treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / wireless / intel / iwlwifi / dvm / commands.h
blob0f4be4be181cf0dbd6cdbec35abdd98be12307cd
1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
6 * GPL LICENSE SUMMARY
8 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * The full GNU General Public License is included in this distribution
20 * in the file called COPYING.
22 * Contact Information:
23 * Intel Linux Wireless <linuxwifi@intel.com>
24 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 * BSD LICENSE
28 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
29 * All rights reserved.
31 * Redistribution and use in source and binary forms, with or without
32 * modification, are permitted provided that the following conditions
33 * are met:
35 * * Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * * Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in
39 * the documentation and/or other materials provided with the
40 * distribution.
41 * * Neither the name Intel Corporation nor the names of its
42 * contributors may be used to endorse or promote products derived
43 * from this software without specific prior written permission.
45 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
46 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
47 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
48 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
49 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
50 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
51 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
52 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
53 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
54 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
55 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
57 *****************************************************************************/
59 * Please use this file (commands.h) only for uCode API definitions.
60 * Please use iwl-xxxx-hw.h for hardware-related definitions.
61 * Please use dev.h for driver implementation definitions.
64 #ifndef __iwl_commands_h__
65 #define __iwl_commands_h__
67 #include <linux/ieee80211.h>
68 #include <linux/types.h>
71 enum {
72 REPLY_ALIVE = 0x1,
73 REPLY_ERROR = 0x2,
74 REPLY_ECHO = 0x3, /* test command */
76 /* RXON and QOS commands */
77 REPLY_RXON = 0x10,
78 REPLY_RXON_ASSOC = 0x11,
79 REPLY_QOS_PARAM = 0x13,
80 REPLY_RXON_TIMING = 0x14,
82 /* Multi-Station support */
83 REPLY_ADD_STA = 0x18,
84 REPLY_REMOVE_STA = 0x19,
85 REPLY_REMOVE_ALL_STA = 0x1a, /* not used */
86 REPLY_TXFIFO_FLUSH = 0x1e,
88 /* Security */
89 REPLY_WEPKEY = 0x20,
91 /* RX, TX, LEDs */
92 REPLY_TX = 0x1c,
93 REPLY_LEDS_CMD = 0x48,
94 REPLY_TX_LINK_QUALITY_CMD = 0x4e,
96 /* WiMAX coexistence */
97 COEX_PRIORITY_TABLE_CMD = 0x5a,
98 COEX_MEDIUM_NOTIFICATION = 0x5b,
99 COEX_EVENT_CMD = 0x5c,
101 /* Calibration */
102 TEMPERATURE_NOTIFICATION = 0x62,
103 CALIBRATION_CFG_CMD = 0x65,
104 CALIBRATION_RES_NOTIFICATION = 0x66,
105 CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
107 /* 802.11h related */
108 REPLY_QUIET_CMD = 0x71, /* not used */
109 REPLY_CHANNEL_SWITCH = 0x72,
110 CHANNEL_SWITCH_NOTIFICATION = 0x73,
111 REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
112 SPECTRUM_MEASURE_NOTIFICATION = 0x75,
114 /* Power Management */
115 POWER_TABLE_CMD = 0x77,
116 PM_SLEEP_NOTIFICATION = 0x7A,
117 PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
119 /* Scan commands and notifications */
120 REPLY_SCAN_CMD = 0x80,
121 REPLY_SCAN_ABORT_CMD = 0x81,
122 SCAN_START_NOTIFICATION = 0x82,
123 SCAN_RESULTS_NOTIFICATION = 0x83,
124 SCAN_COMPLETE_NOTIFICATION = 0x84,
126 /* IBSS/AP commands */
127 BEACON_NOTIFICATION = 0x90,
128 REPLY_TX_BEACON = 0x91,
129 WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */
131 /* Miscellaneous commands */
132 REPLY_TX_POWER_DBM_CMD = 0x95,
133 QUIET_NOTIFICATION = 0x96, /* not used */
134 REPLY_TX_PWR_TABLE_CMD = 0x97,
135 REPLY_TX_POWER_DBM_CMD_V1 = 0x98, /* old version of API */
136 TX_ANT_CONFIGURATION_CMD = 0x98,
137 MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */
139 /* Bluetooth device coexistence config command */
140 REPLY_BT_CONFIG = 0x9b,
142 /* Statistics */
143 REPLY_STATISTICS_CMD = 0x9c,
144 STATISTICS_NOTIFICATION = 0x9d,
146 /* RF-KILL commands and notifications */
147 REPLY_CARD_STATE_CMD = 0xa0,
148 CARD_STATE_NOTIFICATION = 0xa1,
150 /* Missed beacons notification */
151 MISSED_BEACONS_NOTIFICATION = 0xa2,
153 REPLY_CT_KILL_CONFIG_CMD = 0xa4,
154 SENSITIVITY_CMD = 0xa8,
155 REPLY_PHY_CALIBRATION_CMD = 0xb0,
156 REPLY_RX_PHY_CMD = 0xc0,
157 REPLY_RX_MPDU_CMD = 0xc1,
158 REPLY_RX = 0xc3,
159 REPLY_COMPRESSED_BA = 0xc5,
161 /* BT Coex */
162 REPLY_BT_COEX_PRIO_TABLE = 0xcc,
163 REPLY_BT_COEX_PROT_ENV = 0xcd,
164 REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
166 /* PAN commands */
167 REPLY_WIPAN_PARAMS = 0xb2,
168 REPLY_WIPAN_RXON = 0xb3, /* use REPLY_RXON structure */
169 REPLY_WIPAN_RXON_TIMING = 0xb4, /* use REPLY_RXON_TIMING structure */
170 REPLY_WIPAN_RXON_ASSOC = 0xb6, /* use REPLY_RXON_ASSOC structure */
171 REPLY_WIPAN_QOS_PARAM = 0xb7, /* use REPLY_QOS_PARAM structure */
172 REPLY_WIPAN_WEPKEY = 0xb8, /* use REPLY_WEPKEY structure */
173 REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
174 REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
175 REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
177 REPLY_WOWLAN_PATTERNS = 0xe0,
178 REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
179 REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
180 REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
181 REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
182 REPLY_WOWLAN_GET_STATUS = 0xe5,
183 REPLY_D3_CONFIG = 0xd3,
185 REPLY_MAX = 0xff
189 * Minimum number of queues. MAX_NUM is defined in hw specific files.
190 * Set the minimum to accommodate
191 * - 4 standard TX queues
192 * - the command queue
193 * - 4 PAN TX queues
194 * - the PAN multicast queue, and
195 * - the AUX (TX during scan dwell) queue.
197 #define IWL_MIN_NUM_QUEUES 11
200 * Command queue depends on iPAN support.
202 #define IWL_DEFAULT_CMD_QUEUE_NUM 4
203 #define IWL_IPAN_CMD_QUEUE_NUM 9
205 #define IWL_TX_FIFO_BK 0 /* shared */
206 #define IWL_TX_FIFO_BE 1
207 #define IWL_TX_FIFO_VI 2 /* shared */
208 #define IWL_TX_FIFO_VO 3
209 #define IWL_TX_FIFO_BK_IPAN IWL_TX_FIFO_BK
210 #define IWL_TX_FIFO_BE_IPAN 4
211 #define IWL_TX_FIFO_VI_IPAN IWL_TX_FIFO_VI
212 #define IWL_TX_FIFO_VO_IPAN 5
213 /* re-uses the VO FIFO, uCode will properly flush/schedule */
214 #define IWL_TX_FIFO_AUX 5
215 #define IWL_TX_FIFO_UNUSED 255
217 #define IWLAGN_CMD_FIFO_NUM 7
220 * This queue number is required for proper operation
221 * because the ucode will stop/start the scheduler as
222 * required.
224 #define IWL_IPAN_MCAST_QUEUE 8
226 /******************************************************************************
227 * (0)
228 * Commonly used structures and definitions:
229 * Command header, rate_n_flags, txpower
231 *****************************************************************************/
234 * iwlagn rate_n_flags bit fields
236 * rate_n_flags format is used in following iwlagn commands:
237 * REPLY_RX (response only)
238 * REPLY_RX_MPDU (response only)
239 * REPLY_TX (both command and response)
240 * REPLY_TX_LINK_QUALITY_CMD
242 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
243 * 2-0: 0) 6 Mbps
244 * 1) 12 Mbps
245 * 2) 18 Mbps
246 * 3) 24 Mbps
247 * 4) 36 Mbps
248 * 5) 48 Mbps
249 * 6) 54 Mbps
250 * 7) 60 Mbps
252 * 4-3: 0) Single stream (SISO)
253 * 1) Dual stream (MIMO)
254 * 2) Triple stream (MIMO)
256 * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
258 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
259 * 3-0: 0xD) 6 Mbps
260 * 0xF) 9 Mbps
261 * 0x5) 12 Mbps
262 * 0x7) 18 Mbps
263 * 0x9) 24 Mbps
264 * 0xB) 36 Mbps
265 * 0x1) 48 Mbps
266 * 0x3) 54 Mbps
268 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
269 * 6-0: 10) 1 Mbps
270 * 20) 2 Mbps
271 * 55) 5.5 Mbps
272 * 110) 11 Mbps
274 #define RATE_MCS_CODE_MSK 0x7
275 #define RATE_MCS_SPATIAL_POS 3
276 #define RATE_MCS_SPATIAL_MSK 0x18
277 #define RATE_MCS_HT_DUP_POS 5
278 #define RATE_MCS_HT_DUP_MSK 0x20
279 /* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
280 #define RATE_MCS_RATE_MSK 0xff
282 /* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
283 #define RATE_MCS_FLAGS_POS 8
284 #define RATE_MCS_HT_POS 8
285 #define RATE_MCS_HT_MSK 0x100
287 /* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */
288 #define RATE_MCS_CCK_POS 9
289 #define RATE_MCS_CCK_MSK 0x200
291 /* Bit 10: (1) Use Green Field preamble */
292 #define RATE_MCS_GF_POS 10
293 #define RATE_MCS_GF_MSK 0x400
295 /* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
296 #define RATE_MCS_HT40_POS 11
297 #define RATE_MCS_HT40_MSK 0x800
299 /* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
300 #define RATE_MCS_DUP_POS 12
301 #define RATE_MCS_DUP_MSK 0x1000
303 /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
304 #define RATE_MCS_SGI_POS 13
305 #define RATE_MCS_SGI_MSK 0x2000
308 * rate_n_flags Tx antenna masks
309 * bit14:16
311 #define RATE_MCS_ANT_POS 14
312 #define RATE_MCS_ANT_A_MSK 0x04000
313 #define RATE_MCS_ANT_B_MSK 0x08000
314 #define RATE_MCS_ANT_C_MSK 0x10000
315 #define RATE_MCS_ANT_AB_MSK (RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
316 #define RATE_MCS_ANT_ABC_MSK (RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
317 #define RATE_ANT_NUM 3
319 #define POWER_TABLE_NUM_ENTRIES 33
320 #define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32
321 #define POWER_TABLE_CCK_ENTRY 32
323 #define IWL_PWR_NUM_HT_OFDM_ENTRIES 24
324 #define IWL_PWR_CCK_ENTRIES 2
327 * struct tx_power_dual_stream
329 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
331 * Same format as iwl_tx_power_dual_stream, but __le32
333 struct tx_power_dual_stream {
334 __le32 dw;
335 } __packed;
338 * Command REPLY_TX_POWER_DBM_CMD = 0x98
339 * struct iwlagn_tx_power_dbm_cmd
341 #define IWLAGN_TX_POWER_AUTO 0x7f
342 #define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
344 struct iwlagn_tx_power_dbm_cmd {
345 s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
346 u8 flags;
347 s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
348 u8 reserved;
349 } __packed;
352 * Command TX_ANT_CONFIGURATION_CMD = 0x98
353 * This command is used to configure valid Tx antenna.
354 * By default uCode concludes the valid antenna according to the radio flavor.
355 * This command enables the driver to override/modify this conclusion.
357 struct iwl_tx_ant_config_cmd {
358 __le32 valid;
359 } __packed;
361 /******************************************************************************
362 * (0a)
363 * Alive and Error Commands & Responses:
365 *****************************************************************************/
367 #define UCODE_VALID_OK cpu_to_le32(0x1)
370 * REPLY_ALIVE = 0x1 (response only, not a command)
372 * uCode issues this "alive" notification once the runtime image is ready
373 * to receive commands from the driver. This is the *second* "alive"
374 * notification that the driver will receive after rebooting uCode;
375 * this "alive" is indicated by subtype field != 9.
377 * See comments documenting "BSM" (bootstrap state machine).
379 * This response includes two pointers to structures within the device's
380 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
382 * 1) log_event_table_ptr indicates base of the event log. This traces
383 * a 256-entry history of uCode execution within a circular buffer.
384 * Its header format is:
386 * __le32 log_size; log capacity (in number of entries)
387 * __le32 type; (1) timestamp with each entry, (0) no timestamp
388 * __le32 wraps; # times uCode has wrapped to top of circular buffer
389 * __le32 write_index; next circular buffer entry that uCode would fill
391 * The header is followed by the circular buffer of log entries. Entries
392 * with timestamps have the following format:
394 * __le32 event_id; range 0 - 1500
395 * __le32 timestamp; low 32 bits of TSF (of network, if associated)
396 * __le32 data; event_id-specific data value
398 * Entries without timestamps contain only event_id and data.
401 * 2) error_event_table_ptr indicates base of the error log. This contains
402 * information about any uCode error that occurs. For agn, the format
403 * of the error log is defined by struct iwl_error_event_table.
405 * The Linux driver can print both logs to the system log when a uCode error
406 * occurs.
410 * Note: This structure is read from the device with IO accesses,
411 * and the reading already does the endian conversion. As it is
412 * read with u32-sized accesses, any members with a different size
413 * need to be ordered correctly though!
415 struct iwl_error_event_table {
416 u32 valid; /* (nonzero) valid, (0) log is empty */
417 u32 error_id; /* type of error */
418 u32 pc; /* program counter */
419 u32 blink1; /* branch link */
420 u32 blink2; /* branch link */
421 u32 ilink1; /* interrupt link */
422 u32 ilink2; /* interrupt link */
423 u32 data1; /* error-specific data */
424 u32 data2; /* error-specific data */
425 u32 line; /* source code line of error */
426 u32 bcon_time; /* beacon timer */
427 u32 tsf_low; /* network timestamp function timer */
428 u32 tsf_hi; /* network timestamp function timer */
429 u32 gp1; /* GP1 timer register */
430 u32 gp2; /* GP2 timer register */
431 u32 gp3; /* GP3 timer register */
432 u32 ucode_ver; /* uCode version */
433 u32 hw_ver; /* HW Silicon version */
434 u32 brd_ver; /* HW board version */
435 u32 log_pc; /* log program counter */
436 u32 frame_ptr; /* frame pointer */
437 u32 stack_ptr; /* stack pointer */
438 u32 hcmd; /* last host command header */
439 u32 isr0; /* isr status register LMPM_NIC_ISR0:
440 * rxtx_flag */
441 u32 isr1; /* isr status register LMPM_NIC_ISR1:
442 * host_flag */
443 u32 isr2; /* isr status register LMPM_NIC_ISR2:
444 * enc_flag */
445 u32 isr3; /* isr status register LMPM_NIC_ISR3:
446 * time_flag */
447 u32 isr4; /* isr status register LMPM_NIC_ISR4:
448 * wico interrupt */
449 u32 isr_pref; /* isr status register LMPM_NIC_PREF_STAT */
450 u32 wait_event; /* wait event() caller address */
451 u32 l2p_control; /* L2pControlField */
452 u32 l2p_duration; /* L2pDurationField */
453 u32 l2p_mhvalid; /* L2pMhValidBits */
454 u32 l2p_addr_match; /* L2pAddrMatchStat */
455 u32 lmpm_pmg_sel; /* indicate which clocks are turned on
456 * (LMPM_PMG_SEL) */
457 u32 u_timestamp; /* indicate when the date and time of the
458 * compilation */
459 u32 flow_handler; /* FH read/write pointers, RX credit */
460 } __packed;
462 struct iwl_alive_resp {
463 u8 ucode_minor;
464 u8 ucode_major;
465 __le16 reserved1;
466 u8 sw_rev[8];
467 u8 ver_type;
468 u8 ver_subtype; /* not "9" for runtime alive */
469 __le16 reserved2;
470 __le32 log_event_table_ptr; /* SRAM address for event log */
471 __le32 error_event_table_ptr; /* SRAM address for error log */
472 __le32 timestamp;
473 __le32 is_valid;
474 } __packed;
477 * REPLY_ERROR = 0x2 (response only, not a command)
479 struct iwl_error_resp {
480 __le32 error_type;
481 u8 cmd_id;
482 u8 reserved1;
483 __le16 bad_cmd_seq_num;
484 __le32 error_info;
485 __le64 timestamp;
486 } __packed;
488 /******************************************************************************
489 * (1)
490 * RXON Commands & Responses:
492 *****************************************************************************/
495 * Rx config defines & structure
497 /* rx_config device types */
498 enum {
499 RXON_DEV_TYPE_AP = 1,
500 RXON_DEV_TYPE_ESS = 3,
501 RXON_DEV_TYPE_IBSS = 4,
502 RXON_DEV_TYPE_SNIFFER = 6,
503 RXON_DEV_TYPE_CP = 7,
504 RXON_DEV_TYPE_2STA = 8,
505 RXON_DEV_TYPE_P2P = 9,
509 #define RXON_RX_CHAIN_DRIVER_FORCE_MSK cpu_to_le16(0x1 << 0)
510 #define RXON_RX_CHAIN_DRIVER_FORCE_POS (0)
511 #define RXON_RX_CHAIN_VALID_MSK cpu_to_le16(0x7 << 1)
512 #define RXON_RX_CHAIN_VALID_POS (1)
513 #define RXON_RX_CHAIN_FORCE_SEL_MSK cpu_to_le16(0x7 << 4)
514 #define RXON_RX_CHAIN_FORCE_SEL_POS (4)
515 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK cpu_to_le16(0x7 << 7)
516 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7)
517 #define RXON_RX_CHAIN_CNT_MSK cpu_to_le16(0x3 << 10)
518 #define RXON_RX_CHAIN_CNT_POS (10)
519 #define RXON_RX_CHAIN_MIMO_CNT_MSK cpu_to_le16(0x3 << 12)
520 #define RXON_RX_CHAIN_MIMO_CNT_POS (12)
521 #define RXON_RX_CHAIN_MIMO_FORCE_MSK cpu_to_le16(0x1 << 14)
522 #define RXON_RX_CHAIN_MIMO_FORCE_POS (14)
524 /* rx_config flags */
525 /* band & modulation selection */
526 #define RXON_FLG_BAND_24G_MSK cpu_to_le32(1 << 0)
527 #define RXON_FLG_CCK_MSK cpu_to_le32(1 << 1)
528 /* auto detection enable */
529 #define RXON_FLG_AUTO_DETECT_MSK cpu_to_le32(1 << 2)
530 /* TGg protection when tx */
531 #define RXON_FLG_TGG_PROTECT_MSK cpu_to_le32(1 << 3)
532 /* cck short slot & preamble */
533 #define RXON_FLG_SHORT_SLOT_MSK cpu_to_le32(1 << 4)
534 #define RXON_FLG_SHORT_PREAMBLE_MSK cpu_to_le32(1 << 5)
535 /* antenna selection */
536 #define RXON_FLG_DIS_DIV_MSK cpu_to_le32(1 << 7)
537 #define RXON_FLG_ANT_SEL_MSK cpu_to_le32(0x0f00)
538 #define RXON_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
539 #define RXON_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
540 /* radar detection enable */
541 #define RXON_FLG_RADAR_DETECT_MSK cpu_to_le32(1 << 12)
542 #define RXON_FLG_TGJ_NARROW_BAND_MSK cpu_to_le32(1 << 13)
543 /* rx response to host with 8-byte TSF
544 * (according to ON_AIR deassertion) */
545 #define RXON_FLG_TSF2HOST_MSK cpu_to_le32(1 << 15)
548 /* HT flags */
549 #define RXON_FLG_CTRL_CHANNEL_LOC_POS (22)
550 #define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK cpu_to_le32(0x1 << 22)
552 #define RXON_FLG_HT_OPERATING_MODE_POS (23)
554 #define RXON_FLG_HT_PROT_MSK cpu_to_le32(0x1 << 23)
555 #define RXON_FLG_HT40_PROT_MSK cpu_to_le32(0x2 << 23)
557 #define RXON_FLG_CHANNEL_MODE_POS (25)
558 #define RXON_FLG_CHANNEL_MODE_MSK cpu_to_le32(0x3 << 25)
560 /* channel mode */
561 enum {
562 CHANNEL_MODE_LEGACY = 0,
563 CHANNEL_MODE_PURE_40 = 1,
564 CHANNEL_MODE_MIXED = 2,
565 CHANNEL_MODE_RESERVED = 3,
567 #define RXON_FLG_CHANNEL_MODE_LEGACY cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
568 #define RXON_FLG_CHANNEL_MODE_PURE_40 cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
569 #define RXON_FLG_CHANNEL_MODE_MIXED cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
571 /* CTS to self (if spec allows) flag */
572 #define RXON_FLG_SELF_CTS_EN cpu_to_le32(0x1<<30)
574 /* rx_config filter flags */
575 /* accept all data frames */
576 #define RXON_FILTER_PROMISC_MSK cpu_to_le32(1 << 0)
577 /* pass control & management to host */
578 #define RXON_FILTER_CTL2HOST_MSK cpu_to_le32(1 << 1)
579 /* accept multi-cast */
580 #define RXON_FILTER_ACCEPT_GRP_MSK cpu_to_le32(1 << 2)
581 /* don't decrypt uni-cast frames */
582 #define RXON_FILTER_DIS_DECRYPT_MSK cpu_to_le32(1 << 3)
583 /* don't decrypt multi-cast frames */
584 #define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
585 /* STA is associated */
586 #define RXON_FILTER_ASSOC_MSK cpu_to_le32(1 << 5)
587 /* transfer to host non bssid beacons in associated state */
588 #define RXON_FILTER_BCON_AWARE_MSK cpu_to_le32(1 << 6)
591 * REPLY_RXON = 0x10 (command, has simple generic response)
593 * RXON tunes the radio tuner to a service channel, and sets up a number
594 * of parameters that are used primarily for Rx, but also for Tx operations.
596 * NOTE: When tuning to a new channel, driver must set the
597 * RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent
598 * info within the device, including the station tables, tx retry
599 * rate tables, and txpower tables. Driver must build a new station
600 * table and txpower table before transmitting anything on the RXON
601 * channel.
603 * NOTE: All RXONs wipe clean the internal txpower table. Driver must
604 * issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
605 * regardless of whether RXON_FILTER_ASSOC_MSK is set.
608 struct iwl_rxon_cmd {
609 u8 node_addr[6];
610 __le16 reserved1;
611 u8 bssid_addr[6];
612 __le16 reserved2;
613 u8 wlap_bssid_addr[6];
614 __le16 reserved3;
615 u8 dev_type;
616 u8 air_propagation;
617 __le16 rx_chain;
618 u8 ofdm_basic_rates;
619 u8 cck_basic_rates;
620 __le16 assoc_id;
621 __le32 flags;
622 __le32 filter_flags;
623 __le16 channel;
624 u8 ofdm_ht_single_stream_basic_rates;
625 u8 ofdm_ht_dual_stream_basic_rates;
626 u8 ofdm_ht_triple_stream_basic_rates;
627 u8 reserved5;
628 __le16 acquisition_data;
629 __le16 reserved6;
630 } __packed;
633 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
635 struct iwl_rxon_assoc_cmd {
636 __le32 flags;
637 __le32 filter_flags;
638 u8 ofdm_basic_rates;
639 u8 cck_basic_rates;
640 __le16 reserved1;
641 u8 ofdm_ht_single_stream_basic_rates;
642 u8 ofdm_ht_dual_stream_basic_rates;
643 u8 ofdm_ht_triple_stream_basic_rates;
644 u8 reserved2;
645 __le16 rx_chain_select_flags;
646 __le16 acquisition_data;
647 __le32 reserved3;
648 } __packed;
650 #define IWL_CONN_MAX_LISTEN_INTERVAL 10
651 #define IWL_MAX_UCODE_BEACON_INTERVAL 4 /* 4096 */
654 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
656 struct iwl_rxon_time_cmd {
657 __le64 timestamp;
658 __le16 beacon_interval;
659 __le16 atim_window;
660 __le32 beacon_init_val;
661 __le16 listen_interval;
662 u8 dtim_period;
663 u8 delta_cp_bss_tbtts;
664 } __packed;
667 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
670 * struct iwl5000_channel_switch_cmd
671 * @band: 0- 5.2GHz, 1- 2.4GHz
672 * @expect_beacon: 0- resume transmits after channel switch
673 * 1- wait for beacon to resume transmits
674 * @channel: new channel number
675 * @rxon_flags: Rx on flags
676 * @rxon_filter_flags: filtering parameters
677 * @switch_time: switch time in extended beacon format
678 * @reserved: reserved bytes
680 struct iwl5000_channel_switch_cmd {
681 u8 band;
682 u8 expect_beacon;
683 __le16 channel;
684 __le32 rxon_flags;
685 __le32 rxon_filter_flags;
686 __le32 switch_time;
687 __le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
688 } __packed;
691 * struct iwl6000_channel_switch_cmd
692 * @band: 0- 5.2GHz, 1- 2.4GHz
693 * @expect_beacon: 0- resume transmits after channel switch
694 * 1- wait for beacon to resume transmits
695 * @channel: new channel number
696 * @rxon_flags: Rx on flags
697 * @rxon_filter_flags: filtering parameters
698 * @switch_time: switch time in extended beacon format
699 * @reserved: reserved bytes
701 struct iwl6000_channel_switch_cmd {
702 u8 band;
703 u8 expect_beacon;
704 __le16 channel;
705 __le32 rxon_flags;
706 __le32 rxon_filter_flags;
707 __le32 switch_time;
708 __le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
709 } __packed;
712 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
714 struct iwl_csa_notification {
715 __le16 band;
716 __le16 channel;
717 __le32 status; /* 0 - OK, 1 - fail */
718 } __packed;
720 /******************************************************************************
721 * (2)
722 * Quality-of-Service (QOS) Commands & Responses:
724 *****************************************************************************/
727 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
728 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
730 * @cw_min: Contention window, start value in numbers of slots.
731 * Should be a power-of-2, minus 1. Device's default is 0x0f.
732 * @cw_max: Contention window, max value in numbers of slots.
733 * Should be a power-of-2, minus 1. Device's default is 0x3f.
734 * @aifsn: Number of slots in Arbitration Interframe Space (before
735 * performing random backoff timing prior to Tx). Device default 1.
736 * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0.
738 * Device will automatically increase contention window by (2*CW) + 1 for each
739 * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW
740 * value, to cap the CW value.
742 struct iwl_ac_qos {
743 __le16 cw_min;
744 __le16 cw_max;
745 u8 aifsn;
746 u8 reserved1;
747 __le16 edca_txop;
748 } __packed;
750 /* QoS flags defines */
751 #define QOS_PARAM_FLG_UPDATE_EDCA_MSK cpu_to_le32(0x01)
752 #define QOS_PARAM_FLG_TGN_MSK cpu_to_le32(0x02)
753 #define QOS_PARAM_FLG_TXOP_TYPE_MSK cpu_to_le32(0x10)
755 /* Number of Access Categories (AC) (EDCA), queues 0..3 */
756 #define AC_NUM 4
759 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
761 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
762 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
764 struct iwl_qosparam_cmd {
765 __le32 qos_flags;
766 struct iwl_ac_qos ac[AC_NUM];
767 } __packed;
769 /******************************************************************************
770 * (3)
771 * Add/Modify Stations Commands & Responses:
773 *****************************************************************************/
775 * Multi station support
778 /* Special, dedicated locations within device's station table */
779 #define IWL_AP_ID 0
780 #define IWL_AP_ID_PAN 1
781 #define IWL_STA_ID 2
782 #define IWLAGN_PAN_BCAST_ID 14
783 #define IWLAGN_BROADCAST_ID 15
784 #define IWLAGN_STATION_COUNT 16
786 #define IWL_TID_NON_QOS IWL_MAX_TID_COUNT
788 #define STA_FLG_TX_RATE_MSK cpu_to_le32(1 << 2)
789 #define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8)
790 #define STA_FLG_PAN_STATION cpu_to_le32(1 << 13)
791 #define STA_FLG_RTS_MIMO_PROT_MSK cpu_to_le32(1 << 17)
792 #define STA_FLG_AGG_MPDU_8US_MSK cpu_to_le32(1 << 18)
793 #define STA_FLG_MAX_AGG_SIZE_POS (19)
794 #define STA_FLG_MAX_AGG_SIZE_MSK cpu_to_le32(3 << 19)
795 #define STA_FLG_HT40_EN_MSK cpu_to_le32(1 << 21)
796 #define STA_FLG_MIMO_DIS_MSK cpu_to_le32(1 << 22)
797 #define STA_FLG_AGG_MPDU_DENSITY_POS (23)
798 #define STA_FLG_AGG_MPDU_DENSITY_MSK cpu_to_le32(7 << 23)
800 /* Use in mode field. 1: modify existing entry, 0: add new station entry */
801 #define STA_CONTROL_MODIFY_MSK 0x01
803 /* key flags __le16*/
804 #define STA_KEY_FLG_ENCRYPT_MSK cpu_to_le16(0x0007)
805 #define STA_KEY_FLG_NO_ENC cpu_to_le16(0x0000)
806 #define STA_KEY_FLG_WEP cpu_to_le16(0x0001)
807 #define STA_KEY_FLG_CCMP cpu_to_le16(0x0002)
808 #define STA_KEY_FLG_TKIP cpu_to_le16(0x0003)
810 #define STA_KEY_FLG_KEYID_POS 8
811 #define STA_KEY_FLG_INVALID cpu_to_le16(0x0800)
812 /* wep key is either from global key (0) or from station info array (1) */
813 #define STA_KEY_FLG_MAP_KEY_MSK cpu_to_le16(0x0008)
815 /* wep key in STA: 5-bytes (0) or 13-bytes (1) */
816 #define STA_KEY_FLG_KEY_SIZE_MSK cpu_to_le16(0x1000)
817 #define STA_KEY_MULTICAST_MSK cpu_to_le16(0x4000)
818 #define STA_KEY_MAX_NUM 8
819 #define STA_KEY_MAX_NUM_PAN 16
820 /* must not match WEP_INVALID_OFFSET */
821 #define IWLAGN_HW_KEY_DEFAULT 0xfe
823 /* Flags indicate whether to modify vs. don't change various station params */
824 #define STA_MODIFY_KEY_MASK 0x01
825 #define STA_MODIFY_TID_DISABLE_TX 0x02
826 #define STA_MODIFY_TX_RATE_MSK 0x04
827 #define STA_MODIFY_ADDBA_TID_MSK 0x08
828 #define STA_MODIFY_DELBA_TID_MSK 0x10
829 #define STA_MODIFY_SLEEP_TX_COUNT_MSK 0x20
831 /* agn */
832 struct iwl_keyinfo {
833 __le16 key_flags;
834 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
835 u8 reserved1;
836 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
837 u8 key_offset;
838 u8 reserved2;
839 u8 key[16]; /* 16-byte unicast decryption key */
840 __le64 tx_secur_seq_cnt;
841 __le64 hw_tkip_mic_rx_key;
842 __le64 hw_tkip_mic_tx_key;
843 } __packed;
846 * struct sta_id_modify
847 * @addr[ETH_ALEN]: station's MAC address
848 * @sta_id: index of station in uCode's station table
849 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
851 * Driver selects unused table index when adding new station,
852 * or the index to a pre-existing station entry when modifying that station.
853 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
855 * modify_mask flags select which parameters to modify vs. leave alone.
857 struct sta_id_modify {
858 u8 addr[ETH_ALEN];
859 __le16 reserved1;
860 u8 sta_id;
861 u8 modify_mask;
862 __le16 reserved2;
863 } __packed;
866 * REPLY_ADD_STA = 0x18 (command)
868 * The device contains an internal table of per-station information,
869 * with info on security keys, aggregation parameters, and Tx rates for
870 * initial Tx attempt and any retries (agn devices uses
871 * REPLY_TX_LINK_QUALITY_CMD,
873 * REPLY_ADD_STA sets up the table entry for one station, either creating
874 * a new entry, or modifying a pre-existing one.
876 * NOTE: RXON command (without "associated" bit set) wipes the station table
877 * clean. Moving into RF_KILL state does this also. Driver must set up
878 * new station table before transmitting anything on the RXON channel
879 * (except active scans or active measurements; those commands carry
880 * their own txpower/rate setup data).
882 * When getting started on a new channel, driver must set up the
883 * IWL_BROADCAST_ID entry (last entry in the table). For a client
884 * station in a BSS, once an AP is selected, driver sets up the AP STA
885 * in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP
886 * are all that are needed for a BSS client station. If the device is
887 * used as AP, or in an IBSS network, driver must set up station table
888 * entries for all STAs in network, starting with index IWL_STA_ID.
891 struct iwl_addsta_cmd {
892 u8 mode; /* 1: modify existing, 0: add new station */
893 u8 reserved[3];
894 struct sta_id_modify sta;
895 struct iwl_keyinfo key;
896 __le32 station_flags; /* STA_FLG_* */
897 __le32 station_flags_msk; /* STA_FLG_* */
899 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
900 * corresponding to bit (e.g. bit 5 controls TID 5).
901 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
902 __le16 tid_disable_tx;
903 __le16 legacy_reserved;
905 /* TID for which to add block-ack support.
906 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
907 u8 add_immediate_ba_tid;
909 /* TID for which to remove block-ack support.
910 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
911 u8 remove_immediate_ba_tid;
913 /* Starting Sequence Number for added block-ack support.
914 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
915 __le16 add_immediate_ba_ssn;
918 * Number of packets OK to transmit to station even though
919 * it is asleep -- used to synchronise PS-poll and u-APSD
920 * responses while ucode keeps track of STA sleep state.
922 __le16 sleep_tx_count;
924 __le16 reserved2;
925 } __packed;
928 #define ADD_STA_SUCCESS_MSK 0x1
929 #define ADD_STA_NO_ROOM_IN_TABLE 0x2
930 #define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4
931 #define ADD_STA_MODIFY_NON_EXIST_STA 0x8
933 * REPLY_ADD_STA = 0x18 (response)
935 struct iwl_add_sta_resp {
936 u8 status; /* ADD_STA_* */
937 } __packed;
939 #define REM_STA_SUCCESS_MSK 0x1
941 * REPLY_REM_STA = 0x19 (response)
943 struct iwl_rem_sta_resp {
944 u8 status;
945 } __packed;
948 * REPLY_REM_STA = 0x19 (command)
950 struct iwl_rem_sta_cmd {
951 u8 num_sta; /* number of removed stations */
952 u8 reserved[3];
953 u8 addr[ETH_ALEN]; /* MAC addr of the first station */
954 u8 reserved2[2];
955 } __packed;
958 /* WiFi queues mask */
959 #define IWL_SCD_BK_MSK BIT(0)
960 #define IWL_SCD_BE_MSK BIT(1)
961 #define IWL_SCD_VI_MSK BIT(2)
962 #define IWL_SCD_VO_MSK BIT(3)
963 #define IWL_SCD_MGMT_MSK BIT(3)
965 /* PAN queues mask */
966 #define IWL_PAN_SCD_BK_MSK BIT(4)
967 #define IWL_PAN_SCD_BE_MSK BIT(5)
968 #define IWL_PAN_SCD_VI_MSK BIT(6)
969 #define IWL_PAN_SCD_VO_MSK BIT(7)
970 #define IWL_PAN_SCD_MGMT_MSK BIT(7)
971 #define IWL_PAN_SCD_MULTICAST_MSK BIT(8)
973 #define IWL_AGG_TX_QUEUE_MSK 0xffc00
975 #define IWL_DROP_ALL BIT(1)
978 * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
980 * When using full FIFO flush this command checks the scheduler HW block WR/RD
981 * pointers to check if all the frames were transferred by DMA into the
982 * relevant TX FIFO queue. Only when the DMA is finished and the queue is
983 * empty the command can finish.
984 * This command is used to flush the TXFIFO from transmit commands, it may
985 * operate on single or multiple queues, the command queue can't be flushed by
986 * this command. The command response is returned when all the queue flush
987 * operations are done. Each TX command flushed return response with the FLUSH
988 * status set in the TX response status. When FIFO flush operation is used,
989 * the flush operation ends when both the scheduler DMA done and TXFIFO empty
990 * are set.
992 * @queue_control: bit mask for which queues to flush
993 * @flush_control: flush controls
994 * 0: Dump single MSDU
995 * 1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
996 * 2: Dump all FIFO
998 struct iwl_txfifo_flush_cmd_v3 {
999 __le32 queue_control;
1000 __le16 flush_control;
1001 __le16 reserved;
1002 } __packed;
1004 struct iwl_txfifo_flush_cmd_v2 {
1005 __le16 queue_control;
1006 __le16 flush_control;
1007 } __packed;
1010 * REPLY_WEP_KEY = 0x20
1012 struct iwl_wep_key {
1013 u8 key_index;
1014 u8 key_offset;
1015 u8 reserved1[2];
1016 u8 key_size;
1017 u8 reserved2[3];
1018 u8 key[16];
1019 } __packed;
1021 struct iwl_wep_cmd {
1022 u8 num_keys;
1023 u8 global_key_type;
1024 u8 flags;
1025 u8 reserved;
1026 struct iwl_wep_key key[0];
1027 } __packed;
1029 #define WEP_KEY_WEP_TYPE 1
1030 #define WEP_KEYS_MAX 4
1031 #define WEP_INVALID_OFFSET 0xff
1032 #define WEP_KEY_LEN_64 5
1033 #define WEP_KEY_LEN_128 13
1035 /******************************************************************************
1036 * (4)
1037 * Rx Responses:
1039 *****************************************************************************/
1041 #define RX_RES_STATUS_NO_CRC32_ERROR cpu_to_le32(1 << 0)
1042 #define RX_RES_STATUS_NO_RXE_OVERFLOW cpu_to_le32(1 << 1)
1044 #define RX_RES_PHY_FLAGS_BAND_24_MSK cpu_to_le16(1 << 0)
1045 #define RX_RES_PHY_FLAGS_MOD_CCK_MSK cpu_to_le16(1 << 1)
1046 #define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK cpu_to_le16(1 << 2)
1047 #define RX_RES_PHY_FLAGS_NARROW_BAND_MSK cpu_to_le16(1 << 3)
1048 #define RX_RES_PHY_FLAGS_ANTENNA_MSK 0x70
1049 #define RX_RES_PHY_FLAGS_ANTENNA_POS 4
1050 #define RX_RES_PHY_FLAGS_AGG_MSK cpu_to_le16(1 << 7)
1052 #define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8)
1053 #define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8)
1054 #define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8)
1055 #define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8)
1056 #define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8)
1057 #define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8)
1059 #define RX_RES_STATUS_STATION_FOUND (1<<6)
1060 #define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7)
1062 #define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11)
1063 #define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11)
1064 #define RX_RES_STATUS_DECRYPT_OK (0x3 << 11)
1065 #define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11)
1066 #define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11)
1068 #define RX_MPDU_RES_STATUS_ICV_OK (0x20)
1069 #define RX_MPDU_RES_STATUS_MIC_OK (0x40)
1070 #define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7)
1071 #define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800)
1074 #define IWLAGN_RX_RES_PHY_CNT 8
1075 #define IWLAGN_RX_RES_AGC_IDX 1
1076 #define IWLAGN_RX_RES_RSSI_AB_IDX 2
1077 #define IWLAGN_RX_RES_RSSI_C_IDX 3
1078 #define IWLAGN_OFDM_AGC_MSK 0xfe00
1079 #define IWLAGN_OFDM_AGC_BIT_POS 9
1080 #define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1081 #define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1082 #define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1083 #define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1084 #define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1085 #define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1086 #define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1087 #define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1088 #define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1090 struct iwlagn_non_cfg_phy {
1091 __le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT]; /* up to 8 phy entries */
1092 } __packed;
1096 * REPLY_RX = 0xc3 (response only, not a command)
1097 * Used only for legacy (non 11n) frames.
1099 struct iwl_rx_phy_res {
1100 u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */
1101 u8 cfg_phy_cnt; /* configurable DSP phy data byte count */
1102 u8 stat_id; /* configurable DSP phy data set ID */
1103 u8 reserved1;
1104 __le64 timestamp; /* TSF at on air rise */
1105 __le32 beacon_time_stamp; /* beacon at on-air rise */
1106 __le16 phy_flags; /* general phy flags: band, modulation, ... */
1107 __le16 channel; /* channel number */
1108 u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1109 __le32 rate_n_flags; /* RATE_MCS_* */
1110 __le16 byte_count; /* frame's byte-count */
1111 __le16 frame_time; /* frame's time on the air */
1112 } __packed;
1114 struct iwl_rx_mpdu_res_start {
1115 __le16 byte_count;
1116 __le16 reserved;
1117 } __packed;
1120 /******************************************************************************
1121 * (5)
1122 * Tx Commands & Responses:
1124 * Driver must place each REPLY_TX command into one of the prioritized Tx
1125 * queues in host DRAM, shared between driver and device (see comments for
1126 * SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode
1127 * are preparing to transmit, the device pulls the Tx command over the PCI
1128 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1129 * from which data will be transmitted.
1131 * uCode handles all timing and protocol related to control frames
1132 * (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler
1133 * handle reception of block-acks; uCode updates the host driver via
1134 * REPLY_COMPRESSED_BA.
1136 * uCode handles retrying Tx when an ACK is expected but not received.
1137 * This includes trying lower data rates than the one requested in the Tx
1138 * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
1140 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1141 * This command must be executed after every RXON command, before Tx can occur.
1142 *****************************************************************************/
1144 /* REPLY_TX Tx flags field */
1147 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1148 * before this frame. if CTS-to-self required check
1149 * RXON_FLG_SELF_CTS_EN status.
1151 #define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1153 /* 1: Expect ACK from receiving station
1154 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1155 * Set this for unicast frames, but not broadcast/multicast. */
1156 #define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1158 /* For agn devices:
1159 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1160 * Tx command's initial_rate_index indicates first rate to try;
1161 * uCode walks through table for additional Tx attempts.
1162 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1163 * This rate will be used for all Tx attempts; it will not be scaled. */
1164 #define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1166 /* 1: Expect immediate block-ack.
1167 * Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */
1168 #define TX_CMD_FLG_IMM_BA_RSP_MASK cpu_to_le32(1 << 6)
1170 /* Tx antenna selection field; reserved (0) for agn devices. */
1171 #define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1173 /* 1: Ignore Bluetooth priority for this frame.
1174 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1175 #define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1177 /* 1: uCode overrides sequence control field in MAC header.
1178 * 0: Driver provides sequence control field in MAC header.
1179 * Set this for management frames, non-QOS data frames, non-unicast frames,
1180 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1181 #define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1183 /* 1: This frame is non-last MPDU; more fragments are coming.
1184 * 0: Last fragment, or not using fragmentation. */
1185 #define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1187 /* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1188 * 0: No TSF required in outgoing frame.
1189 * Set this for transmitting beacons and probe responses. */
1190 #define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1192 /* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1193 * alignment of frame's payload data field.
1194 * 0: No pad
1195 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1196 * field (but not both). Driver must align frame data (i.e. data following
1197 * MAC header) to DWORD boundary. */
1198 #define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1200 /* accelerate aggregation support
1201 * 0 - no CCMP encryption; 1 - CCMP encryption */
1202 #define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1204 /* HCCA-AP - disable duration overwriting. */
1205 #define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1209 * TX command security control
1211 #define TX_CMD_SEC_WEP 0x01
1212 #define TX_CMD_SEC_CCM 0x02
1213 #define TX_CMD_SEC_TKIP 0x03
1214 #define TX_CMD_SEC_MSK 0x03
1215 #define TX_CMD_SEC_SHIFT 6
1216 #define TX_CMD_SEC_KEY128 0x08
1219 * REPLY_TX = 0x1c (command)
1223 * Used for managing Tx retries when expecting block-acks.
1224 * Driver should set these fields to 0.
1226 struct iwl_dram_scratch {
1227 u8 try_cnt; /* Tx attempts */
1228 u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */
1229 __le16 reserved;
1230 } __packed;
1232 struct iwl_tx_cmd {
1234 * MPDU byte count:
1235 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1236 * + 8 byte IV for CCM or TKIP (not used for WEP)
1237 * + Data payload
1238 * + 8-byte MIC (not used for CCM/WEP)
1239 * NOTE: Does not include Tx command bytes, post-MAC pad bytes,
1240 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1241 * Range: 14-2342 bytes.
1243 __le16 len;
1246 * MPDU or MSDU byte count for next frame.
1247 * Used for fragmentation and bursting, but not 11n aggregation.
1248 * Same as "len", but for next frame. Set to 0 if not applicable.
1250 __le16 next_frame_len;
1252 __le32 tx_flags; /* TX_CMD_FLG_* */
1254 /* uCode may modify this field of the Tx command (in host DRAM!).
1255 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1256 struct iwl_dram_scratch scratch;
1258 /* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1259 __le32 rate_n_flags; /* RATE_MCS_* */
1261 /* Index of destination station in uCode's station table */
1262 u8 sta_id;
1264 /* Type of security encryption: CCM or TKIP */
1265 u8 sec_ctl; /* TX_CMD_SEC_* */
1268 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1269 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for
1270 * data frames, this field may be used to selectively reduce initial
1271 * rate (via non-0 value) for special frames (e.g. management), while
1272 * still supporting rate scaling for all frames.
1274 u8 initial_rate_index;
1275 u8 reserved;
1276 u8 key[16];
1277 __le16 next_frame_flags;
1278 __le16 reserved2;
1279 union {
1280 __le32 life_time;
1281 __le32 attempt;
1282 } stop_time;
1284 /* Host DRAM physical address pointer to "scratch" in this command.
1285 * Must be dword aligned. "0" in dram_lsb_ptr disables usage. */
1286 __le32 dram_lsb_ptr;
1287 u8 dram_msb_ptr;
1289 u8 rts_retry_limit; /*byte 50 */
1290 u8 data_retry_limit; /*byte 51 */
1291 u8 tid_tspec;
1292 union {
1293 __le16 pm_frame_timeout;
1294 __le16 attempt_duration;
1295 } timeout;
1298 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1299 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1301 __le16 driver_txop;
1304 * MAC header goes here, followed by 2 bytes padding if MAC header
1305 * length is 26 or 30 bytes, followed by payload data
1307 u8 payload[0];
1308 struct ieee80211_hdr hdr[0];
1309 } __packed;
1312 * TX command response is sent after *agn* transmission attempts.
1314 * both postpone and abort status are expected behavior from uCode. there is
1315 * no special operation required from driver; except for RFKILL_FLUSH,
1316 * which required tx flush host command to flush all the tx frames in queues
1318 enum {
1319 TX_STATUS_SUCCESS = 0x01,
1320 TX_STATUS_DIRECT_DONE = 0x02,
1321 /* postpone TX */
1322 TX_STATUS_POSTPONE_DELAY = 0x40,
1323 TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1324 TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1325 TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1326 TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1327 /* abort TX */
1328 TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1329 TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1330 TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1331 TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1332 TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1333 TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1334 TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1335 TX_STATUS_FAIL_DEST_PS = 0x88,
1336 TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1337 TX_STATUS_FAIL_BT_RETRY = 0x8a,
1338 TX_STATUS_FAIL_STA_INVALID = 0x8b,
1339 TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1340 TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1341 TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1342 TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1343 TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1344 TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1347 #define TX_PACKET_MODE_REGULAR 0x0000
1348 #define TX_PACKET_MODE_BURST_SEQ 0x0100
1349 #define TX_PACKET_MODE_BURST_FIRST 0x0200
1351 enum {
1352 TX_POWER_PA_NOT_ACTIVE = 0x0,
1355 enum {
1356 TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */
1357 TX_STATUS_DELAY_MSK = 0x00000040,
1358 TX_STATUS_ABORT_MSK = 0x00000080,
1359 TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */
1360 TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */
1361 TX_RESERVED = 0x00780000, /* bits 19:22 */
1362 TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */
1363 TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */
1366 /* *******************************
1367 * TX aggregation status
1368 ******************************* */
1370 enum {
1371 AGG_TX_STATE_TRANSMITTED = 0x00,
1372 AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1373 AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1374 AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1375 AGG_TX_STATE_ABORT_MSK = 0x08,
1376 AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1377 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1378 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1379 AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1380 AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1381 AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1382 AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1383 AGG_TX_STATE_DELAY_TX_MSK = 0x400
1386 #define AGG_TX_STATUS_MSK 0x00000fff /* bits 0:11 */
1387 #define AGG_TX_TRY_MSK 0x0000f000 /* bits 12:15 */
1388 #define AGG_TX_TRY_POS 12
1390 #define AGG_TX_STATE_LAST_SENT_MSK (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1391 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1392 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1394 /* # tx attempts for first frame in aggregation */
1395 #define AGG_TX_STATE_TRY_CNT_POS 12
1396 #define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1398 /* Command ID and sequence number of Tx command for this frame */
1399 #define AGG_TX_STATE_SEQ_NUM_POS 16
1400 #define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1403 * REPLY_TX = 0x1c (response)
1405 * This response may be in one of two slightly different formats, indicated
1406 * by the frame_count field:
1408 * 1) No aggregation (frame_count == 1). This reports Tx results for
1409 * a single frame. Multiple attempts, at various bit rates, may have
1410 * been made for this frame.
1412 * 2) Aggregation (frame_count > 1). This reports Tx results for
1413 * 2 or more frames that used block-acknowledge. All frames were
1414 * transmitted at same rate. Rate scaling may have been used if first
1415 * frame in this new agg block failed in previous agg block(s).
1417 * Note that, for aggregation, ACK (block-ack) status is not delivered here;
1418 * block-ack has not been received by the time the agn device records
1419 * this status.
1420 * This status relates to reasons the tx might have been blocked or aborted
1421 * within the sending station (this agn device), rather than whether it was
1422 * received successfully by the destination station.
1424 struct agg_tx_status {
1425 __le16 status;
1426 __le16 sequence;
1427 } __packed;
1429 /* refer to ra_tid */
1430 #define IWLAGN_TX_RES_TID_POS 0
1431 #define IWLAGN_TX_RES_TID_MSK 0x0f
1432 #define IWLAGN_TX_RES_RA_POS 4
1433 #define IWLAGN_TX_RES_RA_MSK 0xf0
1435 struct iwlagn_tx_resp {
1436 u8 frame_count; /* 1 no aggregation, >1 aggregation */
1437 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
1438 u8 failure_rts; /* # failures due to unsuccessful RTS */
1439 u8 failure_frame; /* # failures due to no ACK (unused for agg) */
1441 /* For non-agg: Rate at which frame was successful.
1442 * For agg: Rate at which all frames were transmitted. */
1443 __le32 rate_n_flags; /* RATE_MCS_* */
1445 /* For non-agg: RTS + CTS + frame tx attempts time + ACK.
1446 * For agg: RTS + CTS + aggregation tx time + block-ack time. */
1447 __le16 wireless_media_time; /* uSecs */
1449 u8 pa_status; /* RF power amplifier measurement (not used) */
1450 u8 pa_integ_res_a[3];
1451 u8 pa_integ_res_b[3];
1452 u8 pa_integ_res_C[3];
1454 __le32 tfd_info;
1455 __le16 seq_ctl;
1456 __le16 byte_cnt;
1457 u8 tlc_info;
1458 u8 ra_tid; /* tid (0:3), sta_id (4:7) */
1459 __le16 frame_ctrl;
1461 * For non-agg: frame status TX_STATUS_*
1462 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
1463 * fields follow this one, up to frame_count.
1464 * Bit fields:
1465 * 11- 0: AGG_TX_STATE_* status code
1466 * 15-12: Retry count for 1st frame in aggregation (retries
1467 * occur if tx failed for this frame when it was a
1468 * member of a previous aggregation block). If rate
1469 * scaling is used, retry count indicates the rate
1470 * table entry used for all frames in the new agg.
1471 * 31-16: Sequence # for this frame's Tx cmd (not SSN!)
1473 struct agg_tx_status status; /* TX status (in aggregation -
1474 * status of 1st frame) */
1475 } __packed;
1477 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1479 * Reports Block-Acknowledge from recipient station
1481 struct iwl_compressed_ba_resp {
1482 __le32 sta_addr_lo32;
1483 __le16 sta_addr_hi16;
1484 __le16 reserved;
1486 /* Index of recipient (BA-sending) station in uCode's station table */
1487 u8 sta_id;
1488 u8 tid;
1489 __le16 seq_ctl;
1490 __le64 bitmap;
1491 __le16 scd_flow;
1492 __le16 scd_ssn;
1493 u8 txed; /* number of frames sent */
1494 u8 txed_2_done; /* number of frames acked */
1495 __le16 reserved1;
1496 } __packed;
1499 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1503 /*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1504 #define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0)
1506 /* # of EDCA prioritized tx fifos */
1507 #define LINK_QUAL_AC_NUM AC_NUM
1509 /* # entries in rate scale table to support Tx retries */
1510 #define LINK_QUAL_MAX_RETRY_NUM 16
1512 /* Tx antenna selection values */
1513 #define LINK_QUAL_ANT_A_MSK (1 << 0)
1514 #define LINK_QUAL_ANT_B_MSK (1 << 1)
1515 #define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1519 * struct iwl_link_qual_general_params
1521 * Used in REPLY_TX_LINK_QUALITY_CMD
1523 struct iwl_link_qual_general_params {
1524 u8 flags;
1526 /* No entries at or above this (driver chosen) index contain MIMO */
1527 u8 mimo_delimiter;
1529 /* Best single antenna to use for single stream (legacy, SISO). */
1530 u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */
1532 /* Best antennas to use for MIMO */
1533 u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */
1536 * If driver needs to use different initial rates for different
1537 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1538 * this table will set that up, by indicating the indexes in the
1539 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1540 * Otherwise, driver should set all entries to 0.
1542 * Entry usage:
1543 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1544 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1546 u8 start_rate_index[LINK_QUAL_AC_NUM];
1547 } __packed;
1549 #define LINK_QUAL_AGG_TIME_LIMIT_DEF (4000) /* 4 milliseconds */
1550 #define LINK_QUAL_AGG_TIME_LIMIT_MAX (8000)
1551 #define LINK_QUAL_AGG_TIME_LIMIT_MIN (100)
1553 #define LINK_QUAL_AGG_DISABLE_START_DEF (3)
1554 #define LINK_QUAL_AGG_DISABLE_START_MAX (255)
1555 #define LINK_QUAL_AGG_DISABLE_START_MIN (0)
1557 #define LINK_QUAL_AGG_FRAME_LIMIT_DEF (63)
1558 #define LINK_QUAL_AGG_FRAME_LIMIT_MAX (63)
1559 #define LINK_QUAL_AGG_FRAME_LIMIT_MIN (0)
1562 * struct iwl_link_qual_agg_params
1564 * Used in REPLY_TX_LINK_QUALITY_CMD
1566 struct iwl_link_qual_agg_params {
1569 *Maximum number of uSec in aggregation.
1570 * default set to 4000 (4 milliseconds) if not configured in .cfg
1572 __le16 agg_time_limit;
1575 * Number of Tx retries allowed for a frame, before that frame will
1576 * no longer be considered for the start of an aggregation sequence
1577 * (scheduler will then try to tx it as single frame).
1578 * Driver should set this to 3.
1580 u8 agg_dis_start_th;
1583 * Maximum number of frames in aggregation.
1584 * 0 = no limit (default). 1 = no aggregation.
1585 * Other values = max # frames in aggregation.
1587 u8 agg_frame_cnt_limit;
1589 __le32 reserved;
1590 } __packed;
1593 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1595 * For agn devices
1597 * Each station in the agn device's internal station table has its own table
1598 * of 16
1599 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1600 * an ACK is not received. This command replaces the entire table for
1601 * one station.
1603 * NOTE: Station must already be in agn device's station table.
1604 * Use REPLY_ADD_STA.
1606 * The rate scaling procedures described below work well. Of course, other
1607 * procedures are possible, and may work better for particular environments.
1610 * FILLING THE RATE TABLE
1612 * Given a particular initial rate and mode, as determined by the rate
1613 * scaling algorithm described below, the Linux driver uses the following
1614 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1615 * Link Quality command:
1618 * 1) If using High-throughput (HT) (SISO or MIMO) initial rate:
1619 * a) Use this same initial rate for first 3 entries.
1620 * b) Find next lower available rate using same mode (SISO or MIMO),
1621 * use for next 3 entries. If no lower rate available, switch to
1622 * legacy mode (no HT40 channel, no MIMO, no short guard interval).
1623 * c) If using MIMO, set command's mimo_delimiter to number of entries
1624 * using MIMO (3 or 6).
1625 * d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1626 * no MIMO, no short guard interval), at the next lower bit rate
1627 * (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1628 * legacy procedure for remaining table entries.
1630 * 2) If using legacy initial rate:
1631 * a) Use the initial rate for only one entry.
1632 * b) For each following entry, reduce the rate to next lower available
1633 * rate, until reaching the lowest available rate.
1634 * c) When reducing rate, also switch antenna selection.
1635 * d) Once lowest available rate is reached, repeat this rate until
1636 * rate table is filled (16 entries), switching antenna each entry.
1639 * ACCUMULATING HISTORY
1641 * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1642 * uses two sets of frame Tx success history: One for the current/active
1643 * modulation mode, and one for a speculative/search mode that is being
1644 * attempted. If the speculative mode turns out to be more effective (i.e.
1645 * actual transfer rate is better), then the driver continues to use the
1646 * speculative mode as the new current active mode.
1648 * Each history set contains, separately for each possible rate, data for a
1649 * sliding window of the 62 most recent tx attempts at that rate. The data
1650 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1651 * and attempted frames, from which the driver can additionally calculate a
1652 * success ratio (success / attempted) and number of failures
1653 * (attempted - success), and control the size of the window (attempted).
1654 * The driver uses the bit map to remove successes from the success sum, as
1655 * the oldest tx attempts fall out of the window.
1657 * When the agn device makes multiple tx attempts for a given frame, each
1658 * attempt might be at a different rate, and have different modulation
1659 * characteristics (e.g. antenna, fat channel, short guard interval), as set
1660 * up in the rate scaling table in the Link Quality command. The driver must
1661 * determine which rate table entry was used for each tx attempt, to determine
1662 * which rate-specific history to update, and record only those attempts that
1663 * match the modulation characteristics of the history set.
1665 * When using block-ack (aggregation), all frames are transmitted at the same
1666 * rate, since there is no per-attempt acknowledgment from the destination
1667 * station. The Tx response struct iwl_tx_resp indicates the Tx rate in
1668 * rate_n_flags field. After receiving a block-ack, the driver can update
1669 * history for the entire block all at once.
1672 * FINDING BEST STARTING RATE:
1674 * When working with a selected initial modulation mode (see below), the
1675 * driver attempts to find a best initial rate. The initial rate is the
1676 * first entry in the Link Quality command's rate table.
1678 * 1) Calculate actual throughput (success ratio * expected throughput, see
1679 * table below) for current initial rate. Do this only if enough frames
1680 * have been attempted to make the value meaningful: at least 6 failed
1681 * tx attempts, or at least 8 successes. If not enough, don't try rate
1682 * scaling yet.
1684 * 2) Find available rates adjacent to current initial rate. Available means:
1685 * a) supported by hardware &&
1686 * b) supported by association &&
1687 * c) within any constraints selected by user
1689 * 3) Gather measured throughputs for adjacent rates. These might not have
1690 * enough history to calculate a throughput. That's okay, we might try
1691 * using one of them anyway!
1693 * 4) Try decreasing rate if, for current rate:
1694 * a) success ratio is < 15% ||
1695 * b) lower adjacent rate has better measured throughput ||
1696 * c) higher adjacent rate has worse throughput, and lower is unmeasured
1698 * As a sanity check, if decrease was determined above, leave rate
1699 * unchanged if:
1700 * a) lower rate unavailable
1701 * b) success ratio at current rate > 85% (very good)
1702 * c) current measured throughput is better than expected throughput
1703 * of lower rate (under perfect 100% tx conditions, see table below)
1705 * 5) Try increasing rate if, for current rate:
1706 * a) success ratio is < 15% ||
1707 * b) both adjacent rates' throughputs are unmeasured (try it!) ||
1708 * b) higher adjacent rate has better measured throughput ||
1709 * c) lower adjacent rate has worse throughput, and higher is unmeasured
1711 * As a sanity check, if increase was determined above, leave rate
1712 * unchanged if:
1713 * a) success ratio at current rate < 70%. This is not particularly
1714 * good performance; higher rate is sure to have poorer success.
1716 * 6) Re-evaluate the rate after each tx frame. If working with block-
1717 * acknowledge, history and statistics may be calculated for the entire
1718 * block (including prior history that fits within the history windows),
1719 * before re-evaluation.
1721 * FINDING BEST STARTING MODULATION MODE:
1723 * After working with a modulation mode for a "while" (and doing rate scaling),
1724 * the driver searches for a new initial mode in an attempt to improve
1725 * throughput. The "while" is measured by numbers of attempted frames:
1727 * For legacy mode, search for new mode after:
1728 * 480 successful frames, or 160 failed frames
1729 * For high-throughput modes (SISO or MIMO), search for new mode after:
1730 * 4500 successful frames, or 400 failed frames
1732 * Mode switch possibilities are (3 for each mode):
1734 * For legacy:
1735 * Change antenna, try SISO (if HT association), try MIMO (if HT association)
1736 * For SISO:
1737 * Change antenna, try MIMO, try shortened guard interval (SGI)
1738 * For MIMO:
1739 * Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1741 * When trying a new mode, use the same bit rate as the old/current mode when
1742 * trying antenna switches and shortened guard interval. When switching to
1743 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1744 * for which the expected throughput (under perfect conditions) is about the
1745 * same or slightly better than the actual measured throughput delivered by
1746 * the old/current mode.
1748 * Actual throughput can be estimated by multiplying the expected throughput
1749 * by the success ratio (successful / attempted tx frames). Frame size is
1750 * not considered in this calculation; it assumes that frame size will average
1751 * out to be fairly consistent over several samples. The following are
1752 * metric values for expected throughput assuming 100% success ratio.
1753 * Only G band has support for CCK rates:
1755 * RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60
1757 * G: 7 13 35 58 40 57 72 98 121 154 177 186 186
1758 * A: 0 0 0 0 40 57 72 98 121 154 177 186 186
1759 * SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202
1760 * SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211
1761 * MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251
1762 * SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257
1763 * SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257
1764 * SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264
1765 * MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289
1766 * SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293
1768 * After the new mode has been tried for a short while (minimum of 6 failed
1769 * frames or 8 successful frames), compare success ratio and actual throughput
1770 * estimate of the new mode with the old. If either is better with the new
1771 * mode, continue to use the new mode.
1773 * Continue comparing modes until all 3 possibilities have been tried.
1774 * If moving from legacy to HT, try all 3 possibilities from the new HT
1775 * mode. After trying all 3, a best mode is found. Continue to use this mode
1776 * for the longer "while" described above (e.g. 480 successful frames for
1777 * legacy), and then repeat the search process.
1780 struct iwl_link_quality_cmd {
1782 /* Index of destination/recipient station in uCode's station table */
1783 u8 sta_id;
1784 u8 reserved1;
1785 __le16 control; /* not used */
1786 struct iwl_link_qual_general_params general_params;
1787 struct iwl_link_qual_agg_params agg_params;
1790 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1791 * specifies 1st Tx rate attempted, via index into this table.
1792 * agn devices works its way through table when retrying Tx.
1794 struct {
1795 __le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */
1796 } rs_table[LINK_QUAL_MAX_RETRY_NUM];
1797 __le32 reserved2;
1798 } __packed;
1801 * BT configuration enable flags:
1802 * bit 0 - 1: BT channel announcement enabled
1803 * 0: disable
1804 * bit 1 - 1: priority of BT device enabled
1805 * 0: disable
1806 * bit 2 - 1: BT 2 wire support enabled
1807 * 0: disable
1809 #define BT_COEX_DISABLE (0x0)
1810 #define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1811 #define BT_ENABLE_PRIORITY BIT(1)
1812 #define BT_ENABLE_2_WIRE BIT(2)
1814 #define BT_COEX_DISABLE (0x0)
1815 #define BT_COEX_ENABLE (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1817 #define BT_LEAD_TIME_MIN (0x0)
1818 #define BT_LEAD_TIME_DEF (0x1E)
1819 #define BT_LEAD_TIME_MAX (0xFF)
1821 #define BT_MAX_KILL_MIN (0x1)
1822 #define BT_MAX_KILL_DEF (0x5)
1823 #define BT_MAX_KILL_MAX (0xFF)
1825 #define BT_DURATION_LIMIT_DEF 625
1826 #define BT_DURATION_LIMIT_MAX 1250
1827 #define BT_DURATION_LIMIT_MIN 625
1829 #define BT_ON_THRESHOLD_DEF 4
1830 #define BT_ON_THRESHOLD_MAX 1000
1831 #define BT_ON_THRESHOLD_MIN 1
1833 #define BT_FRAG_THRESHOLD_DEF 0
1834 #define BT_FRAG_THRESHOLD_MAX 0
1835 #define BT_FRAG_THRESHOLD_MIN 0
1837 #define BT_AGG_THRESHOLD_DEF 1200
1838 #define BT_AGG_THRESHOLD_MAX 8000
1839 #define BT_AGG_THRESHOLD_MIN 400
1842 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1844 * agn devices support hardware handshake with Bluetooth device on
1845 * same platform. Bluetooth device alerts wireless device when it will Tx;
1846 * wireless device can delay or kill its own Tx to accommodate.
1848 struct iwl_bt_cmd {
1849 u8 flags;
1850 u8 lead_time;
1851 u8 max_kill;
1852 u8 reserved;
1853 __le32 kill_ack_mask;
1854 __le32 kill_cts_mask;
1855 } __packed;
1857 #define IWLAGN_BT_FLAG_CHANNEL_INHIBITION BIT(0)
1859 #define IWLAGN_BT_FLAG_COEX_MODE_MASK (BIT(3)|BIT(4)|BIT(5))
1860 #define IWLAGN_BT_FLAG_COEX_MODE_SHIFT 3
1861 #define IWLAGN_BT_FLAG_COEX_MODE_DISABLED 0
1862 #define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W 1
1863 #define IWLAGN_BT_FLAG_COEX_MODE_3W 2
1864 #define IWLAGN_BT_FLAG_COEX_MODE_4W 3
1866 #define IWLAGN_BT_FLAG_UCODE_DEFAULT BIT(6)
1867 /* Disable Sync PSPoll on SCO/eSCO */
1868 #define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE BIT(7)
1870 #define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD -75 /* dBm */
1871 #define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD -65 /* dBm */
1873 #define IWLAGN_BT_PRIO_BOOST_MAX 0xFF
1874 #define IWLAGN_BT_PRIO_BOOST_MIN 0x00
1875 #define IWLAGN_BT_PRIO_BOOST_DEFAULT 0xF0
1876 #define IWLAGN_BT_PRIO_BOOST_DEFAULT32 0xF0F0F0F0
1878 #define IWLAGN_BT_MAX_KILL_DEFAULT 5
1880 #define IWLAGN_BT3_T7_DEFAULT 1
1882 enum iwl_bt_kill_idx {
1883 IWL_BT_KILL_DEFAULT = 0,
1884 IWL_BT_KILL_OVERRIDE = 1,
1885 IWL_BT_KILL_REDUCE = 2,
1888 #define IWLAGN_BT_KILL_ACK_MASK_DEFAULT cpu_to_le32(0xffff0000)
1889 #define IWLAGN_BT_KILL_CTS_MASK_DEFAULT cpu_to_le32(0xffff0000)
1890 #define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO cpu_to_le32(0xffffffff)
1891 #define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE cpu_to_le32(0)
1893 #define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT 2
1895 #define IWLAGN_BT3_T2_DEFAULT 0xc
1897 #define IWLAGN_BT_VALID_ENABLE_FLAGS cpu_to_le16(BIT(0))
1898 #define IWLAGN_BT_VALID_BOOST cpu_to_le16(BIT(1))
1899 #define IWLAGN_BT_VALID_MAX_KILL cpu_to_le16(BIT(2))
1900 #define IWLAGN_BT_VALID_3W_TIMERS cpu_to_le16(BIT(3))
1901 #define IWLAGN_BT_VALID_KILL_ACK_MASK cpu_to_le16(BIT(4))
1902 #define IWLAGN_BT_VALID_KILL_CTS_MASK cpu_to_le16(BIT(5))
1903 #define IWLAGN_BT_VALID_REDUCED_TX_PWR cpu_to_le16(BIT(6))
1904 #define IWLAGN_BT_VALID_3W_LUT cpu_to_le16(BIT(7))
1906 #define IWLAGN_BT_ALL_VALID_MSK (IWLAGN_BT_VALID_ENABLE_FLAGS | \
1907 IWLAGN_BT_VALID_BOOST | \
1908 IWLAGN_BT_VALID_MAX_KILL | \
1909 IWLAGN_BT_VALID_3W_TIMERS | \
1910 IWLAGN_BT_VALID_KILL_ACK_MASK | \
1911 IWLAGN_BT_VALID_KILL_CTS_MASK | \
1912 IWLAGN_BT_VALID_REDUCED_TX_PWR | \
1913 IWLAGN_BT_VALID_3W_LUT)
1915 #define IWLAGN_BT_REDUCED_TX_PWR BIT(0)
1917 #define IWLAGN_BT_DECISION_LUT_SIZE 12
1919 struct iwl_basic_bt_cmd {
1920 u8 flags;
1921 u8 ledtime; /* unused */
1922 u8 max_kill;
1923 u8 bt3_timer_t7_value;
1924 __le32 kill_ack_mask;
1925 __le32 kill_cts_mask;
1926 u8 bt3_prio_sample_time;
1927 u8 bt3_timer_t2_value;
1928 __le16 bt4_reaction_time; /* unused */
1929 __le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE];
1931 * bit 0: use reduced tx power for control frame
1932 * bit 1 - 7: reserved
1934 u8 reduce_txpower;
1935 u8 reserved;
1936 __le16 valid;
1939 struct iwl_bt_cmd_v1 {
1940 struct iwl_basic_bt_cmd basic;
1941 u8 prio_boost;
1943 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1944 * if configure the following patterns
1946 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
1947 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
1950 struct iwl_bt_cmd_v2 {
1951 struct iwl_basic_bt_cmd basic;
1952 __le32 prio_boost;
1954 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1955 * if configure the following patterns
1957 u8 reserved;
1958 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
1959 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
1962 #define IWLAGN_BT_SCO_ACTIVE cpu_to_le32(BIT(0))
1964 struct iwlagn_bt_sco_cmd {
1965 __le32 flags;
1968 /******************************************************************************
1969 * (6)
1970 * Spectrum Management (802.11h) Commands, Responses, Notifications:
1972 *****************************************************************************/
1975 * Spectrum Management
1977 #define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \
1978 RXON_FILTER_CTL2HOST_MSK | \
1979 RXON_FILTER_ACCEPT_GRP_MSK | \
1980 RXON_FILTER_DIS_DECRYPT_MSK | \
1981 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
1982 RXON_FILTER_ASSOC_MSK | \
1983 RXON_FILTER_BCON_AWARE_MSK)
1985 struct iwl_measure_channel {
1986 __le32 duration; /* measurement duration in extended beacon
1987 * format */
1988 u8 channel; /* channel to measure */
1989 u8 type; /* see enum iwl_measure_type */
1990 __le16 reserved;
1991 } __packed;
1994 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
1996 struct iwl_spectrum_cmd {
1997 __le16 len; /* number of bytes starting from token */
1998 u8 token; /* token id */
1999 u8 id; /* measurement id -- 0 or 1 */
2000 u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */
2001 u8 periodic; /* 1 = periodic */
2002 __le16 path_loss_timeout;
2003 __le32 start_time; /* start time in extended beacon format */
2004 __le32 reserved2;
2005 __le32 flags; /* rxon flags */
2006 __le32 filter_flags; /* rxon filter flags */
2007 __le16 channel_count; /* minimum 1, maximum 10 */
2008 __le16 reserved3;
2009 struct iwl_measure_channel channels[10];
2010 } __packed;
2013 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2015 struct iwl_spectrum_resp {
2016 u8 token;
2017 u8 id; /* id of the prior command replaced, or 0xff */
2018 __le16 status; /* 0 - command will be handled
2019 * 1 - cannot handle (conflicts with another
2020 * measurement) */
2021 } __packed;
2023 enum iwl_measurement_state {
2024 IWL_MEASUREMENT_START = 0,
2025 IWL_MEASUREMENT_STOP = 1,
2028 enum iwl_measurement_status {
2029 IWL_MEASUREMENT_OK = 0,
2030 IWL_MEASUREMENT_CONCURRENT = 1,
2031 IWL_MEASUREMENT_CSA_CONFLICT = 2,
2032 IWL_MEASUREMENT_TGH_CONFLICT = 3,
2033 /* 4-5 reserved */
2034 IWL_MEASUREMENT_STOPPED = 6,
2035 IWL_MEASUREMENT_TIMEOUT = 7,
2036 IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2039 #define NUM_ELEMENTS_IN_HISTOGRAM 8
2041 struct iwl_measurement_histogram {
2042 __le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */
2043 __le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */
2044 } __packed;
2046 /* clear channel availability counters */
2047 struct iwl_measurement_cca_counters {
2048 __le32 ofdm;
2049 __le32 cck;
2050 } __packed;
2052 enum iwl_measure_type {
2053 IWL_MEASURE_BASIC = (1 << 0),
2054 IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2055 IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2056 IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2057 IWL_MEASURE_FRAME = (1 << 4),
2058 /* bits 5:6 are reserved */
2059 IWL_MEASURE_IDLE = (1 << 7),
2063 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2065 struct iwl_spectrum_notification {
2066 u8 id; /* measurement id -- 0 or 1 */
2067 u8 token;
2068 u8 channel_index; /* index in measurement channel list */
2069 u8 state; /* 0 - start, 1 - stop */
2070 __le32 start_time; /* lower 32-bits of TSF */
2071 u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */
2072 u8 channel;
2073 u8 type; /* see enum iwl_measurement_type */
2074 u8 reserved1;
2075 /* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only
2076 * valid if applicable for measurement type requested. */
2077 __le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */
2078 __le32 cca_cck; /* cca fraction time in 44Mhz clock periods */
2079 __le32 cca_time; /* channel load time in usecs */
2080 u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 -
2081 * unidentified */
2082 u8 reserved2[3];
2083 struct iwl_measurement_histogram histogram;
2084 __le32 stop_time; /* lower 32-bits of TSF */
2085 __le32 status; /* see iwl_measurement_status */
2086 } __packed;
2088 /******************************************************************************
2089 * (7)
2090 * Power Management Commands, Responses, Notifications:
2092 *****************************************************************************/
2095 * struct iwl_powertable_cmd - Power Table Command
2096 * @flags: See below:
2098 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2100 * PM allow:
2101 * bit 0 - '0' Driver not allow power management
2102 * '1' Driver allow PM (use rest of parameters)
2104 * uCode send sleep notifications:
2105 * bit 1 - '0' Don't send sleep notification
2106 * '1' send sleep notification (SEND_PM_NOTIFICATION)
2108 * Sleep over DTIM
2109 * bit 2 - '0' PM have to walk up every DTIM
2110 * '1' PM could sleep over DTIM till listen Interval.
2112 * PCI power managed
2113 * bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2114 * '1' !(PCI_CFG_LINK_CTRL & 0x1)
2116 * Fast PD
2117 * bit 4 - '1' Put radio to sleep when receiving frame for others
2119 * Force sleep Modes
2120 * bit 31/30- '00' use both mac/xtal sleeps
2121 * '01' force Mac sleep
2122 * '10' force xtal sleep
2123 * '11' Illegal set
2125 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2126 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2127 * for every DTIM.
2129 #define IWL_POWER_VEC_SIZE 5
2131 #define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK cpu_to_le16(BIT(0))
2132 #define IWL_POWER_POWER_SAVE_ENA_MSK cpu_to_le16(BIT(0))
2133 #define IWL_POWER_POWER_MANAGEMENT_ENA_MSK cpu_to_le16(BIT(1))
2134 #define IWL_POWER_SLEEP_OVER_DTIM_MSK cpu_to_le16(BIT(2))
2135 #define IWL_POWER_PCI_PM_MSK cpu_to_le16(BIT(3))
2136 #define IWL_POWER_FAST_PD cpu_to_le16(BIT(4))
2137 #define IWL_POWER_BEACON_FILTERING cpu_to_le16(BIT(5))
2138 #define IWL_POWER_SHADOW_REG_ENA cpu_to_le16(BIT(6))
2139 #define IWL_POWER_CT_KILL_SET cpu_to_le16(BIT(7))
2140 #define IWL_POWER_BT_SCO_ENA cpu_to_le16(BIT(8))
2141 #define IWL_POWER_ADVANCE_PM_ENA_MSK cpu_to_le16(BIT(9))
2143 struct iwl_powertable_cmd {
2144 __le16 flags;
2145 u8 keep_alive_seconds;
2146 u8 debug_flags;
2147 __le32 rx_data_timeout;
2148 __le32 tx_data_timeout;
2149 __le32 sleep_interval[IWL_POWER_VEC_SIZE];
2150 __le32 keep_alive_beacons;
2151 } __packed;
2154 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2155 * all devices identical.
2157 struct iwl_sleep_notification {
2158 u8 pm_sleep_mode;
2159 u8 pm_wakeup_src;
2160 __le16 reserved;
2161 __le32 sleep_time;
2162 __le32 tsf_low;
2163 __le32 bcon_timer;
2164 } __packed;
2166 /* Sleep states. all devices identical. */
2167 enum {
2168 IWL_PM_NO_SLEEP = 0,
2169 IWL_PM_SLP_MAC = 1,
2170 IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2171 IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2172 IWL_PM_SLP_PHY = 4,
2173 IWL_PM_SLP_REPENT = 5,
2174 IWL_PM_WAKEUP_BY_TIMER = 6,
2175 IWL_PM_WAKEUP_BY_DRIVER = 7,
2176 IWL_PM_WAKEUP_BY_RFKILL = 8,
2177 /* 3 reserved */
2178 IWL_PM_NUM_OF_MODES = 12,
2182 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2184 #define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */
2185 #define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */
2186 #define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */
2187 struct iwl_card_state_cmd {
2188 __le32 status; /* CARD_STATE_CMD_* request new power state */
2189 } __packed;
2192 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2194 struct iwl_card_state_notif {
2195 __le32 flags;
2196 } __packed;
2198 #define HW_CARD_DISABLED 0x01
2199 #define SW_CARD_DISABLED 0x02
2200 #define CT_CARD_DISABLED 0x04
2201 #define RXON_CARD_DISABLED 0x10
2203 struct iwl_ct_kill_config {
2204 __le32 reserved;
2205 __le32 critical_temperature_M;
2206 __le32 critical_temperature_R;
2207 } __packed;
2209 /* 1000, and 6x00 */
2210 struct iwl_ct_kill_throttling_config {
2211 __le32 critical_temperature_exit;
2212 __le32 reserved;
2213 __le32 critical_temperature_enter;
2214 } __packed;
2216 /******************************************************************************
2217 * (8)
2218 * Scan Commands, Responses, Notifications:
2220 *****************************************************************************/
2222 #define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2223 #define SCAN_CHANNEL_TYPE_ACTIVE cpu_to_le32(1)
2226 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2228 * One for each channel in the scan list.
2229 * Each channel can independently select:
2230 * 1) SSID for directed active scans
2231 * 2) Txpower setting (for rate specified within Tx command)
2232 * 3) How long to stay on-channel (behavior may be modified by quiet_time,
2233 * quiet_plcp_th, good_CRC_th)
2235 * To avoid uCode errors, make sure the following are true (see comments
2236 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2237 * 1) If using passive_dwell (i.e. passive_dwell != 0):
2238 * active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2239 * 2) quiet_time <= active_dwell
2240 * 3) If restricting off-channel time (i.e. max_out_time !=0):
2241 * passive_dwell < max_out_time
2242 * active_dwell < max_out_time
2245 struct iwl_scan_channel {
2247 * type is defined as:
2248 * 0:0 1 = active, 0 = passive
2249 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2250 * SSID IE is transmitted in probe request.
2251 * 21:31 reserved
2253 __le32 type;
2254 __le16 channel; /* band is selected by iwl_scan_cmd "flags" field */
2255 u8 tx_gain; /* gain for analog radio */
2256 u8 dsp_atten; /* gain for DSP */
2257 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
2258 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
2259 } __packed;
2261 /* set number of direct probes __le32 type */
2262 #define IWL_SCAN_PROBE_MASK(n) cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2265 * struct iwl_ssid_ie - directed scan network information element
2267 * Up to 20 of these may appear in REPLY_SCAN_CMD,
2268 * selected by "type" bit field in struct iwl_scan_channel;
2269 * each channel may select different ssids from among the 20 entries.
2270 * SSID IEs get transmitted in reverse order of entry.
2272 struct iwl_ssid_ie {
2273 u8 id;
2274 u8 len;
2275 u8 ssid[32];
2276 } __packed;
2278 #define PROBE_OPTION_MAX 20
2279 #define TX_CMD_LIFE_TIME_INFINITE cpu_to_le32(0xFFFFFFFF)
2280 #define IWL_GOOD_CRC_TH_DISABLED 0
2281 #define IWL_GOOD_CRC_TH_DEFAULT cpu_to_le16(1)
2282 #define IWL_GOOD_CRC_TH_NEVER cpu_to_le16(0xffff)
2283 #define IWL_MAX_CMD_SIZE 4096
2286 * REPLY_SCAN_CMD = 0x80 (command)
2288 * The hardware scan command is very powerful; the driver can set it up to
2289 * maintain (relatively) normal network traffic while doing a scan in the
2290 * background. The max_out_time and suspend_time control the ratio of how
2291 * long the device stays on an associated network channel ("service channel")
2292 * vs. how long it's away from the service channel, i.e. tuned to other channels
2293 * for scanning.
2295 * max_out_time is the max time off-channel (in usec), and suspend_time
2296 * is how long (in "extended beacon" format) that the scan is "suspended"
2297 * after returning to the service channel. That is, suspend_time is the
2298 * time that we stay on the service channel, doing normal work, between
2299 * scan segments. The driver may set these parameters differently to support
2300 * scanning when associated vs. not associated, and light vs. heavy traffic
2301 * loads when associated.
2303 * After receiving this command, the device's scan engine does the following;
2305 * 1) Sends SCAN_START notification to driver
2306 * 2) Checks to see if it has time to do scan for one channel
2307 * 3) Sends NULL packet, with power-save (PS) bit set to 1,
2308 * to tell AP that we're going off-channel
2309 * 4) Tunes to first channel in scan list, does active or passive scan
2310 * 5) Sends SCAN_RESULT notification to driver
2311 * 6) Checks to see if it has time to do scan on *next* channel in list
2312 * 7) Repeats 4-6 until it no longer has time to scan the next channel
2313 * before max_out_time expires
2314 * 8) Returns to service channel
2315 * 9) Sends NULL packet with PS=0 to tell AP that we're back
2316 * 10) Stays on service channel until suspend_time expires
2317 * 11) Repeats entire process 2-10 until list is complete
2318 * 12) Sends SCAN_COMPLETE notification
2320 * For fast, efficient scans, the scan command also has support for staying on
2321 * a channel for just a short time, if doing active scanning and getting no
2322 * responses to the transmitted probe request. This time is controlled by
2323 * quiet_time, and the number of received packets below which a channel is
2324 * considered "quiet" is controlled by quiet_plcp_threshold.
2326 * For active scanning on channels that have regulatory restrictions against
2327 * blindly transmitting, the scan can listen before transmitting, to make sure
2328 * that there is already legitimate activity on the channel. If enough
2329 * packets are cleanly received on the channel (controlled by good_CRC_th,
2330 * typical value 1), the scan engine starts transmitting probe requests.
2332 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2334 * To avoid uCode errors, see timing restrictions described under
2335 * struct iwl_scan_channel.
2338 enum iwl_scan_flags {
2339 /* BIT(0) currently unused */
2340 IWL_SCAN_FLAGS_ACTION_FRAME_TX = BIT(1),
2341 /* bits 2-7 reserved */
2344 struct iwl_scan_cmd {
2345 __le16 len;
2346 u8 scan_flags; /* scan flags: see enum iwl_scan_flags */
2347 u8 channel_count; /* # channels in channel list */
2348 __le16 quiet_time; /* dwell only this # millisecs on quiet channel
2349 * (only for active scan) */
2350 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
2351 __le16 good_CRC_th; /* passive -> active promotion threshold */
2352 __le16 rx_chain; /* RXON_RX_CHAIN_* */
2353 __le32 max_out_time; /* max usec to be away from associated (service)
2354 * channel */
2355 __le32 suspend_time; /* pause scan this long (in "extended beacon
2356 * format") when returning to service chnl:
2358 __le32 flags; /* RXON_FLG_* */
2359 __le32 filter_flags; /* RXON_FILTER_* */
2361 /* For active scans (set to all-0s for passive scans).
2362 * Does not include payload. Must specify Tx rate; no rate scaling. */
2363 struct iwl_tx_cmd tx_cmd;
2365 /* For directed active scans (set to all-0s otherwise) */
2366 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2369 * Probe request frame, followed by channel list.
2371 * Size of probe request frame is specified by byte count in tx_cmd.
2372 * Channel list follows immediately after probe request frame.
2373 * Number of channels in list is specified by channel_count.
2374 * Each channel in list is of type:
2376 * struct iwl_scan_channel channels[0];
2378 * NOTE: Only one band of channels can be scanned per pass. You
2379 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2380 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2381 * before requesting another scan.
2383 u8 data[0];
2384 } __packed;
2386 /* Can abort will notify by complete notification with abort status. */
2387 #define CAN_ABORT_STATUS cpu_to_le32(0x1)
2388 /* complete notification statuses */
2389 #define ABORT_STATUS 0x2
2392 * REPLY_SCAN_CMD = 0x80 (response)
2394 struct iwl_scanreq_notification {
2395 __le32 status; /* 1: okay, 2: cannot fulfill request */
2396 } __packed;
2399 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2401 struct iwl_scanstart_notification {
2402 __le32 tsf_low;
2403 __le32 tsf_high;
2404 __le32 beacon_timer;
2405 u8 channel;
2406 u8 band;
2407 u8 reserved[2];
2408 __le32 status;
2409 } __packed;
2411 #define SCAN_OWNER_STATUS 0x1
2412 #define MEASURE_OWNER_STATUS 0x2
2414 #define IWL_PROBE_STATUS_OK 0
2415 #define IWL_PROBE_STATUS_TX_FAILED BIT(0)
2416 /* error statuses combined with TX_FAILED */
2417 #define IWL_PROBE_STATUS_FAIL_TTL BIT(1)
2418 #define IWL_PROBE_STATUS_FAIL_BT BIT(2)
2420 #define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */
2422 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2424 struct iwl_scanresults_notification {
2425 u8 channel;
2426 u8 band;
2427 u8 probe_status;
2428 u8 num_probe_not_sent; /* not enough time to send */
2429 __le32 tsf_low;
2430 __le32 tsf_high;
2431 __le32 statistics[NUMBER_OF_STATISTICS];
2432 } __packed;
2435 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2437 struct iwl_scancomplete_notification {
2438 u8 scanned_channels;
2439 u8 status;
2440 u8 bt_status; /* BT On/Off status */
2441 u8 last_channel;
2442 __le32 tsf_low;
2443 __le32 tsf_high;
2444 } __packed;
2447 /******************************************************************************
2448 * (9)
2449 * IBSS/AP Commands and Notifications:
2451 *****************************************************************************/
2453 enum iwl_ibss_manager {
2454 IWL_NOT_IBSS_MANAGER = 0,
2455 IWL_IBSS_MANAGER = 1,
2459 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2462 struct iwlagn_beacon_notif {
2463 struct iwlagn_tx_resp beacon_notify_hdr;
2464 __le32 low_tsf;
2465 __le32 high_tsf;
2466 __le32 ibss_mgr_status;
2467 } __packed;
2470 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2473 struct iwl_tx_beacon_cmd {
2474 struct iwl_tx_cmd tx;
2475 __le16 tim_idx;
2476 u8 tim_size;
2477 u8 reserved1;
2478 struct ieee80211_hdr frame[0]; /* beacon frame */
2479 } __packed;
2481 /******************************************************************************
2482 * (10)
2483 * Statistics Commands and Notifications:
2485 *****************************************************************************/
2487 #define IWL_TEMP_CONVERT 260
2489 #define SUP_RATE_11A_MAX_NUM_CHANNELS 8
2490 #define SUP_RATE_11B_MAX_NUM_CHANNELS 4
2491 #define SUP_RATE_11G_MAX_NUM_CHANNELS 12
2493 /* Used for passing to driver number of successes and failures per rate */
2494 struct rate_histogram {
2495 union {
2496 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2497 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2498 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2499 } success;
2500 union {
2501 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2502 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2503 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2504 } failed;
2505 } __packed;
2507 /* statistics command response */
2509 struct statistics_dbg {
2510 __le32 burst_check;
2511 __le32 burst_count;
2512 __le32 wait_for_silence_timeout_cnt;
2513 __le32 reserved[3];
2514 } __packed;
2516 struct statistics_rx_phy {
2517 __le32 ina_cnt;
2518 __le32 fina_cnt;
2519 __le32 plcp_err;
2520 __le32 crc32_err;
2521 __le32 overrun_err;
2522 __le32 early_overrun_err;
2523 __le32 crc32_good;
2524 __le32 false_alarm_cnt;
2525 __le32 fina_sync_err_cnt;
2526 __le32 sfd_timeout;
2527 __le32 fina_timeout;
2528 __le32 unresponded_rts;
2529 __le32 rxe_frame_limit_overrun;
2530 __le32 sent_ack_cnt;
2531 __le32 sent_cts_cnt;
2532 __le32 sent_ba_rsp_cnt;
2533 __le32 dsp_self_kill;
2534 __le32 mh_format_err;
2535 __le32 re_acq_main_rssi_sum;
2536 __le32 reserved3;
2537 } __packed;
2539 struct statistics_rx_ht_phy {
2540 __le32 plcp_err;
2541 __le32 overrun_err;
2542 __le32 early_overrun_err;
2543 __le32 crc32_good;
2544 __le32 crc32_err;
2545 __le32 mh_format_err;
2546 __le32 agg_crc32_good;
2547 __le32 agg_mpdu_cnt;
2548 __le32 agg_cnt;
2549 __le32 unsupport_mcs;
2550 } __packed;
2552 #define INTERFERENCE_DATA_AVAILABLE cpu_to_le32(1)
2554 struct statistics_rx_non_phy {
2555 __le32 bogus_cts; /* CTS received when not expecting CTS */
2556 __le32 bogus_ack; /* ACK received when not expecting ACK */
2557 __le32 non_bssid_frames; /* number of frames with BSSID that
2558 * doesn't belong to the STA BSSID */
2559 __le32 filtered_frames; /* count frames that were dumped in the
2560 * filtering process */
2561 __le32 non_channel_beacons; /* beacons with our bss id but not on
2562 * our serving channel */
2563 __le32 channel_beacons; /* beacons with our bss id and in our
2564 * serving channel */
2565 __le32 num_missed_bcon; /* number of missed beacons */
2566 __le32 adc_rx_saturation_time; /* count in 0.8us units the time the
2567 * ADC was in saturation */
2568 __le32 ina_detection_search_time;/* total time (in 0.8us) searched
2569 * for INA */
2570 __le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */
2571 __le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */
2572 __le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */
2573 __le32 interference_data_flag; /* flag for interference data
2574 * availability. 1 when data is
2575 * available. */
2576 __le32 channel_load; /* counts RX Enable time in uSec */
2577 __le32 dsp_false_alarms; /* DSP false alarm (both OFDM
2578 * and CCK) counter */
2579 __le32 beacon_rssi_a;
2580 __le32 beacon_rssi_b;
2581 __le32 beacon_rssi_c;
2582 __le32 beacon_energy_a;
2583 __le32 beacon_energy_b;
2584 __le32 beacon_energy_c;
2585 } __packed;
2587 struct statistics_rx_non_phy_bt {
2588 struct statistics_rx_non_phy common;
2589 /* additional stats for bt */
2590 __le32 num_bt_kills;
2591 __le32 reserved[2];
2592 } __packed;
2594 struct statistics_rx {
2595 struct statistics_rx_phy ofdm;
2596 struct statistics_rx_phy cck;
2597 struct statistics_rx_non_phy general;
2598 struct statistics_rx_ht_phy ofdm_ht;
2599 } __packed;
2601 struct statistics_rx_bt {
2602 struct statistics_rx_phy ofdm;
2603 struct statistics_rx_phy cck;
2604 struct statistics_rx_non_phy_bt general;
2605 struct statistics_rx_ht_phy ofdm_ht;
2606 } __packed;
2609 * struct statistics_tx_power - current tx power
2611 * @ant_a: current tx power on chain a in 1/2 dB step
2612 * @ant_b: current tx power on chain b in 1/2 dB step
2613 * @ant_c: current tx power on chain c in 1/2 dB step
2615 struct statistics_tx_power {
2616 u8 ant_a;
2617 u8 ant_b;
2618 u8 ant_c;
2619 u8 reserved;
2620 } __packed;
2622 struct statistics_tx_non_phy_agg {
2623 __le32 ba_timeout;
2624 __le32 ba_reschedule_frames;
2625 __le32 scd_query_agg_frame_cnt;
2626 __le32 scd_query_no_agg;
2627 __le32 scd_query_agg;
2628 __le32 scd_query_mismatch;
2629 __le32 frame_not_ready;
2630 __le32 underrun;
2631 __le32 bt_prio_kill;
2632 __le32 rx_ba_rsp_cnt;
2633 } __packed;
2635 struct statistics_tx {
2636 __le32 preamble_cnt;
2637 __le32 rx_detected_cnt;
2638 __le32 bt_prio_defer_cnt;
2639 __le32 bt_prio_kill_cnt;
2640 __le32 few_bytes_cnt;
2641 __le32 cts_timeout;
2642 __le32 ack_timeout;
2643 __le32 expected_ack_cnt;
2644 __le32 actual_ack_cnt;
2645 __le32 dump_msdu_cnt;
2646 __le32 burst_abort_next_frame_mismatch_cnt;
2647 __le32 burst_abort_missing_next_frame_cnt;
2648 __le32 cts_timeout_collision;
2649 __le32 ack_or_ba_timeout_collision;
2650 struct statistics_tx_non_phy_agg agg;
2652 * "tx_power" are optional parameters provided by uCode,
2653 * 6000 series is the only device provide the information,
2654 * Those are reserved fields for all the other devices
2656 struct statistics_tx_power tx_power;
2657 __le32 reserved1;
2658 } __packed;
2661 struct statistics_div {
2662 __le32 tx_on_a;
2663 __le32 tx_on_b;
2664 __le32 exec_time;
2665 __le32 probe_time;
2666 __le32 reserved1;
2667 __le32 reserved2;
2668 } __packed;
2670 struct statistics_general_common {
2671 __le32 temperature; /* radio temperature */
2672 __le32 temperature_m; /* radio voltage */
2673 struct statistics_dbg dbg;
2674 __le32 sleep_time;
2675 __le32 slots_out;
2676 __le32 slots_idle;
2677 __le32 ttl_timestamp;
2678 struct statistics_div div;
2679 __le32 rx_enable_counter;
2681 * num_of_sos_states:
2682 * count the number of times we have to re-tune
2683 * in order to get out of bad PHY status
2685 __le32 num_of_sos_states;
2686 } __packed;
2688 struct statistics_bt_activity {
2689 /* Tx statistics */
2690 __le32 hi_priority_tx_req_cnt;
2691 __le32 hi_priority_tx_denied_cnt;
2692 __le32 lo_priority_tx_req_cnt;
2693 __le32 lo_priority_tx_denied_cnt;
2694 /* Rx statistics */
2695 __le32 hi_priority_rx_req_cnt;
2696 __le32 hi_priority_rx_denied_cnt;
2697 __le32 lo_priority_rx_req_cnt;
2698 __le32 lo_priority_rx_denied_cnt;
2699 } __packed;
2701 struct statistics_general {
2702 struct statistics_general_common common;
2703 __le32 reserved2;
2704 __le32 reserved3;
2705 } __packed;
2707 struct statistics_general_bt {
2708 struct statistics_general_common common;
2709 struct statistics_bt_activity activity;
2710 __le32 reserved2;
2711 __le32 reserved3;
2712 } __packed;
2714 #define UCODE_STATISTICS_CLEAR_MSK (0x1 << 0)
2715 #define UCODE_STATISTICS_FREQUENCY_MSK (0x1 << 1)
2716 #define UCODE_STATISTICS_NARROW_BAND_MSK (0x1 << 2)
2719 * REPLY_STATISTICS_CMD = 0x9c,
2720 * all devices identical.
2722 * This command triggers an immediate response containing uCode statistics.
2723 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2725 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2726 * internal copy of the statistics (counters) after issuing the response.
2727 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2729 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2730 * STATISTICS_NOTIFICATIONs after received beacons (see below). This flag
2731 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2733 #define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1) /* see above */
2734 #define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2735 struct iwl_statistics_cmd {
2736 __le32 configuration_flags; /* IWL_STATS_CONF_* */
2737 } __packed;
2740 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2742 * By default, uCode issues this notification after receiving a beacon
2743 * while associated. To disable this behavior, set DISABLE_NOTIF flag in the
2744 * REPLY_STATISTICS_CMD 0x9c, above.
2746 * Statistics counters continue to increment beacon after beacon, but are
2747 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2748 * 0x9c with CLEAR_STATS bit set (see above).
2750 * uCode also issues this notification during scans. uCode clears statistics
2751 * appropriately so that each notification contains statistics for only the
2752 * one channel that has just been scanned.
2754 #define STATISTICS_REPLY_FLG_BAND_24G_MSK cpu_to_le32(0x2)
2755 #define STATISTICS_REPLY_FLG_HT40_MODE_MSK cpu_to_le32(0x8)
2757 struct iwl_notif_statistics {
2758 __le32 flag;
2759 struct statistics_rx rx;
2760 struct statistics_tx tx;
2761 struct statistics_general general;
2762 } __packed;
2764 struct iwl_bt_notif_statistics {
2765 __le32 flag;
2766 struct statistics_rx_bt rx;
2767 struct statistics_tx tx;
2768 struct statistics_general_bt general;
2769 } __packed;
2772 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2774 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2775 * in regardless of how many missed beacons, which mean when driver receive the
2776 * notification, inside the command, it can find all the beacons information
2777 * which include number of total missed beacons, number of consecutive missed
2778 * beacons, number of beacons received and number of beacons expected to
2779 * receive.
2781 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2782 * in order to bring the radio/PHY back to working state; which has no relation
2783 * to when driver will perform sensitivity calibration.
2785 * Driver should set it own missed_beacon_threshold to decide when to perform
2786 * sensitivity calibration based on number of consecutive missed beacons in
2787 * order to improve overall performance, especially in noisy environment.
2791 #define IWL_MISSED_BEACON_THRESHOLD_MIN (1)
2792 #define IWL_MISSED_BEACON_THRESHOLD_DEF (5)
2793 #define IWL_MISSED_BEACON_THRESHOLD_MAX IWL_MISSED_BEACON_THRESHOLD_DEF
2795 struct iwl_missed_beacon_notif {
2796 __le32 consecutive_missed_beacons;
2797 __le32 total_missed_becons;
2798 __le32 num_expected_beacons;
2799 __le32 num_recvd_beacons;
2800 } __packed;
2803 /******************************************************************************
2804 * (11)
2805 * Rx Calibration Commands:
2807 * With the uCode used for open source drivers, most Tx calibration (except
2808 * for Tx Power) and most Rx calibration is done by uCode during the
2809 * "initialize" phase of uCode boot. Driver must calibrate only:
2811 * 1) Tx power (depends on temperature), described elsewhere
2812 * 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2813 * 3) Receiver sensitivity (to optimize signal detection)
2815 *****************************************************************************/
2818 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2820 * This command sets up the Rx signal detector for a sensitivity level that
2821 * is high enough to lock onto all signals within the associated network,
2822 * but low enough to ignore signals that are below a certain threshold, so as
2823 * not to have too many "false alarms". False alarms are signals that the
2824 * Rx DSP tries to lock onto, but then discards after determining that they
2825 * are noise.
2827 * The optimum number of false alarms is between 5 and 50 per 200 TUs
2828 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2829 * time listening, not transmitting). Driver must adjust sensitivity so that
2830 * the ratio of actual false alarms to actual Rx time falls within this range.
2832 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2833 * received beacon. These provide information to the driver to analyze the
2834 * sensitivity. Don't analyze statistics that come in from scanning, or any
2835 * other non-associated-network source. Pertinent statistics include:
2837 * From "general" statistics (struct statistics_rx_non_phy):
2839 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2840 * Measure of energy of desired signal. Used for establishing a level
2841 * below which the device does not detect signals.
2843 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2844 * Measure of background noise in silent period after beacon.
2846 * channel_load
2847 * uSecs of actual Rx time during beacon period (varies according to
2848 * how much time was spent transmitting).
2850 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2852 * false_alarm_cnt
2853 * Signal locks abandoned early (before phy-level header).
2855 * plcp_err
2856 * Signal locks abandoned late (during phy-level header).
2858 * NOTE: Both false_alarm_cnt and plcp_err increment monotonically from
2859 * beacon to beacon, i.e. each value is an accumulation of all errors
2860 * before and including the latest beacon. Values will wrap around to 0
2861 * after counting up to 2^32 - 1. Driver must differentiate vs.
2862 * previous beacon's values to determine # false alarms in the current
2863 * beacon period.
2865 * Total number of false alarms = false_alarms + plcp_errs
2867 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2868 * (notice that the start points for OFDM are at or close to settings for
2869 * maximum sensitivity):
2871 * START / MIN / MAX
2872 * HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120
2873 * HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210
2874 * HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140
2875 * HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270
2877 * If actual rate of OFDM false alarms (+ plcp_errors) is too high
2878 * (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2879 * by *adding* 1 to all 4 of the table entries above, up to the max for
2880 * each entry. Conversely, if false alarm rate is too low (less than 5
2881 * for each 204.8 msecs listening), *subtract* 1 from each entry to
2882 * increase sensitivity.
2884 * For CCK sensitivity, keep track of the following:
2886 * 1). 20-beacon history of maximum background noise, indicated by
2887 * (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2888 * 3 receivers. For any given beacon, the "silence reference" is
2889 * the maximum of last 60 samples (20 beacons * 3 receivers).
2891 * 2). 10-beacon history of strongest signal level, as indicated
2892 * by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2893 * i.e. the strength of the signal through the best receiver at the
2894 * moment. These measurements are "upside down", with lower values
2895 * for stronger signals, so max energy will be *minimum* value.
2897 * Then for any given beacon, the driver must determine the *weakest*
2898 * of the strongest signals; this is the minimum level that needs to be
2899 * successfully detected, when using the best receiver at the moment.
2900 * "Max cck energy" is the maximum (higher value means lower energy!)
2901 * of the last 10 minima. Once this is determined, driver must add
2902 * a little margin by adding "6" to it.
2904 * 3). Number of consecutive beacon periods with too few false alarms.
2905 * Reset this to 0 at the first beacon period that falls within the
2906 * "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2908 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2909 * (notice that the start points for CCK are at maximum sensitivity):
2911 * START / MIN / MAX
2912 * HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200
2913 * HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400
2914 * HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100
2916 * If actual rate of CCK false alarms (+ plcp_errors) is too high
2917 * (greater than 50 for each 204.8 msecs listening), method for reducing
2918 * sensitivity is:
2920 * 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2921 * up to max 400.
2923 * 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2924 * sensitivity has been reduced a significant amount; bring it up to
2925 * a moderate 161. Otherwise, *add* 3, up to max 200.
2927 * 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2928 * sensitivity has been reduced only a moderate or small amount;
2929 * *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2930 * down to min 0. Otherwise (if gain has been significantly reduced),
2931 * don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2933 * b) Save a snapshot of the "silence reference".
2935 * If actual rate of CCK false alarms (+ plcp_errors) is too low
2936 * (less than 5 for each 204.8 msecs listening), method for increasing
2937 * sensitivity is used only if:
2939 * 1a) Previous beacon did not have too many false alarms
2940 * 1b) AND difference between previous "silence reference" and current
2941 * "silence reference" (prev - current) is 2 or more,
2942 * OR 2) 100 or more consecutive beacon periods have had rate of
2943 * less than 5 false alarms per 204.8 milliseconds rx time.
2945 * Method for increasing sensitivity:
2947 * 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2948 * down to min 125.
2950 * 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2951 * down to min 200.
2953 * 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2955 * If actual rate of CCK false alarms (+ plcp_errors) is within good range
2956 * (between 5 and 50 for each 204.8 msecs listening):
2958 * 1) Save a snapshot of the silence reference.
2960 * 2) If previous beacon had too many CCK false alarms (+ plcp_errors),
2961 * give some extra margin to energy threshold by *subtracting* 8
2962 * from value in HD_MIN_ENERGY_CCK_DET_INDEX.
2964 * For all cases (too few, too many, good range), make sure that the CCK
2965 * detection threshold (energy) is below the energy level for robust
2966 * detection over the past 10 beacon periods, the "Max cck energy".
2967 * Lower values mean higher energy; this means making sure that the value
2968 * in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
2973 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
2975 #define HD_TABLE_SIZE (11) /* number of entries */
2976 #define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */
2977 #define HD_MIN_ENERGY_OFDM_DET_INDEX (1)
2978 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2)
2979 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3)
2980 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4)
2981 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5)
2982 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6)
2983 #define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7)
2984 #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8)
2985 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9)
2986 #define HD_OFDM_ENERGY_TH_IN_INDEX (10)
2989 * Additional table entries in enhance SENSITIVITY_CMD
2991 #define HD_INA_NON_SQUARE_DET_OFDM_INDEX (11)
2992 #define HD_INA_NON_SQUARE_DET_CCK_INDEX (12)
2993 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX (13)
2994 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX (14)
2995 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (15)
2996 #define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX (16)
2997 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX (17)
2998 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX (18)
2999 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (19)
3000 #define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX (20)
3001 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX (21)
3002 #define HD_RESERVED (22)
3004 /* number of entries for enhanced tbl */
3005 #define ENHANCE_HD_TABLE_SIZE (23)
3007 /* number of additional entries for enhanced tbl */
3008 #define ENHANCE_HD_TABLE_ENTRIES (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
3010 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1 cpu_to_le16(0)
3011 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V1 cpu_to_le16(0)
3012 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1 cpu_to_le16(0)
3013 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(668)
3014 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
3015 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(486)
3016 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(37)
3017 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(853)
3018 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
3019 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(476)
3020 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(99)
3022 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2 cpu_to_le16(1)
3023 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V2 cpu_to_le16(1)
3024 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2 cpu_to_le16(1)
3025 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(600)
3026 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(40)
3027 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(486)
3028 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(45)
3029 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(853)
3030 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(60)
3031 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(476)
3032 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(99)
3035 /* Control field in struct iwl_sensitivity_cmd */
3036 #define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE cpu_to_le16(0)
3037 #define SENSITIVITY_CMD_CONTROL_WORK_TABLE cpu_to_le16(1)
3040 * struct iwl_sensitivity_cmd
3041 * @control: (1) updates working table, (0) updates default table
3042 * @table: energy threshold values, use HD_* as index into table
3044 * Always use "1" in "control" to update uCode's working table and DSP.
3046 struct iwl_sensitivity_cmd {
3047 __le16 control; /* always use "1" */
3048 __le16 table[HD_TABLE_SIZE]; /* use HD_* as index */
3049 } __packed;
3054 struct iwl_enhance_sensitivity_cmd {
3055 __le16 control; /* always use "1" */
3056 __le16 enhance_table[ENHANCE_HD_TABLE_SIZE]; /* use HD_* as index */
3057 } __packed;
3061 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3063 * This command sets the relative gains of agn device's 3 radio receiver chains.
3065 * After the first association, driver should accumulate signal and noise
3066 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3067 * beacons from the associated network (don't collect statistics that come
3068 * in from scanning, or any other non-network source).
3070 * DISCONNECTED ANTENNA:
3072 * Driver should determine which antennas are actually connected, by comparing
3073 * average beacon signal levels for the 3 Rx chains. Accumulate (add) the
3074 * following values over 20 beacons, one accumulator for each of the chains
3075 * a/b/c, from struct statistics_rx_non_phy:
3077 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3079 * Find the strongest signal from among a/b/c. Compare the other two to the
3080 * strongest. If any signal is more than 15 dB (times 20, unless you
3081 * divide the accumulated values by 20) below the strongest, the driver
3082 * considers that antenna to be disconnected, and should not try to use that
3083 * antenna/chain for Rx or Tx. If both A and B seem to be disconnected,
3084 * driver should declare the stronger one as connected, and attempt to use it
3085 * (A and B are the only 2 Tx chains!).
3088 * RX BALANCE:
3090 * Driver should balance the 3 receivers (but just the ones that are connected
3091 * to antennas, see above) for gain, by comparing the average signal levels
3092 * detected during the silence after each beacon (background noise).
3093 * Accumulate (add) the following values over 20 beacons, one accumulator for
3094 * each of the chains a/b/c, from struct statistics_rx_non_phy:
3096 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3098 * Find the weakest background noise level from among a/b/c. This Rx chain
3099 * will be the reference, with 0 gain adjustment. Attenuate other channels by
3100 * finding noise difference:
3102 * (accum_noise[i] - accum_noise[reference]) / 30
3104 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3105 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3106 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3107 * and set bit 2 to indicate "reduce gain". The value for the reference
3108 * (weakest) chain should be "0".
3110 * diff_gain_[abc] bit fields:
3111 * 2: (1) reduce gain, (0) increase gain
3112 * 1-0: amount of gain, units of 1.5 dB
3115 /* Phy calibration command for series */
3116 enum {
3117 IWL_PHY_CALIBRATE_DC_CMD = 8,
3118 IWL_PHY_CALIBRATE_LO_CMD = 9,
3119 IWL_PHY_CALIBRATE_TX_IQ_CMD = 11,
3120 IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD = 15,
3121 IWL_PHY_CALIBRATE_BASE_BAND_CMD = 16,
3122 IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD = 17,
3123 IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD = 18,
3126 /* This enum defines the bitmap of various calibrations to enable in both
3127 * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3129 enum iwl_ucode_calib_cfg {
3130 IWL_CALIB_CFG_RX_BB_IDX = BIT(0),
3131 IWL_CALIB_CFG_DC_IDX = BIT(1),
3132 IWL_CALIB_CFG_LO_IDX = BIT(2),
3133 IWL_CALIB_CFG_TX_IQ_IDX = BIT(3),
3134 IWL_CALIB_CFG_RX_IQ_IDX = BIT(4),
3135 IWL_CALIB_CFG_NOISE_IDX = BIT(5),
3136 IWL_CALIB_CFG_CRYSTAL_IDX = BIT(6),
3137 IWL_CALIB_CFG_TEMPERATURE_IDX = BIT(7),
3138 IWL_CALIB_CFG_PAPD_IDX = BIT(8),
3139 IWL_CALIB_CFG_SENSITIVITY_IDX = BIT(9),
3140 IWL_CALIB_CFG_TX_PWR_IDX = BIT(10),
3143 #define IWL_CALIB_INIT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \
3144 IWL_CALIB_CFG_DC_IDX | \
3145 IWL_CALIB_CFG_LO_IDX | \
3146 IWL_CALIB_CFG_TX_IQ_IDX | \
3147 IWL_CALIB_CFG_RX_IQ_IDX | \
3148 IWL_CALIB_CFG_CRYSTAL_IDX)
3150 #define IWL_CALIB_RT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \
3151 IWL_CALIB_CFG_DC_IDX | \
3152 IWL_CALIB_CFG_LO_IDX | \
3153 IWL_CALIB_CFG_TX_IQ_IDX | \
3154 IWL_CALIB_CFG_RX_IQ_IDX | \
3155 IWL_CALIB_CFG_TEMPERATURE_IDX | \
3156 IWL_CALIB_CFG_PAPD_IDX | \
3157 IWL_CALIB_CFG_TX_PWR_IDX | \
3158 IWL_CALIB_CFG_CRYSTAL_IDX)
3160 #define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK cpu_to_le32(BIT(0))
3162 struct iwl_calib_cfg_elmnt_s {
3163 __le32 is_enable;
3164 __le32 start;
3165 __le32 send_res;
3166 __le32 apply_res;
3167 __le32 reserved;
3168 } __packed;
3170 struct iwl_calib_cfg_status_s {
3171 struct iwl_calib_cfg_elmnt_s once;
3172 struct iwl_calib_cfg_elmnt_s perd;
3173 __le32 flags;
3174 } __packed;
3176 struct iwl_calib_cfg_cmd {
3177 struct iwl_calib_cfg_status_s ucd_calib_cfg;
3178 struct iwl_calib_cfg_status_s drv_calib_cfg;
3179 __le32 reserved1;
3180 } __packed;
3182 struct iwl_calib_hdr {
3183 u8 op_code;
3184 u8 first_group;
3185 u8 groups_num;
3186 u8 data_valid;
3187 } __packed;
3189 struct iwl_calib_cmd {
3190 struct iwl_calib_hdr hdr;
3191 u8 data[0];
3192 } __packed;
3194 struct iwl_calib_xtal_freq_cmd {
3195 struct iwl_calib_hdr hdr;
3196 u8 cap_pin1;
3197 u8 cap_pin2;
3198 u8 pad[2];
3199 } __packed;
3201 #define DEFAULT_RADIO_SENSOR_OFFSET cpu_to_le16(2700)
3202 struct iwl_calib_temperature_offset_cmd {
3203 struct iwl_calib_hdr hdr;
3204 __le16 radio_sensor_offset;
3205 __le16 reserved;
3206 } __packed;
3208 struct iwl_calib_temperature_offset_v2_cmd {
3209 struct iwl_calib_hdr hdr;
3210 __le16 radio_sensor_offset_high;
3211 __le16 radio_sensor_offset_low;
3212 __le16 burntVoltageRef;
3213 __le16 reserved;
3214 } __packed;
3216 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3217 struct iwl_calib_chain_noise_reset_cmd {
3218 struct iwl_calib_hdr hdr;
3219 u8 data[0];
3222 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3223 struct iwl_calib_chain_noise_gain_cmd {
3224 struct iwl_calib_hdr hdr;
3225 u8 delta_gain_1;
3226 u8 delta_gain_2;
3227 u8 pad[2];
3228 } __packed;
3230 /******************************************************************************
3231 * (12)
3232 * Miscellaneous Commands:
3234 *****************************************************************************/
3237 * LEDs Command & Response
3238 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3240 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3241 * this command turns it on or off, or sets up a periodic blinking cycle.
3243 struct iwl_led_cmd {
3244 __le32 interval; /* "interval" in uSec */
3245 u8 id; /* 1: Activity, 2: Link, 3: Tech */
3246 u8 off; /* # intervals off while blinking;
3247 * "0", with >0 "on" value, turns LED on */
3248 u8 on; /* # intervals on while blinking;
3249 * "0", regardless of "off", turns LED off */
3250 u8 reserved;
3251 } __packed;
3254 * station priority table entries
3255 * also used as potential "events" value for both
3256 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3260 * COEX events entry flag masks
3261 * RP - Requested Priority
3262 * WP - Win Medium Priority: priority assigned when the contention has been won
3264 #define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG (0x1)
3265 #define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG (0x2)
3266 #define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG (0x4)
3268 #define COEX_CU_UNASSOC_IDLE_RP 4
3269 #define COEX_CU_UNASSOC_MANUAL_SCAN_RP 4
3270 #define COEX_CU_UNASSOC_AUTO_SCAN_RP 4
3271 #define COEX_CU_CALIBRATION_RP 4
3272 #define COEX_CU_PERIODIC_CALIBRATION_RP 4
3273 #define COEX_CU_CONNECTION_ESTAB_RP 4
3274 #define COEX_CU_ASSOCIATED_IDLE_RP 4
3275 #define COEX_CU_ASSOC_MANUAL_SCAN_RP 4
3276 #define COEX_CU_ASSOC_AUTO_SCAN_RP 4
3277 #define COEX_CU_ASSOC_ACTIVE_LEVEL_RP 4
3278 #define COEX_CU_RF_ON_RP 6
3279 #define COEX_CU_RF_OFF_RP 4
3280 #define COEX_CU_STAND_ALONE_DEBUG_RP 6
3281 #define COEX_CU_IPAN_ASSOC_LEVEL_RP 4
3282 #define COEX_CU_RSRVD1_RP 4
3283 #define COEX_CU_RSRVD2_RP 4
3285 #define COEX_CU_UNASSOC_IDLE_WP 3
3286 #define COEX_CU_UNASSOC_MANUAL_SCAN_WP 3
3287 #define COEX_CU_UNASSOC_AUTO_SCAN_WP 3
3288 #define COEX_CU_CALIBRATION_WP 3
3289 #define COEX_CU_PERIODIC_CALIBRATION_WP 3
3290 #define COEX_CU_CONNECTION_ESTAB_WP 3
3291 #define COEX_CU_ASSOCIATED_IDLE_WP 3
3292 #define COEX_CU_ASSOC_MANUAL_SCAN_WP 3
3293 #define COEX_CU_ASSOC_AUTO_SCAN_WP 3
3294 #define COEX_CU_ASSOC_ACTIVE_LEVEL_WP 3
3295 #define COEX_CU_RF_ON_WP 3
3296 #define COEX_CU_RF_OFF_WP 3
3297 #define COEX_CU_STAND_ALONE_DEBUG_WP 6
3298 #define COEX_CU_IPAN_ASSOC_LEVEL_WP 3
3299 #define COEX_CU_RSRVD1_WP 3
3300 #define COEX_CU_RSRVD2_WP 3
3302 #define COEX_UNASSOC_IDLE_FLAGS 0
3303 #define COEX_UNASSOC_MANUAL_SCAN_FLAGS \
3304 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3305 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3306 #define COEX_UNASSOC_AUTO_SCAN_FLAGS \
3307 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3308 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3309 #define COEX_CALIBRATION_FLAGS \
3310 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3311 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3312 #define COEX_PERIODIC_CALIBRATION_FLAGS 0
3314 * COEX_CONNECTION_ESTAB:
3315 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3317 #define COEX_CONNECTION_ESTAB_FLAGS \
3318 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3319 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3320 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3321 #define COEX_ASSOCIATED_IDLE_FLAGS 0
3322 #define COEX_ASSOC_MANUAL_SCAN_FLAGS \
3323 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3324 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3325 #define COEX_ASSOC_AUTO_SCAN_FLAGS \
3326 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3327 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3328 #define COEX_ASSOC_ACTIVE_LEVEL_FLAGS 0
3329 #define COEX_RF_ON_FLAGS 0
3330 #define COEX_RF_OFF_FLAGS 0
3331 #define COEX_STAND_ALONE_DEBUG_FLAGS \
3332 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3333 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3334 #define COEX_IPAN_ASSOC_LEVEL_FLAGS \
3335 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3336 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3337 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3338 #define COEX_RSRVD1_FLAGS 0
3339 #define COEX_RSRVD2_FLAGS 0
3341 * COEX_CU_RF_ON is the event wrapping all radio ownership.
3342 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3344 #define COEX_CU_RF_ON_FLAGS \
3345 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3346 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3347 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3350 enum {
3351 /* un-association part */
3352 COEX_UNASSOC_IDLE = 0,
3353 COEX_UNASSOC_MANUAL_SCAN = 1,
3354 COEX_UNASSOC_AUTO_SCAN = 2,
3355 /* calibration */
3356 COEX_CALIBRATION = 3,
3357 COEX_PERIODIC_CALIBRATION = 4,
3358 /* connection */
3359 COEX_CONNECTION_ESTAB = 5,
3360 /* association part */
3361 COEX_ASSOCIATED_IDLE = 6,
3362 COEX_ASSOC_MANUAL_SCAN = 7,
3363 COEX_ASSOC_AUTO_SCAN = 8,
3364 COEX_ASSOC_ACTIVE_LEVEL = 9,
3365 /* RF ON/OFF */
3366 COEX_RF_ON = 10,
3367 COEX_RF_OFF = 11,
3368 COEX_STAND_ALONE_DEBUG = 12,
3369 /* IPAN */
3370 COEX_IPAN_ASSOC_LEVEL = 13,
3371 /* reserved */
3372 COEX_RSRVD1 = 14,
3373 COEX_RSRVD2 = 15,
3374 COEX_NUM_OF_EVENTS = 16
3378 * Coexistence WIFI/WIMAX Command
3379 * COEX_PRIORITY_TABLE_CMD = 0x5a
3382 struct iwl_wimax_coex_event_entry {
3383 u8 request_prio;
3384 u8 win_medium_prio;
3385 u8 reserved;
3386 u8 flags;
3387 } __packed;
3389 /* COEX flag masks */
3391 /* Station table is valid */
3392 #define COEX_FLAGS_STA_TABLE_VALID_MSK (0x1)
3393 /* UnMask wake up src at unassociated sleep */
3394 #define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK (0x4)
3395 /* UnMask wake up src at associated sleep */
3396 #define COEX_FLAGS_ASSOC_WA_UNMASK_MSK (0x8)
3397 /* Enable CoEx feature. */
3398 #define COEX_FLAGS_COEX_ENABLE_MSK (0x80)
3400 struct iwl_wimax_coex_cmd {
3401 u8 flags;
3402 u8 reserved[3];
3403 struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3404 } __packed;
3407 * Coexistence MEDIUM NOTIFICATION
3408 * COEX_MEDIUM_NOTIFICATION = 0x5b
3410 * notification from uCode to host to indicate medium changes
3414 * status field
3415 * bit 0 - 2: medium status
3416 * bit 3: medium change indication
3417 * bit 4 - 31: reserved
3419 /* status option values, (0 - 2 bits) */
3420 #define COEX_MEDIUM_BUSY (0x0) /* radio belongs to WiMAX */
3421 #define COEX_MEDIUM_ACTIVE (0x1) /* radio belongs to WiFi */
3422 #define COEX_MEDIUM_PRE_RELEASE (0x2) /* received radio release */
3423 #define COEX_MEDIUM_MSK (0x7)
3425 /* send notification status (1 bit) */
3426 #define COEX_MEDIUM_CHANGED (0x8)
3427 #define COEX_MEDIUM_CHANGED_MSK (0x8)
3428 #define COEX_MEDIUM_SHIFT (3)
3430 struct iwl_coex_medium_notification {
3431 __le32 status;
3432 __le32 events;
3433 } __packed;
3436 * Coexistence EVENT Command
3437 * COEX_EVENT_CMD = 0x5c
3439 * send from host to uCode for coex event request.
3441 /* flags options */
3442 #define COEX_EVENT_REQUEST_MSK (0x1)
3444 struct iwl_coex_event_cmd {
3445 u8 flags;
3446 u8 event;
3447 __le16 reserved;
3448 } __packed;
3450 struct iwl_coex_event_resp {
3451 __le32 status;
3452 } __packed;
3455 /******************************************************************************
3456 * Bluetooth Coexistence commands
3458 *****************************************************************************/
3461 * BT Status notification
3462 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3464 enum iwl_bt_coex_profile_traffic_load {
3465 IWL_BT_COEX_TRAFFIC_LOAD_NONE = 0,
3466 IWL_BT_COEX_TRAFFIC_LOAD_LOW = 1,
3467 IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 2,
3468 IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS = 3,
3470 * There are no more even though below is a u8, the
3471 * indication from the BT device only has two bits.
3475 #define BT_SESSION_ACTIVITY_1_UART_MSG 0x1
3476 #define BT_SESSION_ACTIVITY_2_UART_MSG 0x2
3478 /* BT UART message - Share Part (BT -> WiFi) */
3479 #define BT_UART_MSG_FRAME1MSGTYPE_POS (0)
3480 #define BT_UART_MSG_FRAME1MSGTYPE_MSK \
3481 (0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3482 #define BT_UART_MSG_FRAME1SSN_POS (3)
3483 #define BT_UART_MSG_FRAME1SSN_MSK \
3484 (0x3 << BT_UART_MSG_FRAME1SSN_POS)
3485 #define BT_UART_MSG_FRAME1UPDATEREQ_POS (5)
3486 #define BT_UART_MSG_FRAME1UPDATEREQ_MSK \
3487 (0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3488 #define BT_UART_MSG_FRAME1RESERVED_POS (6)
3489 #define BT_UART_MSG_FRAME1RESERVED_MSK \
3490 (0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3492 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS (0)
3493 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK \
3494 (0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3495 #define BT_UART_MSG_FRAME2TRAFFICLOAD_POS (2)
3496 #define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK \
3497 (0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3498 #define BT_UART_MSG_FRAME2CHLSEQN_POS (4)
3499 #define BT_UART_MSG_FRAME2CHLSEQN_MSK \
3500 (0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3501 #define BT_UART_MSG_FRAME2INBAND_POS (5)
3502 #define BT_UART_MSG_FRAME2INBAND_MSK \
3503 (0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3504 #define BT_UART_MSG_FRAME2RESERVED_POS (6)
3505 #define BT_UART_MSG_FRAME2RESERVED_MSK \
3506 (0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3508 #define BT_UART_MSG_FRAME3SCOESCO_POS (0)
3509 #define BT_UART_MSG_FRAME3SCOESCO_MSK \
3510 (0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3511 #define BT_UART_MSG_FRAME3SNIFF_POS (1)
3512 #define BT_UART_MSG_FRAME3SNIFF_MSK \
3513 (0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3514 #define BT_UART_MSG_FRAME3A2DP_POS (2)
3515 #define BT_UART_MSG_FRAME3A2DP_MSK \
3516 (0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3517 #define BT_UART_MSG_FRAME3ACL_POS (3)
3518 #define BT_UART_MSG_FRAME3ACL_MSK \
3519 (0x1 << BT_UART_MSG_FRAME3ACL_POS)
3520 #define BT_UART_MSG_FRAME3MASTER_POS (4)
3521 #define BT_UART_MSG_FRAME3MASTER_MSK \
3522 (0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3523 #define BT_UART_MSG_FRAME3OBEX_POS (5)
3524 #define BT_UART_MSG_FRAME3OBEX_MSK \
3525 (0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3526 #define BT_UART_MSG_FRAME3RESERVED_POS (6)
3527 #define BT_UART_MSG_FRAME3RESERVED_MSK \
3528 (0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3530 #define BT_UART_MSG_FRAME4IDLEDURATION_POS (0)
3531 #define BT_UART_MSG_FRAME4IDLEDURATION_MSK \
3532 (0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3533 #define BT_UART_MSG_FRAME4RESERVED_POS (6)
3534 #define BT_UART_MSG_FRAME4RESERVED_MSK \
3535 (0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3537 #define BT_UART_MSG_FRAME5TXACTIVITY_POS (0)
3538 #define BT_UART_MSG_FRAME5TXACTIVITY_MSK \
3539 (0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3540 #define BT_UART_MSG_FRAME5RXACTIVITY_POS (2)
3541 #define BT_UART_MSG_FRAME5RXACTIVITY_MSK \
3542 (0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3543 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS (4)
3544 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK \
3545 (0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3546 #define BT_UART_MSG_FRAME5RESERVED_POS (6)
3547 #define BT_UART_MSG_FRAME5RESERVED_MSK \
3548 (0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3550 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS (0)
3551 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK \
3552 (0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3553 #define BT_UART_MSG_FRAME6DISCOVERABLE_POS (5)
3554 #define BT_UART_MSG_FRAME6DISCOVERABLE_MSK \
3555 (0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3556 #define BT_UART_MSG_FRAME6RESERVED_POS (6)
3557 #define BT_UART_MSG_FRAME6RESERVED_MSK \
3558 (0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3560 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS (0)
3561 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK \
3562 (0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3563 #define BT_UART_MSG_FRAME7PAGE_POS (3)
3564 #define BT_UART_MSG_FRAME7PAGE_MSK \
3565 (0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3566 #define BT_UART_MSG_FRAME7INQUIRY_POS (4)
3567 #define BT_UART_MSG_FRAME7INQUIRY_MSK \
3568 (0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3569 #define BT_UART_MSG_FRAME7CONNECTABLE_POS (5)
3570 #define BT_UART_MSG_FRAME7CONNECTABLE_MSK \
3571 (0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3572 #define BT_UART_MSG_FRAME7RESERVED_POS (6)
3573 #define BT_UART_MSG_FRAME7RESERVED_MSK \
3574 (0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3576 /* BT Session Activity 2 UART message (BT -> WiFi) */
3577 #define BT_UART_MSG_2_FRAME1RESERVED1_POS (5)
3578 #define BT_UART_MSG_2_FRAME1RESERVED1_MSK \
3579 (0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3580 #define BT_UART_MSG_2_FRAME1RESERVED2_POS (6)
3581 #define BT_UART_MSG_2_FRAME1RESERVED2_MSK \
3582 (0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3584 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS (0)
3585 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK \
3586 (0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3587 #define BT_UART_MSG_2_FRAME2RESERVED_POS (6)
3588 #define BT_UART_MSG_2_FRAME2RESERVED_MSK \
3589 (0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3591 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS (0)
3592 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK \
3593 (0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3594 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS (4)
3595 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK \
3596 (0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3597 #define BT_UART_MSG_2_FRAME3LEMASTER_POS (5)
3598 #define BT_UART_MSG_2_FRAME3LEMASTER_MSK \
3599 (0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3600 #define BT_UART_MSG_2_FRAME3RESERVED_POS (6)
3601 #define BT_UART_MSG_2_FRAME3RESERVED_MSK \
3602 (0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3604 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS (0)
3605 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK \
3606 (0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3607 #define BT_UART_MSG_2_FRAME4NUMLECONN_POS (4)
3608 #define BT_UART_MSG_2_FRAME4NUMLECONN_MSK \
3609 (0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3610 #define BT_UART_MSG_2_FRAME4RESERVED_POS (6)
3611 #define BT_UART_MSG_2_FRAME4RESERVED_MSK \
3612 (0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3614 #define BT_UART_MSG_2_FRAME5BTMINRSSI_POS (0)
3615 #define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK \
3616 (0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3617 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS (4)
3618 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK \
3619 (0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3620 #define BT_UART_MSG_2_FRAME5LEADVERMODE_POS (5)
3621 #define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK \
3622 (0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3623 #define BT_UART_MSG_2_FRAME5RESERVED_POS (6)
3624 #define BT_UART_MSG_2_FRAME5RESERVED_MSK \
3625 (0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3627 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS (0)
3628 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK \
3629 (0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3630 #define BT_UART_MSG_2_FRAME6RFU_POS (5)
3631 #define BT_UART_MSG_2_FRAME6RFU_MSK \
3632 (0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3633 #define BT_UART_MSG_2_FRAME6RESERVED_POS (6)
3634 #define BT_UART_MSG_2_FRAME6RESERVED_MSK \
3635 (0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3637 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS (0)
3638 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK \
3639 (0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3640 #define BT_UART_MSG_2_FRAME7LEPROFILE1_POS (3)
3641 #define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK \
3642 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3643 #define BT_UART_MSG_2_FRAME7LEPROFILE2_POS (4)
3644 #define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK \
3645 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3646 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS (5)
3647 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK \
3648 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3649 #define BT_UART_MSG_2_FRAME7RESERVED_POS (6)
3650 #define BT_UART_MSG_2_FRAME7RESERVED_MSK \
3651 (0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3654 #define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD (-62)
3655 #define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD (-65)
3657 struct iwl_bt_uart_msg {
3658 u8 header;
3659 u8 frame1;
3660 u8 frame2;
3661 u8 frame3;
3662 u8 frame4;
3663 u8 frame5;
3664 u8 frame6;
3665 u8 frame7;
3666 } __packed;
3668 struct iwl_bt_coex_profile_notif {
3669 struct iwl_bt_uart_msg last_bt_uart_msg;
3670 u8 bt_status; /* 0 - off, 1 - on */
3671 u8 bt_traffic_load; /* 0 .. 3? */
3672 u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3673 u8 reserved;
3674 } __packed;
3676 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS 0
3677 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK 0x1
3678 #define IWL_BT_COEX_PRIO_TBL_PRIO_POS 1
3679 #define IWL_BT_COEX_PRIO_TBL_PRIO_MASK 0x0e
3680 #define IWL_BT_COEX_PRIO_TBL_RESERVED_POS 4
3681 #define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK 0xf0
3682 #define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT 1
3685 * BT Coexistence Priority table
3686 * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3688 enum bt_coex_prio_table_events {
3689 BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3690 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3691 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3692 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3693 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3694 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3695 BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3696 BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3697 BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3698 BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3699 BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3700 BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3701 BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3702 BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3703 BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3704 BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3705 /* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3706 BT_COEX_PRIO_TBL_EVT_MAX,
3709 enum bt_coex_prio_table_priorities {
3710 BT_COEX_PRIO_TBL_DISABLED = 0,
3711 BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3712 BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3713 BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3714 BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3715 BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3716 BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3717 BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3718 BT_COEX_PRIO_TBL_MAX,
3721 struct iwl_bt_coex_prio_table_cmd {
3722 u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3723 } __packed;
3725 #define IWL_BT_COEX_ENV_CLOSE 0
3726 #define IWL_BT_COEX_ENV_OPEN 1
3728 * BT Protection Envelope
3729 * REPLY_BT_COEX_PROT_ENV = 0xcd
3731 struct iwl_bt_coex_prot_env_cmd {
3732 u8 action; /* 0 = closed, 1 = open */
3733 u8 type; /* 0 .. 15 */
3734 u8 reserved[2];
3735 } __packed;
3738 * REPLY_D3_CONFIG
3740 enum iwlagn_d3_wakeup_filters {
3741 IWLAGN_D3_WAKEUP_RFKILL = BIT(0),
3742 IWLAGN_D3_WAKEUP_SYSASSERT = BIT(1),
3745 struct iwlagn_d3_config_cmd {
3746 __le32 min_sleep_time;
3747 __le32 wakeup_flags;
3748 } __packed;
3751 * REPLY_WOWLAN_PATTERNS
3753 #define IWLAGN_WOWLAN_MIN_PATTERN_LEN 16
3754 #define IWLAGN_WOWLAN_MAX_PATTERN_LEN 128
3756 struct iwlagn_wowlan_pattern {
3757 u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3758 u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3759 u8 mask_size;
3760 u8 pattern_size;
3761 __le16 reserved;
3762 } __packed;
3764 #define IWLAGN_WOWLAN_MAX_PATTERNS 20
3766 struct iwlagn_wowlan_patterns_cmd {
3767 __le32 n_patterns;
3768 struct iwlagn_wowlan_pattern patterns[];
3769 } __packed;
3772 * REPLY_WOWLAN_WAKEUP_FILTER
3774 enum iwlagn_wowlan_wakeup_filters {
3775 IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET = BIT(0),
3776 IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH = BIT(1),
3777 IWLAGN_WOWLAN_WAKEUP_BEACON_MISS = BIT(2),
3778 IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE = BIT(3),
3779 IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL = BIT(4),
3780 IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ = BIT(5),
3781 IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE = BIT(6),
3782 IWLAGN_WOWLAN_WAKEUP_ALWAYS = BIT(7),
3783 IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT = BIT(8),
3786 struct iwlagn_wowlan_wakeup_filter_cmd {
3787 __le32 enabled;
3788 __le16 non_qos_seq;
3789 __le16 reserved;
3790 __le16 qos_seq[8];
3794 * REPLY_WOWLAN_TSC_RSC_PARAMS
3796 #define IWLAGN_NUM_RSC 16
3798 struct tkip_sc {
3799 __le16 iv16;
3800 __le16 pad;
3801 __le32 iv32;
3802 } __packed;
3804 struct iwlagn_tkip_rsc_tsc {
3805 struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3806 struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3807 struct tkip_sc tsc;
3808 } __packed;
3810 struct aes_sc {
3811 __le64 pn;
3812 } __packed;
3814 struct iwlagn_aes_rsc_tsc {
3815 struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3816 struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3817 struct aes_sc tsc;
3818 } __packed;
3820 union iwlagn_all_tsc_rsc {
3821 struct iwlagn_tkip_rsc_tsc tkip;
3822 struct iwlagn_aes_rsc_tsc aes;
3825 struct iwlagn_wowlan_rsc_tsc_params_cmd {
3826 union iwlagn_all_tsc_rsc all_tsc_rsc;
3827 } __packed;
3830 * REPLY_WOWLAN_TKIP_PARAMS
3832 #define IWLAGN_MIC_KEY_SIZE 8
3833 #define IWLAGN_P1K_SIZE 5
3834 struct iwlagn_mic_keys {
3835 u8 tx[IWLAGN_MIC_KEY_SIZE];
3836 u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3837 u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3838 } __packed;
3840 struct iwlagn_p1k_cache {
3841 __le16 p1k[IWLAGN_P1K_SIZE];
3842 } __packed;
3844 #define IWLAGN_NUM_RX_P1K_CACHE 2
3846 struct iwlagn_wowlan_tkip_params_cmd {
3847 struct iwlagn_mic_keys mic_keys;
3848 struct iwlagn_p1k_cache tx;
3849 struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3850 struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3851 } __packed;
3854 * REPLY_WOWLAN_KEK_KCK_MATERIAL
3857 #define IWLAGN_KCK_MAX_SIZE 32
3858 #define IWLAGN_KEK_MAX_SIZE 32
3860 struct iwlagn_wowlan_kek_kck_material_cmd {
3861 u8 kck[IWLAGN_KCK_MAX_SIZE];
3862 u8 kek[IWLAGN_KEK_MAX_SIZE];
3863 __le16 kck_len;
3864 __le16 kek_len;
3865 __le64 replay_ctr;
3866 } __packed;
3868 #define RF_KILL_INDICATOR_FOR_WOWLAN 0x87
3871 * REPLY_WOWLAN_GET_STATUS = 0xe5
3873 struct iwlagn_wowlan_status {
3874 __le64 replay_ctr;
3875 __le32 rekey_status;
3876 __le32 wakeup_reason;
3877 u8 pattern_number;
3878 u8 reserved1;
3879 __le16 qos_seq_ctr[8];
3880 __le16 non_qos_seq_ctr;
3881 __le16 reserved2;
3882 union iwlagn_all_tsc_rsc tsc_rsc;
3883 __le16 reserved3;
3884 } __packed;
3887 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3891 * Minimum slot time in TU
3893 #define IWL_MIN_SLOT_TIME 20
3896 * struct iwl_wipan_slot
3897 * @width: Time in TU
3898 * @type:
3899 * 0 - BSS
3900 * 1 - PAN
3902 struct iwl_wipan_slot {
3903 __le16 width;
3904 u8 type;
3905 u8 reserved;
3906 } __packed;
3908 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS BIT(1) /* reserved */
3909 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET BIT(2) /* reserved */
3910 #define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE BIT(3) /* reserved */
3911 #define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF BIT(4)
3912 #define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE BIT(5)
3915 * struct iwl_wipan_params_cmd
3916 * @flags:
3917 * bit0: reserved
3918 * bit1: CP leave channel with CTS
3919 * bit2: CP leave channel qith Quiet
3920 * bit3: slotted mode
3921 * 1 - work in slotted mode
3922 * 0 - work in non slotted mode
3923 * bit4: filter beacon notification
3924 * bit5: full tx slotted mode. if this flag is set,
3925 * uCode will perform leaving channel methods in context switch
3926 * also when working in same channel mode
3927 * @num_slots: 1 - 10
3929 struct iwl_wipan_params_cmd {
3930 __le16 flags;
3931 u8 reserved;
3932 u8 num_slots;
3933 struct iwl_wipan_slot slots[10];
3934 } __packed;
3937 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
3939 * TODO: Figure out what this is used for,
3940 * it can only switch between 2.4 GHz
3941 * channels!!
3944 struct iwl_wipan_p2p_channel_switch_cmd {
3945 __le16 channel;
3946 __le16 reserved;
3950 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
3952 * This is used by the device to notify us of the
3953 * NoA schedule it determined so we can forward it
3954 * to userspace for inclusion in probe responses.
3956 * In beacons, the NoA schedule is simply appended
3957 * to the frame we give the device.
3960 struct iwl_wipan_noa_descriptor {
3961 u8 count;
3962 __le32 duration;
3963 __le32 interval;
3964 __le32 starttime;
3965 } __packed;
3967 struct iwl_wipan_noa_attribute {
3968 u8 id;
3969 __le16 length;
3970 u8 index;
3971 u8 ct_window;
3972 struct iwl_wipan_noa_descriptor descr0, descr1;
3973 u8 reserved;
3974 } __packed;
3976 struct iwl_wipan_noa_notification {
3977 u32 noa_active;
3978 struct iwl_wipan_noa_attribute noa_attribute;
3979 } __packed;
3981 #endif /* __iwl_commands_h__ */