treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / wireless / intel / iwlwifi / mvm / rxmq.c
blobc15f7dbc9516b38f96032124ea6aa011ea648877
1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
6 * GPL LICENSE SUMMARY
8 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
11 * Copyright(c) 2018 - 2019 Intel Corporation
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of version 2 of the GNU General Public License as
15 * published by the Free Software Foundation.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
22 * The full GNU General Public License is included in this distribution
23 * in the file called COPYING.
25 * Contact Information:
26 * Intel Linux Wireless <linuxwifi@intel.com>
27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
29 * BSD LICENSE
31 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
34 * Copyright(c) 2018 - 2019 Intel Corporation
35 * All rights reserved.
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
41 * * Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * * Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in
45 * the documentation and/or other materials provided with the
46 * distribution.
47 * * Neither the name Intel Corporation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 *****************************************************************************/
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include "iwl-trans.h"
66 #include "mvm.h"
67 #include "fw-api.h"
69 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb)
71 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
72 u8 *data = skb->data;
74 /* Alignment concerns */
75 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4);
76 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4);
77 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4);
78 BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4);
80 if (rx_status->flag & RX_FLAG_RADIOTAP_HE)
81 data += sizeof(struct ieee80211_radiotap_he);
82 if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU)
83 data += sizeof(struct ieee80211_radiotap_he_mu);
84 if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG)
85 data += sizeof(struct ieee80211_radiotap_lsig);
86 if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
87 struct ieee80211_vendor_radiotap *radiotap = (void *)data;
89 data += sizeof(*radiotap) + radiotap->len + radiotap->pad;
92 return data;
95 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
96 int queue, struct ieee80211_sta *sta)
98 struct iwl_mvm_sta *mvmsta;
99 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
100 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
101 struct iwl_mvm_key_pn *ptk_pn;
102 int res;
103 u8 tid, keyidx;
104 u8 pn[IEEE80211_CCMP_PN_LEN];
105 u8 *extiv;
107 /* do PN checking */
109 /* multicast and non-data only arrives on default queue */
110 if (!ieee80211_is_data(hdr->frame_control) ||
111 is_multicast_ether_addr(hdr->addr1))
112 return 0;
114 /* do not check PN for open AP */
115 if (!(stats->flag & RX_FLAG_DECRYPTED))
116 return 0;
119 * avoid checking for default queue - we don't want to replicate
120 * all the logic that's necessary for checking the PN on fragmented
121 * frames, leave that to mac80211
123 if (queue == 0)
124 return 0;
126 /* if we are here - this for sure is either CCMP or GCMP */
127 if (IS_ERR_OR_NULL(sta)) {
128 IWL_ERR(mvm,
129 "expected hw-decrypted unicast frame for station\n");
130 return -1;
133 mvmsta = iwl_mvm_sta_from_mac80211(sta);
135 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
136 keyidx = extiv[3] >> 6;
138 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
139 if (!ptk_pn)
140 return -1;
142 if (ieee80211_is_data_qos(hdr->frame_control))
143 tid = ieee80211_get_tid(hdr);
144 else
145 tid = 0;
147 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
148 if (tid >= IWL_MAX_TID_COUNT)
149 return -1;
151 /* load pn */
152 pn[0] = extiv[7];
153 pn[1] = extiv[6];
154 pn[2] = extiv[5];
155 pn[3] = extiv[4];
156 pn[4] = extiv[1];
157 pn[5] = extiv[0];
159 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
160 if (res < 0)
161 return -1;
162 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
163 return -1;
165 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
166 stats->flag |= RX_FLAG_PN_VALIDATED;
168 return 0;
171 /* iwl_mvm_create_skb Adds the rxb to a new skb */
172 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
173 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
174 struct iwl_rx_cmd_buffer *rxb)
176 struct iwl_rx_packet *pkt = rxb_addr(rxb);
177 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
178 unsigned int headlen, fraglen, pad_len = 0;
179 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
181 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
182 len -= 2;
183 pad_len = 2;
186 /* If frame is small enough to fit in skb->head, pull it completely.
187 * If not, only pull ieee80211_hdr (including crypto if present, and
188 * an additional 8 bytes for SNAP/ethertype, see below) so that
189 * splice() or TCP coalesce are more efficient.
191 * Since, in addition, ieee80211_data_to_8023() always pull in at
192 * least 8 bytes (possibly more for mesh) we can do the same here
193 * to save the cost of doing it later. That still doesn't pull in
194 * the actual IP header since the typical case has a SNAP header.
195 * If the latter changes (there are efforts in the standards group
196 * to do so) we should revisit this and ieee80211_data_to_8023().
198 headlen = (len <= skb_tailroom(skb)) ? len :
199 hdrlen + crypt_len + 8;
201 /* The firmware may align the packet to DWORD.
202 * The padding is inserted after the IV.
203 * After copying the header + IV skip the padding if
204 * present before copying packet data.
206 hdrlen += crypt_len;
208 if (WARN_ONCE(headlen < hdrlen,
209 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
210 hdrlen, len, crypt_len)) {
212 * We warn and trace because we want to be able to see
213 * it in trace-cmd as well.
215 IWL_DEBUG_RX(mvm,
216 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
217 hdrlen, len, crypt_len);
218 return -EINVAL;
221 skb_put_data(skb, hdr, hdrlen);
222 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
224 fraglen = len - headlen;
226 if (fraglen) {
227 int offset = (void *)hdr + headlen + pad_len -
228 rxb_addr(rxb) + rxb_offset(rxb);
230 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
231 fraglen, rxb->truesize);
234 return 0;
237 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
238 struct sk_buff *skb)
240 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
241 struct ieee80211_vendor_radiotap *radiotap;
242 const int size = sizeof(*radiotap) + sizeof(__le16);
244 if (!mvm->cur_aid)
245 return;
247 /* ensure alignment */
248 BUILD_BUG_ON((size + 2) % 4);
250 radiotap = skb_put(skb, size + 2);
251 radiotap->align = 1;
252 /* Intel OUI */
253 radiotap->oui[0] = 0xf6;
254 radiotap->oui[1] = 0x54;
255 radiotap->oui[2] = 0x25;
256 /* radiotap sniffer config sub-namespace */
257 radiotap->subns = 1;
258 radiotap->present = 0x1;
259 radiotap->len = size - sizeof(*radiotap);
260 radiotap->pad = 2;
262 /* fill the data now */
263 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
264 /* and clear the padding */
265 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad);
267 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
270 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
271 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
272 struct napi_struct *napi,
273 struct sk_buff *skb, int queue,
274 struct ieee80211_sta *sta,
275 bool csi)
277 if (iwl_mvm_check_pn(mvm, skb, queue, sta))
278 kfree_skb(skb);
279 else
280 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
283 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
284 struct ieee80211_rx_status *rx_status,
285 u32 rate_n_flags, int energy_a,
286 int energy_b)
288 int max_energy;
289 u32 rate_flags = rate_n_flags;
291 energy_a = energy_a ? -energy_a : S8_MIN;
292 energy_b = energy_b ? -energy_b : S8_MIN;
293 max_energy = max(energy_a, energy_b);
295 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
296 energy_a, energy_b, max_energy);
298 rx_status->signal = max_energy;
299 rx_status->chains =
300 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
301 rx_status->chain_signal[0] = energy_a;
302 rx_status->chain_signal[1] = energy_b;
303 rx_status->chain_signal[2] = S8_MIN;
306 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_hdr *hdr,
307 struct ieee80211_rx_status *stats, u16 phy_info,
308 struct iwl_rx_mpdu_desc *desc,
309 u32 pkt_flags, int queue, u8 *crypt_len)
311 u16 status = le16_to_cpu(desc->status);
314 * Drop UNKNOWN frames in aggregation, unless in monitor mode
315 * (where we don't have the keys).
316 * We limit this to aggregation because in TKIP this is a valid
317 * scenario, since we may not have the (correct) TTAK (phase 1
318 * key) in the firmware.
320 if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
321 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
322 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
323 return -1;
325 if (!ieee80211_has_protected(hdr->frame_control) ||
326 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
327 IWL_RX_MPDU_STATUS_SEC_NONE)
328 return 0;
330 /* TODO: handle packets encrypted with unknown alg */
332 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
333 case IWL_RX_MPDU_STATUS_SEC_CCM:
334 case IWL_RX_MPDU_STATUS_SEC_GCM:
335 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
336 /* alg is CCM: check MIC only */
337 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
338 return -1;
340 stats->flag |= RX_FLAG_DECRYPTED;
341 if (pkt_flags & FH_RSCSR_RADA_EN)
342 stats->flag |= RX_FLAG_MIC_STRIPPED;
343 *crypt_len = IEEE80211_CCMP_HDR_LEN;
344 return 0;
345 case IWL_RX_MPDU_STATUS_SEC_TKIP:
346 /* Don't drop the frame and decrypt it in SW */
347 if (!fw_has_api(&mvm->fw->ucode_capa,
348 IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
349 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
350 return 0;
352 if (mvm->trans->trans_cfg->gen2 &&
353 !(status & RX_MPDU_RES_STATUS_MIC_OK))
354 stats->flag |= RX_FLAG_MMIC_ERROR;
356 *crypt_len = IEEE80211_TKIP_IV_LEN;
357 /* fall through */
358 case IWL_RX_MPDU_STATUS_SEC_WEP:
359 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
360 return -1;
362 stats->flag |= RX_FLAG_DECRYPTED;
363 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
364 IWL_RX_MPDU_STATUS_SEC_WEP)
365 *crypt_len = IEEE80211_WEP_IV_LEN;
367 if (pkt_flags & FH_RSCSR_RADA_EN) {
368 stats->flag |= RX_FLAG_ICV_STRIPPED;
369 if (mvm->trans->trans_cfg->gen2)
370 stats->flag |= RX_FLAG_MMIC_STRIPPED;
373 return 0;
374 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
375 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
376 return -1;
377 stats->flag |= RX_FLAG_DECRYPTED;
378 return 0;
379 default:
381 * Sometimes we can get frames that were not decrypted
382 * because the firmware didn't have the keys yet. This can
383 * happen after connection where we can get multicast frames
384 * before the GTK is installed.
385 * Silently drop those frames.
386 * Also drop un-decrypted frames in monitor mode.
388 if (!is_multicast_ether_addr(hdr->addr1) &&
389 !mvm->monitor_on && net_ratelimit())
390 IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
393 return 0;
396 static void iwl_mvm_rx_csum(struct ieee80211_sta *sta,
397 struct sk_buff *skb,
398 struct iwl_rx_mpdu_desc *desc)
400 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
401 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
402 u16 flags = le16_to_cpu(desc->l3l4_flags);
403 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
404 IWL_RX_L3_PROTO_POS);
406 if (mvmvif->features & NETIF_F_RXCSUM &&
407 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
408 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
409 l3_prot == IWL_RX_L3_TYPE_IPV6 ||
410 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
411 skb->ip_summed = CHECKSUM_UNNECESSARY;
415 * returns true if a packet is a duplicate and should be dropped.
416 * Updates AMSDU PN tracking info
418 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
419 struct ieee80211_rx_status *rx_status,
420 struct ieee80211_hdr *hdr,
421 struct iwl_rx_mpdu_desc *desc)
423 struct iwl_mvm_sta *mvm_sta;
424 struct iwl_mvm_rxq_dup_data *dup_data;
425 u8 tid, sub_frame_idx;
427 if (WARN_ON(IS_ERR_OR_NULL(sta)))
428 return false;
430 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
431 dup_data = &mvm_sta->dup_data[queue];
434 * Drop duplicate 802.11 retransmissions
435 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
437 if (ieee80211_is_ctl(hdr->frame_control) ||
438 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
439 is_multicast_ether_addr(hdr->addr1)) {
440 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
441 return false;
444 if (ieee80211_is_data_qos(hdr->frame_control))
445 /* frame has qos control */
446 tid = ieee80211_get_tid(hdr);
447 else
448 tid = IWL_MAX_TID_COUNT;
450 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
451 sub_frame_idx = desc->amsdu_info &
452 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
454 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
455 dup_data->last_seq[tid] == hdr->seq_ctrl &&
456 dup_data->last_sub_frame[tid] >= sub_frame_idx))
457 return true;
459 /* Allow same PN as the first subframe for following sub frames */
460 if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
461 sub_frame_idx > dup_data->last_sub_frame[tid] &&
462 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
463 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
465 dup_data->last_seq[tid] = hdr->seq_ctrl;
466 dup_data->last_sub_frame[tid] = sub_frame_idx;
468 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
470 return false;
473 int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask,
474 const u8 *data, u32 count, bool async)
476 u8 buf[sizeof(struct iwl_rxq_sync_cmd) +
477 sizeof(struct iwl_mvm_rss_sync_notif)];
478 struct iwl_rxq_sync_cmd *cmd = (void *)buf;
479 u32 data_size = sizeof(*cmd) + count;
480 int ret;
483 * size must be a multiple of DWORD
484 * Ensure we don't overflow buf
486 if (WARN_ON(count & 3 ||
487 count > sizeof(struct iwl_mvm_rss_sync_notif)))
488 return -EINVAL;
490 cmd->rxq_mask = cpu_to_le32(rxq_mask);
491 cmd->count = cpu_to_le32(count);
492 cmd->flags = 0;
493 memcpy(cmd->payload, data, count);
495 ret = iwl_mvm_send_cmd_pdu(mvm,
496 WIDE_ID(DATA_PATH_GROUP,
497 TRIGGER_RX_QUEUES_NOTIF_CMD),
498 async ? CMD_ASYNC : 0, data_size, cmd);
500 return ret;
504 * Returns true if sn2 - buffer_size < sn1 < sn2.
505 * To be used only in order to compare reorder buffer head with NSSN.
506 * We fully trust NSSN unless it is behind us due to reorder timeout.
507 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
509 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
511 return ieee80211_sn_less(sn1, sn2) &&
512 !ieee80211_sn_less(sn1, sn2 - buffer_size);
515 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
517 if (IWL_MVM_USE_NSSN_SYNC) {
518 struct iwl_mvm_rss_sync_notif notif = {
519 .metadata.type = IWL_MVM_RXQ_NSSN_SYNC,
520 .metadata.sync = 0,
521 .nssn_sync.baid = baid,
522 .nssn_sync.nssn = nssn,
525 iwl_mvm_sync_rx_queues_internal(mvm, (void *)&notif,
526 sizeof(notif));
530 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
532 enum iwl_mvm_release_flags {
533 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
534 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
537 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
538 struct ieee80211_sta *sta,
539 struct napi_struct *napi,
540 struct iwl_mvm_baid_data *baid_data,
541 struct iwl_mvm_reorder_buffer *reorder_buf,
542 u16 nssn, u32 flags)
544 struct iwl_mvm_reorder_buf_entry *entries =
545 &baid_data->entries[reorder_buf->queue *
546 baid_data->entries_per_queue];
547 u16 ssn = reorder_buf->head_sn;
549 lockdep_assert_held(&reorder_buf->lock);
552 * We keep the NSSN not too far behind, if we are sync'ing it and it
553 * is more than 2048 ahead of us, it must be behind us. Discard it.
554 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
555 * behind and this queue already processed packets. The next if
556 * would have caught cases where this queue would have processed less
557 * than 64 packets, but it may have processed more than 64 packets.
559 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
560 ieee80211_sn_less(nssn, ssn))
561 goto set_timer;
563 /* ignore nssn smaller than head sn - this can happen due to timeout */
564 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
565 goto set_timer;
567 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
568 int index = ssn % reorder_buf->buf_size;
569 struct sk_buff_head *skb_list = &entries[index].e.frames;
570 struct sk_buff *skb;
572 ssn = ieee80211_sn_inc(ssn);
573 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
574 (ssn == 2048 || ssn == 0))
575 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
578 * Empty the list. Will have more than one frame for A-MSDU.
579 * Empty list is valid as well since nssn indicates frames were
580 * received.
582 while ((skb = __skb_dequeue(skb_list))) {
583 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
584 reorder_buf->queue,
585 sta, false);
586 reorder_buf->num_stored--;
589 reorder_buf->head_sn = nssn;
591 set_timer:
592 if (reorder_buf->num_stored && !reorder_buf->removed) {
593 u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
595 while (skb_queue_empty(&entries[index].e.frames))
596 index = (index + 1) % reorder_buf->buf_size;
597 /* modify timer to match next frame's expiration time */
598 mod_timer(&reorder_buf->reorder_timer,
599 entries[index].e.reorder_time + 1 +
600 RX_REORDER_BUF_TIMEOUT_MQ);
601 } else {
602 del_timer(&reorder_buf->reorder_timer);
606 void iwl_mvm_reorder_timer_expired(struct timer_list *t)
608 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
609 struct iwl_mvm_baid_data *baid_data =
610 iwl_mvm_baid_data_from_reorder_buf(buf);
611 struct iwl_mvm_reorder_buf_entry *entries =
612 &baid_data->entries[buf->queue * baid_data->entries_per_queue];
613 int i;
614 u16 sn = 0, index = 0;
615 bool expired = false;
616 bool cont = false;
618 spin_lock(&buf->lock);
620 if (!buf->num_stored || buf->removed) {
621 spin_unlock(&buf->lock);
622 return;
625 for (i = 0; i < buf->buf_size ; i++) {
626 index = (buf->head_sn + i) % buf->buf_size;
628 if (skb_queue_empty(&entries[index].e.frames)) {
630 * If there is a hole and the next frame didn't expire
631 * we want to break and not advance SN
633 cont = false;
634 continue;
636 if (!cont &&
637 !time_after(jiffies, entries[index].e.reorder_time +
638 RX_REORDER_BUF_TIMEOUT_MQ))
639 break;
641 expired = true;
642 /* continue until next hole after this expired frames */
643 cont = true;
644 sn = ieee80211_sn_add(buf->head_sn, i + 1);
647 if (expired) {
648 struct ieee80211_sta *sta;
649 struct iwl_mvm_sta *mvmsta;
650 u8 sta_id = baid_data->sta_id;
652 rcu_read_lock();
653 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
654 mvmsta = iwl_mvm_sta_from_mac80211(sta);
656 /* SN is set to the last expired frame + 1 */
657 IWL_DEBUG_HT(buf->mvm,
658 "Releasing expired frames for sta %u, sn %d\n",
659 sta_id, sn);
660 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
661 sta, baid_data->tid);
662 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
663 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
664 rcu_read_unlock();
665 } else {
667 * If no frame expired and there are stored frames, index is now
668 * pointing to the first unexpired frame - modify timer
669 * accordingly to this frame.
671 mod_timer(&buf->reorder_timer,
672 entries[index].e.reorder_time +
673 1 + RX_REORDER_BUF_TIMEOUT_MQ);
675 spin_unlock(&buf->lock);
678 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
679 struct iwl_mvm_delba_data *data)
681 struct iwl_mvm_baid_data *ba_data;
682 struct ieee80211_sta *sta;
683 struct iwl_mvm_reorder_buffer *reorder_buf;
684 u8 baid = data->baid;
686 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
687 return;
689 rcu_read_lock();
691 ba_data = rcu_dereference(mvm->baid_map[baid]);
692 if (WARN_ON_ONCE(!ba_data))
693 goto out;
695 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
696 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
697 goto out;
699 reorder_buf = &ba_data->reorder_buf[queue];
701 /* release all frames that are in the reorder buffer to the stack */
702 spin_lock_bh(&reorder_buf->lock);
703 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
704 ieee80211_sn_add(reorder_buf->head_sn,
705 reorder_buf->buf_size),
707 spin_unlock_bh(&reorder_buf->lock);
708 del_timer_sync(&reorder_buf->reorder_timer);
710 out:
711 rcu_read_unlock();
714 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
715 struct napi_struct *napi,
716 u8 baid, u16 nssn, int queue,
717 u32 flags)
719 struct ieee80211_sta *sta;
720 struct iwl_mvm_reorder_buffer *reorder_buf;
721 struct iwl_mvm_baid_data *ba_data;
723 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
724 baid, nssn);
726 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
727 baid >= ARRAY_SIZE(mvm->baid_map)))
728 return;
730 rcu_read_lock();
732 ba_data = rcu_dereference(mvm->baid_map[baid]);
733 if (WARN_ON_ONCE(!ba_data))
734 goto out;
736 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
737 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
738 goto out;
740 reorder_buf = &ba_data->reorder_buf[queue];
742 spin_lock_bh(&reorder_buf->lock);
743 iwl_mvm_release_frames(mvm, sta, napi, ba_data,
744 reorder_buf, nssn, flags);
745 spin_unlock_bh(&reorder_buf->lock);
747 out:
748 rcu_read_unlock();
751 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
752 struct napi_struct *napi, int queue,
753 const struct iwl_mvm_nssn_sync_data *data)
755 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
756 data->nssn, queue,
757 IWL_MVM_RELEASE_FROM_RSS_SYNC);
760 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
761 struct iwl_rx_cmd_buffer *rxb, int queue)
763 struct iwl_rx_packet *pkt = rxb_addr(rxb);
764 struct iwl_rxq_sync_notification *notif;
765 struct iwl_mvm_internal_rxq_notif *internal_notif;
767 notif = (void *)pkt->data;
768 internal_notif = (void *)notif->payload;
770 if (internal_notif->sync &&
771 mvm->queue_sync_cookie != internal_notif->cookie) {
772 WARN_ONCE(1, "Received expired RX queue sync message\n");
773 return;
776 switch (internal_notif->type) {
777 case IWL_MVM_RXQ_EMPTY:
778 break;
779 case IWL_MVM_RXQ_NOTIF_DEL_BA:
780 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
781 break;
782 case IWL_MVM_RXQ_NSSN_SYNC:
783 iwl_mvm_nssn_sync(mvm, napi, queue,
784 (void *)internal_notif->data);
785 break;
786 default:
787 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
790 if (internal_notif->sync &&
791 !atomic_dec_return(&mvm->queue_sync_counter))
792 wake_up(&mvm->rx_sync_waitq);
795 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
796 struct ieee80211_sta *sta, int tid,
797 struct iwl_mvm_reorder_buffer *buffer,
798 u32 reorder, u32 gp2, int queue)
800 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
802 if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
803 /* we have a new (A-)MPDU ... */
806 * reset counter to 0 if we didn't have any oldsn in
807 * the last A-MPDU (as detected by GP2 being identical)
809 if (!buffer->consec_oldsn_prev_drop)
810 buffer->consec_oldsn_drops = 0;
812 /* either way, update our tracking state */
813 buffer->consec_oldsn_ampdu_gp2 = gp2;
814 } else if (buffer->consec_oldsn_prev_drop) {
816 * tracking state didn't change, and we had an old SN
817 * indication before - do nothing in this case, we
818 * already noted this one down and are waiting for the
819 * next A-MPDU (by GP2)
821 return;
824 /* return unless this MPDU has old SN */
825 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
826 return;
828 /* update state */
829 buffer->consec_oldsn_prev_drop = 1;
830 buffer->consec_oldsn_drops++;
832 /* if limit is reached, send del BA and reset state */
833 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
834 IWL_WARN(mvm,
835 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
836 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
837 sta->addr, queue, tid);
838 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
839 buffer->consec_oldsn_prev_drop = 0;
840 buffer->consec_oldsn_drops = 0;
845 * Returns true if the MPDU was buffered\dropped, false if it should be passed
846 * to upper layer.
848 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
849 struct napi_struct *napi,
850 int queue,
851 struct ieee80211_sta *sta,
852 struct sk_buff *skb,
853 struct iwl_rx_mpdu_desc *desc)
855 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
856 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
857 struct iwl_mvm_sta *mvm_sta;
858 struct iwl_mvm_baid_data *baid_data;
859 struct iwl_mvm_reorder_buffer *buffer;
860 struct sk_buff *tail;
861 u32 reorder = le32_to_cpu(desc->reorder_data);
862 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
863 bool last_subframe =
864 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
865 u8 tid = ieee80211_get_tid(hdr);
866 u8 sub_frame_idx = desc->amsdu_info &
867 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
868 struct iwl_mvm_reorder_buf_entry *entries;
869 int index;
870 u16 nssn, sn;
871 u8 baid;
873 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
874 IWL_RX_MPDU_REORDER_BAID_SHIFT;
877 * This also covers the case of receiving a Block Ack Request
878 * outside a BA session; we'll pass it to mac80211 and that
879 * then sends a delBA action frame.
880 * This also covers pure monitor mode, in which case we won't
881 * have any BA sessions.
883 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
884 return false;
886 /* no sta yet */
887 if (WARN_ONCE(IS_ERR_OR_NULL(sta),
888 "Got valid BAID without a valid station assigned\n"))
889 return false;
891 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
893 /* not a data packet or a bar */
894 if (!ieee80211_is_back_req(hdr->frame_control) &&
895 (!ieee80211_is_data_qos(hdr->frame_control) ||
896 is_multicast_ether_addr(hdr->addr1)))
897 return false;
899 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
900 return false;
902 baid_data = rcu_dereference(mvm->baid_map[baid]);
903 if (!baid_data) {
904 IWL_DEBUG_RX(mvm,
905 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
906 baid, reorder);
907 return false;
910 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
911 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
912 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id,
913 tid))
914 return false;
916 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
917 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
918 IWL_RX_MPDU_REORDER_SN_SHIFT;
920 buffer = &baid_data->reorder_buf[queue];
921 entries = &baid_data->entries[queue * baid_data->entries_per_queue];
923 spin_lock_bh(&buffer->lock);
925 if (!buffer->valid) {
926 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
927 spin_unlock_bh(&buffer->lock);
928 return false;
930 buffer->valid = true;
933 if (ieee80211_is_back_req(hdr->frame_control)) {
934 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
935 buffer, nssn, 0);
936 goto drop;
940 * If there was a significant jump in the nssn - adjust.
941 * If the SN is smaller than the NSSN it might need to first go into
942 * the reorder buffer, in which case we just release up to it and the
943 * rest of the function will take care of storing it and releasing up to
944 * the nssn.
945 * This should not happen. This queue has been lagging and it should
946 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
947 * and update the other queues.
949 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
950 buffer->buf_size) ||
951 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
952 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
954 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
955 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
958 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
959 rx_status->device_timestamp, queue);
961 /* drop any oudated packets */
962 if (ieee80211_sn_less(sn, buffer->head_sn))
963 goto drop;
965 /* release immediately if allowed by nssn and no stored frames */
966 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
967 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
968 buffer->buf_size) &&
969 (!amsdu || last_subframe)) {
971 * If we crossed the 2048 or 0 SN, notify all the
972 * queues. This is done in order to avoid having a
973 * head_sn that lags behind for too long. When that
974 * happens, we can get to a situation where the head_sn
975 * is within the interval [nssn - buf_size : nssn]
976 * which will make us think that the nssn is a packet
977 * that we already freed because of the reordering
978 * buffer and we will ignore it. So maintain the
979 * head_sn somewhat updated across all the queues:
980 * when it crosses 0 and 2048.
982 if (sn == 2048 || sn == 0)
983 iwl_mvm_sync_nssn(mvm, baid, sn);
984 buffer->head_sn = nssn;
986 /* No need to update AMSDU last SN - we are moving the head */
987 spin_unlock_bh(&buffer->lock);
988 return false;
992 * release immediately if there are no stored frames, and the sn is
993 * equal to the head.
994 * This can happen due to reorder timer, where NSSN is behind head_sn.
995 * When we released everything, and we got the next frame in the
996 * sequence, according to the NSSN we can't release immediately,
997 * while technically there is no hole and we can move forward.
999 if (!buffer->num_stored && sn == buffer->head_sn) {
1000 if (!amsdu || last_subframe) {
1001 if (sn == 2048 || sn == 0)
1002 iwl_mvm_sync_nssn(mvm, baid, sn);
1003 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1005 /* No need to update AMSDU last SN - we are moving the head */
1006 spin_unlock_bh(&buffer->lock);
1007 return false;
1010 index = sn % buffer->buf_size;
1013 * Check if we already stored this frame
1014 * As AMSDU is either received or not as whole, logic is simple:
1015 * If we have frames in that position in the buffer and the last frame
1016 * originated from AMSDU had a different SN then it is a retransmission.
1017 * If it is the same SN then if the subframe index is incrementing it
1018 * is the same AMSDU - otherwise it is a retransmission.
1020 tail = skb_peek_tail(&entries[index].e.frames);
1021 if (tail && !amsdu)
1022 goto drop;
1023 else if (tail && (sn != buffer->last_amsdu ||
1024 buffer->last_sub_index >= sub_frame_idx))
1025 goto drop;
1027 /* put in reorder buffer */
1028 __skb_queue_tail(&entries[index].e.frames, skb);
1029 buffer->num_stored++;
1030 entries[index].e.reorder_time = jiffies;
1032 if (amsdu) {
1033 buffer->last_amsdu = sn;
1034 buffer->last_sub_index = sub_frame_idx;
1038 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1039 * The reason is that NSSN advances on the first sub-frame, and may
1040 * cause the reorder buffer to advance before all the sub-frames arrive.
1041 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1042 * SN 1. NSSN for first sub frame will be 3 with the result of driver
1043 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1044 * already ahead and it will be dropped.
1045 * If the last sub-frame is not on this queue - we will get frame
1046 * release notification with up to date NSSN.
1048 if (!amsdu || last_subframe)
1049 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1050 buffer, nssn,
1051 IWL_MVM_RELEASE_SEND_RSS_SYNC);
1053 spin_unlock_bh(&buffer->lock);
1054 return true;
1056 drop:
1057 kfree_skb(skb);
1058 spin_unlock_bh(&buffer->lock);
1059 return true;
1062 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1063 u32 reorder_data, u8 baid)
1065 unsigned long now = jiffies;
1066 unsigned long timeout;
1067 struct iwl_mvm_baid_data *data;
1069 rcu_read_lock();
1071 data = rcu_dereference(mvm->baid_map[baid]);
1072 if (!data) {
1073 IWL_DEBUG_RX(mvm,
1074 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1075 baid, reorder_data);
1076 goto out;
1079 if (!data->timeout)
1080 goto out;
1082 timeout = data->timeout;
1084 * Do not update last rx all the time to avoid cache bouncing
1085 * between the rx queues.
1086 * Update it every timeout. Worst case is the session will
1087 * expire after ~ 2 * timeout, which doesn't matter that much.
1089 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1090 /* Update is atomic */
1091 data->last_rx = now;
1093 out:
1094 rcu_read_unlock();
1097 static void iwl_mvm_flip_address(u8 *addr)
1099 int i;
1100 u8 mac_addr[ETH_ALEN];
1102 for (i = 0; i < ETH_ALEN; i++)
1103 mac_addr[i] = addr[ETH_ALEN - i - 1];
1104 ether_addr_copy(addr, mac_addr);
1107 struct iwl_mvm_rx_phy_data {
1108 enum iwl_rx_phy_info_type info_type;
1109 __le32 d0, d1, d2, d3;
1110 __le16 d4;
1113 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1114 struct iwl_mvm_rx_phy_data *phy_data,
1115 u32 rate_n_flags,
1116 struct ieee80211_radiotap_he_mu *he_mu)
1118 u32 phy_data2 = le32_to_cpu(phy_data->d2);
1119 u32 phy_data3 = le32_to_cpu(phy_data->d3);
1120 u16 phy_data4 = le16_to_cpu(phy_data->d4);
1122 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1123 he_mu->flags1 |=
1124 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1125 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1127 he_mu->flags1 |=
1128 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1129 phy_data4),
1130 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1132 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1133 phy_data2);
1134 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1135 phy_data3);
1136 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1137 phy_data2);
1138 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1139 phy_data3);
1142 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1143 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
1144 he_mu->flags1 |=
1145 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1146 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1148 he_mu->flags2 |=
1149 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1150 phy_data4),
1151 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1153 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1154 phy_data2);
1155 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1156 phy_data3);
1157 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1158 phy_data2);
1159 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1160 phy_data3);
1164 static void
1165 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1166 u32 rate_n_flags,
1167 struct ieee80211_radiotap_he *he,
1168 struct ieee80211_radiotap_he_mu *he_mu,
1169 struct ieee80211_rx_status *rx_status)
1172 * Unfortunately, we have to leave the mac80211 data
1173 * incorrect for the case that we receive an HE-MU
1174 * transmission and *don't* have the HE phy data (due
1175 * to the bits being used for TSF). This shouldn't
1176 * happen though as management frames where we need
1177 * the TSF/timers are not be transmitted in HE-MU.
1179 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1180 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1181 u8 offs = 0;
1183 rx_status->bw = RATE_INFO_BW_HE_RU;
1185 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1187 switch (ru) {
1188 case 0 ... 36:
1189 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1190 offs = ru;
1191 break;
1192 case 37 ... 52:
1193 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1194 offs = ru - 37;
1195 break;
1196 case 53 ... 60:
1197 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1198 offs = ru - 53;
1199 break;
1200 case 61 ... 64:
1201 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1202 offs = ru - 61;
1203 break;
1204 case 65 ... 66:
1205 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1206 offs = ru - 65;
1207 break;
1208 case 67:
1209 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1210 break;
1211 case 68:
1212 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1213 break;
1215 he->data2 |= le16_encode_bits(offs,
1216 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1217 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1218 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1219 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1220 he->data2 |=
1221 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1223 #define CHECK_BW(bw) \
1224 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1225 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1226 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1227 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1228 CHECK_BW(20);
1229 CHECK_BW(40);
1230 CHECK_BW(80);
1231 CHECK_BW(160);
1233 if (he_mu)
1234 he_mu->flags2 |=
1235 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1236 rate_n_flags),
1237 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1238 else if (he_type == RATE_MCS_HE_TYPE_TRIG)
1239 he->data6 |=
1240 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1241 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1242 rate_n_flags),
1243 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1246 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1247 struct iwl_mvm_rx_phy_data *phy_data,
1248 struct ieee80211_radiotap_he *he,
1249 struct ieee80211_radiotap_he_mu *he_mu,
1250 struct ieee80211_rx_status *rx_status,
1251 u32 rate_n_flags, int queue)
1253 switch (phy_data->info_type) {
1254 case IWL_RX_PHY_INFO_TYPE_NONE:
1255 case IWL_RX_PHY_INFO_TYPE_CCK:
1256 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1257 case IWL_RX_PHY_INFO_TYPE_HT:
1258 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1259 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1260 return;
1261 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1262 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1263 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1264 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1265 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1266 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1267 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1268 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1269 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1270 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1271 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1272 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1273 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1274 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1275 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1276 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1277 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1278 /* fall through */
1279 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1280 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1281 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1282 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1283 /* HE common */
1284 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1285 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1286 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1287 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1288 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1289 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1290 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1291 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1292 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1293 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1294 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1295 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1296 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1297 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1298 IWL_RX_PHY_DATA0_HE_UPLINK),
1299 IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1301 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1302 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1303 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1304 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1305 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1306 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1307 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1308 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1309 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1310 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1311 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1312 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1313 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1314 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1315 IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1316 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1317 IWL_RX_PHY_DATA0_HE_DOPPLER),
1318 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1319 break;
1322 switch (phy_data->info_type) {
1323 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1324 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1325 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1326 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1327 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1328 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1329 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1330 break;
1331 default:
1332 /* nothing here */
1333 break;
1336 switch (phy_data->info_type) {
1337 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1338 he_mu->flags1 |=
1339 le16_encode_bits(le16_get_bits(phy_data->d4,
1340 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1341 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1342 he_mu->flags1 |=
1343 le16_encode_bits(le16_get_bits(phy_data->d4,
1344 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1345 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1346 he_mu->flags2 |=
1347 le16_encode_bits(le16_get_bits(phy_data->d4,
1348 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1349 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1350 iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu);
1351 /* fall through */
1352 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1353 he_mu->flags2 |=
1354 le16_encode_bits(le32_get_bits(phy_data->d1,
1355 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1356 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1357 he_mu->flags2 |=
1358 le16_encode_bits(le32_get_bits(phy_data->d1,
1359 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1360 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1361 /* fall through */
1362 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1363 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1364 iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags,
1365 he, he_mu, rx_status);
1366 break;
1367 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1368 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1369 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1370 IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1371 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1372 break;
1373 default:
1374 /* nothing */
1375 break;
1379 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1380 struct iwl_mvm_rx_phy_data *phy_data,
1381 u32 rate_n_flags, u16 phy_info, int queue)
1383 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1384 struct ieee80211_radiotap_he *he = NULL;
1385 struct ieee80211_radiotap_he_mu *he_mu = NULL;
1386 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1387 u8 stbc, ltf;
1388 static const struct ieee80211_radiotap_he known = {
1389 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1390 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1391 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1392 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1393 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1394 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1396 static const struct ieee80211_radiotap_he_mu mu_known = {
1397 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1398 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1399 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1400 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1401 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1402 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1405 he = skb_put_data(skb, &known, sizeof(known));
1406 rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1408 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1409 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1410 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1411 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1414 /* report the AMPDU-EOF bit on single frames */
1415 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1416 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1417 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1418 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1419 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1422 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1423 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1424 rate_n_flags, queue);
1426 /* update aggregation data for monitor sake on default queue */
1427 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1428 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1429 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1431 /* toggle is switched whenever new aggregation starts */
1432 if (toggle_bit != mvm->ampdu_toggle) {
1433 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1434 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1435 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1439 if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1440 rate_n_flags & RATE_MCS_HE_106T_MSK) {
1441 rx_status->bw = RATE_INFO_BW_HE_RU;
1442 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1445 /* actually data is filled in mac80211 */
1446 if (he_type == RATE_MCS_HE_TYPE_SU ||
1447 he_type == RATE_MCS_HE_TYPE_EXT_SU)
1448 he->data1 |=
1449 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1451 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
1452 rx_status->nss =
1453 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1454 RATE_VHT_MCS_NSS_POS) + 1;
1455 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1456 rx_status->encoding = RX_ENC_HE;
1457 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1458 if (rate_n_flags & RATE_MCS_BF_MSK)
1459 rx_status->enc_flags |= RX_ENC_FLAG_BF;
1461 rx_status->he_dcm =
1462 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1464 #define CHECK_TYPE(F) \
1465 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
1466 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1468 CHECK_TYPE(SU);
1469 CHECK_TYPE(EXT_SU);
1470 CHECK_TYPE(MU);
1471 CHECK_TYPE(TRIG);
1473 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1475 if (rate_n_flags & RATE_MCS_BF_MSK)
1476 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1478 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1479 RATE_MCS_HE_GI_LTF_POS) {
1480 case 0:
1481 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1482 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1483 else
1484 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1485 if (he_type == RATE_MCS_HE_TYPE_MU)
1486 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1487 else
1488 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1489 break;
1490 case 1:
1491 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1492 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1493 else
1494 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1495 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1496 break;
1497 case 2:
1498 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1499 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1500 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1501 } else {
1502 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1503 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1505 break;
1506 case 3:
1507 if ((he_type == RATE_MCS_HE_TYPE_SU ||
1508 he_type == RATE_MCS_HE_TYPE_EXT_SU) &&
1509 rate_n_flags & RATE_MCS_SGI_MSK)
1510 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1511 else
1512 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1513 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1514 break;
1517 he->data5 |= le16_encode_bits(ltf,
1518 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1521 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1522 struct iwl_mvm_rx_phy_data *phy_data)
1524 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1525 struct ieee80211_radiotap_lsig *lsig;
1527 switch (phy_data->info_type) {
1528 case IWL_RX_PHY_INFO_TYPE_HT:
1529 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1530 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1531 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1532 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1533 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1534 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1535 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1536 lsig = skb_put(skb, sizeof(*lsig));
1537 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1538 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1539 IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1540 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1541 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1542 break;
1543 default:
1544 break;
1548 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
1550 switch (phy_band) {
1551 case PHY_BAND_24:
1552 return NL80211_BAND_2GHZ;
1553 case PHY_BAND_5:
1554 return NL80211_BAND_5GHZ;
1555 default:
1556 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
1557 return NL80211_BAND_5GHZ;
1561 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
1562 struct iwl_rx_cmd_buffer *rxb, int queue)
1564 struct ieee80211_rx_status *rx_status;
1565 struct iwl_rx_packet *pkt = rxb_addr(rxb);
1566 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1567 struct ieee80211_hdr *hdr;
1568 u32 len = le16_to_cpu(desc->mpdu_len);
1569 u32 rate_n_flags, gp2_on_air_rise;
1570 u16 phy_info = le16_to_cpu(desc->phy_info);
1571 struct ieee80211_sta *sta = NULL;
1572 struct sk_buff *skb;
1573 u8 crypt_len = 0, channel, energy_a, energy_b;
1574 size_t desc_size;
1575 struct iwl_mvm_rx_phy_data phy_data = {
1576 .d4 = desc->phy_data4,
1577 .info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1579 bool csi = false;
1581 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1582 return;
1584 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1585 rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
1586 channel = desc->v3.channel;
1587 gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
1588 energy_a = desc->v3.energy_a;
1589 energy_b = desc->v3.energy_b;
1590 desc_size = sizeof(*desc);
1592 phy_data.d0 = desc->v3.phy_data0;
1593 phy_data.d1 = desc->v3.phy_data1;
1594 phy_data.d2 = desc->v3.phy_data2;
1595 phy_data.d3 = desc->v3.phy_data3;
1596 } else {
1597 rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
1598 channel = desc->v1.channel;
1599 gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
1600 energy_a = desc->v1.energy_a;
1601 energy_b = desc->v1.energy_b;
1602 desc_size = IWL_RX_DESC_SIZE_V1;
1604 phy_data.d0 = desc->v1.phy_data0;
1605 phy_data.d1 = desc->v1.phy_data1;
1606 phy_data.d2 = desc->v1.phy_data2;
1607 phy_data.d3 = desc->v1.phy_data3;
1610 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1611 phy_data.info_type =
1612 le32_get_bits(phy_data.d1,
1613 IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1615 hdr = (void *)(pkt->data + desc_size);
1616 /* Dont use dev_alloc_skb(), we'll have enough headroom once
1617 * ieee80211_hdr pulled.
1619 skb = alloc_skb(128, GFP_ATOMIC);
1620 if (!skb) {
1621 IWL_ERR(mvm, "alloc_skb failed\n");
1622 return;
1625 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1627 * If the device inserted padding it means that (it thought)
1628 * the 802.11 header wasn't a multiple of 4 bytes long. In
1629 * this case, reserve two bytes at the start of the SKB to
1630 * align the payload properly in case we end up copying it.
1632 skb_reserve(skb, 2);
1635 rx_status = IEEE80211_SKB_RXCB(skb);
1637 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1638 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1639 case RATE_MCS_CHAN_WIDTH_20:
1640 break;
1641 case RATE_MCS_CHAN_WIDTH_40:
1642 rx_status->bw = RATE_INFO_BW_40;
1643 break;
1644 case RATE_MCS_CHAN_WIDTH_80:
1645 rx_status->bw = RATE_INFO_BW_80;
1646 break;
1647 case RATE_MCS_CHAN_WIDTH_160:
1648 rx_status->bw = RATE_INFO_BW_160;
1649 break;
1652 if (rate_n_flags & RATE_MCS_HE_MSK)
1653 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1654 phy_info, queue);
1656 iwl_mvm_decode_lsig(skb, &phy_data);
1658 rx_status = IEEE80211_SKB_RXCB(skb);
1660 if (iwl_mvm_rx_crypto(mvm, hdr, rx_status, phy_info, desc,
1661 le32_to_cpu(pkt->len_n_flags), queue,
1662 &crypt_len)) {
1663 kfree_skb(skb);
1664 return;
1668 * Keep packets with CRC errors (and with overrun) for monitor mode
1669 * (otherwise the firmware discards them) but mark them as bad.
1671 if (!(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1672 !(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
1673 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
1674 le16_to_cpu(desc->status));
1675 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1677 /* set the preamble flag if appropriate */
1678 if (rate_n_flags & RATE_MCS_CCK_MSK &&
1679 phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1680 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1682 if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1683 u64 tsf_on_air_rise;
1685 if (mvm->trans->trans_cfg->device_family >=
1686 IWL_DEVICE_FAMILY_AX210)
1687 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
1688 else
1689 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
1691 rx_status->mactime = tsf_on_air_rise;
1692 /* TSF as indicated by the firmware is at INA time */
1693 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1696 rx_status->device_timestamp = gp2_on_air_rise;
1697 if (iwl_mvm_is_band_in_rx_supported(mvm)) {
1698 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
1700 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
1701 } else {
1702 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1703 NL80211_BAND_2GHZ;
1705 rx_status->freq = ieee80211_channel_to_frequency(channel,
1706 rx_status->band);
1707 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1708 energy_b);
1710 /* update aggregation data for monitor sake on default queue */
1711 if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1712 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1714 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1716 * Toggle is switched whenever new aggregation starts. Make
1717 * sure ampdu_reference is never 0 so we can later use it to
1718 * see if the frame was really part of an A-MPDU or not.
1720 if (toggle_bit != mvm->ampdu_toggle) {
1721 mvm->ampdu_ref++;
1722 if (mvm->ampdu_ref == 0)
1723 mvm->ampdu_ref++;
1724 mvm->ampdu_toggle = toggle_bit;
1726 rx_status->ampdu_reference = mvm->ampdu_ref;
1729 if (unlikely(mvm->monitor_on))
1730 iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1732 rcu_read_lock();
1734 if (desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1735 u8 id = desc->sta_id_flags & IWL_RX_MPDU_SIF_STA_ID_MASK;
1737 if (!WARN_ON_ONCE(id >= ARRAY_SIZE(mvm->fw_id_to_mac_id))) {
1738 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
1739 if (IS_ERR(sta))
1740 sta = NULL;
1742 } else if (!is_multicast_ether_addr(hdr->addr2)) {
1744 * This is fine since we prevent two stations with the same
1745 * address from being added.
1747 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
1750 if (sta) {
1751 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1752 struct ieee80211_vif *tx_blocked_vif =
1753 rcu_dereference(mvm->csa_tx_blocked_vif);
1754 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
1755 IWL_RX_MPDU_REORDER_BAID_MASK) >>
1756 IWL_RX_MPDU_REORDER_BAID_SHIFT);
1757 struct iwl_fw_dbg_trigger_tlv *trig;
1758 struct ieee80211_vif *vif = mvmsta->vif;
1760 if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
1761 !is_multicast_ether_addr(hdr->addr1) &&
1762 ieee80211_is_data(hdr->frame_control) &&
1763 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
1764 schedule_delayed_work(&mvm->tcm.work, 0);
1767 * We have tx blocked stations (with CS bit). If we heard
1768 * frames from a blocked station on a new channel we can
1769 * TX to it again.
1771 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
1772 struct iwl_mvm_vif *mvmvif =
1773 iwl_mvm_vif_from_mac80211(tx_blocked_vif);
1775 if (mvmvif->csa_target_freq == rx_status->freq)
1776 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
1777 false);
1780 rs_update_last_rssi(mvm, mvmsta, rx_status);
1782 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
1783 ieee80211_vif_to_wdev(vif),
1784 FW_DBG_TRIGGER_RSSI);
1786 if (trig && ieee80211_is_beacon(hdr->frame_control)) {
1787 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
1788 s32 rssi;
1790 rssi_trig = (void *)trig->data;
1791 rssi = le32_to_cpu(rssi_trig->rssi);
1793 if (rx_status->signal < rssi)
1794 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
1795 NULL);
1798 if (ieee80211_is_data(hdr->frame_control))
1799 iwl_mvm_rx_csum(sta, skb, desc);
1801 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
1802 kfree_skb(skb);
1803 goto out;
1807 * Our hardware de-aggregates AMSDUs but copies the mac header
1808 * as it to the de-aggregated MPDUs. We need to turn off the
1809 * AMSDU bit in the QoS control ourselves.
1810 * In addition, HW reverses addr3 and addr4 - reverse it back.
1812 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
1813 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
1814 u8 *qc = ieee80211_get_qos_ctl(hdr);
1816 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1818 if (mvm->trans->trans_cfg->device_family ==
1819 IWL_DEVICE_FAMILY_9000) {
1820 iwl_mvm_flip_address(hdr->addr3);
1822 if (ieee80211_has_a4(hdr->frame_control))
1823 iwl_mvm_flip_address(hdr->addr4);
1826 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
1827 u32 reorder_data = le32_to_cpu(desc->reorder_data);
1829 iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
1833 if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1834 rate_n_flags & RATE_MCS_SGI_MSK)
1835 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1836 if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1837 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1838 if (rate_n_flags & RATE_MCS_LDPC_MSK)
1839 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1840 if (rate_n_flags & RATE_MCS_HT_MSK) {
1841 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1842 RATE_MCS_STBC_POS;
1843 rx_status->encoding = RX_ENC_HT;
1844 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1845 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1846 } else if (rate_n_flags & RATE_MCS_VHT_MSK) {
1847 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1848 RATE_MCS_STBC_POS;
1849 rx_status->nss =
1850 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1851 RATE_VHT_MCS_NSS_POS) + 1;
1852 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1853 rx_status->encoding = RX_ENC_VHT;
1854 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1855 if (rate_n_flags & RATE_MCS_BF_MSK)
1856 rx_status->enc_flags |= RX_ENC_FLAG_BF;
1857 } else if (!(rate_n_flags & RATE_MCS_HE_MSK)) {
1858 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
1859 rx_status->band);
1861 if (WARN(rate < 0 || rate > 0xFF,
1862 "Invalid rate flags 0x%x, band %d,\n",
1863 rate_n_flags, rx_status->band)) {
1864 kfree_skb(skb);
1865 goto out;
1867 rx_status->rate_idx = rate;
1870 /* management stuff on default queue */
1871 if (!queue) {
1872 if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
1873 ieee80211_is_probe_resp(hdr->frame_control)) &&
1874 mvm->sched_scan_pass_all ==
1875 SCHED_SCAN_PASS_ALL_ENABLED))
1876 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
1878 if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
1879 ieee80211_is_probe_resp(hdr->frame_control)))
1880 rx_status->boottime_ns = ktime_get_boottime_ns();
1883 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
1884 kfree_skb(skb);
1885 goto out;
1888 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc))
1889 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue,
1890 sta, csi);
1891 out:
1892 rcu_read_unlock();
1895 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
1896 struct iwl_rx_cmd_buffer *rxb, int queue)
1898 struct ieee80211_rx_status *rx_status;
1899 struct iwl_rx_packet *pkt = rxb_addr(rxb);
1900 struct iwl_rx_no_data *desc = (void *)pkt->data;
1901 u32 rate_n_flags = le32_to_cpu(desc->rate);
1902 u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
1903 u32 rssi = le32_to_cpu(desc->rssi);
1904 u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
1905 u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
1906 struct ieee80211_sta *sta = NULL;
1907 struct sk_buff *skb;
1908 u8 channel, energy_a, energy_b;
1909 struct iwl_mvm_rx_phy_data phy_data = {
1910 .d0 = desc->phy_info[0],
1911 .info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1914 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1915 return;
1917 energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS;
1918 energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS;
1919 channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS;
1921 phy_data.info_type =
1922 le32_get_bits(desc->phy_info[1],
1923 IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1925 /* Dont use dev_alloc_skb(), we'll have enough headroom once
1926 * ieee80211_hdr pulled.
1928 skb = alloc_skb(128, GFP_ATOMIC);
1929 if (!skb) {
1930 IWL_ERR(mvm, "alloc_skb failed\n");
1931 return;
1934 rx_status = IEEE80211_SKB_RXCB(skb);
1936 /* 0-length PSDU */
1937 rx_status->flag |= RX_FLAG_NO_PSDU;
1939 switch (info_type) {
1940 case RX_NO_DATA_INFO_TYPE_NDP:
1941 rx_status->zero_length_psdu_type =
1942 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
1943 break;
1944 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
1945 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED:
1946 rx_status->zero_length_psdu_type =
1947 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
1948 break;
1949 default:
1950 rx_status->zero_length_psdu_type =
1951 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
1952 break;
1955 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1956 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1957 case RATE_MCS_CHAN_WIDTH_20:
1958 break;
1959 case RATE_MCS_CHAN_WIDTH_40:
1960 rx_status->bw = RATE_INFO_BW_40;
1961 break;
1962 case RATE_MCS_CHAN_WIDTH_80:
1963 rx_status->bw = RATE_INFO_BW_80;
1964 break;
1965 case RATE_MCS_CHAN_WIDTH_160:
1966 rx_status->bw = RATE_INFO_BW_160;
1967 break;
1970 if (rate_n_flags & RATE_MCS_HE_MSK)
1971 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1972 phy_info, queue);
1974 iwl_mvm_decode_lsig(skb, &phy_data);
1976 rx_status->device_timestamp = gp2_on_air_rise;
1977 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1978 NL80211_BAND_2GHZ;
1979 rx_status->freq = ieee80211_channel_to_frequency(channel,
1980 rx_status->band);
1981 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1982 energy_b);
1984 rcu_read_lock();
1986 if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1987 rate_n_flags & RATE_MCS_SGI_MSK)
1988 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1989 if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1990 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1991 if (rate_n_flags & RATE_MCS_LDPC_MSK)
1992 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1993 if (rate_n_flags & RATE_MCS_HT_MSK) {
1994 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1995 RATE_MCS_STBC_POS;
1996 rx_status->encoding = RX_ENC_HT;
1997 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1998 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1999 } else if (rate_n_flags & RATE_MCS_VHT_MSK) {
2000 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
2001 RATE_MCS_STBC_POS;
2002 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
2003 rx_status->encoding = RX_ENC_VHT;
2004 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2005 if (rate_n_flags & RATE_MCS_BF_MSK)
2006 rx_status->enc_flags |= RX_ENC_FLAG_BF;
2008 * take the nss from the rx_vec since the rate_n_flags has
2009 * only 2 bits for the nss which gives a max of 4 ss but
2010 * there may be up to 8 spatial streams
2012 rx_status->nss =
2013 le32_get_bits(desc->rx_vec[0],
2014 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2015 } else if (rate_n_flags & RATE_MCS_HE_MSK) {
2016 rx_status->nss =
2017 le32_get_bits(desc->rx_vec[0],
2018 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2019 } else {
2020 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
2021 rx_status->band);
2023 if (WARN(rate < 0 || rate > 0xFF,
2024 "Invalid rate flags 0x%x, band %d,\n",
2025 rate_n_flags, rx_status->band)) {
2026 kfree_skb(skb);
2027 goto out;
2029 rx_status->rate_idx = rate;
2032 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2033 out:
2034 rcu_read_unlock();
2037 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2038 struct iwl_rx_cmd_buffer *rxb, int queue)
2040 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2041 struct iwl_frame_release *release = (void *)pkt->data;
2043 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2044 le16_to_cpu(release->nssn),
2045 queue, 0);
2048 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2049 struct iwl_rx_cmd_buffer *rxb, int queue)
2051 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2052 struct iwl_bar_frame_release *release = (void *)pkt->data;
2053 unsigned int baid = le32_get_bits(release->ba_info,
2054 IWL_BAR_FRAME_RELEASE_BAID_MASK);
2055 unsigned int nssn = le32_get_bits(release->ba_info,
2056 IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2057 unsigned int sta_id = le32_get_bits(release->sta_tid,
2058 IWL_BAR_FRAME_RELEASE_STA_MASK);
2059 unsigned int tid = le32_get_bits(release->sta_tid,
2060 IWL_BAR_FRAME_RELEASE_TID_MASK);
2061 struct iwl_mvm_baid_data *baid_data;
2063 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2064 baid >= ARRAY_SIZE(mvm->baid_map)))
2065 return;
2067 rcu_read_lock();
2068 baid_data = rcu_dereference(mvm->baid_map[baid]);
2069 if (!baid_data) {
2070 IWL_DEBUG_RX(mvm,
2071 "Got valid BAID %d but not allocated, invalid BAR release!\n",
2072 baid);
2073 goto out;
2076 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id,
2077 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n",
2078 baid, baid_data->sta_id, baid_data->tid, sta_id,
2079 tid))
2080 goto out;
2082 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2083 out:
2084 rcu_read_unlock();