space(q) > q->low_mark) &&
5027 (qindex >= 0))
5028 netif_wake_queue(priv->net_dev);
5029 used = q->first_empty - q->last_used;
5030 if (used < 0)
5031 used += q->n_bd;
5033 return used;
5036 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5037 int len, int sync)
5039 struct clx2_tx_queue *txq = &priv->txq_cmd;
5040 struct clx2_queue *q = &txq->q;
5041 struct tfd_frame *tfd;
5043 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5044 IPW_ERROR("No space for Tx\n");
5045 return -EBUSY;
5048 tfd = &txq->bd[q->first_empty];
5049 txq->txb[q->first_empty] = NULL;
5051 memset(tfd, 0, sizeof(*tfd));
5052 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5053 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5054 priv->hcmd_seq++;
5055 tfd->u.cmd.index = hcmd;
5056 tfd->u.cmd.length = len;
5057 memcpy(tfd->u.cmd.payload, buf, len);
5058 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5059 ipw_write32(priv, q->reg_w, q->first_empty);
5060 _ipw_read32(priv, 0x90);
5062 return 0;
5066 * Rx theory of operation
5068 * The host allocates 32 DMA target addresses and passes the host address
5069 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5070 * 0 to 31
5072 * Rx Queue Indexes
5073 * The host/firmware share two index registers for managing the Rx buffers.
5075 * The READ index maps to the first position that the firmware may be writing
5076 * to -- the driver can read up to (but not including) this position and get
5077 * good data.
5078 * The READ index is managed by the firmware once the card is enabled.
5080 * The WRITE index maps to the last position the driver has read from -- the
5081 * position preceding WRITE is the last slot the firmware can place a packet.
5083 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5084 * WRITE = READ.
5086 * During initialization the host sets up the READ queue position to the first
5087 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5089 * When the firmware places a packet in a buffer it will advance the READ index
5090 * and fire the RX interrupt. The driver can then query the READ index and
5091 * process as many packets as possible, moving the WRITE index forward as it
5092 * resets the Rx queue buffers with new memory.
5094 * The management in the driver is as follows:
5095 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5096 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5097 * to replensish the ipw->rxq->rx_free.
5098 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5099 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5100 * 'processed' and 'read' driver indexes as well)
5101 * + A received packet is processed and handed to the kernel network stack,
5102 * detached from the ipw->rxq. The driver 'processed' index is updated.
5103 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5104 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5105 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5106 * were enough free buffers and RX_STALLED is set it is cleared.
5109 * Driver sequence:
5111 * ipw_rx_queue_alloc() Allocates rx_free
5112 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5113 * ipw_rx_queue_restock
5114 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5115 * queue, updates firmware pointers, and updates
5116 * the WRITE index. If insufficient rx_free buffers
5117 * are available, schedules ipw_rx_queue_replenish
5119 * -- enable interrupts --
5120 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5121 * READ INDEX, detaching the SKB from the pool.
5122 * Moves the packet buffer from queue to rx_used.
5123 * Calls ipw_rx_queue_restock to refill any empty
5124 * slots.
5125 * ...
5130 * If there are slots in the RX queue that need to be restocked,
5131 * and we have free pre-allocated buffers, fill the ranks as much
5132 * as we can pulling from rx_free.
5134 * This moves the 'write' index forward to catch up with 'processed', and
5135 * also updates the memory address in the firmware to reference the new
5136 * target buffer.
5138 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5140 struct ipw_rx_queue *rxq = priv->rxq;
5141 struct list_head *element;
5142 struct ipw_rx_mem_buffer *rxb;
5143 unsigned long flags;
5144 int write;
5146 spin_lock_irqsave(&rxq->lock, flags);
5147 write = rxq->write;
5148 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5149 element = rxq->rx_free.next;
5150 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5151 list_del(element);
5153 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5154 rxb->dma_addr);
5155 rxq->queue[rxq->write] = rxb;
5156 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5157 rxq->free_count--;
5159 spin_unlock_irqrestore(&rxq->lock, flags);
5161 /* If the pre-allocated buffer pool is dropping low, schedule to
5162 * refill it */
5163 if (rxq->free_count <= RX_LOW_WATERMARK)
5164 schedule_work(&priv->rx_replenish);
5166 /* If we've added more space for the firmware to place data, tell it */
5167 if (write != rxq->write)
5168 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5172 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5173 * Also restock the Rx queue via ipw_rx_queue_restock.
5175 * This is called as a scheduled work item (except for during initialization)
5177 static void ipw_rx_queue_replenish(void *data)
5179 struct ipw_priv *priv = data;
5180 struct ipw_rx_queue *rxq = priv->rxq;
5181 struct list_head *element;
5182 struct ipw_rx_mem_buffer *rxb;
5183 unsigned long flags;
5185 spin_lock_irqsave(&rxq->lock, flags);
5186 while (!list_empty(&rxq->rx_used)) {
5187 element = rxq->rx_used.next;
5188 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5189 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5190 if (!rxb->skb) {
5191 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5192 priv->net_dev->name);
5193 /* We don't reschedule replenish work here -- we will
5194 * call the restock method and if it still needs
5195 * more buffers it will schedule replenish */
5196 break;
5198 list_del(element);
5200 rxb->dma_addr =
5201 pci_map_single(priv->pci_dev, rxb->skb->data,
5202 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5204 list_add_tail(&rxb->list, &rxq->rx_free);
5205 rxq->free_count++;
5207 spin_unlock_irqrestore(&rxq->lock, flags);
5209 ipw_rx_queue_restock(priv);
5212 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5214 struct ipw_priv *priv =
5215 container_of(work, struct ipw_priv, rx_replenish);
5216 mutex_lock(&priv->mutex);
5217 ipw_rx_queue_replenish(priv);
5218 mutex_unlock(&priv->mutex);
5221 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5222 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5223 * This free routine walks the list of POOL entries and if SKB is set to
5224 * non NULL it is unmapped and freed
5226 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5228 int i;
5230 if (!rxq)
5231 return;
5233 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5234 if (rxq->pool[i].skb != NULL) {
5235 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5236 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5237 dev_kfree_skb(rxq->pool[i].skb);
5241 kfree(rxq);
5244 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5246 struct ipw_rx_queue *rxq;
5247 int i;
5249 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5250 if (unlikely(!rxq)) {
5251 IPW_ERROR("memory allocation failed\n");
5252 return NULL;
5254 spin_lock_init(&rxq->lock);
5255 INIT_LIST_HEAD(&rxq->rx_free);
5256 INIT_LIST_HEAD(&rxq->rx_used);
5258 /* Fill the rx_used queue with _all_ of the Rx buffers */
5259 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5260 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5262 /* Set us so that we have processed and used all buffers, but have
5263 * not restocked the Rx queue with fresh buffers */
5264 rxq->read = rxq->write = 0;
5265 rxq->free_count = 0;
5267 return rxq;
5270 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5272 rate &= ~LIBIPW_BASIC_RATE_MASK;
5273 if (ieee_mode == IEEE_A) {
5274 switch (rate) {
5275 case LIBIPW_OFDM_RATE_6MB:
5276 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5277 1 : 0;
5278 case LIBIPW_OFDM_RATE_9MB:
5279 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5280 1 : 0;
5281 case LIBIPW_OFDM_RATE_12MB:
5282 return priv->
5283 rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5284 case LIBIPW_OFDM_RATE_18MB:
5285 return priv->
5286 rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5287 case LIBIPW_OFDM_RATE_24MB:
5288 return priv->
5289 rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5290 case LIBIPW_OFDM_RATE_36MB:
5291 return priv->
5292 rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5293 case LIBIPW_OFDM_RATE_48MB:
5294 return priv->
5295 rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5296 case LIBIPW_OFDM_RATE_54MB:
5297 return priv->
5298 rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5299 default:
5300 return 0;
5304 /* B and G mixed */
5305 switch (rate) {
5306 case LIBIPW_CCK_RATE_1MB:
5307 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5308 case LIBIPW_CCK_RATE_2MB:
5309 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5310 case LIBIPW_CCK_RATE_5MB:
5311 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5312 case LIBIPW_CCK_RATE_11MB:
5313 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5316 /* If we are limited to B modulations, bail at this point */
5317 if (ieee_mode == IEEE_B)
5318 return 0;
5320 /* G */
5321 switch (rate) {
5322 case LIBIPW_OFDM_RATE_6MB:
5323 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5324 case LIBIPW_OFDM_RATE_9MB:
5325 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5326 case LIBIPW_OFDM_RATE_12MB:
5327 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5328 case LIBIPW_OFDM_RATE_18MB:
5329 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5330 case LIBIPW_OFDM_RATE_24MB:
5331 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5332 case LIBIPW_OFDM_RATE_36MB:
5333 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5334 case LIBIPW_OFDM_RATE_48MB:
5335 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5336 case LIBIPW_OFDM_RATE_54MB:
5337 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5340 return 0;
5343 static int ipw_compatible_rates(struct ipw_priv *priv,
5344 const struct libipw_network *network,
5345 struct ipw_supported_rates *rates)
5347 int num_rates, i;
5349 memset(rates, 0, sizeof(*rates));
5350 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5351 rates->num_rates = 0;
5352 for (i = 0; i < num_rates; i++) {
5353 if (!ipw_is_rate_in_mask(priv, network->mode,
5354 network->rates[i])) {
5356 if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5357 IPW_DEBUG_SCAN("Adding masked mandatory "
5358 "rate %02X\n",
5359 network->rates[i]);
5360 rates->supported_rates[rates->num_rates++] =
5361 network->rates[i];
5362 continue;
5365 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5366 network->rates[i], priv->rates_mask);
5367 continue;
5370 rates->supported_rates[rates->num_rates++] = network->rates[i];
5373 num_rates = min(network->rates_ex_len,
5374 (u8) (IPW_MAX_RATES - num_rates));
5375 for (i = 0; i < num_rates; i++) {
5376 if (!ipw_is_rate_in_mask(priv, network->mode,
5377 network->rates_ex[i])) {
5378 if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5379 IPW_DEBUG_SCAN("Adding masked mandatory "
5380 "rate %02X\n",
5381 network->rates_ex[i]);
5382 rates->supported_rates[rates->num_rates++] =
5383 network->rates[i];
5384 continue;
5387 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5388 network->rates_ex[i], priv->rates_mask);
5389 continue;
5392 rates->supported_rates[rates->num_rates++] =
5393 network->rates_ex[i];
5396 return 1;
5399 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5400 const struct ipw_supported_rates *src)
5402 u8 i;
5403 for (i = 0; i < src->num_rates; i++)
5404 dest->supported_rates[i] = src->supported_rates[i];
5405 dest->num_rates = src->num_rates;
5408 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5409 * mask should ever be used -- right now all callers to add the scan rates are
5410 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5411 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5412 u8 modulation, u32 rate_mask)
5414 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5415 LIBIPW_BASIC_RATE_MASK : 0;
5417 if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5418 rates->supported_rates[rates->num_rates++] =
5419 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5421 if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5422 rates->supported_rates[rates->num_rates++] =
5423 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5425 if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5426 rates->supported_rates[rates->num_rates++] = basic_mask |
5427 LIBIPW_CCK_RATE_5MB;
5429 if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5430 rates->supported_rates[rates->num_rates++] = basic_mask |
5431 LIBIPW_CCK_RATE_11MB;
5434 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5435 u8 modulation, u32 rate_mask)
5437 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5438 LIBIPW_BASIC_RATE_MASK : 0;
5440 if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5441 rates->supported_rates[rates->num_rates++] = basic_mask |
5442 LIBIPW_OFDM_RATE_6MB;
5444 if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5445 rates->supported_rates[rates->num_rates++] =
5446 LIBIPW_OFDM_RATE_9MB;
5448 if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5449 rates->supported_rates[rates->num_rates++] = basic_mask |
5450 LIBIPW_OFDM_RATE_12MB;
5452 if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5453 rates->supported_rates[rates->num_rates++] =
5454 LIBIPW_OFDM_RATE_18MB;
5456 if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5457 rates->supported_rates[rates->num_rates++] = basic_mask |
5458 LIBIPW_OFDM_RATE_24MB;
5460 if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5461 rates->supported_rates[rates->num_rates++] =
5462 LIBIPW_OFDM_RATE_36MB;
5464 if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5465 rates->supported_rates[rates->num_rates++] =
5466 LIBIPW_OFDM_RATE_48MB;
5468 if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5469 rates->supported_rates[rates->num_rates++] =
5470 LIBIPW_OFDM_RATE_54MB;
5473 struct ipw_network_match {
5474 struct libipw_network *network;
5475 struct ipw_supported_rates rates;
5478 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5479 struct ipw_network_match *match,
5480 struct libipw_network *network,
5481 int roaming)
5483 struct ipw_supported_rates rates;
5485 /* Verify that this network's capability is compatible with the
5486 * current mode (AdHoc or Infrastructure) */
5487 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5488 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5489 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5490 network->ssid_len, network->ssid,
5491 network->bssid);
5492 return 0;
5495 if (unlikely(roaming)) {
5496 /* If we are roaming, then ensure check if this is a valid
5497 * network to try and roam to */
5498 if ((network->ssid_len != match->network->ssid_len) ||
5499 memcmp(network->ssid, match->network->ssid,
5500 network->ssid_len)) {
5501 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5502 network->ssid_len, network->ssid,
5503 network->bssid);
5504 return 0;
5506 } else {
5507 /* If an ESSID has been configured then compare the broadcast
5508 * ESSID to ours */
5509 if ((priv->config & CFG_STATIC_ESSID) &&
5510 ((network->ssid_len != priv->essid_len) ||
5511 memcmp(network->ssid, priv->essid,
5512 min(network->ssid_len, priv->essid_len)))) {
5513 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5514 network->ssid_len, network->ssid,
5515 network->bssid, priv->essid_len,
5516 priv->essid);
5517 return 0;
5521 /* If the old network rate is better than this one, don't bother
5522 * testing everything else. */
5524 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5525 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5526 match->network->ssid_len, match->network->ssid);
5527 return 0;
5528 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5529 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5530 match->network->ssid_len, match->network->ssid);
5531 return 0;
5534 /* Now go through and see if the requested network is valid... */
5535 if (priv->ieee->scan_age != 0 &&
5536 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5537 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5538 network->ssid_len, network->ssid,
5539 network->bssid,
5540 jiffies_to_msecs(jiffies -
5541 network->last_scanned));
5542 return 0;
5545 if ((priv->config & CFG_STATIC_CHANNEL) &&
5546 (network->channel != priv->channel)) {
5547 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5548 network->ssid_len, network->ssid,
5549 network->bssid,
5550 network->channel, priv->channel);
5551 return 0;
5554 /* Verify privacy compatibility */
5555 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5556 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5557 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5558 network->ssid_len, network->ssid,
5559 network->bssid,
5560 priv->
5561 capability & CAP_PRIVACY_ON ? "on" : "off",
5562 network->
5563 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5564 "off");
5565 return 0;
5568 if (ether_addr_equal(network->bssid, priv->bssid)) {
5569 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5570 network->ssid_len, network->ssid,
5571 network->bssid, priv->bssid);
5572 return 0;
5575 /* Filter out any incompatible freq / mode combinations */
5576 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5577 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5578 network->ssid_len, network->ssid,
5579 network->bssid);
5580 return 0;
5583 /* Ensure that the rates supported by the driver are compatible with
5584 * this AP, including verification of basic rates (mandatory) */
5585 if (!ipw_compatible_rates(priv, network, &rates)) {
5586 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5587 network->ssid_len, network->ssid,
5588 network->bssid);
5589 return 0;
5592 if (rates.num_rates == 0) {
5593 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5594 network->ssid_len, network->ssid,
5595 network->bssid);
5596 return 0;
5599 /* TODO: Perform any further minimal comparititive tests. We do not
5600 * want to put too much policy logic here; intelligent scan selection
5601 * should occur within a generic IEEE 802.11 user space tool. */
5603 /* Set up 'new' AP to this network */
5604 ipw_copy_rates(&match->rates, &rates);
5605 match->network = network;
5606 IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5607 network->ssid_len, network->ssid, network->bssid);
5609 return 1;
5612 static void ipw_merge_adhoc_network(struct work_struct *work)
5614 struct ipw_priv *priv =
5615 container_of(work, struct ipw_priv, merge_networks);
5616 struct libipw_network *network = NULL;
5617 struct ipw_network_match match = {
5618 .network = priv->assoc_network
5621 if ((priv->status & STATUS_ASSOCIATED) &&
5622 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5623 /* First pass through ROAM process -- look for a better
5624 * network */
5625 unsigned long flags;
5627 spin_lock_irqsave(&priv->ieee->lock, flags);
5628 list_for_each_entry(network, &priv->ieee->network_list, list) {
5629 if (network != priv->assoc_network)
5630 ipw_find_adhoc_network(priv, &match, network,
5633 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5635 if (match.network == priv->assoc_network) {
5636 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5637 "merge to.\n");
5638 return;
5641 mutex_lock(&priv->mutex);
5642 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5643 IPW_DEBUG_MERGE("remove network %*pE\n",
5644 priv->essid_len, priv->essid);
5645 ipw_remove_current_network(priv);
5648 ipw_disassociate(priv);
5649 priv->assoc_network = match.network;
5650 mutex_unlock(&priv->mutex);
5651 return;
5655 static int ipw_best_network(struct ipw_priv *priv,
5656 struct ipw_network_match *match,
5657 struct libipw_network *network, int roaming)
5659 struct ipw_supported_rates rates;
5661 /* Verify that this network's capability is compatible with the
5662 * current mode (AdHoc or Infrastructure) */
5663 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5664 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5665 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5666 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5667 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5668 network->ssid_len, network->ssid,
5669 network->bssid);
5670 return 0;
5673 if (unlikely(roaming)) {
5674 /* If we are roaming, then ensure check if this is a valid
5675 * network to try and roam to */
5676 if ((network->ssid_len != match->network->ssid_len) ||
5677 memcmp(network->ssid, match->network->ssid,
5678 network->ssid_len)) {
5679 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5680 network->ssid_len, network->ssid,
5681 network->bssid);
5682 return 0;
5684 } else {
5685 /* If an ESSID has been configured then compare the broadcast
5686 * ESSID to ours */
5687 if ((priv->config & CFG_STATIC_ESSID) &&
5688 ((network->ssid_len != priv->essid_len) ||
5689 memcmp(network->ssid, priv->essid,
5690 min(network->ssid_len, priv->essid_len)))) {
5691 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5692 network->ssid_len, network->ssid,
5693 network->bssid, priv->essid_len,
5694 priv->essid);
5695 return 0;
5699 /* If the old network rate is better than this one, don't bother
5700 * testing everything else. */
5701 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5702 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5703 network->ssid_len, network->ssid,
5704 network->bssid, match->network->ssid_len,
5705 match->network->ssid, match->network->bssid);
5706 return 0;
5709 /* If this network has already had an association attempt within the
5710 * last 3 seconds, do not try and associate again... */
5711 if (network->last_associate &&
5712 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5713 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5714 network->ssid_len, network->ssid,
5715 network->bssid,
5716 jiffies_to_msecs(jiffies -
5717 network->last_associate));
5718 return 0;
5721 /* Now go through and see if the requested network is valid... */
5722 if (priv->ieee->scan_age != 0 &&
5723 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5724 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5725 network->ssid_len, network->ssid,
5726 network->bssid,
5727 jiffies_to_msecs(jiffies -
5728 network->last_scanned));
5729 return 0;
5732 if ((priv->config & CFG_STATIC_CHANNEL) &&
5733 (network->channel != priv->channel)) {
5734 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5735 network->ssid_len, network->ssid,
5736 network->bssid,
5737 network->channel, priv->channel);
5738 return 0;
5741 /* Verify privacy compatibility */
5742 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5743 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5744 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5745 network->ssid_len, network->ssid,
5746 network->bssid,
5747 priv->capability & CAP_PRIVACY_ON ? "on" :
5748 "off",
5749 network->capability &
5750 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5751 return 0;
5754 if ((priv->config & CFG_STATIC_BSSID) &&
5755 !ether_addr_equal(network->bssid, priv->bssid)) {
5756 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5757 network->ssid_len, network->ssid,
5758 network->bssid, priv->bssid);
5759 return 0;
5762 /* Filter out any incompatible freq / mode combinations */
5763 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5764 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5765 network->ssid_len, network->ssid,
5766 network->bssid);
5767 return 0;
5770 /* Filter out invalid channel in current GEO */
5771 if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5772 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5773 network->ssid_len, network->ssid,
5774 network->bssid);
5775 return 0;
5778 /* Ensure that the rates supported by the driver are compatible with
5779 * this AP, including verification of basic rates (mandatory) */
5780 if (!ipw_compatible_rates(priv, network, &rates)) {
5781 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5782 network->ssid_len, network->ssid,
5783 network->bssid);
5784 return 0;
5787 if (rates.num_rates == 0) {
5788 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5789 network->ssid_len, network->ssid,
5790 network->bssid);
5791 return 0;
5794 /* TODO: Perform any further minimal comparititive tests. We do not
5795 * want to put too much policy logic here; intelligent scan selection
5796 * should occur within a generic IEEE 802.11 user space tool. */
5798 /* Set up 'new' AP to this network */
5799 ipw_copy_rates(&match->rates, &rates);
5800 match->network = network;
5802 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5803 network->ssid_len, network->ssid, network->bssid);
5805 return 1;
5808 static void ipw_adhoc_create(struct ipw_priv *priv,
5809 struct libipw_network *network)
5811 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5812 int i;
5815 * For the purposes of scanning, we can set our wireless mode
5816 * to trigger scans across combinations of bands, but when it
5817 * comes to creating a new ad-hoc network, we have tell the FW
5818 * exactly which band to use.
5820 * We also have the possibility of an invalid channel for the
5821 * chossen band. Attempting to create a new ad-hoc network
5822 * with an invalid channel for wireless mode will trigger a
5823 * FW fatal error.
5826 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5827 case LIBIPW_52GHZ_BAND:
5828 network->mode = IEEE_A;
5829 i = libipw_channel_to_index(priv->ieee, priv->channel);
5830 BUG_ON(i == -1);
5831 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5832 IPW_WARNING("Overriding invalid channel\n");
5833 priv->channel = geo->a[0].channel;
5835 break;
5837 case LIBIPW_24GHZ_BAND:
5838 if (priv->ieee->mode & IEEE_G)
5839 network->mode = IEEE_G;
5840 else
5841 network->mode = IEEE_B;
5842 i = libipw_channel_to_index(priv->ieee, priv->channel);
5843 BUG_ON(i == -1);
5844 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5845 IPW_WARNING("Overriding invalid channel\n");
5846 priv->channel = geo->bg[0].channel;
5848 break;
5850 default:
5851 IPW_WARNING("Overriding invalid channel\n");
5852 if (priv->ieee->mode & IEEE_A) {
5853 network->mode = IEEE_A;
5854 priv->channel = geo->a[0].channel;
5855 } else if (priv->ieee->mode & IEEE_G) {
5856 network->mode = IEEE_G;
5857 priv->channel = geo->bg[0].channel;
5858 } else {
5859 network->mode = IEEE_B;
5860 priv->channel = geo->bg[0].channel;
5862 break;
5865 network->channel = priv->channel;
5866 priv->config |= CFG_ADHOC_PERSIST;
5867 ipw_create_bssid(priv, network->bssid);
5868 network->ssid_len = priv->essid_len;
5869 memcpy(network->ssid, priv->essid, priv->essid_len);
5870 memset(&network->stats, 0, sizeof(network->stats));
5871 network->capability = WLAN_CAPABILITY_IBSS;
5872 if (!(priv->config & CFG_PREAMBLE_LONG))
5873 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5874 if (priv->capability & CAP_PRIVACY_ON)
5875 network->capability |= WLAN_CAPABILITY_PRIVACY;
5876 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5877 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5878 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5879 memcpy(network->rates_ex,
5880 &priv->rates.supported_rates[network->rates_len],
5881 network->rates_ex_len);
5882 network->last_scanned = 0;
5883 network->flags = 0;
5884 network->last_associate = 0;
5885 network->time_stamp[0] = 0;
5886 network->time_stamp[1] = 0;
5887 network->beacon_interval = 100; /* Default */
5888 network->listen_interval = 10; /* Default */
5889 network->atim_window = 0; /* Default */
5890 network->wpa_ie_len = 0;
5891 network->rsn_ie_len = 0;
5894 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5896 struct ipw_tgi_tx_key key;
5898 if (!(priv->ieee->sec.flags & (1 << index)))
5899 return;
5901 key.key_id = index;
5902 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5903 key.security_type = type;
5904 key.station_index = 0; /* always 0 for BSS */
5905 key.flags = 0;
5906 /* 0 for new key; previous value of counter (after fatal error) */
5907 key.tx_counter[0] = cpu_to_le32(0);
5908 key.tx_counter[1] = cpu_to_le32(0);
5910 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5913 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5915 struct ipw_wep_key key;
5916 int i;
5918 key.cmd_id = DINO_CMD_WEP_KEY;
5919 key.seq_num = 0;
5921 /* Note: AES keys cannot be set for multiple times.
5922 * Only set it at the first time. */
5923 for (i = 0; i < 4; i++) {
5924 key.key_index = i | type;
5925 if (!(priv->ieee->sec.flags & (1 << i))) {
5926 key.key_size = 0;
5927 continue;
5930 key.key_size = priv->ieee->sec.key_sizes[i];
5931 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5933 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5937 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5939 if (priv->ieee->host_encrypt)
5940 return;
5942 switch (level) {
5943 case SEC_LEVEL_3:
5944 priv->sys_config.disable_unicast_decryption = 0;
5945 priv->ieee->host_decrypt = 0;
5946 break;
5947 case SEC_LEVEL_2:
5948 priv->sys_config.disable_unicast_decryption = 1;
5949 priv->ieee->host_decrypt = 1;
5950 break;
5951 case SEC_LEVEL_1:
5952 priv->sys_config.disable_unicast_decryption = 0;
5953 priv->ieee->host_decrypt = 0;
5954 break;
5955 case SEC_LEVEL_0:
5956 priv->sys_config.disable_unicast_decryption = 1;
5957 break;
5958 default:
5959 break;
5963 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5965 if (priv->ieee->host_encrypt)
5966 return;
5968 switch (level) {
5969 case SEC_LEVEL_3:
5970 priv->sys_config.disable_multicast_decryption = 0;
5971 break;
5972 case SEC_LEVEL_2:
5973 priv->sys_config.disable_multicast_decryption = 1;
5974 break;
5975 case SEC_LEVEL_1:
5976 priv->sys_config.disable_multicast_decryption = 0;
5977 break;
5978 case SEC_LEVEL_0:
5979 priv->sys_config.disable_multicast_decryption = 1;
5980 break;
5981 default:
5982 break;
5986 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5988 switch (priv->ieee->sec.level) {
5989 case SEC_LEVEL_3:
5990 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5991 ipw_send_tgi_tx_key(priv,
5992 DCT_FLAG_EXT_SECURITY_CCM,
5993 priv->ieee->sec.active_key);
5995 if (!priv->ieee->host_mc_decrypt)
5996 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5997 break;
5998 case SEC_LEVEL_2:
5999 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6000 ipw_send_tgi_tx_key(priv,
6001 DCT_FLAG_EXT_SECURITY_TKIP,
6002 priv->ieee->sec.active_key);
6003 break;
6004 case SEC_LEVEL_1:
6005 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6006 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6007 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6008 break;
6009 case SEC_LEVEL_0:
6010 default:
6011 break;
6015 static void ipw_adhoc_check(void *data)
6017 struct ipw_priv *priv = data;
6019 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6020 !(priv->config & CFG_ADHOC_PERSIST)) {
6021 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6022 IPW_DL_STATE | IPW_DL_ASSOC,
6023 "Missed beacon: %d - disassociate\n",
6024 priv->missed_adhoc_beacons);
6025 ipw_remove_current_network(priv);
6026 ipw_disassociate(priv);
6027 return;
6030 schedule_delayed_work(&priv->adhoc_check,
6031 le16_to_cpu(priv->assoc_request.beacon_interval));
6034 static void ipw_bg_adhoc_check(struct work_struct *work)
6036 struct ipw_priv *priv =
6037 container_of(work, struct ipw_priv, adhoc_check.work);
6038 mutex_lock(&priv->mutex);
6039 ipw_adhoc_check(priv);
6040 mutex_unlock(&priv->mutex);
6043 static void ipw_debug_config(struct ipw_priv *priv)
6045 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6046 "[CFG 0x%08X]\n", priv->config);
6047 if (priv->config & CFG_STATIC_CHANNEL)
6048 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6049 else
6050 IPW_DEBUG_INFO("Channel unlocked.\n");
6051 if (priv->config & CFG_STATIC_ESSID)
6052 IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6053 priv->essid_len, priv->essid);
6054 else
6055 IPW_DEBUG_INFO("ESSID unlocked.\n");
6056 if (priv->config & CFG_STATIC_BSSID)
6057 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6058 else
6059 IPW_DEBUG_INFO("BSSID unlocked.\n");
6060 if (priv->capability & CAP_PRIVACY_ON)
6061 IPW_DEBUG_INFO("PRIVACY on\n");
6062 else
6063 IPW_DEBUG_INFO("PRIVACY off\n");
6064 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6067 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6069 /* TODO: Verify that this works... */
6070 struct ipw_fixed_rate fr;
6071 u32 reg;
6072 u16 mask = 0;
6073 u16 new_tx_rates = priv->rates_mask;
6075 /* Identify 'current FW band' and match it with the fixed
6076 * Tx rates */
6078 switch (priv->ieee->freq_band) {
6079 case LIBIPW_52GHZ_BAND: /* A only */
6080 /* IEEE_A */
6081 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6082 /* Invalid fixed rate mask */
6083 IPW_DEBUG_WX
6084 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6085 new_tx_rates = 0;
6086 break;
6089 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6090 break;
6092 default: /* 2.4Ghz or Mixed */
6093 /* IEEE_B */
6094 if (mode == IEEE_B) {
6095 if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6096 /* Invalid fixed rate mask */
6097 IPW_DEBUG_WX
6098 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6099 new_tx_rates = 0;
6101 break;
6104 /* IEEE_G */
6105 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6106 LIBIPW_OFDM_RATES_MASK)) {
6107 /* Invalid fixed rate mask */
6108 IPW_DEBUG_WX
6109 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6110 new_tx_rates = 0;
6111 break;
6114 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6115 mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6116 new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6119 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6120 mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6121 new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6124 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6125 mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6126 new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6129 new_tx_rates |= mask;
6130 break;
6133 fr.tx_rates = cpu_to_le16(new_tx_rates);
6135 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6136 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6139 static void ipw_abort_scan(struct ipw_priv *priv)
6141 int err;
6143 if (priv->status & STATUS_SCAN_ABORTING) {
6144 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6145 return;
6147 priv->status |= STATUS_SCAN_ABORTING;
6149 err = ipw_send_scan_abort(priv);
6150 if (err)
6151 IPW_DEBUG_HC("Request to abort scan failed.\n");
6154 static void ipw_add_scan_channels(struct ipw_priv *priv,
6155 struct ipw_scan_request_ext *scan,
6156 int scan_type)
6158 int channel_index = 0;
6159 const struct libipw_geo *geo;
6160 int i;
6162 geo = libipw_get_geo(priv->ieee);
6164 if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6165 int start = channel_index;
6166 for (i = 0; i < geo->a_channels; i++) {
6167 if ((priv->status & STATUS_ASSOCIATED) &&
6168 geo->a[i].channel == priv->channel)
6169 continue;
6170 channel_index++;
6171 scan->channels_list[channel_index] = geo->a[i].channel;
6172 ipw_set_scan_type(scan, channel_index,
6173 geo->a[i].
6174 flags & LIBIPW_CH_PASSIVE_ONLY ?
6175 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6176 scan_type);
6179 if (start != channel_index) {
6180 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6181 (channel_index - start);
6182 channel_index++;
6186 if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6187 int start = channel_index;
6188 if (priv->config & CFG_SPEED_SCAN) {
6189 int index;
6190 u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6191 /* nop out the list */
6192 [0] = 0
6195 u8 channel;
6196 while (channel_index < IPW_SCAN_CHANNELS - 1) {
6197 channel =
6198 priv->speed_scan[priv->speed_scan_pos];
6199 if (channel == 0) {
6200 priv->speed_scan_pos = 0;
6201 channel = priv->speed_scan[0];
6203 if ((priv->status & STATUS_ASSOCIATED) &&
6204 channel == priv->channel) {
6205 priv->speed_scan_pos++;
6206 continue;
6209 /* If this channel has already been
6210 * added in scan, break from loop
6211 * and this will be the first channel
6212 * in the next scan.
6214 if (channels[channel - 1] != 0)
6215 break;
6217 channels[channel - 1] = 1;
6218 priv->speed_scan_pos++;
6219 channel_index++;
6220 scan->channels_list[channel_index] = channel;
6221 index =
6222 libipw_channel_to_index(priv->ieee, channel);
6223 ipw_set_scan_type(scan, channel_index,
6224 geo->bg[index].
6225 flags &
6226 LIBIPW_CH_PASSIVE_ONLY ?
6227 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6228 : scan_type);
6230 } else {
6231 for (i = 0; i < geo->bg_channels; i++) {
6232 if ((priv->status & STATUS_ASSOCIATED) &&
6233 geo->bg[i].channel == priv->channel)
6234 continue;
6235 channel_index++;
6236 scan->channels_list[channel_index] =
6237 geo->bg[i].channel;
6238 ipw_set_scan_type(scan, channel_index,
6239 geo->bg[i].
6240 flags &
6241 LIBIPW_CH_PASSIVE_ONLY ?
6242 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6243 : scan_type);
6247 if (start != channel_index) {
6248 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6249 (channel_index - start);
6254 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6256 /* staying on passive channels longer than the DTIM interval during a
6257 * scan, while associated, causes the firmware to cancel the scan
6258 * without notification. Hence, don't stay on passive channels longer
6259 * than the beacon interval.
6261 if (priv->status & STATUS_ASSOCIATED
6262 && priv->assoc_network->beacon_interval > 10)
6263 return priv->assoc_network->beacon_interval - 10;
6264 else
6265 return 120;
6268 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6270 struct ipw_scan_request_ext scan;
6271 int err = 0, scan_type;
6273 if (!(priv->status & STATUS_INIT) ||
6274 (priv->status & STATUS_EXIT_PENDING))
6275 return 0;
6277 mutex_lock(&priv->mutex);
6279 if (direct && (priv->direct_scan_ssid_len == 0)) {
6280 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6281 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6282 goto done;
6285 if (priv->status & STATUS_SCANNING) {
6286 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6287 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6288 STATUS_SCAN_PENDING;
6289 goto done;
6292 if (!(priv->status & STATUS_SCAN_FORCED) &&
6293 priv->status & STATUS_SCAN_ABORTING) {
6294 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6295 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6296 STATUS_SCAN_PENDING;
6297 goto done;
6300 if (priv->status & STATUS_RF_KILL_MASK) {
6301 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6302 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6303 STATUS_SCAN_PENDING;
6304 goto done;
6307 memset(&scan, 0, sizeof(scan));
6308 scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6310 if (type == IW_SCAN_TYPE_PASSIVE) {
6311 IPW_DEBUG_WX("use passive scanning\n");
6312 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6313 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6314 cpu_to_le16(ipw_passive_dwell_time(priv));
6315 ipw_add_scan_channels(priv, &scan, scan_type);
6316 goto send_request;
6319 /* Use active scan by default. */
6320 if (priv->config & CFG_SPEED_SCAN)
6321 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6322 cpu_to_le16(30);
6323 else
6324 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6325 cpu_to_le16(20);
6327 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6328 cpu_to_le16(20);
6330 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6331 cpu_to_le16(ipw_passive_dwell_time(priv));
6332 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6334 #ifdef CONFIG_IPW2200_MONITOR
6335 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6336 u8 channel;
6337 u8 band = 0;
6339 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6340 case LIBIPW_52GHZ_BAND:
6341 band = (u8) (IPW_A_MODE << 6) | 1;
6342 channel = priv->channel;
6343 break;
6345 case LIBIPW_24GHZ_BAND:
6346 band = (u8) (IPW_B_MODE << 6) | 1;
6347 channel = priv->channel;
6348 break;
6350 default:
6351 band = (u8) (IPW_B_MODE << 6) | 1;
6352 channel = 9;
6353 break;
6356 scan.channels_list[0] = band;
6357 scan.channels_list[1] = channel;
6358 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6360 /* NOTE: The card will sit on this channel for this time
6361 * period. Scan aborts are timing sensitive and frequently
6362 * result in firmware restarts. As such, it is best to
6363 * set a small dwell_time here and just keep re-issuing
6364 * scans. Otherwise fast channel hopping will not actually
6365 * hop channels.
6367 * TODO: Move SPEED SCAN support to all modes and bands */
6368 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6369 cpu_to_le16(2000);
6370 } else {
6371 #endif /* CONFIG_IPW2200_MONITOR */
6372 /* Honor direct scans first, otherwise if we are roaming make
6373 * this a direct scan for the current network. Finally,
6374 * ensure that every other scan is a fast channel hop scan */
6375 if (direct) {
6376 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6377 priv->direct_scan_ssid_len);
6378 if (err) {
6379 IPW_DEBUG_HC("Attempt to send SSID command "
6380 "failed\n");
6381 goto done;
6384 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6385 } else if ((priv->status & STATUS_ROAMING)
6386 || (!(priv->status & STATUS_ASSOCIATED)
6387 && (priv->config & CFG_STATIC_ESSID)
6388 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6389 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6390 if (err) {
6391 IPW_DEBUG_HC("Attempt to send SSID command "
6392 "failed.\n");
6393 goto done;
6396 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6397 } else
6398 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6400 ipw_add_scan_channels(priv, &scan, scan_type);
6401 #ifdef CONFIG_IPW2200_MONITOR
6403 #endif
6405 send_request:
6406 err = ipw_send_scan_request_ext(priv, &scan);
6407 if (err) {
6408 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6409 goto done;
6412 priv->status |= STATUS_SCANNING;
6413 if (direct) {
6414 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6415 priv->direct_scan_ssid_len = 0;
6416 } else
6417 priv->status &= ~STATUS_SCAN_PENDING;
6419 schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6420 done:
6421 mutex_unlock(&priv->mutex);
6422 return err;
6425 static void ipw_request_passive_scan(struct work_struct *work)
6427 struct ipw_priv *priv =
6428 container_of(work, struct ipw_priv, request_passive_scan.work);
6429 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6432 static void ipw_request_scan(struct work_struct *work)
6434 struct ipw_priv *priv =
6435 container_of(work, struct ipw_priv, request_scan.work);
6436 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6439 static void ipw_request_direct_scan(struct work_struct *work)
6441 struct ipw_priv *priv =
6442 container_of(work, struct ipw_priv, request_direct_scan.work);
6443 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6446 static void ipw_bg_abort_scan(struct work_struct *work)
6448 struct ipw_priv *priv =
6449 container_of(work, struct ipw_priv, abort_scan);
6450 mutex_lock(&priv->mutex);
6451 ipw_abort_scan(priv);
6452 mutex_unlock(&priv->mutex);
6455 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6457 /* This is called when wpa_supplicant loads and closes the driver
6458 * interface. */
6459 priv->ieee->wpa_enabled = value;
6460 return 0;
6463 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6465 struct libipw_device *ieee = priv->ieee;
6466 struct libipw_security sec = {
6467 .flags = SEC_AUTH_MODE,
6469 int ret = 0;
6471 if (value & IW_AUTH_ALG_SHARED_KEY) {
6472 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6473 ieee->open_wep = 0;
6474 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6475 sec.auth_mode = WLAN_AUTH_OPEN;
6476 ieee->open_wep = 1;
6477 } else if (value & IW_AUTH_ALG_LEAP) {
6478 sec.auth_mode = WLAN_AUTH_LEAP;
6479 ieee->open_wep = 1;
6480 } else
6481 return -EINVAL;
6483 if (ieee->set_security)
6484 ieee->set_security(ieee->dev, &sec);
6485 else
6486 ret = -EOPNOTSUPP;
6488 return ret;
6491 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6492 int wpa_ie_len)
6494 /* make sure WPA is enabled */
6495 ipw_wpa_enable(priv, 1);
6498 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6499 char *capabilities, int length)
6501 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6503 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6504 capabilities);
6508 * WE-18 support
6511 /* SIOCSIWGENIE */
6512 static int ipw_wx_set_genie(struct net_device *dev,
6513 struct iw_request_info *info,
6514 union iwreq_data *wrqu, char *extra)
6516 struct ipw_priv *priv = libipw_priv(dev);
6517 struct libipw_device *ieee = priv->ieee;
6518 u8 *buf;
6519 int err = 0;
6521 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6522 (wrqu->data.length && extra == NULL))
6523 return -EINVAL;
6525 if (wrqu->data.length) {
6526 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6527 if (buf == NULL) {
6528 err = -ENOMEM;
6529 goto out;
6532 kfree(ieee->wpa_ie);
6533 ieee->wpa_ie = buf;
6534 ieee->wpa_ie_len = wrqu->data.length;
6535 } else {
6536 kfree(ieee->wpa_ie);
6537 ieee->wpa_ie = NULL;
6538 ieee->wpa_ie_len = 0;
6541 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6542 out:
6543 return err;
6546 /* SIOCGIWGENIE */
6547 static int ipw_wx_get_genie(struct net_device *dev,
6548 struct iw_request_info *info,
6549 union iwreq_data *wrqu, char *extra)
6551 struct ipw_priv *priv = libipw_priv(dev);
6552 struct libipw_device *ieee = priv->ieee;
6553 int err = 0;
6555 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6556 wrqu->data.length = 0;
6557 goto out;
6560 if (wrqu->data.length < ieee->wpa_ie_len) {
6561 err = -E2BIG;
6562 goto out;
6565 wrqu->data.length = ieee->wpa_ie_len;
6566 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6568 out:
6569 return err;
6572 static int wext_cipher2level(int cipher)
6574 switch (cipher) {
6575 case IW_AUTH_CIPHER_NONE:
6576 return SEC_LEVEL_0;
6577 case IW_AUTH_CIPHER_WEP40:
6578 case IW_AUTH_CIPHER_WEP104:
6579 return SEC_LEVEL_1;
6580 case IW_AUTH_CIPHER_TKIP:
6581 return SEC_LEVEL_2;
6582 case IW_AUTH_CIPHER_CCMP:
6583 return SEC_LEVEL_3;
6584 default:
6585 return -1;
6589 /* SIOCSIWAUTH */
6590 static int ipw_wx_set_auth(struct net_device *dev,
6591 struct iw_request_info *info,
6592 union iwreq_data *wrqu, char *extra)
6594 struct ipw_priv *priv = libipw_priv(dev);
6595 struct libipw_device *ieee = priv->ieee;
6596 struct iw_param *param = &wrqu->param;
6597 struct lib80211_crypt_data *crypt;
6598 unsigned long flags;
6599 int ret = 0;
6601 switch (param->flags & IW_AUTH_INDEX) {
6602 case IW_AUTH_WPA_VERSION:
6603 break;
6604 case IW_AUTH_CIPHER_PAIRWISE:
6605 ipw_set_hw_decrypt_unicast(priv,
6606 wext_cipher2level(param->value));
6607 break;
6608 case IW_AUTH_CIPHER_GROUP:
6609 ipw_set_hw_decrypt_multicast(priv,
6610 wext_cipher2level(param->value));
6611 break;
6612 case IW_AUTH_KEY_MGMT:
6614 * ipw2200 does not use these parameters
6616 break;
6618 case IW_AUTH_TKIP_COUNTERMEASURES:
6619 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6620 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6621 break;
6623 flags = crypt->ops->get_flags(crypt->priv);
6625 if (param->value)
6626 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6627 else
6628 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6630 crypt->ops->set_flags(flags, crypt->priv);
6632 break;
6634 case IW_AUTH_DROP_UNENCRYPTED:{
6635 /* HACK:
6637 * wpa_supplicant calls set_wpa_enabled when the driver
6638 * is loaded and unloaded, regardless of if WPA is being
6639 * used. No other calls are made which can be used to
6640 * determine if encryption will be used or not prior to
6641 * association being expected. If encryption is not being
6642 * used, drop_unencrypted is set to false, else true -- we
6643 * can use this to determine if the CAP_PRIVACY_ON bit should
6644 * be set.
6646 struct libipw_security sec = {
6647 .flags = SEC_ENABLED,
6648 .enabled = param->value,
6650 priv->ieee->drop_unencrypted = param->value;
6651 /* We only change SEC_LEVEL for open mode. Others
6652 * are set by ipw_wpa_set_encryption.
6654 if (!param->value) {
6655 sec.flags |= SEC_LEVEL;
6656 sec.level = SEC_LEVEL_0;
6657 } else {
6658 sec.flags |= SEC_LEVEL;
6659 sec.level = SEC_LEVEL_1;
6661 if (priv->ieee->set_security)
6662 priv->ieee->set_security(priv->ieee->dev, &sec);
6663 break;
6666 case IW_AUTH_80211_AUTH_ALG:
6667 ret = ipw_wpa_set_auth_algs(priv, param->value);
6668 break;
6670 case IW_AUTH_WPA_ENABLED:
6671 ret = ipw_wpa_enable(priv, param->value);
6672 ipw_disassociate(priv);
6673 break;
6675 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6676 ieee->ieee802_1x = param->value;
6677 break;
6679 case IW_AUTH_PRIVACY_INVOKED:
6680 ieee->privacy_invoked = param->value;
6681 break;
6683 default:
6684 return -EOPNOTSUPP;
6686 return ret;
6689 /* SIOCGIWAUTH */
6690 static int ipw_wx_get_auth(struct net_device *dev,
6691 struct iw_request_info *info,
6692 union iwreq_data *wrqu, char *extra)
6694 struct ipw_priv *priv = libipw_priv(dev);
6695 struct libipw_device *ieee = priv->ieee;
6696 struct lib80211_crypt_data *crypt;
6697 struct iw_param *param = &wrqu->param;
6699 switch (param->flags & IW_AUTH_INDEX) {
6700 case IW_AUTH_WPA_VERSION:
6701 case IW_AUTH_CIPHER_PAIRWISE:
6702 case IW_AUTH_CIPHER_GROUP:
6703 case IW_AUTH_KEY_MGMT:
6705 * wpa_supplicant will control these internally
6707 return -EOPNOTSUPP;
6709 case IW_AUTH_TKIP_COUNTERMEASURES:
6710 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6711 if (!crypt || !crypt->ops->get_flags)
6712 break;
6714 param->value = (crypt->ops->get_flags(crypt->priv) &
6715 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6717 break;
6719 case IW_AUTH_DROP_UNENCRYPTED:
6720 param->value = ieee->drop_unencrypted;
6721 break;
6723 case IW_AUTH_80211_AUTH_ALG:
6724 param->value = ieee->sec.auth_mode;
6725 break;
6727 case IW_AUTH_WPA_ENABLED:
6728 param->value = ieee->wpa_enabled;
6729 break;
6731 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6732 param->value = ieee->ieee802_1x;
6733 break;
6735 case IW_AUTH_ROAMING_CONTROL:
6736 case IW_AUTH_PRIVACY_INVOKED:
6737 param->value = ieee->privacy_invoked;
6738 break;
6740 default:
6741 return -EOPNOTSUPP;
6743 return 0;
6746 /* SIOCSIWENCODEEXT */
6747 static int ipw_wx_set_encodeext(struct net_device *dev,
6748 struct iw_request_info *info,
6749 union iwreq_data *wrqu, char *extra)
6751 struct ipw_priv *priv = libipw_priv(dev);
6752 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6754 if (hwcrypto) {
6755 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6756 /* IPW HW can't build TKIP MIC,
6757 host decryption still needed */
6758 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6759 priv->ieee->host_mc_decrypt = 1;
6760 else {
6761 priv->ieee->host_encrypt = 0;
6762 priv->ieee->host_encrypt_msdu = 1;
6763 priv->ieee->host_decrypt = 1;
6765 } else {
6766 priv->ieee->host_encrypt = 0;
6767 priv->ieee->host_encrypt_msdu = 0;
6768 priv->ieee->host_decrypt = 0;
6769 priv->ieee->host_mc_decrypt = 0;
6773 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6776 /* SIOCGIWENCODEEXT */
6777 static int ipw_wx_get_encodeext(struct net_device *dev,
6778 struct iw_request_info *info,
6779 union iwreq_data *wrqu, char *extra)
6781 struct ipw_priv *priv = libipw_priv(dev);
6782 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6785 /* SIOCSIWMLME */
6786 static int ipw_wx_set_mlme(struct net_device *dev,
6787 struct iw_request_info *info,
6788 union iwreq_data *wrqu, char *extra)
6790 struct ipw_priv *priv = libipw_priv(dev);
6791 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6793 switch (mlme->cmd) {
6794 case IW_MLME_DEAUTH:
6795 /* silently ignore */
6796 break;
6798 case IW_MLME_DISASSOC:
6799 ipw_disassociate(priv);
6800 break;
6802 default:
6803 return -EOPNOTSUPP;
6805 return 0;
6808 #ifdef CONFIG_IPW2200_QOS
6810 /* QoS */
6812 * get the modulation type of the current network or
6813 * the card current mode
6815 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6817 u8 mode = 0;
6819 if (priv->status & STATUS_ASSOCIATED) {
6820 unsigned long flags;
6822 spin_lock_irqsave(&priv->ieee->lock, flags);
6823 mode = priv->assoc_network->mode;
6824 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6825 } else {
6826 mode = priv->ieee->mode;
6828 IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6829 return mode;
6833 * Handle management frame beacon and probe response
6835 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6836 int active_network,
6837 struct libipw_network *network)
6839 u32 size = sizeof(struct libipw_qos_parameters);
6841 if (network->capability & WLAN_CAPABILITY_IBSS)
6842 network->qos_data.active = network->qos_data.supported;
6844 if (network->flags & NETWORK_HAS_QOS_MASK) {
6845 if (active_network &&
6846 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6847 network->qos_data.active = network->qos_data.supported;
6849 if ((network->qos_data.active == 1) && (active_network == 1) &&
6850 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6851 (network->qos_data.old_param_count !=
6852 network->qos_data.param_count)) {
6853 network->qos_data.old_param_count =
6854 network->qos_data.param_count;
6855 schedule_work(&priv->qos_activate);
6856 IPW_DEBUG_QOS("QoS parameters change call "
6857 "qos_activate\n");
6859 } else {
6860 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6861 memcpy(&network->qos_data.parameters,
6862 &def_parameters_CCK, size);
6863 else
6864 memcpy(&network->qos_data.parameters,
6865 &def_parameters_OFDM, size);
6867 if ((network->qos_data.active == 1) && (active_network == 1)) {
6868 IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6869 schedule_work(&priv->qos_activate);
6872 network->qos_data.active = 0;
6873 network->qos_data.supported = 0;
6875 if ((priv->status & STATUS_ASSOCIATED) &&
6876 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6877 if (!ether_addr_equal(network->bssid, priv->bssid))
6878 if (network->capability & WLAN_CAPABILITY_IBSS)
6879 if ((network->ssid_len ==
6880 priv->assoc_network->ssid_len) &&
6881 !memcmp(network->ssid,
6882 priv->assoc_network->ssid,
6883 network->ssid_len)) {
6884 schedule_work(&priv->merge_networks);
6888 return 0;
6892 * This function set up the firmware to support QoS. It sends
6893 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6895 static int ipw_qos_activate(struct ipw_priv *priv,
6896 struct libipw_qos_data *qos_network_data)
6898 int err;
6899 struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6900 struct libipw_qos_parameters *active_one = NULL;
6901 u32 size = sizeof(struct libipw_qos_parameters);
6902 u32 burst_duration;
6903 int i;
6904 u8 type;
6906 type = ipw_qos_current_mode(priv);
6908 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6909 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6910 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6911 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6913 if (qos_network_data == NULL) {
6914 if (type == IEEE_B) {
6915 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6916 active_one = &def_parameters_CCK;
6917 } else
6918 active_one = &def_parameters_OFDM;
6920 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6921 burst_duration = ipw_qos_get_burst_duration(priv);
6922 for (i = 0; i < QOS_QUEUE_NUM; i++)
6923 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6924 cpu_to_le16(burst_duration);
6925 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6926 if (type == IEEE_B) {
6927 IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6928 type);
6929 if (priv->qos_data.qos_enable == 0)
6930 active_one = &def_parameters_CCK;
6931 else
6932 active_one = priv->qos_data.def_qos_parm_CCK;
6933 } else {
6934 if (priv->qos_data.qos_enable == 0)
6935 active_one = &def_parameters_OFDM;
6936 else
6937 active_one = priv->qos_data.def_qos_parm_OFDM;
6939 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6940 } else {
6941 unsigned long flags;
6942 int active;
6944 spin_lock_irqsave(&priv->ieee->lock, flags);
6945 active_one = &(qos_network_data->parameters);
6946 qos_network_data->old_param_count =
6947 qos_network_data->param_count;
6948 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6949 active = qos_network_data->supported;
6950 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6952 if (active == 0) {
6953 burst_duration = ipw_qos_get_burst_duration(priv);
6954 for (i = 0; i < QOS_QUEUE_NUM; i++)
6955 qos_parameters[QOS_PARAM_SET_ACTIVE].
6956 tx_op_limit[i] = cpu_to_le16(burst_duration);
6960 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6961 err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6962 if (err)
6963 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6965 return err;
6969 * send IPW_CMD_WME_INFO to the firmware
6971 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6973 int ret = 0;
6974 struct libipw_qos_information_element qos_info;
6976 if (priv == NULL)
6977 return -1;
6979 qos_info.elementID = QOS_ELEMENT_ID;
6980 qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
6982 qos_info.version = QOS_VERSION_1;
6983 qos_info.ac_info = 0;
6985 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6986 qos_info.qui_type = QOS_OUI_TYPE;
6987 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6989 ret = ipw_send_qos_info_command(priv, &qos_info);
6990 if (ret != 0) {
6991 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6993 return ret;
6997 * Set the QoS parameter with the association request structure
6999 static int ipw_qos_association(struct ipw_priv *priv,
7000 struct libipw_network *network)
7002 int err = 0;
7003 struct libipw_qos_data *qos_data = NULL;
7004 struct libipw_qos_data ibss_data = {
7005 .supported = 1,
7006 .active = 1,
7009 switch (priv->ieee->iw_mode) {
7010 case IW_MODE_ADHOC:
7011 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7013 qos_data = &ibss_data;
7014 break;
7016 case IW_MODE_INFRA:
7017 qos_data = &network->qos_data;
7018 break;
7020 default:
7021 BUG();
7022 break;
7025 err = ipw_qos_activate(priv, qos_data);
7026 if (err) {
7027 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7028 return err;
7031 if (priv->qos_data.qos_enable && qos_data->supported) {
7032 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7033 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7034 return ipw_qos_set_info_element(priv);
7037 return 0;
7041 * handling the beaconing responses. if we get different QoS setting
7042 * off the network from the associated setting, adjust the QoS
7043 * setting
7045 static int ipw_qos_association_resp(struct ipw_priv *priv,
7046 struct libipw_network *network)
7048 int ret = 0;
7049 unsigned long flags;
7050 u32 size = sizeof(struct libipw_qos_parameters);
7051 int set_qos_param = 0;
7053 if ((priv == NULL) || (network == NULL) ||
7054 (priv->assoc_network == NULL))
7055 return ret;
7057 if (!(priv->status & STATUS_ASSOCIATED))
7058 return ret;
7060 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7061 return ret;
7063 spin_lock_irqsave(&priv->ieee->lock, flags);
7064 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7065 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7066 sizeof(struct libipw_qos_data));
7067 priv->assoc_network->qos_data.active = 1;
7068 if ((network->qos_data.old_param_count !=
7069 network->qos_data.param_count)) {
7070 set_qos_param = 1;
7071 network->qos_data.old_param_count =
7072 network->qos_data.param_count;
7075 } else {
7076 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7077 memcpy(&priv->assoc_network->qos_data.parameters,
7078 &def_parameters_CCK, size);
7079 else
7080 memcpy(&priv->assoc_network->qos_data.parameters,
7081 &def_parameters_OFDM, size);
7082 priv->assoc_network->qos_data.active = 0;
7083 priv->assoc_network->qos_data.supported = 0;
7084 set_qos_param = 1;
7087 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7089 if (set_qos_param == 1)
7090 schedule_work(&priv->qos_activate);
7092 return ret;
7095 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7097 u32 ret = 0;
7099 if (!priv)
7100 return 0;
7102 if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7103 ret = priv->qos_data.burst_duration_CCK;
7104 else
7105 ret = priv->qos_data.burst_duration_OFDM;
7107 return ret;
7111 * Initialize the setting of QoS global
7113 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7114 int burst_enable, u32 burst_duration_CCK,
7115 u32 burst_duration_OFDM)
7117 priv->qos_data.qos_enable = enable;
7119 if (priv->qos_data.qos_enable) {
7120 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7121 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7122 IPW_DEBUG_QOS("QoS is enabled\n");
7123 } else {
7124 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7125 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7126 IPW_DEBUG_QOS("QoS is not enabled\n");
7129 priv->qos_data.burst_enable = burst_enable;
7131 if (burst_enable) {
7132 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7133 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7134 } else {
7135 priv->qos_data.burst_duration_CCK = 0;
7136 priv->qos_data.burst_duration_OFDM = 0;
7141 * map the packet priority to the right TX Queue
7143 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7145 if (priority > 7 || !priv->qos_data.qos_enable)
7146 priority = 0;
7148 return from_priority_to_tx_queue[priority] - 1;
7151 static int ipw_is_qos_active(struct net_device *dev,
7152 struct sk_buff *skb)
7154 struct ipw_priv *priv = libipw_priv(dev);
7155 struct libipw_qos_data *qos_data = NULL;
7156 int active, supported;
7157 u8 *daddr = skb->data + ETH_ALEN;
7158 int unicast = !is_multicast_ether_addr(daddr);
7160 if (!(priv->status & STATUS_ASSOCIATED))
7161 return 0;
7163 qos_data = &priv->assoc_network->qos_data;
7165 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7166 if (unicast == 0)
7167 qos_data->active = 0;
7168 else
7169 qos_data->active = qos_data->supported;
7171 active = qos_data->active;
7172 supported = qos_data->supported;
7173 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7174 "unicast %d\n",
7175 priv->qos_data.qos_enable, active, supported, unicast);
7176 if (active && priv->qos_data.qos_enable)
7177 return 1;
7179 return 0;
7183 * add QoS parameter to the TX command
7185 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7186 u16 priority,
7187 struct tfd_data *tfd)
7189 int tx_queue_id = 0;
7192 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7193 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7195 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7196 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7197 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7199 return 0;
7203 * background support to run QoS activate functionality
7205 static void ipw_bg_qos_activate(struct work_struct *work)
7207 struct ipw_priv *priv =
7208 container_of(work, struct ipw_priv, qos_activate);
7210 mutex_lock(&priv->mutex);
7212 if (priv->status & STATUS_ASSOCIATED)
7213 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7215 mutex_unlock(&priv->mutex);
7218 static int ipw_handle_probe_response(struct net_device *dev,
7219 struct libipw_probe_response *resp,
7220 struct libipw_network *network)
7222 struct ipw_priv *priv = libipw_priv(dev);
7223 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7224 (network == priv->assoc_network));
7226 ipw_qos_handle_probe_response(priv, active_network, network);
7228 return 0;
7231 static int ipw_handle_beacon(struct net_device *dev,
7232 struct libipw_beacon *resp,
7233 struct libipw_network *network)
7235 struct ipw_priv *priv = libipw_priv(dev);
7236 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7237 (network == priv->assoc_network));
7239 ipw_qos_handle_probe_response(priv, active_network, network);
7241 return 0;
7244 static int ipw_handle_assoc_response(struct net_device *dev,
7245 struct libipw_assoc_response *resp,
7246 struct libipw_network *network)
7248 struct ipw_priv *priv = libipw_priv(dev);
7249 ipw_qos_association_resp(priv, network);
7250 return 0;
7253 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7254 *qos_param)
7256 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7257 sizeof(*qos_param) * 3, qos_param);
7260 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7261 *qos_param)
7263 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7264 qos_param);
7267 #endif /* CONFIG_IPW2200_QOS */
7269 static int ipw_associate_network(struct ipw_priv *priv,
7270 struct libipw_network *network,
7271 struct ipw_supported_rates *rates, int roaming)
7273 int err;
7275 if (priv->config & CFG_FIXED_RATE)
7276 ipw_set_fixed_rate(priv, network->mode);
7278 if (!(priv->config & CFG_STATIC_ESSID)) {
7279 priv->essid_len = min(network->ssid_len,
7280 (u8) IW_ESSID_MAX_SIZE);
7281 memcpy(priv->essid, network->ssid, priv->essid_len);
7284 network->last_associate = jiffies;
7286 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7287 priv->assoc_request.channel = network->channel;
7288 priv->assoc_request.auth_key = 0;
7290 if ((priv->capability & CAP_PRIVACY_ON) &&
7291 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7292 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7293 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7295 if (priv->ieee->sec.level == SEC_LEVEL_1)
7296 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7298 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7299 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7300 priv->assoc_request.auth_type = AUTH_LEAP;
7301 else
7302 priv->assoc_request.auth_type = AUTH_OPEN;
7304 if (priv->ieee->wpa_ie_len) {
7305 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7306 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7307 priv->ieee->wpa_ie_len);
7311 * It is valid for our ieee device to support multiple modes, but
7312 * when it comes to associating to a given network we have to choose
7313 * just one mode.
7315 if (network->mode & priv->ieee->mode & IEEE_A)
7316 priv->assoc_request.ieee_mode = IPW_A_MODE;
7317 else if (network->mode & priv->ieee->mode & IEEE_G)
7318 priv->assoc_request.ieee_mode = IPW_G_MODE;
7319 else if (network->mode & priv->ieee->mode & IEEE_B)
7320 priv->assoc_request.ieee_mode = IPW_B_MODE;
7322 priv->assoc_request.capability = cpu_to_le16(network->capability);
7323 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7324 && !(priv->config & CFG_PREAMBLE_LONG)) {
7325 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7326 } else {
7327 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7329 /* Clear the short preamble if we won't be supporting it */
7330 priv->assoc_request.capability &=
7331 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7334 /* Clear capability bits that aren't used in Ad Hoc */
7335 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7336 priv->assoc_request.capability &=
7337 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7339 IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7340 roaming ? "Rea" : "A",
7341 priv->essid_len, priv->essid,
7342 network->channel,
7343 ipw_modes[priv->assoc_request.ieee_mode],
7344 rates->num_rates,
7345 (priv->assoc_request.preamble_length ==
7346 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7347 network->capability &
7348 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7349 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7350 priv->capability & CAP_PRIVACY_ON ?
7351 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7352 "(open)") : "",
7353 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7354 priv->capability & CAP_PRIVACY_ON ?
7355 '1' + priv->ieee->sec.active_key : '.',
7356 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7358 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7359 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7360 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7361 priv->assoc_request.assoc_type = HC_IBSS_START;
7362 priv->assoc_request.assoc_tsf_msw = 0;
7363 priv->assoc_request.assoc_tsf_lsw = 0;
7364 } else {
7365 if (unlikely(roaming))
7366 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7367 else
7368 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7369 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7370 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7373 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7375 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7376 eth_broadcast_addr(priv->assoc_request.dest);
7377 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7378 } else {
7379 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7380 priv->assoc_request.atim_window = 0;
7383 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7385 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7386 if (err) {
7387 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7388 return err;
7391 rates->ieee_mode = priv->assoc_request.ieee_mode;
7392 rates->purpose = IPW_RATE_CONNECT;
7393 ipw_send_supported_rates(priv, rates);
7395 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7396 priv->sys_config.dot11g_auto_detection = 1;
7397 else
7398 priv->sys_config.dot11g_auto_detection = 0;
7400 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7401 priv->sys_config.answer_broadcast_ssid_probe = 1;
7402 else
7403 priv->sys_config.answer_broadcast_ssid_probe = 0;
7405 err = ipw_send_system_config(priv);
7406 if (err) {
7407 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7408 return err;
7411 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7412 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7413 if (err) {
7414 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7415 return err;
7419 * If preemption is enabled, it is possible for the association
7420 * to complete before we return from ipw_send_associate. Therefore
7421 * we have to be sure and update our priviate data first.
7423 priv->channel = network->channel;
7424 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7425 priv->status |= STATUS_ASSOCIATING;
7426 priv->status &= ~STATUS_SECURITY_UPDATED;
7428 priv->assoc_network = network;
7430 #ifdef CONFIG_IPW2200_QOS
7431 ipw_qos_association(priv, network);
7432 #endif
7434 err = ipw_send_associate(priv, &priv->assoc_request);
7435 if (err) {
7436 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7437 return err;
7440 IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7441 priv->essid_len, priv->essid, priv->bssid);
7443 return 0;
7446 static void ipw_roam(void *data)
7448 struct ipw_priv *priv = data;
7449 struct libipw_network *network = NULL;
7450 struct ipw_network_match match = {
7451 .network = priv->assoc_network
7454 /* The roaming process is as follows:
7456 * 1. Missed beacon threshold triggers the roaming process by
7457 * setting the status ROAM bit and requesting a scan.
7458 * 2. When the scan completes, it schedules the ROAM work
7459 * 3. The ROAM work looks at all of the known networks for one that
7460 * is a better network than the currently associated. If none
7461 * found, the ROAM process is over (ROAM bit cleared)
7462 * 4. If a better network is found, a disassociation request is
7463 * sent.
7464 * 5. When the disassociation completes, the roam work is again
7465 * scheduled. The second time through, the driver is no longer
7466 * associated, and the newly selected network is sent an
7467 * association request.
7468 * 6. At this point ,the roaming process is complete and the ROAM
7469 * status bit is cleared.
7472 /* If we are no longer associated, and the roaming bit is no longer
7473 * set, then we are not actively roaming, so just return */
7474 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7475 return;
7477 if (priv->status & STATUS_ASSOCIATED) {
7478 /* First pass through ROAM process -- look for a better
7479 * network */
7480 unsigned long flags;
7481 u8 rssi = priv->assoc_network->stats.rssi;
7482 priv->assoc_network->stats.rssi = -128;
7483 spin_lock_irqsave(&priv->ieee->lock, flags);
7484 list_for_each_entry(network, &priv->ieee->network_list, list) {
7485 if (network != priv->assoc_network)
7486 ipw_best_network(priv, &match, network, 1);
7488 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7489 priv->assoc_network->stats.rssi = rssi;
7491 if (match.network == priv->assoc_network) {
7492 IPW_DEBUG_ASSOC("No better APs in this network to "
7493 "roam to.\n");
7494 priv->status &= ~STATUS_ROAMING;
7495 ipw_debug_config(priv);
7496 return;
7499 ipw_send_disassociate(priv, 1);
7500 priv->assoc_network = match.network;
7502 return;
7505 /* Second pass through ROAM process -- request association */
7506 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7507 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7508 priv->status &= ~STATUS_ROAMING;
7511 static void ipw_bg_roam(struct work_struct *work)
7513 struct ipw_priv *priv =
7514 container_of(work, struct ipw_priv, roam);
7515 mutex_lock(&priv->mutex);
7516 ipw_roam(priv);
7517 mutex_unlock(&priv->mutex);
7520 static int ipw_associate(void *data)
7522 struct ipw_priv *priv = data;
7524 struct libipw_network *network = NULL;
7525 struct ipw_network_match match = {
7526 .network = NULL
7528 struct ipw_supported_rates *rates;
7529 struct list_head *element;
7530 unsigned long flags;
7532 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7533 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7534 return 0;
7537 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7538 IPW_DEBUG_ASSOC("Not attempting association (already in "
7539 "progress)\n");
7540 return 0;
7543 if (priv->status & STATUS_DISASSOCIATING) {
7544 IPW_DEBUG_ASSOC("Not attempting association (in disassociating)\n");
7545 schedule_work(&priv->associate);
7546 return 0;
7549 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7550 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7551 "initialized)\n");
7552 return 0;
7555 if (!(priv->config & CFG_ASSOCIATE) &&
7556 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7557 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7558 return 0;
7561 /* Protect our use of the network_list */
7562 spin_lock_irqsave(&priv->ieee->lock, flags);
7563 list_for_each_entry(network, &priv->ieee->network_list, list)
7564 ipw_best_network(priv, &match, network, 0);
7566 network = match.network;
7567 rates = &match.rates;
7569 if (network == NULL &&
7570 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7571 priv->config & CFG_ADHOC_CREATE &&
7572 priv->config & CFG_STATIC_ESSID &&
7573 priv->config & CFG_STATIC_CHANNEL) {
7574 /* Use oldest network if the free list is empty */
7575 if (list_empty(&priv->ieee->network_free_list)) {
7576 struct libipw_network *oldest = NULL;
7577 struct libipw_network *target;
7579 list_for_each_entry(target, &priv->ieee->network_list, list) {
7580 if ((oldest == NULL) ||
7581 (target->last_scanned < oldest->last_scanned))
7582 oldest = target;
7585 /* If there are no more slots, expire the oldest */
7586 list_del(&oldest->list);
7587 target = oldest;
7588 IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7589 target->ssid_len, target->ssid,
7590 target->bssid);
7591 list_add_tail(&target->list,
7592 &priv->ieee->network_free_list);
7595 element = priv->ieee->network_free_list.next;
7596 network = list_entry(element, struct libipw_network, list);
7597 ipw_adhoc_create(priv, network);
7598 rates = &priv->rates;
7599 list_del(element);
7600 list_add_tail(&network->list, &priv->ieee->network_list);
7602 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7604 /* If we reached the end of the list, then we don't have any valid
7605 * matching APs */
7606 if (!network) {
7607 ipw_debug_config(priv);
7609 if (!(priv->status & STATUS_SCANNING)) {
7610 if (!(priv->config & CFG_SPEED_SCAN))
7611 schedule_delayed_work(&priv->request_scan,
7612 SCAN_INTERVAL);
7613 else
7614 schedule_delayed_work(&priv->request_scan, 0);
7617 return 0;
7620 ipw_associate_network(priv, network, rates, 0);
7622 return 1;
7625 static void ipw_bg_associate(struct work_struct *work)
7627 struct ipw_priv *priv =
7628 container_of(work, struct ipw_priv, associate);
7629 mutex_lock(&priv->mutex);
7630 ipw_associate(priv);
7631 mutex_unlock(&priv->mutex);
7634 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7635 struct sk_buff *skb)
7637 struct ieee80211_hdr *hdr;
7638 u16 fc;
7640 hdr = (struct ieee80211_hdr *)skb->data;
7641 fc = le16_to_cpu(hdr->frame_control);
7642 if (!(fc & IEEE80211_FCTL_PROTECTED))
7643 return;
7645 fc &= ~IEEE80211_FCTL_PROTECTED;
7646 hdr->frame_control = cpu_to_le16(fc);
7647 switch (priv->ieee->sec.level) {
7648 case SEC_LEVEL_3:
7649 /* Remove CCMP HDR */
7650 memmove(skb->data + LIBIPW_3ADDR_LEN,
7651 skb->data + LIBIPW_3ADDR_LEN + 8,
7652 skb->len - LIBIPW_3ADDR_LEN - 8);
7653 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7654 break;
7655 case SEC_LEVEL_2:
7656 break;
7657 case SEC_LEVEL_1:
7658 /* Remove IV */
7659 memmove(skb->data + LIBIPW_3ADDR_LEN,
7660 skb->data + LIBIPW_3ADDR_LEN + 4,
7661 skb->len - LIBIPW_3ADDR_LEN - 4);
7662 skb_trim(skb, skb->len - 8); /* IV + ICV */
7663 break;
7664 case SEC_LEVEL_0:
7665 break;
7666 default:
7667 printk(KERN_ERR "Unknown security level %d\n",
7668 priv->ieee->sec.level);
7669 break;
7673 static void ipw_handle_data_packet(struct ipw_priv *priv,
7674 struct ipw_rx_mem_buffer *rxb,
7675 struct libipw_rx_stats *stats)
7677 struct net_device *dev = priv->net_dev;
7678 struct libipw_hdr_4addr *hdr;
7679 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7681 /* We received data from the HW, so stop the watchdog */
7682 netif_trans_update(dev);
7684 /* We only process data packets if the
7685 * interface is open */
7686 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7687 skb_tailroom(rxb->skb))) {
7688 dev->stats.rx_errors++;
7689 priv->wstats.discard.misc++;
7690 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7691 return;
7692 } else if (unlikely(!netif_running(priv->net_dev))) {
7693 dev->stats.rx_dropped++;
7694 priv->wstats.discard.misc++;
7695 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7696 return;
7699 /* Advance skb->data to the start of the actual payload */
7700 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7702 /* Set the size of the skb to the size of the frame */
7703 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7705 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7707 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7708 hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7709 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7710 (is_multicast_ether_addr(hdr->addr1) ?
7711 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7712 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7714 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7715 dev->stats.rx_errors++;
7716 else { /* libipw_rx succeeded, so it now owns the SKB */
7717 rxb->skb = NULL;
7718 __ipw_led_activity_on(priv);
7722 #ifdef CONFIG_IPW2200_RADIOTAP
7723 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7724 struct ipw_rx_mem_buffer *rxb,
7725 struct libipw_rx_stats *stats)
7727 struct net_device *dev = priv->net_dev;
7728 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7729 struct ipw_rx_frame *frame = &pkt->u.frame;
7731 /* initial pull of some data */
7732 u16 received_channel = frame->received_channel;
7733 u8 antennaAndPhy = frame->antennaAndPhy;
7734 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7735 u16 pktrate = frame->rate;
7737 /* Magic struct that slots into the radiotap header -- no reason
7738 * to build this manually element by element, we can write it much
7739 * more efficiently than we can parse it. ORDER MATTERS HERE */
7740 struct ipw_rt_hdr *ipw_rt;
7742 unsigned short len = le16_to_cpu(pkt->u.frame.length);
7744 /* We received data from the HW, so stop the watchdog */
7745 netif_trans_update(dev);
7747 /* We only process data packets if the
7748 * interface is open */
7749 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7750 skb_tailroom(rxb->skb))) {
7751 dev->stats.rx_errors++;
7752 priv->wstats.discard.misc++;
7753 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7754 return;
7755 } else if (unlikely(!netif_running(priv->net_dev))) {
7756 dev->stats.rx_dropped++;
7757 priv->wstats.discard.misc++;
7758 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7759 return;
7762 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7763 * that now */
7764 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7765 /* FIXME: Should alloc bigger skb instead */
7766 dev->stats.rx_dropped++;
7767 priv->wstats.discard.misc++;
7768 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7769 return;
7772 /* copy the frame itself */
7773 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7774 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7776 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7778 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7779 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7780 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7782 /* Big bitfield of all the fields we provide in radiotap */
7783 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7784 (1 << IEEE80211_RADIOTAP_TSFT) |
7785 (1 << IEEE80211_RADIOTAP_FLAGS) |
7786 (1 << IEEE80211_RADIOTAP_RATE) |
7787 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7788 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7789 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7790 (1 << IEEE80211_RADIOTAP_ANTENNA));
7792 /* Zero the flags, we'll add to them as we go */
7793 ipw_rt->rt_flags = 0;
7794 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7795 frame->parent_tsf[2] << 16 |
7796 frame->parent_tsf[1] << 8 |
7797 frame->parent_tsf[0]);
7799 /* Convert signal to DBM */
7800 ipw_rt->rt_dbmsignal = antsignal;
7801 ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7803 /* Convert the channel data and set the flags */
7804 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7805 if (received_channel > 14) { /* 802.11a */
7806 ipw_rt->rt_chbitmask =
7807 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7808 } else if (antennaAndPhy & 32) { /* 802.11b */
7809 ipw_rt->rt_chbitmask =
7810 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7811 } else { /* 802.11g */
7812 ipw_rt->rt_chbitmask =
7813 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7816 /* set the rate in multiples of 500k/s */
7817 switch (pktrate) {
7818 case IPW_TX_RATE_1MB:
7819 ipw_rt->rt_rate = 2;
7820 break;
7821 case IPW_TX_RATE_2MB:
7822 ipw_rt->rt_rate = 4;
7823 break;
7824 case IPW_TX_RATE_5MB:
7825 ipw_rt->rt_rate = 10;
7826 break;
7827 case IPW_TX_RATE_6MB:
7828 ipw_rt->rt_rate = 12;
7829 break;
7830 case IPW_TX_RATE_9MB:
7831 ipw_rt->rt_rate = 18;
7832 break;
7833 case IPW_TX_RATE_11MB:
7834 ipw_rt->rt_rate = 22;
7835 break;
7836 case IPW_TX_RATE_12MB:
7837 ipw_rt->rt_rate = 24;
7838 break;
7839 case IPW_TX_RATE_18MB:
7840 ipw_rt->rt_rate = 36;
7841 break;
7842 case IPW_TX_RATE_24MB:
7843 ipw_rt->rt_rate = 48;
7844 break;
7845 case IPW_TX_RATE_36MB:
7846 ipw_rt->rt_rate = 72;
7847 break;
7848 case IPW_TX_RATE_48MB:
7849 ipw_rt->rt_rate = 96;
7850 break;
7851 case IPW_TX_RATE_54MB:
7852 ipw_rt->rt_rate = 108;
7853 break;
7854 default:
7855 ipw_rt->rt_rate = 0;
7856 break;
7859 /* antenna number */
7860 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7862 /* set the preamble flag if we have it */
7863 if ((antennaAndPhy & 64))
7864 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7866 /* Set the size of the skb to the size of the frame */
7867 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7869 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7871 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7872 dev->stats.rx_errors++;
7873 else { /* libipw_rx succeeded, so it now owns the SKB */
7874 rxb->skb = NULL;
7875 /* no LED during capture */
7878 #endif
7880 #ifdef CONFIG_IPW2200_PROMISCUOUS
7881 #define libipw_is_probe_response(fc) \
7882 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7883 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7885 #define libipw_is_management(fc) \
7886 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7888 #define libipw_is_control(fc) \
7889 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7891 #define libipw_is_data(fc) \
7892 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7894 #define libipw_is_assoc_request(fc) \
7895 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7897 #define libipw_is_reassoc_request(fc) \
7898 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7900 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7901 struct ipw_rx_mem_buffer *rxb,
7902 struct libipw_rx_stats *stats)
7904 struct net_device *dev = priv->prom_net_dev;
7905 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7906 struct ipw_rx_frame *frame = &pkt->u.frame;
7907 struct ipw_rt_hdr *ipw_rt;
7909 /* First cache any information we need before we overwrite
7910 * the information provided in the skb from the hardware */
7911 struct ieee80211_hdr *hdr;
7912 u16 channel = frame->received_channel;
7913 u8 phy_flags = frame->antennaAndPhy;
7914 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7915 s8 noise = (s8) le16_to_cpu(frame->noise);
7916 u8 rate = frame->rate;
7917 unsigned short len = le16_to_cpu(pkt->u.frame.length);
7918 struct sk_buff *skb;
7919 int hdr_only = 0;
7920 u16 filter = priv->prom_priv->filter;
7922 /* If the filter is set to not include Rx frames then return */
7923 if (filter & IPW_PROM_NO_RX)
7924 return;
7926 /* We received data from the HW, so stop the watchdog */
7927 netif_trans_update(dev);
7929 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7930 dev->stats.rx_errors++;
7931 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7932 return;
7935 /* We only process data packets if the interface is open */
7936 if (unlikely(!netif_running(dev))) {
7937 dev->stats.rx_dropped++;
7938 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7939 return;
7942 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7943 * that now */
7944 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7945 /* FIXME: Should alloc bigger skb instead */
7946 dev->stats.rx_dropped++;
7947 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7948 return;
7951 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7952 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7953 if (filter & IPW_PROM_NO_MGMT)
7954 return;
7955 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7956 hdr_only = 1;
7957 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7958 if (filter & IPW_PROM_NO_CTL)
7959 return;
7960 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7961 hdr_only = 1;
7962 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7963 if (filter & IPW_PROM_NO_DATA)
7964 return;
7965 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7966 hdr_only = 1;
7969 /* Copy the SKB since this is for the promiscuous side */
7970 skb = skb_copy(rxb->skb, GFP_ATOMIC);
7971 if (skb == NULL) {
7972 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7973 return;
7976 /* copy the frame data to write after where the radiotap header goes */
7977 ipw_rt = (void *)skb->data;
7979 if (hdr_only)
7980 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
7982 memcpy(ipw_rt->payload, hdr, len);
7984 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7985 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7986 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
7988 /* Set the size of the skb to the size of the frame */
7989 skb_put(skb, sizeof(*ipw_rt) + len);
7991 /* Big bitfield of all the fields we provide in radiotap */
7992 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7993 (1 << IEEE80211_RADIOTAP_TSFT) |
7994 (1 << IEEE80211_RADIOTAP_FLAGS) |
7995 (1 << IEEE80211_RADIOTAP_RATE) |
7996 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7997 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7998 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7999 (1 << IEEE80211_RADIOTAP_ANTENNA));
8001 /* Zero the flags, we'll add to them as we go */
8002 ipw_rt->rt_flags = 0;
8003 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8004 frame->parent_tsf[2] << 16 |
8005 frame->parent_tsf[1] << 8 |
8006 frame->parent_tsf[0]);
8008 /* Convert to DBM */
8009 ipw_rt->rt_dbmsignal = signal;
8010 ipw_rt->rt_dbmnoise = noise;
8012 /* Convert the channel data and set the flags */
8013 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8014 if (channel > 14) { /* 802.11a */
8015 ipw_rt->rt_chbitmask =
8016 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8017 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8018 ipw_rt->rt_chbitmask =
8019 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8020 } else { /* 802.11g */
8021 ipw_rt->rt_chbitmask =
8022 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8025 /* set the rate in multiples of 500k/s */
8026 switch (rate) {
8027 case IPW_TX_RATE_1MB:
8028 ipw_rt->rt_rate = 2;
8029 break;
8030 case IPW_TX_RATE_2MB:
8031 ipw_rt->rt_rate = 4;
8032 break;
8033 case IPW_TX_RATE_5MB:
8034 ipw_rt->rt_rate = 10;
8035 break;
8036 case IPW_TX_RATE_6MB:
8037 ipw_rt->rt_rate = 12;
8038 break;
8039 case IPW_TX_RATE_9MB:
8040 ipw_rt->rt_rate = 18;
8041 break;
8042 case IPW_TX_RATE_11MB:
8043 ipw_rt->rt_rate = 22;
8044 break;
8045 case IPW_TX_RATE_12MB:
8046 ipw_rt->rt_rate = 24;
8047 break;
8048 case IPW_TX_RATE_18MB:
8049 ipw_rt->rt_rate = 36;
8050 break;
8051 case IPW_TX_RATE_24MB:
8052 ipw_rt->rt_rate = 48;
8053 break;
8054 case IPW_TX_RATE_36MB:
8055 ipw_rt->rt_rate = 72;
8056 break;
8057 case IPW_TX_RATE_48MB:
8058 ipw_rt->rt_rate = 96;
8059 break;
8060 case IPW_TX_RATE_54MB:
8061 ipw_rt->rt_rate = 108;
8062 break;
8063 default:
8064 ipw_rt->rt_rate = 0;
8065 break;
8068 /* antenna number */
8069 ipw_rt->rt_antenna = (phy_flags & 3);
8071 /* set the preamble flag if we have it */
8072 if (phy_flags & (1 << 6))
8073 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8075 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8077 if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8078 dev->stats.rx_errors++;
8079 dev_kfree_skb_any(skb);
8082 #endif
8084 static int is_network_packet(struct ipw_priv *priv,
8085 struct libipw_hdr_4addr *header)
8087 /* Filter incoming packets to determine if they are targeted toward
8088 * this network, discarding packets coming from ourselves */
8089 switch (priv->ieee->iw_mode) {
8090 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8091 /* packets from our adapter are dropped (echo) */
8092 if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8093 return 0;
8095 /* {broad,multi}cast packets to our BSSID go through */
8096 if (is_multicast_ether_addr(header->addr1))
8097 return ether_addr_equal(header->addr3, priv->bssid);
8099 /* packets to our adapter go through */
8100 return ether_addr_equal(header->addr1,
8101 priv->net_dev->dev_addr);
8103 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8104 /* packets from our adapter are dropped (echo) */
8105 if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8106 return 0;
8108 /* {broad,multi}cast packets to our BSS go through */
8109 if (is_multicast_ether_addr(header->addr1))
8110 return ether_addr_equal(header->addr2, priv->bssid);
8112 /* packets to our adapter go through */
8113 return ether_addr_equal(header->addr1,
8114 priv->net_dev->dev_addr);
8117 return 1;
8120 #define IPW_PACKET_RETRY_TIME HZ
8122 static int is_duplicate_packet(struct ipw_priv *priv,
8123 struct libipw_hdr_4addr *header)
8125 u16 sc = le16_to_cpu(header->seq_ctl);
8126 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8127 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8128 u16 *last_seq, *last_frag;
8129 unsigned long *last_time;
8131 switch (priv->ieee->iw_mode) {
8132 case IW_MODE_ADHOC:
8134 struct list_head *p;
8135 struct ipw_ibss_seq *entry = NULL;
8136 u8 *mac = header->addr2;
8137 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8139 list_for_each(p, &priv->ibss_mac_hash[index]) {
8140 entry =
8141 list_entry(p, struct ipw_ibss_seq, list);
8142 if (ether_addr_equal(entry->mac, mac))
8143 break;
8145 if (p == &priv->ibss_mac_hash[index]) {
8146 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8147 if (!entry) {
8148 IPW_ERROR
8149 ("Cannot malloc new mac entry\n");
8150 return 0;
8152 memcpy(entry->mac, mac, ETH_ALEN);
8153 entry->seq_num = seq;
8154 entry->frag_num = frag;
8155 entry->packet_time = jiffies;
8156 list_add(&entry->list,
8157 &priv->ibss_mac_hash[index]);
8158 return 0;
8160 last_seq = &entry->seq_num;
8161 last_frag = &entry->frag_num;
8162 last_time = &entry->packet_time;
8163 break;
8165 case IW_MODE_INFRA:
8166 last_seq = &priv->last_seq_num;
8167 last_frag = &priv->last_frag_num;
8168 last_time = &priv->last_packet_time;
8169 break;
8170 default:
8171 return 0;
8173 if ((*last_seq == seq) &&
8174 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8175 if (*last_frag == frag)
8176 goto drop;
8177 if (*last_frag + 1 != frag)
8178 /* out-of-order fragment */
8179 goto drop;
8180 } else
8181 *last_seq = seq;
8183 *last_frag = frag;
8184 *last_time = jiffies;
8185 return 0;
8187 drop:
8188 /* Comment this line now since we observed the card receives
8189 * duplicate packets but the FCTL_RETRY bit is not set in the
8190 * IBSS mode with fragmentation enabled.
8191 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8192 return 1;
8195 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8196 struct ipw_rx_mem_buffer *rxb,
8197 struct libipw_rx_stats *stats)
8199 struct sk_buff *skb = rxb->skb;
8200 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8201 struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8202 (skb->data + IPW_RX_FRAME_SIZE);
8204 libipw_rx_mgt(priv->ieee, header, stats);
8206 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8207 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8208 IEEE80211_STYPE_PROBE_RESP) ||
8209 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8210 IEEE80211_STYPE_BEACON))) {
8211 if (ether_addr_equal(header->addr3, priv->bssid))
8212 ipw_add_station(priv, header->addr2);
8215 if (priv->config & CFG_NET_STATS) {
8216 IPW_DEBUG_HC("sending stat packet\n");
8218 /* Set the size of the skb to the size of the full
8219 * ipw header and 802.11 frame */
8220 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8221 IPW_RX_FRAME_SIZE);
8223 /* Advance past the ipw packet header to the 802.11 frame */
8224 skb_pull(skb, IPW_RX_FRAME_SIZE);
8226 /* Push the libipw_rx_stats before the 802.11 frame */
8227 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8229 skb->dev = priv->ieee->dev;
8231 /* Point raw at the libipw_stats */
8232 skb_reset_mac_header(skb);
8234 skb->pkt_type = PACKET_OTHERHOST;
8235 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8236 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8237 netif_rx(skb);
8238 rxb->skb = NULL;
8243 * Main entry function for receiving a packet with 80211 headers. This
8244 * should be called when ever the FW has notified us that there is a new
8245 * skb in the receive queue.
8247 static void ipw_rx(struct ipw_priv *priv)
8249 struct ipw_rx_mem_buffer *rxb;
8250 struct ipw_rx_packet *pkt;
8251 struct libipw_hdr_4addr *header;
8252 u32 r, w, i;
8253 u8 network_packet;
8254 u8 fill_rx = 0;
8256 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8257 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8258 i = priv->rxq->read;
8260 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8261 fill_rx = 1;
8263 while (i != r) {
8264 rxb = priv->rxq->queue[i];
8265 if (unlikely(rxb == NULL)) {
8266 printk(KERN_CRIT "Queue not allocated!\n");
8267 break;
8269 priv->rxq->queue[i] = NULL;
8271 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8272 IPW_RX_BUF_SIZE,
8273 PCI_DMA_FROMDEVICE);
8275 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8276 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8277 pkt->header.message_type,
8278 pkt->header.rx_seq_num, pkt->header.control_bits);
8280 switch (pkt->header.message_type) {
8281 case RX_FRAME_TYPE: /* 802.11 frame */ {
8282 struct libipw_rx_stats stats = {
8283 .rssi = pkt->u.frame.rssi_dbm -
8284 IPW_RSSI_TO_DBM,
8285 .signal =
8286 pkt->u.frame.rssi_dbm -
8287 IPW_RSSI_TO_DBM + 0x100,
8288 .noise =
8289 le16_to_cpu(pkt->u.frame.noise),
8290 .rate = pkt->u.frame.rate,
8291 .mac_time = jiffies,
8292 .received_channel =
8293 pkt->u.frame.received_channel,
8294 .freq =
8295 (pkt->u.frame.
8296 control & (1 << 0)) ?
8297 LIBIPW_24GHZ_BAND :
8298 LIBIPW_52GHZ_BAND,
8299 .len = le16_to_cpu(pkt->u.frame.length),
8302 if (stats.rssi != 0)
8303 stats.mask |= LIBIPW_STATMASK_RSSI;
8304 if (stats.signal != 0)
8305 stats.mask |= LIBIPW_STATMASK_SIGNAL;
8306 if (stats.noise != 0)
8307 stats.mask |= LIBIPW_STATMASK_NOISE;
8308 if (stats.rate != 0)
8309 stats.mask |= LIBIPW_STATMASK_RATE;
8311 priv->rx_packets++;
8313 #ifdef CONFIG_IPW2200_PROMISCUOUS
8314 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8315 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8316 #endif
8318 #ifdef CONFIG_IPW2200_MONITOR
8319 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8320 #ifdef CONFIG_IPW2200_RADIOTAP
8322 ipw_handle_data_packet_monitor(priv,
8323 rxb,
8324 &stats);
8325 #else
8326 ipw_handle_data_packet(priv, rxb,
8327 &stats);
8328 #endif
8329 break;
8331 #endif
8333 header =
8334 (struct libipw_hdr_4addr *)(rxb->skb->
8335 data +
8336 IPW_RX_FRAME_SIZE);
8337 /* TODO: Check Ad-Hoc dest/source and make sure
8338 * that we are actually parsing these packets
8339 * correctly -- we should probably use the
8340 * frame control of the packet and disregard
8341 * the current iw_mode */
8343 network_packet =
8344 is_network_packet(priv, header);
8345 if (network_packet && priv->assoc_network) {
8346 priv->assoc_network->stats.rssi =
8347 stats.rssi;
8348 priv->exp_avg_rssi =
8349 exponential_average(priv->exp_avg_rssi,
8350 stats.rssi, DEPTH_RSSI);
8353 IPW_DEBUG_RX("Frame: len=%u\n",
8354 le16_to_cpu(pkt->u.frame.length));
8356 if (le16_to_cpu(pkt->u.frame.length) <
8357 libipw_get_hdrlen(le16_to_cpu(
8358 header->frame_ctl))) {
8359 IPW_DEBUG_DROP
8360 ("Received packet is too small. "
8361 "Dropping.\n");
8362 priv->net_dev->stats.rx_errors++;
8363 priv->wstats.discard.misc++;
8364 break;
8367 switch (WLAN_FC_GET_TYPE
8368 (le16_to_cpu(header->frame_ctl))) {
8370 case IEEE80211_FTYPE_MGMT:
8371 ipw_handle_mgmt_packet(priv, rxb,
8372 &stats);
8373 break;
8375 case IEEE80211_FTYPE_CTL:
8376 break;
8378 case IEEE80211_FTYPE_DATA:
8379 if (unlikely(!network_packet ||
8380 is_duplicate_packet(priv,
8381 header)))
8383 IPW_DEBUG_DROP("Dropping: "
8384 "%pM, "
8385 "%pM, "
8386 "%pM\n",
8387 header->addr1,
8388 header->addr2,
8389 header->addr3);
8390 break;
8393 ipw_handle_data_packet(priv, rxb,
8394 &stats);
8396 break;
8398 break;
8401 case RX_HOST_NOTIFICATION_TYPE:{
8402 IPW_DEBUG_RX
8403 ("Notification: subtype=%02X flags=%02X size=%d\n",
8404 pkt->u.notification.subtype,
8405 pkt->u.notification.flags,
8406 le16_to_cpu(pkt->u.notification.size));
8407 ipw_rx_notification(priv, &pkt->u.notification);
8408 break;
8411 default:
8412 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8413 pkt->header.message_type);
8414 break;
8417 /* For now we just don't re-use anything. We can tweak this
8418 * later to try and re-use notification packets and SKBs that
8419 * fail to Rx correctly */
8420 if (rxb->skb != NULL) {
8421 dev_kfree_skb_any(rxb->skb);
8422 rxb->skb = NULL;
8425 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8426 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8427 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8429 i = (i + 1) % RX_QUEUE_SIZE;
8431 /* If there are a lot of unsued frames, restock the Rx queue
8432 * so the ucode won't assert */
8433 if (fill_rx) {
8434 priv->rxq->read = i;
8435 ipw_rx_queue_replenish(priv);
8439 /* Backtrack one entry */
8440 priv->rxq->read = i;
8441 ipw_rx_queue_restock(priv);
8444 #define DEFAULT_RTS_THRESHOLD 2304U
8445 #define MIN_RTS_THRESHOLD 1U
8446 #define MAX_RTS_THRESHOLD 2304U
8447 #define DEFAULT_BEACON_INTERVAL 100U
8448 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8449 #define DEFAULT_LONG_RETRY_LIMIT 4U
8452 * ipw_sw_reset
8453 * @option: options to control different reset behaviour
8454 * 0 = reset everything except the 'disable' module_param
8455 * 1 = reset everything and print out driver info (for probe only)
8456 * 2 = reset everything
8458 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8460 int band, modulation;
8461 int old_mode = priv->ieee->iw_mode;
8463 /* Initialize module parameter values here */
8464 priv->config = 0;
8466 /* We default to disabling the LED code as right now it causes
8467 * too many systems to lock up... */
8468 if (!led_support)
8469 priv->config |= CFG_NO_LED;
8471 if (associate)
8472 priv->config |= CFG_ASSOCIATE;
8473 else
8474 IPW_DEBUG_INFO("Auto associate disabled.\n");
8476 if (auto_create)
8477 priv->config |= CFG_ADHOC_CREATE;
8478 else
8479 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8481 priv->config &= ~CFG_STATIC_ESSID;
8482 priv->essid_len = 0;
8483 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8485 if (disable && option) {
8486 priv->status |= STATUS_RF_KILL_SW;
8487 IPW_DEBUG_INFO("Radio disabled.\n");
8490 if (default_channel != 0) {
8491 priv->config |= CFG_STATIC_CHANNEL;
8492 priv->channel = default_channel;
8493 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8494 /* TODO: Validate that provided channel is in range */
8496 #ifdef CONFIG_IPW2200_QOS
8497 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8498 burst_duration_CCK, burst_duration_OFDM);
8499 #endif /* CONFIG_IPW2200_QOS */
8501 switch (network_mode) {
8502 case 1:
8503 priv->ieee->iw_mode = IW_MODE_ADHOC;
8504 priv->net_dev->type = ARPHRD_ETHER;
8506 break;
8507 #ifdef CONFIG_IPW2200_MONITOR
8508 case 2:
8509 priv->ieee->iw_mode = IW_MODE_MONITOR;
8510 #ifdef CONFIG_IPW2200_RADIOTAP
8511 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8512 #else
8513 priv->net_dev->type = ARPHRD_IEEE80211;
8514 #endif
8515 break;
8516 #endif
8517 default:
8518 case 0:
8519 priv->net_dev->type = ARPHRD_ETHER;
8520 priv->ieee->iw_mode = IW_MODE_INFRA;
8521 break;
8524 if (hwcrypto) {
8525 priv->ieee->host_encrypt = 0;
8526 priv->ieee->host_encrypt_msdu = 0;
8527 priv->ieee->host_decrypt = 0;
8528 priv->ieee->host_mc_decrypt = 0;
8530 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8532 /* IPW2200/2915 is abled to do hardware fragmentation. */
8533 priv->ieee->host_open_frag = 0;
8535 if ((priv->pci_dev->device == 0x4223) ||
8536 (priv->pci_dev->device == 0x4224)) {
8537 if (option == 1)
8538 printk(KERN_INFO DRV_NAME
8539 ": Detected Intel PRO/Wireless 2915ABG Network "
8540 "Connection\n");
8541 priv->ieee->abg_true = 1;
8542 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8543 modulation = LIBIPW_OFDM_MODULATION |
8544 LIBIPW_CCK_MODULATION;
8545 priv->adapter = IPW_2915ABG;
8546 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8547 } else {
8548 if (option == 1)
8549 printk(KERN_INFO DRV_NAME
8550 ": Detected Intel PRO/Wireless 2200BG Network "
8551 "Connection\n");
8553 priv->ieee->abg_true = 0;
8554 band = LIBIPW_24GHZ_BAND;
8555 modulation = LIBIPW_OFDM_MODULATION |
8556 LIBIPW_CCK_MODULATION;
8557 priv->adapter = IPW_2200BG;
8558 priv->ieee->mode = IEEE_G | IEEE_B;
8561 priv->ieee->freq_band = band;
8562 priv->ieee->modulation = modulation;
8564 priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8566 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8567 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8569 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8570 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8571 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8573 /* If power management is turned on, default to AC mode */
8574 priv->power_mode = IPW_POWER_AC;
8575 priv->tx_power = IPW_TX_POWER_DEFAULT;
8577 return old_mode == priv->ieee->iw_mode;
8581 * This file defines the Wireless Extension handlers. It does not
8582 * define any methods of hardware manipulation and relies on the
8583 * functions defined in ipw_main to provide the HW interaction.
8585 * The exception to this is the use of the ipw_get_ordinal()
8586 * function used to poll the hardware vs. making unnecessary calls.
8590 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8592 if (channel == 0) {
8593 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8594 priv->config &= ~CFG_STATIC_CHANNEL;
8595 IPW_DEBUG_ASSOC("Attempting to associate with new "
8596 "parameters.\n");
8597 ipw_associate(priv);
8598 return 0;
8601 priv->config |= CFG_STATIC_CHANNEL;
8603 if (priv->channel == channel) {
8604 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8605 channel);
8606 return 0;
8609 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8610 priv->channel = channel;
8612 #ifdef CONFIG_IPW2200_MONITOR
8613 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8614 int i;
8615 if (priv->status & STATUS_SCANNING) {
8616 IPW_DEBUG_SCAN("Scan abort triggered due to "
8617 "channel change.\n");
8618 ipw_abort_scan(priv);
8621 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8622 udelay(10);
8624 if (priv->status & STATUS_SCANNING)
8625 IPW_DEBUG_SCAN("Still scanning...\n");
8626 else
8627 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8628 1000 - i);
8630 return 0;
8632 #endif /* CONFIG_IPW2200_MONITOR */
8634 /* Network configuration changed -- force [re]association */
8635 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8636 if (!ipw_disassociate(priv))
8637 ipw_associate(priv);
8639 return 0;
8642 static int ipw_wx_set_freq(struct net_device *dev,
8643 struct iw_request_info *info,
8644 union iwreq_data *wrqu, char *extra)
8646 struct ipw_priv *priv = libipw_priv(dev);
8647 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8648 struct iw_freq *fwrq = &wrqu->freq;
8649 int ret = 0, i;
8650 u8 channel, flags;
8651 int band;
8653 if (fwrq->m == 0) {
8654 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8655 mutex_lock(&priv->mutex);
8656 ret = ipw_set_channel(priv, 0);
8657 mutex_unlock(&priv->mutex);
8658 return ret;
8660 /* if setting by freq convert to channel */
8661 if (fwrq->e == 1) {
8662 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8663 if (channel == 0)
8664 return -EINVAL;
8665 } else
8666 channel = fwrq->m;
8668 if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8669 return -EINVAL;
8671 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8672 i = libipw_channel_to_index(priv->ieee, channel);
8673 if (i == -1)
8674 return -EINVAL;
8676 flags = (band == LIBIPW_24GHZ_BAND) ?
8677 geo->bg[i].flags : geo->a[i].flags;
8678 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8679 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8680 return -EINVAL;
8684 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8685 mutex_lock(&priv->mutex);
8686 ret = ipw_set_channel(priv, channel);
8687 mutex_unlock(&priv->mutex);
8688 return ret;
8691 static int ipw_wx_get_freq(struct net_device *dev,
8692 struct iw_request_info *info,
8693 union iwreq_data *wrqu, char *extra)
8695 struct ipw_priv *priv = libipw_priv(dev);
8697 wrqu->freq.e = 0;
8699 /* If we are associated, trying to associate, or have a statically
8700 * configured CHANNEL then return that; otherwise return ANY */
8701 mutex_lock(&priv->mutex);
8702 if (priv->config & CFG_STATIC_CHANNEL ||
8703 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8704 int i;
8706 i = libipw_channel_to_index(priv->ieee, priv->channel);
8707 BUG_ON(i == -1);
8708 wrqu->freq.e = 1;
8710 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8711 case LIBIPW_52GHZ_BAND:
8712 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8713 break;
8715 case LIBIPW_24GHZ_BAND:
8716 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8717 break;
8719 default:
8720 BUG();
8722 } else
8723 wrqu->freq.m = 0;
8725 mutex_unlock(&priv->mutex);
8726 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8727 return 0;
8730 static int ipw_wx_set_mode(struct net_device *dev,
8731 struct iw_request_info *info,
8732 union iwreq_data *wrqu, char *extra)
8734 struct ipw_priv *priv = libipw_priv(dev);
8735 int err = 0;
8737 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8739 switch (wrqu->mode) {
8740 #ifdef CONFIG_IPW2200_MONITOR
8741 case IW_MODE_MONITOR:
8742 #endif
8743 case IW_MODE_ADHOC:
8744 case IW_MODE_INFRA:
8745 break;
8746 case IW_MODE_AUTO:
8747 wrqu->mode = IW_MODE_INFRA;
8748 break;
8749 default:
8750 return -EINVAL;
8752 if (wrqu->mode == priv->ieee->iw_mode)
8753 return 0;
8755 mutex_lock(&priv->mutex);
8757 ipw_sw_reset(priv, 0);
8759 #ifdef CONFIG_IPW2200_MONITOR
8760 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8761 priv->net_dev->type = ARPHRD_ETHER;
8763 if (wrqu->mode == IW_MODE_MONITOR)
8764 #ifdef CONFIG_IPW2200_RADIOTAP
8765 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8766 #else
8767 priv->net_dev->type = ARPHRD_IEEE80211;
8768 #endif
8769 #endif /* CONFIG_IPW2200_MONITOR */
8771 /* Free the existing firmware and reset the fw_loaded
8772 * flag so ipw_load() will bring in the new firmware */
8773 free_firmware();
8775 priv->ieee->iw_mode = wrqu->mode;
8777 schedule_work(&priv->adapter_restart);
8778 mutex_unlock(&priv->mutex);
8779 return err;
8782 static int ipw_wx_get_mode(struct net_device *dev,
8783 struct iw_request_info *info,
8784 union iwreq_data *wrqu, char *extra)
8786 struct ipw_priv *priv = libipw_priv(dev);
8787 mutex_lock(&priv->mutex);
8788 wrqu->mode = priv->ieee->iw_mode;
8789 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8790 mutex_unlock(&priv->mutex);
8791 return 0;
8794 /* Values are in microsecond */
8795 static const s32 timeout_duration[] = {
8796 350000,
8797 250000,
8798 75000,
8799 37000,
8800 25000,
8803 static const s32 period_duration[] = {
8804 400000,
8805 700000,
8806 1000000,
8807 1000000,
8808 1000000
8811 static int ipw_wx_get_range(struct net_device *dev,
8812 struct iw_request_info *info,
8813 union iwreq_data *wrqu, char *extra)
8815 struct ipw_priv *priv = libipw_priv(dev);
8816 struct iw_range *range = (struct iw_range *)extra;
8817 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8818 int i = 0, j;
8820 wrqu->data.length = sizeof(*range);
8821 memset(range, 0, sizeof(*range));
8823 /* 54Mbs == ~27 Mb/s real (802.11g) */
8824 range->throughput = 27 * 1000 * 1000;
8826 range->max_qual.qual = 100;
8827 /* TODO: Find real max RSSI and stick here */
8828 range->max_qual.level = 0;
8829 range->max_qual.noise = 0;
8830 range->max_qual.updated = 7; /* Updated all three */
8832 range->avg_qual.qual = 70;
8833 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8834 range->avg_qual.level = 0; /* FIXME to real average level */
8835 range->avg_qual.noise = 0;
8836 range->avg_qual.updated = 7; /* Updated all three */
8837 mutex_lock(&priv->mutex);
8838 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8840 for (i = 0; i < range->num_bitrates; i++)
8841 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8842 500000;
8844 range->max_rts = DEFAULT_RTS_THRESHOLD;
8845 range->min_frag = MIN_FRAG_THRESHOLD;
8846 range->max_frag = MAX_FRAG_THRESHOLD;
8848 range->encoding_size[0] = 5;
8849 range->encoding_size[1] = 13;
8850 range->num_encoding_sizes = 2;
8851 range->max_encoding_tokens = WEP_KEYS;
8853 /* Set the Wireless Extension versions */
8854 range->we_version_compiled = WIRELESS_EXT;
8855 range->we_version_source = 18;
8857 i = 0;
8858 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8859 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8860 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8861 (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8862 continue;
8864 range->freq[i].i = geo->bg[j].channel;
8865 range->freq[i].m = geo->bg[j].freq * 100000;
8866 range->freq[i].e = 1;
8867 i++;
8871 if (priv->ieee->mode & IEEE_A) {
8872 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8873 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8874 (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8875 continue;
8877 range->freq[i].i = geo->a[j].channel;
8878 range->freq[i].m = geo->a[j].freq * 100000;
8879 range->freq[i].e = 1;
8880 i++;
8884 range->num_channels = i;
8885 range->num_frequency = i;
8887 mutex_unlock(&priv->mutex);
8889 /* Event capability (kernel + driver) */
8890 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8891 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8892 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8893 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8894 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8896 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8897 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8899 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8901 IPW_DEBUG_WX("GET Range\n");
8902 return 0;
8905 static int ipw_wx_set_wap(struct net_device *dev,
8906 struct iw_request_info *info,
8907 union iwreq_data *wrqu, char *extra)
8909 struct ipw_priv *priv = libipw_priv(dev);
8911 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8912 return -EINVAL;
8913 mutex_lock(&priv->mutex);
8914 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8915 is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8916 /* we disable mandatory BSSID association */
8917 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8918 priv->config &= ~CFG_STATIC_BSSID;
8919 IPW_DEBUG_ASSOC("Attempting to associate with new "
8920 "parameters.\n");
8921 ipw_associate(priv);
8922 mutex_unlock(&priv->mutex);
8923 return 0;
8926 priv->config |= CFG_STATIC_BSSID;
8927 if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8928 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8929 mutex_unlock(&priv->mutex);
8930 return 0;
8933 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8934 wrqu->ap_addr.sa_data);
8936 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8938 /* Network configuration changed -- force [re]association */
8939 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8940 if (!ipw_disassociate(priv))
8941 ipw_associate(priv);
8943 mutex_unlock(&priv->mutex);
8944 return 0;
8947 static int ipw_wx_get_wap(struct net_device *dev,
8948 struct iw_request_info *info,
8949 union iwreq_data *wrqu, char *extra)
8951 struct ipw_priv *priv = libipw_priv(dev);
8953 /* If we are associated, trying to associate, or have a statically
8954 * configured BSSID then return that; otherwise return ANY */
8955 mutex_lock(&priv->mutex);
8956 if (priv->config & CFG_STATIC_BSSID ||
8957 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8958 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8959 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8960 } else
8961 eth_zero_addr(wrqu->ap_addr.sa_data);
8963 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8964 wrqu->ap_addr.sa_data);
8965 mutex_unlock(&priv->mutex);
8966 return 0;
8969 static int ipw_wx_set_essid(struct net_device *dev,
8970 struct iw_request_info *info,
8971 union iwreq_data *wrqu, char *extra)
8973 struct ipw_priv *priv = libipw_priv(dev);
8974 int length;
8976 mutex_lock(&priv->mutex);
8978 if (!wrqu->essid.flags)
8980 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8981 ipw_disassociate(priv);
8982 priv->config &= ~CFG_STATIC_ESSID;
8983 ipw_associate(priv);
8984 mutex_unlock(&priv->mutex);
8985 return 0;
8988 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8990 priv->config |= CFG_STATIC_ESSID;
8992 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8993 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8994 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8995 mutex_unlock(&priv->mutex);
8996 return 0;
8999 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
9001 priv->essid_len = length;
9002 memcpy(priv->essid, extra, priv->essid_len);
9004 /* Network configuration changed -- force [re]association */
9005 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9006 if (!ipw_disassociate(priv))
9007 ipw_associate(priv);
9009 mutex_unlock(&priv->mutex);
9010 return 0;
9013 static int ipw_wx_get_essid(struct net_device *dev,
9014 struct iw_request_info *info,
9015 union iwreq_data *wrqu, char *extra)
9017 struct ipw_priv *priv = libipw_priv(dev);
9019 /* If we are associated, trying to associate, or have a statically
9020 * configured ESSID then return that; otherwise return ANY */
9021 mutex_lock(&priv->mutex);
9022 if (priv->config & CFG_STATIC_ESSID ||
9023 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9024 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
9025 priv->essid_len, priv->essid);
9026 memcpy(extra, priv->essid, priv->essid_len);
9027 wrqu->essid.length = priv->essid_len;
9028 wrqu->essid.flags = 1; /* active */
9029 } else {
9030 IPW_DEBUG_WX("Getting essid: ANY\n");
9031 wrqu->essid.length = 0;
9032 wrqu->essid.flags = 0; /* active */
9034 mutex_unlock(&priv->mutex);
9035 return 0;
9038 static int ipw_wx_set_nick(struct net_device *dev,
9039 struct iw_request_info *info,
9040 union iwreq_data *wrqu, char *extra)
9042 struct ipw_priv *priv = libipw_priv(dev);
9044 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9045 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9046 return -E2BIG;
9047 mutex_lock(&priv->mutex);
9048 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9049 memset(priv->nick, 0, sizeof(priv->nick));
9050 memcpy(priv->nick, extra, wrqu->data.length);
9051 IPW_DEBUG_TRACE("<<\n");
9052 mutex_unlock(&priv->mutex);
9053 return 0;
9057 static int ipw_wx_get_nick(struct net_device *dev,
9058 struct iw_request_info *info,
9059 union iwreq_data *wrqu, char *extra)
9061 struct ipw_priv *priv = libipw_priv(dev);
9062 IPW_DEBUG_WX("Getting nick\n");
9063 mutex_lock(&priv->mutex);
9064 wrqu->data.length = strlen(priv->nick);
9065 memcpy(extra, priv->nick, wrqu->data.length);
9066 wrqu->data.flags = 1; /* active */
9067 mutex_unlock(&priv->mutex);
9068 return 0;
9071 static int ipw_wx_set_sens(struct net_device *dev,
9072 struct iw_request_info *info,
9073 union iwreq_data *wrqu, char *extra)
9075 struct ipw_priv *priv = libipw_priv(dev);
9076 int err = 0;
9078 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9079 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9080 mutex_lock(&priv->mutex);
9082 if (wrqu->sens.fixed == 0)
9084 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9085 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9086 goto out;
9088 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9089 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9090 err = -EINVAL;
9091 goto out;
9094 priv->roaming_threshold = wrqu->sens.value;
9095 priv->disassociate_threshold = 3*wrqu->sens.value;
9096 out:
9097 mutex_unlock(&priv->mutex);
9098 return err;
9101 static int ipw_wx_get_sens(struct net_device *dev,
9102 struct iw_request_info *info,
9103 union iwreq_data *wrqu, char *extra)
9105 struct ipw_priv *priv = libipw_priv(dev);
9106 mutex_lock(&priv->mutex);
9107 wrqu->sens.fixed = 1;
9108 wrqu->sens.value = priv->roaming_threshold;
9109 mutex_unlock(&priv->mutex);
9111 IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9112 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9114 return 0;
9117 static int ipw_wx_set_rate(struct net_device *dev,
9118 struct iw_request_info *info,
9119 union iwreq_data *wrqu, char *extra)
9121 /* TODO: We should use semaphores or locks for access to priv */
9122 struct ipw_priv *priv = libipw_priv(dev);
9123 u32 target_rate = wrqu->bitrate.value;
9124 u32 fixed, mask;
9126 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9127 /* value = X, fixed = 1 means only rate X */
9128 /* value = X, fixed = 0 means all rates lower equal X */
9130 if (target_rate == -1) {
9131 fixed = 0;
9132 mask = LIBIPW_DEFAULT_RATES_MASK;
9133 /* Now we should reassociate */
9134 goto apply;
9137 mask = 0;
9138 fixed = wrqu->bitrate.fixed;
9140 if (target_rate == 1000000 || !fixed)
9141 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9142 if (target_rate == 1000000)
9143 goto apply;
9145 if (target_rate == 2000000 || !fixed)
9146 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9147 if (target_rate == 2000000)
9148 goto apply;
9150 if (target_rate == 5500000 || !fixed)
9151 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9152 if (target_rate == 5500000)
9153 goto apply;
9155 if (target_rate == 6000000 || !fixed)
9156 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9157 if (target_rate == 6000000)
9158 goto apply;
9160 if (target_rate == 9000000 || !fixed)
9161 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9162 if (target_rate == 9000000)
9163 goto apply;
9165 if (target_rate == 11000000 || !fixed)
9166 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9167 if (target_rate == 11000000)
9168 goto apply;
9170 if (target_rate == 12000000 || !fixed)
9171 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9172 if (target_rate == 12000000)
9173 goto apply;
9175 if (target_rate == 18000000 || !fixed)
9176 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9177 if (target_rate == 18000000)
9178 goto apply;
9180 if (target_rate == 24000000 || !fixed)
9181 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9182 if (target_rate == 24000000)
9183 goto apply;
9185 if (target_rate == 36000000 || !fixed)
9186 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9187 if (target_rate == 36000000)
9188 goto apply;
9190 if (target_rate == 48000000 || !fixed)
9191 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9192 if (target_rate == 48000000)
9193 goto apply;
9195 if (target_rate == 54000000 || !fixed)
9196 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9197 if (target_rate == 54000000)
9198 goto apply;
9200 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9201 return -EINVAL;
9203 apply:
9204 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9205 mask, fixed ? "fixed" : "sub-rates");
9206 mutex_lock(&priv->mutex);
9207 if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9208 priv->config &= ~CFG_FIXED_RATE;
9209 ipw_set_fixed_rate(priv, priv->ieee->mode);
9210 } else
9211 priv->config |= CFG_FIXED_RATE;
9213 if (priv->rates_mask == mask) {
9214 IPW_DEBUG_WX("Mask set to current mask.\n");
9215 mutex_unlock(&priv->mutex);
9216 return 0;
9219 priv->rates_mask = mask;
9221 /* Network configuration changed -- force [re]association */
9222 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9223 if (!ipw_disassociate(priv))
9224 ipw_associate(priv);
9226 mutex_unlock(&priv->mutex);
9227 return 0;
9230 static int ipw_wx_get_rate(struct net_device *dev,
9231 struct iw_request_info *info,
9232 union iwreq_data *wrqu, char *extra)
9234 struct ipw_priv *priv = libipw_priv(dev);
9235 mutex_lock(&priv->mutex);
9236 wrqu->bitrate.value = priv->last_rate;
9237 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9238 mutex_unlock(&priv->mutex);
9239 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9240 return 0;
9243 static int ipw_wx_set_rts(struct net_device *dev,
9244 struct iw_request_info *info,
9245 union iwreq_data *wrqu, char *extra)
9247 struct ipw_priv *priv = libipw_priv(dev);
9248 mutex_lock(&priv->mutex);
9249 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9250 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9251 else {
9252 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9253 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9254 mutex_unlock(&priv->mutex);
9255 return -EINVAL;
9257 priv->rts_threshold = wrqu->rts.value;
9260 ipw_send_rts_threshold(priv, priv->rts_threshold);
9261 mutex_unlock(&priv->mutex);
9262 IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9263 return 0;
9266 static int ipw_wx_get_rts(struct net_device *dev,
9267 struct iw_request_info *info,
9268 union iwreq_data *wrqu, char *extra)
9270 struct ipw_priv *priv = libipw_priv(dev);
9271 mutex_lock(&priv->mutex);
9272 wrqu->rts.value = priv->rts_threshold;
9273 wrqu->rts.fixed = 0; /* no auto select */
9274 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9275 mutex_unlock(&priv->mutex);
9276 IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9277 return 0;
9280 static int ipw_wx_set_txpow(struct net_device *dev,
9281 struct iw_request_info *info,
9282 union iwreq_data *wrqu, char *extra)
9284 struct ipw_priv *priv = libipw_priv(dev);
9285 int err = 0;
9287 mutex_lock(&priv->mutex);
9288 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9289 err = -EINPROGRESS;
9290 goto out;
9293 if (!wrqu->power.fixed)
9294 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9296 if (wrqu->power.flags != IW_TXPOW_DBM) {
9297 err = -EINVAL;
9298 goto out;
9301 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9302 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9303 err = -EINVAL;
9304 goto out;
9307 priv->tx_power = wrqu->power.value;
9308 err = ipw_set_tx_power(priv);
9309 out:
9310 mutex_unlock(&priv->mutex);
9311 return err;
9314 static int ipw_wx_get_txpow(struct net_device *dev,
9315 struct iw_request_info *info,
9316 union iwreq_data *wrqu, char *extra)
9318 struct ipw_priv *priv = libipw_priv(dev);
9319 mutex_lock(&priv->mutex);
9320 wrqu->power.value = priv->tx_power;
9321 wrqu->power.fixed = 1;
9322 wrqu->power.flags = IW_TXPOW_DBM;
9323 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9324 mutex_unlock(&priv->mutex);
9326 IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9327 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9329 return 0;
9332 static int ipw_wx_set_frag(struct net_device *dev,
9333 struct iw_request_info *info,
9334 union iwreq_data *wrqu, char *extra)
9336 struct ipw_priv *priv = libipw_priv(dev);
9337 mutex_lock(&priv->mutex);
9338 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9339 priv->ieee->fts = DEFAULT_FTS;
9340 else {
9341 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9342 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9343 mutex_unlock(&priv->mutex);
9344 return -EINVAL;
9347 priv->ieee->fts = wrqu->frag.value & ~0x1;
9350 ipw_send_frag_threshold(priv, wrqu->frag.value);
9351 mutex_unlock(&priv->mutex);
9352 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9353 return 0;
9356 static int ipw_wx_get_frag(struct net_device *dev,
9357 struct iw_request_info *info,
9358 union iwreq_data *wrqu, char *extra)
9360 struct ipw_priv *priv = libipw_priv(dev);
9361 mutex_lock(&priv->mutex);
9362 wrqu->frag.value = priv->ieee->fts;
9363 wrqu->frag.fixed = 0; /* no auto select */
9364 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9365 mutex_unlock(&priv->mutex);
9366 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9368 return 0;
9371 static int ipw_wx_set_retry(struct net_device *dev,
9372 struct iw_request_info *info,
9373 union iwreq_data *wrqu, char *extra)
9375 struct ipw_priv *priv = libipw_priv(dev);
9377 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9378 return -EINVAL;
9380 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9381 return 0;
9383 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9384 return -EINVAL;
9386 mutex_lock(&priv->mutex);
9387 if (wrqu->retry.flags & IW_RETRY_SHORT)
9388 priv->short_retry_limit = (u8) wrqu->retry.value;
9389 else if (wrqu->retry.flags & IW_RETRY_LONG)
9390 priv->long_retry_limit = (u8) wrqu->retry.value;
9391 else {
9392 priv->short_retry_limit = (u8) wrqu->retry.value;
9393 priv->long_retry_limit = (u8) wrqu->retry.value;
9396 ipw_send_retry_limit(priv, priv->short_retry_limit,
9397 priv->long_retry_limit);
9398 mutex_unlock(&priv->mutex);
9399 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9400 priv->short_retry_limit, priv->long_retry_limit);
9401 return 0;
9404 static int ipw_wx_get_retry(struct net_device *dev,
9405 struct iw_request_info *info,
9406 union iwreq_data *wrqu, char *extra)
9408 struct ipw_priv *priv = libipw_priv(dev);
9410 mutex_lock(&priv->mutex);
9411 wrqu->retry.disabled = 0;
9413 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9414 mutex_unlock(&priv->mutex);
9415 return -EINVAL;
9418 if (wrqu->retry.flags & IW_RETRY_LONG) {
9419 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9420 wrqu->retry.value = priv->long_retry_limit;
9421 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9422 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9423 wrqu->retry.value = priv->short_retry_limit;
9424 } else {
9425 wrqu->retry.flags = IW_RETRY_LIMIT;
9426 wrqu->retry.value = priv->short_retry_limit;
9428 mutex_unlock(&priv->mutex);
9430 IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9432 return 0;
9435 static int ipw_wx_set_scan(struct net_device *dev,
9436 struct iw_request_info *info,
9437 union iwreq_data *wrqu, char *extra)
9439 struct ipw_priv *priv = libipw_priv(dev);
9440 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9441 struct delayed_work *work = NULL;
9443 mutex_lock(&priv->mutex);
9445 priv->user_requested_scan = 1;
9447 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9448 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9449 int len = min((int)req->essid_len,
9450 (int)sizeof(priv->direct_scan_ssid));
9451 memcpy(priv->direct_scan_ssid, req->essid, len);
9452 priv->direct_scan_ssid_len = len;
9453 work = &priv->request_direct_scan;
9454 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9455 work = &priv->request_passive_scan;
9457 } else {
9458 /* Normal active broadcast scan */
9459 work = &priv->request_scan;
9462 mutex_unlock(&priv->mutex);
9464 IPW_DEBUG_WX("Start scan\n");
9466 schedule_delayed_work(work, 0);
9468 return 0;
9471 static int ipw_wx_get_scan(struct net_device *dev,
9472 struct iw_request_info *info,
9473 union iwreq_data *wrqu, char *extra)
9475 struct ipw_priv *priv = libipw_priv(dev);
9476 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9479 static int ipw_wx_set_encode(struct net_device *dev,
9480 struct iw_request_info *info,
9481 union iwreq_data *wrqu, char *key)
9483 struct ipw_priv *priv = libipw_priv(dev);
9484 int ret;
9485 u32 cap = priv->capability;
9487 mutex_lock(&priv->mutex);
9488 ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9490 /* In IBSS mode, we need to notify the firmware to update
9491 * the beacon info after we changed the capability. */
9492 if (cap != priv->capability &&
9493 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9494 priv->status & STATUS_ASSOCIATED)
9495 ipw_disassociate(priv);
9497 mutex_unlock(&priv->mutex);
9498 return ret;
9501 static int ipw_wx_get_encode(struct net_device *dev,
9502 struct iw_request_info *info,
9503 union iwreq_data *wrqu, char *key)
9505 struct ipw_priv *priv = libipw_priv(dev);
9506 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9509 static int ipw_wx_set_power(struct net_device *dev,
9510 struct iw_request_info *info,
9511 union iwreq_data *wrqu, char *extra)
9513 struct ipw_priv *priv = libipw_priv(dev);
9514 int err;
9515 mutex_lock(&priv->mutex);
9516 if (wrqu->power.disabled) {
9517 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9518 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9519 if (err) {
9520 IPW_DEBUG_WX("failed setting power mode.\n");
9521 mutex_unlock(&priv->mutex);
9522 return err;
9524 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9525 mutex_unlock(&priv->mutex);
9526 return 0;
9529 switch (wrqu->power.flags & IW_POWER_MODE) {
9530 case IW_POWER_ON: /* If not specified */
9531 case IW_POWER_MODE: /* If set all mask */
9532 case IW_POWER_ALL_R: /* If explicitly state all */
9533 break;
9534 default: /* Otherwise we don't support it */
9535 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9536 wrqu->power.flags);
9537 mutex_unlock(&priv->mutex);
9538 return -EOPNOTSUPP;
9541 /* If the user hasn't specified a power management mode yet, default
9542 * to BATTERY */
9543 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9544 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9545 else
9546 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9548 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9549 if (err) {
9550 IPW_DEBUG_WX("failed setting power mode.\n");
9551 mutex_unlock(&priv->mutex);
9552 return err;
9555 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9556 mutex_unlock(&priv->mutex);
9557 return 0;
9560 static int ipw_wx_get_power(struct net_device *dev,
9561 struct iw_request_info *info,
9562 union iwreq_data *wrqu, char *extra)
9564 struct ipw_priv *priv = libipw_priv(dev);
9565 mutex_lock(&priv->mutex);
9566 if (!(priv->power_mode & IPW_POWER_ENABLED))
9567 wrqu->power.disabled = 1;
9568 else
9569 wrqu->power.disabled = 0;
9571 mutex_unlock(&priv->mutex);
9572 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9574 return 0;
9577 static int ipw_wx_set_powermode(struct net_device *dev,
9578 struct iw_request_info *info,
9579 union iwreq_data *wrqu, char *extra)
9581 struct ipw_priv *priv = libipw_priv(dev);
9582 int mode = *(int *)extra;
9583 int err;
9585 mutex_lock(&priv->mutex);
9586 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9587 mode = IPW_POWER_AC;
9589 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9590 err = ipw_send_power_mode(priv, mode);
9591 if (err) {
9592 IPW_DEBUG_WX("failed setting power mode.\n");
9593 mutex_unlock(&priv->mutex);
9594 return err;
9596 priv->power_mode = IPW_POWER_ENABLED | mode;
9598 mutex_unlock(&priv->mutex);
9599 return 0;
9602 #define MAX_WX_STRING 80
9603 static int ipw_wx_get_powermode(struct net_device *dev,
9604 struct iw_request_info *info,
9605 union iwreq_data *wrqu, char *extra)
9607 struct ipw_priv *priv = libipw_priv(dev);
9608 int level = IPW_POWER_LEVEL(priv->power_mode);
9609 char *p = extra;
9611 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9613 switch (level) {
9614 case IPW_POWER_AC:
9615 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9616 break;
9617 case IPW_POWER_BATTERY:
9618 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9619 break;
9620 default:
9621 p += snprintf(p, MAX_WX_STRING - (p - extra),
9622 "(Timeout %dms, Period %dms)",
9623 timeout_duration[level - 1] / 1000,
9624 period_duration[level - 1] / 1000);
9627 if (!(priv->power_mode & IPW_POWER_ENABLED))
9628 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9630 wrqu->data.length = p - extra + 1;
9632 return 0;
9635 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9636 struct iw_request_info *info,
9637 union iwreq_data *wrqu, char *extra)
9639 struct ipw_priv *priv = libipw_priv(dev);
9640 int mode = *(int *)extra;
9641 u8 band = 0, modulation = 0;
9643 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9644 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9645 return -EINVAL;
9647 mutex_lock(&priv->mutex);
9648 if (priv->adapter == IPW_2915ABG) {
9649 priv->ieee->abg_true = 1;
9650 if (mode & IEEE_A) {
9651 band |= LIBIPW_52GHZ_BAND;
9652 modulation |= LIBIPW_OFDM_MODULATION;
9653 } else
9654 priv->ieee->abg_true = 0;
9655 } else {
9656 if (mode & IEEE_A) {
9657 IPW_WARNING("Attempt to set 2200BG into "
9658 "802.11a mode\n");
9659 mutex_unlock(&priv->mutex);
9660 return -EINVAL;
9663 priv->ieee->abg_true = 0;
9666 if (mode & IEEE_B) {
9667 band |= LIBIPW_24GHZ_BAND;
9668 modulation |= LIBIPW_CCK_MODULATION;
9669 } else
9670 priv->ieee->abg_true = 0;
9672 if (mode & IEEE_G) {
9673 band |= LIBIPW_24GHZ_BAND;
9674 modulation |= LIBIPW_OFDM_MODULATION;
9675 } else
9676 priv->ieee->abg_true = 0;
9678 priv->ieee->mode = mode;
9679 priv->ieee->freq_band = band;
9680 priv->ieee->modulation = modulation;
9681 init_supported_rates(priv, &priv->rates);
9683 /* Network configuration changed -- force [re]association */
9684 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9685 if (!ipw_disassociate(priv)) {
9686 ipw_send_supported_rates(priv, &priv->rates);
9687 ipw_associate(priv);
9690 /* Update the band LEDs */
9691 ipw_led_band_on(priv);
9693 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9694 mode & IEEE_A ? 'a' : '.',
9695 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9696 mutex_unlock(&priv->mutex);
9697 return 0;
9700 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9701 struct iw_request_info *info,
9702 union iwreq_data *wrqu, char *extra)
9704 struct ipw_priv *priv = libipw_priv(dev);
9705 mutex_lock(&priv->mutex);
9706 switch (priv->ieee->mode) {
9707 case IEEE_A:
9708 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9709 break;
9710 case IEEE_B:
9711 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9712 break;
9713 case IEEE_A | IEEE_B:
9714 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9715 break;
9716 case IEEE_G:
9717 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9718 break;
9719 case IEEE_A | IEEE_G:
9720 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9721 break;
9722 case IEEE_B | IEEE_G:
9723 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9724 break;
9725 case IEEE_A | IEEE_B | IEEE_G:
9726 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9727 break;
9728 default:
9729 strncpy(extra, "unknown", MAX_WX_STRING);
9730 break;
9732 extra[MAX_WX_STRING - 1] = '\0';
9734 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9736 wrqu->data.length = strlen(extra) + 1;
9737 mutex_unlock(&priv->mutex);
9739 return 0;
9742 static int ipw_wx_set_preamble(struct net_device *dev,
9743 struct iw_request_info *info,
9744 union iwreq_data *wrqu, char *extra)
9746 struct ipw_priv *priv = libipw_priv(dev);
9747 int mode = *(int *)extra;
9748 mutex_lock(&priv->mutex);
9749 /* Switching from SHORT -> LONG requires a disassociation */
9750 if (mode == 1) {
9751 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9752 priv->config |= CFG_PREAMBLE_LONG;
9754 /* Network configuration changed -- force [re]association */
9755 IPW_DEBUG_ASSOC
9756 ("[re]association triggered due to preamble change.\n");
9757 if (!ipw_disassociate(priv))
9758 ipw_associate(priv);
9760 goto done;
9763 if (mode == 0) {
9764 priv->config &= ~CFG_PREAMBLE_LONG;
9765 goto done;
9767 mutex_unlock(&priv->mutex);
9768 return -EINVAL;
9770 done:
9771 mutex_unlock(&priv->mutex);
9772 return 0;
9775 static int ipw_wx_get_preamble(struct net_device *dev,
9776 struct iw_request_info *info,
9777 union iwreq_data *wrqu, char *extra)
9779 struct ipw_priv *priv = libipw_priv(dev);
9780 mutex_lock(&priv->mutex);
9781 if (priv->config & CFG_PREAMBLE_LONG)
9782 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9783 else
9784 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9785 mutex_unlock(&priv->mutex);
9786 return 0;
9789 #ifdef CONFIG_IPW2200_MONITOR
9790 static int ipw_wx_set_monitor(struct net_device *dev,
9791 struct iw_request_info *info,
9792 union iwreq_data *wrqu, char *extra)
9794 struct ipw_priv *priv = libipw_priv(dev);
9795 int *parms = (int *)extra;
9796 int enable = (parms[0] > 0);
9797 mutex_lock(&priv->mutex);
9798 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9799 if (enable) {
9800 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9801 #ifdef CONFIG_IPW2200_RADIOTAP
9802 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9803 #else
9804 priv->net_dev->type = ARPHRD_IEEE80211;
9805 #endif
9806 schedule_work(&priv->adapter_restart);
9809 ipw_set_channel(priv, parms[1]);
9810 } else {
9811 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9812 mutex_unlock(&priv->mutex);
9813 return 0;
9815 priv->net_dev->type = ARPHRD_ETHER;
9816 schedule_work(&priv->adapter_restart);
9818 mutex_unlock(&priv->mutex);
9819 return 0;
9822 #endif /* CONFIG_IPW2200_MONITOR */
9824 static int ipw_wx_reset(struct net_device *dev,
9825 struct iw_request_info *info,
9826 union iwreq_data *wrqu, char *extra)
9828 struct ipw_priv *priv = libipw_priv(dev);
9829 IPW_DEBUG_WX("RESET\n");
9830 schedule_work(&priv->adapter_restart);
9831 return 0;
9834 static int ipw_wx_sw_reset(struct net_device *dev,
9835 struct iw_request_info *info,
9836 union iwreq_data *wrqu, char *extra)
9838 struct ipw_priv *priv = libipw_priv(dev);
9839 union iwreq_data wrqu_sec = {
9840 .encoding = {
9841 .flags = IW_ENCODE_DISABLED,
9844 int ret;
9846 IPW_DEBUG_WX("SW_RESET\n");
9848 mutex_lock(&priv->mutex);
9850 ret = ipw_sw_reset(priv, 2);
9851 if (!ret) {
9852 free_firmware();
9853 ipw_adapter_restart(priv);
9856 /* The SW reset bit might have been toggled on by the 'disable'
9857 * module parameter, so take appropriate action */
9858 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9860 mutex_unlock(&priv->mutex);
9861 libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9862 mutex_lock(&priv->mutex);
9864 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9865 /* Configuration likely changed -- force [re]association */
9866 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9867 "reset.\n");
9868 if (!ipw_disassociate(priv))
9869 ipw_associate(priv);
9872 mutex_unlock(&priv->mutex);
9874 return 0;
9877 /* Rebase the WE IOCTLs to zero for the handler array */
9878 static iw_handler ipw_wx_handlers[] = {
9879 IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
9880 IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9881 IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9882 IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9883 IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9884 IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9885 IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9886 IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9887 IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9888 IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9889 IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9890 IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9891 IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9892 IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9893 IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9894 IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9895 IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9896 IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9897 IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9898 IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9899 IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9900 IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9901 IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9902 IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9903 IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9904 IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9905 IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9906 IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9907 IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9908 IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9909 IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9910 IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9911 IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9912 IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9913 IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9914 IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9915 IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9916 IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9917 IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9918 IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9919 IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9922 enum {
9923 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9924 IPW_PRIV_GET_POWER,
9925 IPW_PRIV_SET_MODE,
9926 IPW_PRIV_GET_MODE,
9927 IPW_PRIV_SET_PREAMBLE,
9928 IPW_PRIV_GET_PREAMBLE,
9929 IPW_PRIV_RESET,
9930 IPW_PRIV_SW_RESET,
9931 #ifdef CONFIG_IPW2200_MONITOR
9932 IPW_PRIV_SET_MONITOR,
9933 #endif
9936 static struct iw_priv_args ipw_priv_args[] = {
9938 .cmd = IPW_PRIV_SET_POWER,
9939 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9940 .name = "set_power"},
9942 .cmd = IPW_PRIV_GET_POWER,
9943 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9944 .name = "get_power"},
9946 .cmd = IPW_PRIV_SET_MODE,
9947 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9948 .name = "set_mode"},
9950 .cmd = IPW_PRIV_GET_MODE,
9951 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9952 .name = "get_mode"},
9954 .cmd = IPW_PRIV_SET_PREAMBLE,
9955 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9956 .name = "set_preamble"},
9958 .cmd = IPW_PRIV_GET_PREAMBLE,
9959 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9960 .name = "get_preamble"},
9962 IPW_PRIV_RESET,
9963 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9965 IPW_PRIV_SW_RESET,
9966 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9967 #ifdef CONFIG_IPW2200_MONITOR
9969 IPW_PRIV_SET_MONITOR,
9970 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9971 #endif /* CONFIG_IPW2200_MONITOR */
9974 static iw_handler ipw_priv_handler[] = {
9975 ipw_wx_set_powermode,
9976 ipw_wx_get_powermode,
9977 ipw_wx_set_wireless_mode,
9978 ipw_wx_get_wireless_mode,
9979 ipw_wx_set_preamble,
9980 ipw_wx_get_preamble,
9981 ipw_wx_reset,
9982 ipw_wx_sw_reset,
9983 #ifdef CONFIG_IPW2200_MONITOR
9984 ipw_wx_set_monitor,
9985 #endif
9988 static const struct iw_handler_def ipw_wx_handler_def = {
9989 .standard = ipw_wx_handlers,
9990 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9991 .num_private = ARRAY_SIZE(ipw_priv_handler),
9992 .num_private_args = ARRAY_SIZE(ipw_priv_args),
9993 .private = ipw_priv_handler,
9994 .private_args = ipw_priv_args,
9995 .get_wireless_stats = ipw_get_wireless_stats,
9999 * Get wireless statistics.
10000 * Called by /proc/net/wireless
10001 * Also called by SIOCGIWSTATS
10003 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10005 struct ipw_priv *priv = libipw_priv(dev);
10006 struct iw_statistics *wstats;
10008 wstats = &priv->wstats;
10010 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10011 * netdev->get_wireless_stats seems to be called before fw is
10012 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10013 * and associated; if not associcated, the values are all meaningless
10014 * anyway, so set them all to NULL and INVALID */
10015 if (!(priv->status & STATUS_ASSOCIATED)) {
10016 wstats->miss.beacon = 0;
10017 wstats->discard.retries = 0;
10018 wstats->qual.qual = 0;
10019 wstats->qual.level = 0;
10020 wstats->qual.noise = 0;
10021 wstats->qual.updated = 7;
10022 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10023 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10024 return wstats;
10027 wstats->qual.qual = priv->quality;
10028 wstats->qual.level = priv->exp_avg_rssi;
10029 wstats->qual.noise = priv->exp_avg_noise;
10030 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10031 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10033 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10034 wstats->discard.retries = priv->last_tx_failures;
10035 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10037 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10038 goto fail_get_ordinal;
10039 wstats->discard.retries += tx_retry; */
10041 return wstats;
10044 /* net device stuff */
10046 static void init_sys_config(struct ipw_sys_config *sys_config)
10048 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10049 sys_config->bt_coexistence = 0;
10050 sys_config->answer_broadcast_ssid_probe = 0;
10051 sys_config->accept_all_data_frames = 0;
10052 sys_config->accept_non_directed_frames = 1;
10053 sys_config->exclude_unicast_unencrypted = 0;
10054 sys_config->disable_unicast_decryption = 1;
10055 sys_config->exclude_multicast_unencrypted = 0;
10056 sys_config->disable_multicast_decryption = 1;
10057 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10058 antenna = CFG_SYS_ANTENNA_BOTH;
10059 sys_config->antenna_diversity = antenna;
10060 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10061 sys_config->dot11g_auto_detection = 0;
10062 sys_config->enable_cts_to_self = 0;
10063 sys_config->bt_coexist_collision_thr = 0;
10064 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10065 sys_config->silence_threshold = 0x1e;
10068 static int ipw_net_open(struct net_device *dev)
10070 IPW_DEBUG_INFO("dev->open\n");
10071 netif_start_queue(dev);
10072 return 0;
10075 static int ipw_net_stop(struct net_device *dev)
10077 IPW_DEBUG_INFO("dev->close\n");
10078 netif_stop_queue(dev);
10079 return 0;
10083 todo:
10085 modify to send one tfd per fragment instead of using chunking. otherwise
10086 we need to heavily modify the libipw_skb_to_txb.
10089 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10090 int pri)
10092 struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10093 txb->fragments[0]->data;
10094 int i = 0;
10095 struct tfd_frame *tfd;
10096 #ifdef CONFIG_IPW2200_QOS
10097 int tx_id = ipw_get_tx_queue_number(priv, pri);
10098 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10099 #else
10100 struct clx2_tx_queue *txq = &priv->txq[0];
10101 #endif
10102 struct clx2_queue *q = &txq->q;
10103 u8 id, hdr_len, unicast;
10104 int fc;
10106 if (!(priv->status & STATUS_ASSOCIATED))
10107 goto drop;
10109 hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10110 switch (priv->ieee->iw_mode) {
10111 case IW_MODE_ADHOC:
10112 unicast = !is_multicast_ether_addr(hdr->addr1);
10113 id = ipw_find_station(priv, hdr->addr1);
10114 if (id == IPW_INVALID_STATION) {
10115 id = ipw_add_station(priv, hdr->addr1);
10116 if (id == IPW_INVALID_STATION) {
10117 IPW_WARNING("Attempt to send data to "
10118 "invalid cell: %pM\n",
10119 hdr->addr1);
10120 goto drop;
10123 break;
10125 case IW_MODE_INFRA:
10126 default:
10127 unicast = !is_multicast_ether_addr(hdr->addr3);
10128 id = 0;
10129 break;
10132 tfd = &txq->bd[q->first_empty];
10133 txq->txb[q->first_empty] = txb;
10134 memset(tfd, 0, sizeof(*tfd));
10135 tfd->u.data.station_number = id;
10137 tfd->control_flags.message_type = TX_FRAME_TYPE;
10138 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10140 tfd->u.data.cmd_id = DINO_CMD_TX;
10141 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10143 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10144 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10145 else
10146 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10148 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10149 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10151 fc = le16_to_cpu(hdr->frame_ctl);
10152 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10154 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10156 if (likely(unicast))
10157 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10159 if (txb->encrypted && !priv->ieee->host_encrypt) {
10160 switch (priv->ieee->sec.level) {
10161 case SEC_LEVEL_3:
10162 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10163 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10164 /* XXX: ACK flag must be set for CCMP even if it
10165 * is a multicast/broadcast packet, because CCMP
10166 * group communication encrypted by GTK is
10167 * actually done by the AP. */
10168 if (!unicast)
10169 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10171 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10172 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10173 tfd->u.data.key_index = 0;
10174 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10175 break;
10176 case SEC_LEVEL_2:
10177 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10178 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10179 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10180 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10181 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10182 break;
10183 case SEC_LEVEL_1:
10184 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10185 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10186 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10187 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10189 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10190 else
10191 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10192 break;
10193 case SEC_LEVEL_0:
10194 break;
10195 default:
10196 printk(KERN_ERR "Unknown security level %d\n",
10197 priv->ieee->sec.level);
10198 break;
10200 } else
10201 /* No hardware encryption */
10202 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10204 #ifdef CONFIG_IPW2200_QOS
10205 if (fc & IEEE80211_STYPE_QOS_DATA)
10206 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10207 #endif /* CONFIG_IPW2200_QOS */
10209 /* payload */
10210 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10211 txb->nr_frags));
10212 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10213 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10214 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10215 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10216 i, le32_to_cpu(tfd->u.data.num_chunks),
10217 txb->fragments[i]->len - hdr_len);
10218 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10219 i, tfd->u.data.num_chunks,
10220 txb->fragments[i]->len - hdr_len);
10221 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10222 txb->fragments[i]->len - hdr_len);
10224 tfd->u.data.chunk_ptr[i] =
10225 cpu_to_le32(pci_map_single
10226 (priv->pci_dev,
10227 txb->fragments[i]->data + hdr_len,
10228 txb->fragments[i]->len - hdr_len,
10229 PCI_DMA_TODEVICE));
10230 tfd->u.data.chunk_len[i] =
10231 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10234 if (i != txb->nr_frags) {
10235 struct sk_buff *skb;
10236 u16 remaining_bytes = 0;
10237 int j;
10239 for (j = i; j < txb->nr_frags; j++)
10240 remaining_bytes += txb->fragments[j]->len - hdr_len;
10242 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10243 remaining_bytes);
10244 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10245 if (skb != NULL) {
10246 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10247 for (j = i; j < txb->nr_frags; j++) {
10248 int size = txb->fragments[j]->len - hdr_len;
10250 printk(KERN_INFO "Adding frag %d %d...\n",
10251 j, size);
10252 skb_put_data(skb,
10253 txb->fragments[j]->data + hdr_len,
10254 size);
10256 dev_kfree_skb_any(txb->fragments[i]);
10257 txb->fragments[i] = skb;
10258 tfd->u.data.chunk_ptr[i] =
10259 cpu_to_le32(pci_map_single
10260 (priv->pci_dev, skb->data,
10261 remaining_bytes,
10262 PCI_DMA_TODEVICE));
10264 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10268 /* kick DMA */
10269 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10270 ipw_write32(priv, q->reg_w, q->first_empty);
10272 if (ipw_tx_queue_space(q) < q->high_mark)
10273 netif_stop_queue(priv->net_dev);
10275 return NETDEV_TX_OK;
10277 drop:
10278 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10279 libipw_txb_free(txb);
10280 return NETDEV_TX_OK;
10283 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10285 struct ipw_priv *priv = libipw_priv(dev);
10286 #ifdef CONFIG_IPW2200_QOS
10287 int tx_id = ipw_get_tx_queue_number(priv, pri);
10288 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10289 #else
10290 struct clx2_tx_queue *txq = &priv->txq[0];
10291 #endif /* CONFIG_IPW2200_QOS */
10293 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10294 return 1;
10296 return 0;
10299 #ifdef CONFIG_IPW2200_PROMISCUOUS
10300 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10301 struct libipw_txb *txb)
10303 struct libipw_rx_stats dummystats;
10304 struct ieee80211_hdr *hdr;
10305 u8 n;
10306 u16 filter = priv->prom_priv->filter;
10307 int hdr_only = 0;
10309 if (filter & IPW_PROM_NO_TX)
10310 return;
10312 memset(&dummystats, 0, sizeof(dummystats));
10314 /* Filtering of fragment chains is done against the first fragment */
10315 hdr = (void *)txb->fragments[0]->data;
10316 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10317 if (filter & IPW_PROM_NO_MGMT)
10318 return;
10319 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10320 hdr_only = 1;
10321 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10322 if (filter & IPW_PROM_NO_CTL)
10323 return;
10324 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10325 hdr_only = 1;
10326 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10327 if (filter & IPW_PROM_NO_DATA)
10328 return;
10329 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10330 hdr_only = 1;
10333 for(n=0; n<txb->nr_frags; ++n) {
10334 struct sk_buff *src = txb->fragments[n];
10335 struct sk_buff *dst;
10336 struct ieee80211_radiotap_header *rt_hdr;
10337 int len;
10339 if (hdr_only) {
10340 hdr = (void *)src->data;
10341 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10342 } else
10343 len = src->len;
10345 dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10346 if (!dst)
10347 continue;
10349 rt_hdr = skb_put(dst, sizeof(*rt_hdr));
10351 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10352 rt_hdr->it_pad = 0;
10353 rt_hdr->it_present = 0; /* after all, it's just an idea */
10354 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10356 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10357 ieee80211chan2mhz(priv->channel));
10358 if (priv->channel > 14) /* 802.11a */
10359 *(__le16*)skb_put(dst, sizeof(u16)) =
10360 cpu_to_le16(IEEE80211_CHAN_OFDM |
10361 IEEE80211_CHAN_5GHZ);
10362 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10363 *(__le16*)skb_put(dst, sizeof(u16)) =
10364 cpu_to_le16(IEEE80211_CHAN_CCK |
10365 IEEE80211_CHAN_2GHZ);
10366 else /* 802.11g */
10367 *(__le16*)skb_put(dst, sizeof(u16)) =
10368 cpu_to_le16(IEEE80211_CHAN_OFDM |
10369 IEEE80211_CHAN_2GHZ);
10371 rt_hdr->it_len = cpu_to_le16(dst->len);
10373 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10375 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10376 dev_kfree_skb_any(dst);
10379 #endif
10381 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10382 struct net_device *dev, int pri)
10384 struct ipw_priv *priv = libipw_priv(dev);
10385 unsigned long flags;
10386 netdev_tx_t ret;
10388 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10389 spin_lock_irqsave(&priv->lock, flags);
10391 #ifdef CONFIG_IPW2200_PROMISCUOUS
10392 if (rtap_iface && netif_running(priv->prom_net_dev))
10393 ipw_handle_promiscuous_tx(priv, txb);
10394 #endif
10396 ret = ipw_tx_skb(priv, txb, pri);
10397 if (ret == NETDEV_TX_OK)
10398 __ipw_led_activity_on(priv);
10399 spin_unlock_irqrestore(&priv->lock, flags);
10401 return ret;
10404 static void ipw_net_set_multicast_list(struct net_device *dev)
10409 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10411 struct ipw_priv *priv = libipw_priv(dev);
10412 struct sockaddr *addr = p;
10414 if (!is_valid_ether_addr(addr->sa_data))
10415 return -EADDRNOTAVAIL;
10416 mutex_lock(&priv->mutex);
10417 priv->config |= CFG_CUSTOM_MAC;
10418 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10419 printk(KERN_INFO "%s: Setting MAC to %pM\n",
10420 priv->net_dev->name, priv->mac_addr);
10421 schedule_work(&priv->adapter_restart);
10422 mutex_unlock(&priv->mutex);
10423 return 0;
10426 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10427 struct ethtool_drvinfo *info)
10429 struct ipw_priv *p = libipw_priv(dev);
10430 char vers[64];
10431 char date[32];
10432 u32 len;
10434 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10435 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10437 len = sizeof(vers);
10438 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10439 len = sizeof(date);
10440 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10442 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10443 vers, date);
10444 strlcpy(info->bus_info, pci_name(p->pci_dev),
10445 sizeof(info->bus_info));
10448 static u32 ipw_ethtool_get_link(struct net_device *dev)
10450 struct ipw_priv *priv = libipw_priv(dev);
10451 return (priv->status & STATUS_ASSOCIATED) != 0;
10454 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10456 return IPW_EEPROM_IMAGE_SIZE;
10459 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10460 struct ethtool_eeprom *eeprom, u8 * bytes)
10462 struct ipw_priv *p = libipw_priv(dev);
10464 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10465 return -EINVAL;
10466 mutex_lock(&p->mutex);
10467 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10468 mutex_unlock(&p->mutex);
10469 return 0;
10472 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10473 struct ethtool_eeprom *eeprom, u8 * bytes)
10475 struct ipw_priv *p = libipw_priv(dev);
10476 int i;
10478 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10479 return -EINVAL;
10480 mutex_lock(&p->mutex);
10481 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10482 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10483 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10484 mutex_unlock(&p->mutex);
10485 return 0;
10488 static const struct ethtool_ops ipw_ethtool_ops = {
10489 .get_link = ipw_ethtool_get_link,
10490 .get_drvinfo = ipw_ethtool_get_drvinfo,
10491 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10492 .get_eeprom = ipw_ethtool_get_eeprom,
10493 .set_eeprom = ipw_ethtool_set_eeprom,
10496 static irqreturn_t ipw_isr(int irq, void *data)
10498 struct ipw_priv *priv = data;
10499 u32 inta, inta_mask;
10501 if (!priv)
10502 return IRQ_NONE;
10504 spin_lock(&priv->irq_lock);
10506 if (!(priv->status & STATUS_INT_ENABLED)) {
10507 /* IRQ is disabled */
10508 goto none;
10511 inta = ipw_read32(priv, IPW_INTA_RW);
10512 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10514 if (inta == 0xFFFFFFFF) {
10515 /* Hardware disappeared */
10516 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10517 goto none;
10520 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10521 /* Shared interrupt */
10522 goto none;
10525 /* tell the device to stop sending interrupts */
10526 __ipw_disable_interrupts(priv);
10528 /* ack current interrupts */
10529 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10530 ipw_write32(priv, IPW_INTA_RW, inta);
10532 /* Cache INTA value for our tasklet */
10533 priv->isr_inta = inta;
10535 tasklet_schedule(&priv->irq_tasklet);
10537 spin_unlock(&priv->irq_lock);
10539 return IRQ_HANDLED;
10540 none:
10541 spin_unlock(&priv->irq_lock);
10542 return IRQ_NONE;
10545 static void ipw_rf_kill(void *adapter)
10547 struct ipw_priv *priv = adapter;
10548 unsigned long flags;
10550 spin_lock_irqsave(&priv->lock, flags);
10552 if (rf_kill_active(priv)) {
10553 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10554 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10555 goto exit_unlock;
10558 /* RF Kill is now disabled, so bring the device back up */
10560 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10561 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10562 "device\n");
10564 /* we can not do an adapter restart while inside an irq lock */
10565 schedule_work(&priv->adapter_restart);
10566 } else
10567 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10568 "enabled\n");
10570 exit_unlock:
10571 spin_unlock_irqrestore(&priv->lock, flags);
10574 static void ipw_bg_rf_kill(struct work_struct *work)
10576 struct ipw_priv *priv =
10577 container_of(work, struct ipw_priv, rf_kill.work);
10578 mutex_lock(&priv->mutex);
10579 ipw_rf_kill(priv);
10580 mutex_unlock(&priv->mutex);
10583 static void ipw_link_up(struct ipw_priv *priv)
10585 priv->last_seq_num = -1;
10586 priv->last_frag_num = -1;
10587 priv->last_packet_time = 0;
10589 netif_carrier_on(priv->net_dev);
10591 cancel_delayed_work(&priv->request_scan);
10592 cancel_delayed_work(&priv->request_direct_scan);
10593 cancel_delayed_work(&priv->request_passive_scan);
10594 cancel_delayed_work(&priv->scan_event);
10595 ipw_reset_stats(priv);
10596 /* Ensure the rate is updated immediately */
10597 priv->last_rate = ipw_get_current_rate(priv);
10598 ipw_gather_stats(priv);
10599 ipw_led_link_up(priv);
10600 notify_wx_assoc_event(priv);
10602 if (priv->config & CFG_BACKGROUND_SCAN)
10603 schedule_delayed_work(&priv->request_scan, HZ);
10606 static void ipw_bg_link_up(struct work_struct *work)
10608 struct ipw_priv *priv =
10609 container_of(work, struct ipw_priv, link_up);
10610 mutex_lock(&priv->mutex);
10611 ipw_link_up(priv);
10612 mutex_unlock(&priv->mutex);
10615 static void ipw_link_down(struct ipw_priv *priv)
10617 ipw_led_link_down(priv);
10618 netif_carrier_off(priv->net_dev);
10619 notify_wx_assoc_event(priv);
10621 /* Cancel any queued work ... */
10622 cancel_delayed_work(&priv->request_scan);
10623 cancel_delayed_work(&priv->request_direct_scan);
10624 cancel_delayed_work(&priv->request_passive_scan);
10625 cancel_delayed_work(&priv->adhoc_check);
10626 cancel_delayed_work(&priv->gather_stats);
10628 ipw_reset_stats(priv);
10630 if (!(priv->status & STATUS_EXIT_PENDING)) {
10631 /* Queue up another scan... */
10632 schedule_delayed_work(&priv->request_scan, 0);
10633 } else
10634 cancel_delayed_work(&priv->scan_event);
10637 static void ipw_bg_link_down(struct work_struct *work)
10639 struct ipw_priv *priv =
10640 container_of(work, struct ipw_priv, link_down);
10641 mutex_lock(&priv->mutex);
10642 ipw_link_down(priv);
10643 mutex_unlock(&priv->mutex);
10646 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10648 int ret = 0;
10650 init_waitqueue_head(&priv->wait_command_queue);
10651 init_waitqueue_head(&priv->wait_state);
10653 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10654 INIT_WORK(&priv->associate, ipw_bg_associate);
10655 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10656 INIT_WORK(&priv->system_config, ipw_system_config);
10657 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10658 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10659 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10660 INIT_WORK(&priv->up, ipw_bg_up);
10661 INIT_WORK(&priv->down, ipw_bg_down);
10662 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10663 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10664 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10665 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10666 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10667 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10668 INIT_WORK(&priv->roam, ipw_bg_roam);
10669 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10670 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10671 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10672 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10673 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10674 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10675 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10677 #ifdef CONFIG_IPW2200_QOS
10678 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10679 #endif /* CONFIG_IPW2200_QOS */
10681 tasklet_init(&priv->irq_tasklet,
10682 ipw_irq_tasklet, (unsigned long)priv);
10684 return ret;
10687 static void shim__set_security(struct net_device *dev,
10688 struct libipw_security *sec)
10690 struct ipw_priv *priv = libipw_priv(dev);
10691 int i;
10692 for (i = 0; i < 4; i++) {
10693 if (sec->flags & (1 << i)) {
10694 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10695 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10696 if (sec->key_sizes[i] == 0)
10697 priv->ieee->sec.flags &= ~(1 << i);
10698 else {
10699 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10700 sec->key_sizes[i]);
10701 priv->ieee->sec.flags |= (1 << i);
10703 priv->status |= STATUS_SECURITY_UPDATED;
10704 } else if (sec->level != SEC_LEVEL_1)
10705 priv->ieee->sec.flags &= ~(1 << i);
10708 if (sec->flags & SEC_ACTIVE_KEY) {
10709 priv->ieee->sec.active_key = sec->active_key;
10710 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10711 priv->status |= STATUS_SECURITY_UPDATED;
10712 } else
10713 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10715 if ((sec->flags & SEC_AUTH_MODE) &&
10716 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10717 priv->ieee->sec.auth_mode = sec->auth_mode;
10718 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10719 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10720 priv->capability |= CAP_SHARED_KEY;
10721 else
10722 priv->capability &= ~CAP_SHARED_KEY;
10723 priv->status |= STATUS_SECURITY_UPDATED;
10726 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10727 priv->ieee->sec.flags |= SEC_ENABLED;
10728 priv->ieee->sec.enabled = sec->enabled;
10729 priv->status |= STATUS_SECURITY_UPDATED;
10730 if (sec->enabled)
10731 priv->capability |= CAP_PRIVACY_ON;
10732 else
10733 priv->capability &= ~CAP_PRIVACY_ON;
10736 if (sec->flags & SEC_ENCRYPT)
10737 priv->ieee->sec.encrypt = sec->encrypt;
10739 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10740 priv->ieee->sec.level = sec->level;
10741 priv->ieee->sec.flags |= SEC_LEVEL;
10742 priv->status |= STATUS_SECURITY_UPDATED;
10745 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10746 ipw_set_hwcrypto_keys(priv);
10748 /* To match current functionality of ipw2100 (which works well w/
10749 * various supplicants, we don't force a disassociate if the
10750 * privacy capability changes ... */
10751 #if 0
10752 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10753 (((priv->assoc_request.capability &
10754 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10755 (!(priv->assoc_request.capability &
10756 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10757 IPW_DEBUG_ASSOC("Disassociating due to capability "
10758 "change.\n");
10759 ipw_disassociate(priv);
10761 #endif
10764 static int init_supported_rates(struct ipw_priv *priv,
10765 struct ipw_supported_rates *rates)
10767 /* TODO: Mask out rates based on priv->rates_mask */
10769 memset(rates, 0, sizeof(*rates));
10770 /* configure supported rates */
10771 switch (priv->ieee->freq_band) {
10772 case LIBIPW_52GHZ_BAND:
10773 rates->ieee_mode = IPW_A_MODE;
10774 rates->purpose = IPW_RATE_CAPABILITIES;
10775 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10776 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10777 break;
10779 default: /* Mixed or 2.4Ghz */
10780 rates->ieee_mode = IPW_G_MODE;
10781 rates->purpose = IPW_RATE_CAPABILITIES;
10782 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10783 LIBIPW_CCK_DEFAULT_RATES_MASK);
10784 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10785 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10786 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10788 break;
10791 return 0;
10794 static int ipw_config(struct ipw_priv *priv)
10796 /* This is only called from ipw_up, which resets/reloads the firmware
10797 so, we don't need to first disable the card before we configure
10798 it */
10799 if (ipw_set_tx_power(priv))
10800 goto error;
10802 /* initialize adapter address */
10803 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10804 goto error;
10806 /* set basic system config settings */
10807 init_sys_config(&priv->sys_config);
10809 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10810 * Does not support BT priority yet (don't abort or defer our Tx) */
10811 if (bt_coexist) {
10812 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10814 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10815 priv->sys_config.bt_coexistence
10816 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10817 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10818 priv->sys_config.bt_coexistence
10819 |= CFG_BT_COEXISTENCE_OOB;
10822 #ifdef CONFIG_IPW2200_PROMISCUOUS
10823 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10824 priv->sys_config.accept_all_data_frames = 1;
10825 priv->sys_config.accept_non_directed_frames = 1;
10826 priv->sys_config.accept_all_mgmt_bcpr = 1;
10827 priv->sys_config.accept_all_mgmt_frames = 1;
10829 #endif
10831 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10832 priv->sys_config.answer_broadcast_ssid_probe = 1;
10833 else
10834 priv->sys_config.answer_broadcast_ssid_probe = 0;
10836 if (ipw_send_system_config(priv))
10837 goto error;
10839 init_supported_rates(priv, &priv->rates);
10840 if (ipw_send_supported_rates(priv, &priv->rates))
10841 goto error;
10843 /* Set request-to-send threshold */
10844 if (priv->rts_threshold) {
10845 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10846 goto error;
10848 #ifdef CONFIG_IPW2200_QOS
10849 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10850 ipw_qos_activate(priv, NULL);
10851 #endif /* CONFIG_IPW2200_QOS */
10853 if (ipw_set_random_seed(priv))
10854 goto error;
10856 /* final state transition to the RUN state */
10857 if (ipw_send_host_complete(priv))
10858 goto error;
10860 priv->status |= STATUS_INIT;
10862 ipw_led_init(priv);
10863 ipw_led_radio_on(priv);
10864 priv->notif_missed_beacons = 0;
10866 /* Set hardware WEP key if it is configured. */
10867 if ((priv->capability & CAP_PRIVACY_ON) &&
10868 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10869 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10870 ipw_set_hwcrypto_keys(priv);
10872 return 0;
10874 error:
10875 return -EIO;
10879 * NOTE:
10881 * These tables have been tested in conjunction with the
10882 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10884 * Altering this values, using it on other hardware, or in geographies
10885 * not intended for resale of the above mentioned Intel adapters has
10886 * not been tested.
10888 * Remember to update the table in README.ipw2200 when changing this
10889 * table.
10892 static const struct libipw_geo ipw_geos[] = {
10893 { /* Restricted */
10894 "---",
10895 .bg_channels = 11,
10896 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10897 {2427, 4}, {2432, 5}, {2437, 6},
10898 {2442, 7}, {2447, 8}, {2452, 9},
10899 {2457, 10}, {2462, 11}},
10902 { /* Custom US/Canada */
10903 "ZZF",
10904 .bg_channels = 11,
10905 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10906 {2427, 4}, {2432, 5}, {2437, 6},
10907 {2442, 7}, {2447, 8}, {2452, 9},
10908 {2457, 10}, {2462, 11}},
10909 .a_channels = 8,
10910 .a = {{5180, 36},
10911 {5200, 40},
10912 {5220, 44},
10913 {5240, 48},
10914 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10915 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10916 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10917 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10920 { /* Rest of World */
10921 "ZZD",
10922 .bg_channels = 13,
10923 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10924 {2427, 4}, {2432, 5}, {2437, 6},
10925 {2442, 7}, {2447, 8}, {2452, 9},
10926 {2457, 10}, {2462, 11}, {2467, 12},
10927 {2472, 13}},
10930 { /* Custom USA & Europe & High */
10931 "ZZA",
10932 .bg_channels = 11,
10933 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10934 {2427, 4}, {2432, 5}, {2437, 6},
10935 {2442, 7}, {2447, 8}, {2452, 9},
10936 {2457, 10}, {2462, 11}},
10937 .a_channels = 13,
10938 .a = {{5180, 36},
10939 {5200, 40},
10940 {5220, 44},
10941 {5240, 48},
10942 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10943 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10944 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10945 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10946 {5745, 149},
10947 {5765, 153},
10948 {5785, 157},
10949 {5805, 161},
10950 {5825, 165}},
10953 { /* Custom NA & Europe */
10954 "ZZB",
10955 .bg_channels = 11,
10956 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10957 {2427, 4}, {2432, 5}, {2437, 6},
10958 {2442, 7}, {2447, 8}, {2452, 9},
10959 {2457, 10}, {2462, 11}},
10960 .a_channels = 13,
10961 .a = {{5180, 36},
10962 {5200, 40},
10963 {5220, 44},
10964 {5240, 48},
10965 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10966 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10967 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10968 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10969 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
10970 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
10971 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
10972 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
10973 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
10976 { /* Custom Japan */
10977 "ZZC",
10978 .bg_channels = 11,
10979 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10980 {2427, 4}, {2432, 5}, {2437, 6},
10981 {2442, 7}, {2447, 8}, {2452, 9},
10982 {2457, 10}, {2462, 11}},
10983 .a_channels = 4,
10984 .a = {{5170, 34}, {5190, 38},
10985 {5210, 42}, {5230, 46}},
10988 { /* Custom */
10989 "ZZM",
10990 .bg_channels = 11,
10991 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10992 {2427, 4}, {2432, 5}, {2437, 6},
10993 {2442, 7}, {2447, 8}, {2452, 9},
10994 {2457, 10}, {2462, 11}},
10997 { /* Europe */
10998 "ZZE",
10999 .bg_channels = 13,
11000 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11001 {2427, 4}, {2432, 5}, {2437, 6},
11002 {2442, 7}, {2447, 8}, {2452, 9},
11003 {2457, 10}, {2462, 11}, {2467, 12},
11004 {2472, 13}},
11005 .a_channels = 19,
11006 .a = {{5180, 36},
11007 {5200, 40},
11008 {5220, 44},
11009 {5240, 48},
11010 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11011 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11012 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11013 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11014 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11015 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11016 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11017 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11018 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11019 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11020 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11021 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11022 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11023 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11024 {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11027 { /* Custom Japan */
11028 "ZZJ",
11029 .bg_channels = 14,
11030 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11031 {2427, 4}, {2432, 5}, {2437, 6},
11032 {2442, 7}, {2447, 8}, {2452, 9},
11033 {2457, 10}, {2462, 11}, {2467, 12},
11034 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11035 .a_channels = 4,
11036 .a = {{5170, 34}, {5190, 38},
11037 {5210, 42}, {5230, 46}},
11040 { /* Rest of World */
11041 "ZZR",
11042 .bg_channels = 14,
11043 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11044 {2427, 4}, {2432, 5}, {2437, 6},
11045 {2442, 7}, {2447, 8}, {2452, 9},
11046 {2457, 10}, {2462, 11}, {2467, 12},
11047 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11048 LIBIPW_CH_PASSIVE_ONLY}},
11051 { /* High Band */
11052 "ZZH",
11053 .bg_channels = 13,
11054 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11055 {2427, 4}, {2432, 5}, {2437, 6},
11056 {2442, 7}, {2447, 8}, {2452, 9},
11057 {2457, 10}, {2462, 11},
11058 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11059 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11060 .a_channels = 4,
11061 .a = {{5745, 149}, {5765, 153},
11062 {5785, 157}, {5805, 161}},
11065 { /* Custom Europe */
11066 "ZZG",
11067 .bg_channels = 13,
11068 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11069 {2427, 4}, {2432, 5}, {2437, 6},
11070 {2442, 7}, {2447, 8}, {2452, 9},
11071 {2457, 10}, {2462, 11},
11072 {2467, 12}, {2472, 13}},
11073 .a_channels = 4,
11074 .a = {{5180, 36}, {5200, 40},
11075 {5220, 44}, {5240, 48}},
11078 { /* Europe */
11079 "ZZK",
11080 .bg_channels = 13,
11081 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11082 {2427, 4}, {2432, 5}, {2437, 6},
11083 {2442, 7}, {2447, 8}, {2452, 9},
11084 {2457, 10}, {2462, 11},
11085 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11086 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11087 .a_channels = 24,
11088 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11089 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11090 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11091 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11092 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11093 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11094 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11095 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11096 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11097 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11098 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11099 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11100 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11101 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11102 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11103 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11104 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11105 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11106 {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11107 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11108 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11109 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11110 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11111 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11114 { /* Europe */
11115 "ZZL",
11116 .bg_channels = 11,
11117 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11118 {2427, 4}, {2432, 5}, {2437, 6},
11119 {2442, 7}, {2447, 8}, {2452, 9},
11120 {2457, 10}, {2462, 11}},
11121 .a_channels = 13,
11122 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11123 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11124 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11125 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11126 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11127 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11128 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11129 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11130 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11131 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11132 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11133 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11134 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11138 static void ipw_set_geo(struct ipw_priv *priv)
11140 int j;
11142 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11143 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11144 ipw_geos[j].name, 3))
11145 break;
11148 if (j == ARRAY_SIZE(ipw_geos)) {
11149 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11150 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11151 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11152 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11153 j = 0;
11156 libipw_set_geo(priv->ieee, &ipw_geos[j]);
11159 #define MAX_HW_RESTARTS 5
11160 static int ipw_up(struct ipw_priv *priv)
11162 int rc, i;
11164 /* Age scan list entries found before suspend */
11165 if (priv->suspend_time) {
11166 libipw_networks_age(priv->ieee, priv->suspend_time);
11167 priv->suspend_time = 0;
11170 if (priv->status & STATUS_EXIT_PENDING)
11171 return -EIO;
11173 if (cmdlog && !priv->cmdlog) {
11174 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11175 GFP_KERNEL);
11176 if (priv->cmdlog == NULL) {
11177 IPW_ERROR("Error allocating %d command log entries.\n",
11178 cmdlog);
11179 return -ENOMEM;
11180 } else {
11181 priv->cmdlog_len = cmdlog;
11185 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11186 /* Load the microcode, firmware, and eeprom.
11187 * Also start the clocks. */
11188 rc = ipw_load(priv);
11189 if (rc) {
11190 IPW_ERROR("Unable to load firmware: %d\n", rc);
11191 return rc;
11194 ipw_init_ordinals(priv);
11195 if (!(priv->config & CFG_CUSTOM_MAC))
11196 eeprom_parse_mac(priv, priv->mac_addr);
11197 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11199 ipw_set_geo(priv);
11201 if (priv->status & STATUS_RF_KILL_SW) {
11202 IPW_WARNING("Radio disabled by module parameter.\n");
11203 return 0;
11204 } else if (rf_kill_active(priv)) {
11205 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11206 "Kill switch must be turned off for "
11207 "wireless networking to work.\n");
11208 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11209 return 0;
11212 rc = ipw_config(priv);
11213 if (!rc) {
11214 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11216 /* If configure to try and auto-associate, kick
11217 * off a scan. */
11218 schedule_delayed_work(&priv->request_scan, 0);
11220 return 0;
11223 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11224 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11225 i, MAX_HW_RESTARTS);
11227 /* We had an error bringing up the hardware, so take it
11228 * all the way back down so we can try again */
11229 ipw_down(priv);
11232 /* tried to restart and config the device for as long as our
11233 * patience could withstand */
11234 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11236 return -EIO;
11239 static void ipw_bg_up(struct work_struct *work)
11241 struct ipw_priv *priv =
11242 container_of(work, struct ipw_priv, up);
11243 mutex_lock(&priv->mutex);
11244 ipw_up(priv);
11245 mutex_unlock(&priv->mutex);
11248 static void ipw_deinit(struct ipw_priv *priv)
11250 int i;
11252 if (priv->status & STATUS_SCANNING) {
11253 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11254 ipw_abort_scan(priv);
11257 if (priv->status & STATUS_ASSOCIATED) {
11258 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11259 ipw_disassociate(priv);
11262 ipw_led_shutdown(priv);
11264 /* Wait up to 1s for status to change to not scanning and not
11265 * associated (disassociation can take a while for a ful 802.11
11266 * exchange */
11267 for (i = 1000; i && (priv->status &
11268 (STATUS_DISASSOCIATING |
11269 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11270 udelay(10);
11272 if (priv->status & (STATUS_DISASSOCIATING |
11273 STATUS_ASSOCIATED | STATUS_SCANNING))
11274 IPW_DEBUG_INFO("Still associated or scanning...\n");
11275 else
11276 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11278 /* Attempt to disable the card */
11279 ipw_send_card_disable(priv, 0);
11281 priv->status &= ~STATUS_INIT;
11284 static void ipw_down(struct ipw_priv *priv)
11286 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11288 priv->status |= STATUS_EXIT_PENDING;
11290 if (ipw_is_init(priv))
11291 ipw_deinit(priv);
11293 /* Wipe out the EXIT_PENDING status bit if we are not actually
11294 * exiting the module */
11295 if (!exit_pending)
11296 priv->status &= ~STATUS_EXIT_PENDING;
11298 /* tell the device to stop sending interrupts */
11299 ipw_disable_interrupts(priv);
11301 /* Clear all bits but the RF Kill */
11302 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11303 netif_carrier_off(priv->net_dev);
11305 ipw_stop_nic(priv);
11307 ipw_led_radio_off(priv);
11310 static void ipw_bg_down(struct work_struct *work)
11312 struct ipw_priv *priv =
11313 container_of(work, struct ipw_priv, down);
11314 mutex_lock(&priv->mutex);
11315 ipw_down(priv);
11316 mutex_unlock(&priv->mutex);
11319 static int ipw_wdev_init(struct net_device *dev)
11321 int i, rc = 0;
11322 struct ipw_priv *priv = libipw_priv(dev);
11323 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11324 struct wireless_dev *wdev = &priv->ieee->wdev;
11326 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11328 /* fill-out priv->ieee->bg_band */
11329 if (geo->bg_channels) {
11330 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11332 bg_band->band = NL80211_BAND_2GHZ;
11333 bg_band->n_channels = geo->bg_channels;
11334 bg_band->channels = kcalloc(geo->bg_channels,
11335 sizeof(struct ieee80211_channel),
11336 GFP_KERNEL);
11337 if (!bg_band->channels) {
11338 rc = -ENOMEM;
11339 goto out;
11341 /* translate geo->bg to bg_band.channels */
11342 for (i = 0; i < geo->bg_channels; i++) {
11343 bg_band->channels[i].band = NL80211_BAND_2GHZ;
11344 bg_band->channels[i].center_freq = geo->bg[i].freq;
11345 bg_band->channels[i].hw_value = geo->bg[i].channel;
11346 bg_band->channels[i].max_power = geo->bg[i].max_power;
11347 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11348 bg_band->channels[i].flags |=
11349 IEEE80211_CHAN_NO_IR;
11350 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11351 bg_band->channels[i].flags |=
11352 IEEE80211_CHAN_NO_IR;
11353 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11354 bg_band->channels[i].flags |=
11355 IEEE80211_CHAN_RADAR;
11356 /* No equivalent for LIBIPW_CH_80211H_RULES,
11357 LIBIPW_CH_UNIFORM_SPREADING, or
11358 LIBIPW_CH_B_ONLY... */
11360 /* point at bitrate info */
11361 bg_band->bitrates = ipw2200_bg_rates;
11362 bg_band->n_bitrates = ipw2200_num_bg_rates;
11364 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
11367 /* fill-out priv->ieee->a_band */
11368 if (geo->a_channels) {
11369 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11371 a_band->band = NL80211_BAND_5GHZ;
11372 a_band->n_channels = geo->a_channels;
11373 a_band->channels = kcalloc(geo->a_channels,
11374 sizeof(struct ieee80211_channel),
11375 GFP_KERNEL);
11376 if (!a_band->channels) {
11377 rc = -ENOMEM;
11378 goto out;
11380 /* translate geo->a to a_band.channels */
11381 for (i = 0; i < geo->a_channels; i++) {
11382 a_band->channels[i].band = NL80211_BAND_5GHZ;
11383 a_band->channels[i].center_freq = geo->a[i].freq;
11384 a_band->channels[i].hw_value = geo->a[i].channel;
11385 a_band->channels[i].max_power = geo->a[i].max_power;
11386 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11387 a_band->channels[i].flags |=
11388 IEEE80211_CHAN_NO_IR;
11389 if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11390 a_band->channels[i].flags |=
11391 IEEE80211_CHAN_NO_IR;
11392 if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11393 a_band->channels[i].flags |=
11394 IEEE80211_CHAN_RADAR;
11395 /* No equivalent for LIBIPW_CH_80211H_RULES,
11396 LIBIPW_CH_UNIFORM_SPREADING, or
11397 LIBIPW_CH_B_ONLY... */
11399 /* point at bitrate info */
11400 a_band->bitrates = ipw2200_a_rates;
11401 a_band->n_bitrates = ipw2200_num_a_rates;
11403 wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band;
11406 wdev->wiphy->cipher_suites = ipw_cipher_suites;
11407 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11409 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11411 /* With that information in place, we can now register the wiphy... */
11412 if (wiphy_register(wdev->wiphy))
11413 rc = -EIO;
11414 out:
11415 return rc;
11418 /* PCI driver stuff */
11419 static const struct pci_device_id card_ids[] = {
11420 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11421 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11422 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11423 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11424 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11425 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11426 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11427 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11428 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11429 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11430 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11431 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11432 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11433 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11434 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11435 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11436 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11437 {PCI_VDEVICE(INTEL, 0x104f), 0},
11438 {PCI_VDEVICE(INTEL, 0x4220), 0}, /* BG */
11439 {PCI_VDEVICE(INTEL, 0x4221), 0}, /* BG */
11440 {PCI_VDEVICE(INTEL, 0x4223), 0}, /* ABG */
11441 {PCI_VDEVICE(INTEL, 0x4224), 0}, /* ABG */
11443 /* required last entry */
11444 {0,}
11447 MODULE_DEVICE_TABLE(pci, card_ids);
11449 static struct attribute *ipw_sysfs_entries[] = {
11450 &dev_attr_rf_kill.attr,
11451 &dev_attr_direct_dword.attr,
11452 &dev_attr_indirect_byte.attr,
11453 &dev_attr_indirect_dword.attr,
11454 &dev_attr_mem_gpio_reg.attr,
11455 &dev_attr_command_event_reg.attr,
11456 &dev_attr_nic_type.attr,
11457 &dev_attr_status.attr,
11458 &dev_attr_cfg.attr,
11459 &dev_attr_error.attr,
11460 &dev_attr_event_log.attr,
11461 &dev_attr_cmd_log.attr,
11462 &dev_attr_eeprom_delay.attr,
11463 &dev_attr_ucode_version.attr,
11464 &dev_attr_rtc.attr,
11465 &dev_attr_scan_age.attr,
11466 &dev_attr_led.attr,
11467 &dev_attr_speed_scan.attr,
11468 &dev_attr_net_stats.attr,
11469 &dev_attr_channels.attr,
11470 #ifdef CONFIG_IPW2200_PROMISCUOUS
11471 &dev_attr_rtap_iface.attr,
11472 &dev_attr_rtap_filter.attr,
11473 #endif
11474 NULL
11477 static const struct attribute_group ipw_attribute_group = {
11478 .name = NULL, /* put in device directory */
11479 .attrs = ipw_sysfs_entries,
11482 #ifdef CONFIG_IPW2200_PROMISCUOUS
11483 static int ipw_prom_open(struct net_device *dev)
11485 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11486 struct ipw_priv *priv = prom_priv->priv;
11488 IPW_DEBUG_INFO("prom dev->open\n");
11489 netif_carrier_off(dev);
11491 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11492 priv->sys_config.accept_all_data_frames = 1;
11493 priv->sys_config.accept_non_directed_frames = 1;
11494 priv->sys_config.accept_all_mgmt_bcpr = 1;
11495 priv->sys_config.accept_all_mgmt_frames = 1;
11497 ipw_send_system_config(priv);
11500 return 0;
11503 static int ipw_prom_stop(struct net_device *dev)
11505 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11506 struct ipw_priv *priv = prom_priv->priv;
11508 IPW_DEBUG_INFO("prom dev->stop\n");
11510 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11511 priv->sys_config.accept_all_data_frames = 0;
11512 priv->sys_config.accept_non_directed_frames = 0;
11513 priv->sys_config.accept_all_mgmt_bcpr = 0;
11514 priv->sys_config.accept_all_mgmt_frames = 0;
11516 ipw_send_system_config(priv);
11519 return 0;
11522 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11523 struct net_device *dev)
11525 IPW_DEBUG_INFO("prom dev->xmit\n");
11526 dev_kfree_skb(skb);
11527 return NETDEV_TX_OK;
11530 static const struct net_device_ops ipw_prom_netdev_ops = {
11531 .ndo_open = ipw_prom_open,
11532 .ndo_stop = ipw_prom_stop,
11533 .ndo_start_xmit = ipw_prom_hard_start_xmit,
11534 .ndo_set_mac_address = eth_mac_addr,
11535 .ndo_validate_addr = eth_validate_addr,
11538 static int ipw_prom_alloc(struct ipw_priv *priv)
11540 int rc = 0;
11542 if (priv->prom_net_dev)
11543 return -EPERM;
11545 priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11546 if (priv->prom_net_dev == NULL)
11547 return -ENOMEM;
11549 priv->prom_priv = libipw_priv(priv->prom_net_dev);
11550 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11551 priv->prom_priv->priv = priv;
11553 strcpy(priv->prom_net_dev->name, "rtap%d");
11554 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11556 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11557 priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11559 priv->prom_net_dev->min_mtu = 68;
11560 priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN;
11562 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11563 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11565 rc = register_netdev(priv->prom_net_dev);
11566 if (rc) {
11567 free_libipw(priv->prom_net_dev, 1);
11568 priv->prom_net_dev = NULL;
11569 return rc;
11572 return 0;
11575 static void ipw_prom_free(struct ipw_priv *priv)
11577 if (!priv->prom_net_dev)
11578 return;
11580 unregister_netdev(priv->prom_net_dev);
11581 free_libipw(priv->prom_net_dev, 1);
11583 priv->prom_net_dev = NULL;
11586 #endif
11588 static const struct net_device_ops ipw_netdev_ops = {
11589 .ndo_open = ipw_net_open,
11590 .ndo_stop = ipw_net_stop,
11591 .ndo_set_rx_mode = ipw_net_set_multicast_list,
11592 .ndo_set_mac_address = ipw_net_set_mac_address,
11593 .ndo_start_xmit = libipw_xmit,
11594 .ndo_validate_addr = eth_validate_addr,
11597 static int ipw_pci_probe(struct pci_dev *pdev,
11598 const struct pci_device_id *ent)
11600 int err = 0;
11601 struct net_device *net_dev;
11602 void __iomem *base;
11603 u32 length, val;
11604 struct ipw_priv *priv;
11605 int i;
11607 net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11608 if (net_dev == NULL) {
11609 err = -ENOMEM;
11610 goto out;
11613 priv = libipw_priv(net_dev);
11614 priv->ieee = netdev_priv(net_dev);
11616 priv->net_dev = net_dev;
11617 priv->pci_dev = pdev;
11618 ipw_debug_level = debug;
11619 spin_lock_init(&priv->irq_lock);
11620 spin_lock_init(&priv->lock);
11621 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11622 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11624 mutex_init(&priv->mutex);
11625 if (pci_enable_device(pdev)) {
11626 err = -ENODEV;
11627 goto out_free_libipw;
11630 pci_set_master(pdev);
11632 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11633 if (!err)
11634 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11635 if (err) {
11636 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11637 goto out_pci_disable_device;
11640 pci_set_drvdata(pdev, priv);
11642 err = pci_request_regions(pdev, DRV_NAME);
11643 if (err)
11644 goto out_pci_disable_device;
11646 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11647 * PCI Tx retries from interfering with C3 CPU state */
11648 pci_read_config_dword(pdev, 0x40, &val);
11649 if ((val & 0x0000ff00) != 0)
11650 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11652 length = pci_resource_len(pdev, 0);
11653 priv->hw_len = length;
11655 base = pci_ioremap_bar(pdev, 0);
11656 if (!base) {
11657 err = -ENODEV;
11658 goto out_pci_release_regions;
11661 priv->hw_base = base;
11662 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11663 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11665 err = ipw_setup_deferred_work(priv);
11666 if (err) {
11667 IPW_ERROR("Unable to setup deferred work\n");
11668 goto out_iounmap;
11671 ipw_sw_reset(priv, 1);
11673 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11674 if (err) {
11675 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11676 goto out_iounmap;
11679 SET_NETDEV_DEV(net_dev, &pdev->dev);
11681 mutex_lock(&priv->mutex);
11683 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11684 priv->ieee->set_security = shim__set_security;
11685 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11687 #ifdef CONFIG_IPW2200_QOS
11688 priv->ieee->is_qos_active = ipw_is_qos_active;
11689 priv->ieee->handle_probe_response = ipw_handle_beacon;
11690 priv->ieee->handle_beacon = ipw_handle_probe_response;
11691 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11692 #endif /* CONFIG_IPW2200_QOS */
11694 priv->ieee->perfect_rssi = -20;
11695 priv->ieee->worst_rssi = -85;
11697 net_dev->netdev_ops = &ipw_netdev_ops;
11698 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11699 net_dev->wireless_data = &priv->wireless_data;
11700 net_dev->wireless_handlers = &ipw_wx_handler_def;
11701 net_dev->ethtool_ops = &ipw_ethtool_ops;
11703 net_dev->min_mtu = 68;
11704 net_dev->max_mtu = LIBIPW_DATA_LEN;
11706 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11707 if (err) {
11708 IPW_ERROR("failed to create sysfs device attributes\n");
11709 mutex_unlock(&priv->mutex);
11710 goto out_release_irq;
11713 if (ipw_up(priv)) {
11714 mutex_unlock(&priv->mutex);
11715 err = -EIO;
11716 goto out_remove_sysfs;
11719 mutex_unlock(&priv->mutex);
11721 err = ipw_wdev_init(net_dev);
11722 if (err) {
11723 IPW_ERROR("failed to register wireless device\n");
11724 goto out_remove_sysfs;
11727 err = register_netdev(net_dev);
11728 if (err) {
11729 IPW_ERROR("failed to register network device\n");
11730 goto out_unregister_wiphy;
11733 #ifdef CONFIG_IPW2200_PROMISCUOUS
11734 if (rtap_iface) {
11735 err = ipw_prom_alloc(priv);
11736 if (err) {
11737 IPW_ERROR("Failed to register promiscuous network "
11738 "device (error %d).\n", err);
11739 unregister_netdev(priv->net_dev);
11740 goto out_unregister_wiphy;
11743 #endif
11745 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11746 "channels, %d 802.11a channels)\n",
11747 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11748 priv->ieee->geo.a_channels);
11750 return 0;
11752 out_unregister_wiphy:
11753 wiphy_unregister(priv->ieee->wdev.wiphy);
11754 kfree(priv->ieee->a_band.channels);
11755 kfree(priv->ieee->bg_band.channels);
11756 out_remove_sysfs:
11757 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11758 out_release_irq:
11759 free_irq(pdev->irq, priv);
11760 out_iounmap:
11761 iounmap(priv->hw_base);
11762 out_pci_release_regions:
11763 pci_release_regions(pdev);
11764 out_pci_disable_device:
11765 pci_disable_device(pdev);
11766 out_free_libipw:
11767 free_libipw(priv->net_dev, 0);
11768 out:
11769 return err;
11772 static void ipw_pci_remove(struct pci_dev *pdev)
11774 struct ipw_priv *priv = pci_get_drvdata(pdev);
11775 struct list_head *p, *q;
11776 int i;
11778 if (!priv)
11779 return;
11781 mutex_lock(&priv->mutex);
11783 priv->status |= STATUS_EXIT_PENDING;
11784 ipw_down(priv);
11785 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11787 mutex_unlock(&priv->mutex);
11789 unregister_netdev(priv->net_dev);
11791 if (priv->rxq) {
11792 ipw_rx_queue_free(priv, priv->rxq);
11793 priv->rxq = NULL;
11795 ipw_tx_queue_free(priv);
11797 if (priv->cmdlog) {
11798 kfree(priv->cmdlog);
11799 priv->cmdlog = NULL;
11802 /* make sure all works are inactive */
11803 cancel_delayed_work_sync(&priv->adhoc_check);
11804 cancel_work_sync(&priv->associate);
11805 cancel_work_sync(&priv->disassociate);
11806 cancel_work_sync(&priv->system_config);
11807 cancel_work_sync(&priv->rx_replenish);
11808 cancel_work_sync(&priv->adapter_restart);
11809 cancel_delayed_work_sync(&priv->rf_kill);
11810 cancel_work_sync(&priv->up);
11811 cancel_work_sync(&priv->down);
11812 cancel_delayed_work_sync(&priv->request_scan);
11813 cancel_delayed_work_sync(&priv->request_direct_scan);
11814 cancel_delayed_work_sync(&priv->request_passive_scan);
11815 cancel_delayed_work_sync(&priv->scan_event);
11816 cancel_delayed_work_sync(&priv->gather_stats);
11817 cancel_work_sync(&priv->abort_scan);
11818 cancel_work_sync(&priv->roam);
11819 cancel_delayed_work_sync(&priv->scan_check);
11820 cancel_work_sync(&priv->link_up);
11821 cancel_work_sync(&priv->link_down);
11822 cancel_delayed_work_sync(&priv->led_link_on);
11823 cancel_delayed_work_sync(&priv->led_link_off);
11824 cancel_delayed_work_sync(&priv->led_act_off);
11825 cancel_work_sync(&priv->merge_networks);
11827 /* Free MAC hash list for ADHOC */
11828 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11829 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11830 list_del(p);
11831 kfree(list_entry(p, struct ipw_ibss_seq, list));
11835 kfree(priv->error);
11836 priv->error = NULL;
11838 #ifdef CONFIG_IPW2200_PROMISCUOUS
11839 ipw_prom_free(priv);
11840 #endif
11842 free_irq(pdev->irq, priv);
11843 iounmap(priv->hw_base);
11844 pci_release_regions(pdev);
11845 pci_disable_device(pdev);
11846 /* wiphy_unregister needs to be here, before free_libipw */
11847 wiphy_unregister(priv->ieee->wdev.wiphy);
11848 kfree(priv->ieee->a_band.channels);
11849 kfree(priv->ieee->bg_band.channels);
11850 free_libipw(priv->net_dev, 0);
11851 free_firmware();
11854 #ifdef CONFIG_PM
11855 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11857 struct ipw_priv *priv = pci_get_drvdata(pdev);
11858 struct net_device *dev = priv->net_dev;
11860 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11862 /* Take down the device; powers it off, etc. */
11863 ipw_down(priv);
11865 /* Remove the PRESENT state of the device */
11866 netif_device_detach(dev);
11868 pci_save_state(pdev);
11869 pci_disable_device(pdev);
11870 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11872 priv->suspend_at = ktime_get_boottime_seconds();
11874 return 0;
11877 static int ipw_pci_resume(struct pci_dev *pdev)
11879 struct ipw_priv *priv = pci_get_drvdata(pdev);
11880 struct net_device *dev = priv->net_dev;
11881 int err;
11882 u32 val;
11884 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11886 pci_set_power_state(pdev, PCI_D0);
11887 err = pci_enable_device(pdev);
11888 if (err) {
11889 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11890 dev->name);
11891 return err;
11893 pci_restore_state(pdev);
11896 * Suspend/Resume resets the PCI configuration space, so we have to
11897 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11898 * from interfering with C3 CPU state. pci_restore_state won't help
11899 * here since it only restores the first 64 bytes pci config header.
11901 pci_read_config_dword(pdev, 0x40, &val);
11902 if ((val & 0x0000ff00) != 0)
11903 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11905 /* Set the device back into the PRESENT state; this will also wake
11906 * the queue of needed */
11907 netif_device_attach(dev);
11909 priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
11911 /* Bring the device back up */
11912 schedule_work(&priv->up);
11914 return 0;
11916 #endif
11918 static void ipw_pci_shutdown(struct pci_dev *pdev)
11920 struct ipw_priv *priv = pci_get_drvdata(pdev);
11922 /* Take down the device; powers it off, etc. */
11923 ipw_down(priv);
11925 pci_disable_device(pdev);
11928 /* driver initialization stuff */
11929 static struct pci_driver ipw_driver = {
11930 .name = DRV_NAME,
11931 .id_table = card_ids,
11932 .probe = ipw_pci_probe,
11933 .remove = ipw_pci_remove,
11934 #ifdef CONFIG_PM
11935 .suspend = ipw_pci_suspend,
11936 .resume = ipw_pci_resume,
11937 #endif
11938 .shutdown = ipw_pci_shutdown,
11941 static int __init ipw_init(void)
11943 int ret;
11945 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11946 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11948 ret = pci_register_driver(&ipw_driver);
11949 if (ret) {
11950 IPW_ERROR("Unable to initialize PCI module\n");
11951 return ret;
11954 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11955 if (ret) {
11956 IPW_ERROR("Unable to create driver sysfs file\n");
11957 pci_unregister_driver(&ipw_driver);
11958 return ret;
11961 return ret;
11964 static void __exit ipw_exit(void)
11966 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11967 pci_unregister_driver(&ipw_driver);
11970 module_param(disable, int, 0444);
11971 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11973 module_param(associate, int, 0444);
11974 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11976 module_param(auto_create, int, 0444);
11977 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11979 module_param_named(led, led_support, int, 0444);
11980 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
11982 module_param(debug, int, 0444);
11983 MODULE_PARM_DESC(debug, "debug output mask");
11985 module_param_named(channel, default_channel, int, 0444);
11986 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11988 #ifdef CONFIG_IPW2200_PROMISCUOUS
11989 module_param(rtap_iface, int, 0444);
11990 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11991 #endif
11993 #ifdef CONFIG_IPW2200_QOS
11994 module_param(qos_enable, int, 0444);
11995 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalities");
11997 module_param(qos_burst_enable, int, 0444);
11998 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12000 module_param(qos_no_ack_mask, int, 0444);
12001 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12003 module_param(burst_duration_CCK, int, 0444);
12004 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12006 module_param(burst_duration_OFDM, int, 0444);
12007 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12008 #endif /* CONFIG_IPW2200_QOS */
12010 #ifdef CONFIG_IPW2200_MONITOR
12011 module_param_named(mode, network_mode, int, 0444);
12012 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12013 #else
12014 module_param_named(mode, network_mode, int, 0444);
12015 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12016 #endif
12018 module_param(bt_coexist, int, 0444);
12019 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12021 module_param(hwcrypto, int, 0444);
12022 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12024 module_param(cmdlog, int, 0444);
12025 MODULE_PARM_DESC(cmdlog,
12026 "allocate a ring buffer for logging firmware commands");
12028 module_param(roaming, int, 0444);
12029 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12031 module_param(antenna, int, 0444);
12032 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12034 module_exit(ipw_exit);
12035 module_init(ipw_init);