treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / wireless / intel / iwlwifi / pcie / rx.c
blob427fcea5cb2d06f7d668a5ab93382fd0e3a64bbf
1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
6 * GPL LICENSE SUMMARY
8 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11 * Copyright(c) 2018 - 2019 Intel Corporation
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of version 2 of the GNU General Public License as
15 * published by the Free Software Foundation.
17 * This program is distributed in the hope that it will be useful, but WITHOUT
18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 * more details.
22 * The full GNU General Public License is included in this distribution in the
23 * file called COPYING.
25 * Contact Information:
26 * Intel Linux Wireless <linuxwifi@intel.com>
27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
29 * BSD LICENSE
31 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34 * Copyright(c) 2018 - 2019 Intel Corporation
35 * All rights reserved.
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
41 * * Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * * Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in
45 * the documentation and/or other materials provided with the
46 * distribution.
47 * * Neither the name Intel Corporation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 *****************************************************************************/
64 #include <linux/sched.h>
65 #include <linux/wait.h>
66 #include <linux/gfp.h>
68 #include "iwl-prph.h"
69 #include "iwl-io.h"
70 #include "internal.h"
71 #include "iwl-op-mode.h"
72 #include "iwl-context-info-gen3.h"
74 /******************************************************************************
76 * RX path functions
78 ******************************************************************************/
81 * Rx theory of operation
83 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
84 * each of which point to Receive Buffers to be filled by the NIC. These get
85 * used not only for Rx frames, but for any command response or notification
86 * from the NIC. The driver and NIC manage the Rx buffers by means
87 * of indexes into the circular buffer.
89 * Rx Queue Indexes
90 * The host/firmware share two index registers for managing the Rx buffers.
92 * The READ index maps to the first position that the firmware may be writing
93 * to -- the driver can read up to (but not including) this position and get
94 * good data.
95 * The READ index is managed by the firmware once the card is enabled.
97 * The WRITE index maps to the last position the driver has read from -- the
98 * position preceding WRITE is the last slot the firmware can place a packet.
100 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
101 * WRITE = READ.
103 * During initialization, the host sets up the READ queue position to the first
104 * INDEX position, and WRITE to the last (READ - 1 wrapped)
106 * When the firmware places a packet in a buffer, it will advance the READ index
107 * and fire the RX interrupt. The driver can then query the READ index and
108 * process as many packets as possible, moving the WRITE index forward as it
109 * resets the Rx queue buffers with new memory.
111 * The management in the driver is as follows:
112 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
113 * When the interrupt handler is called, the request is processed.
114 * The page is either stolen - transferred to the upper layer
115 * or reused - added immediately to the iwl->rxq->rx_free list.
116 * + When the page is stolen - the driver updates the matching queue's used
117 * count, detaches the RBD and transfers it to the queue used list.
118 * When there are two used RBDs - they are transferred to the allocator empty
119 * list. Work is then scheduled for the allocator to start allocating
120 * eight buffers.
121 * When there are another 6 used RBDs - they are transferred to the allocator
122 * empty list and the driver tries to claim the pre-allocated buffers and
123 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them
124 * until ready.
125 * When there are 8+ buffers in the free list - either from allocation or from
126 * 8 reused unstolen pages - restock is called to update the FW and indexes.
127 * + In order to make sure the allocator always has RBDs to use for allocation
128 * the allocator has initial pool in the size of num_queues*(8-2) - the
129 * maximum missing RBDs per allocation request (request posted with 2
130 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
131 * The queues supplies the recycle of the rest of the RBDs.
132 * + A received packet is processed and handed to the kernel network stack,
133 * detached from the iwl->rxq. The driver 'processed' index is updated.
134 * + If there are no allocated buffers in iwl->rxq->rx_free,
135 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
136 * If there were enough free buffers and RX_STALLED is set it is cleared.
139 * Driver sequence:
141 * iwl_rxq_alloc() Allocates rx_free
142 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
143 * iwl_pcie_rxq_restock.
144 * Used only during initialization.
145 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
146 * queue, updates firmware pointers, and updates
147 * the WRITE index.
148 * iwl_pcie_rx_allocator() Background work for allocating pages.
150 * -- enable interrupts --
151 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
152 * READ INDEX, detaching the SKB from the pool.
153 * Moves the packet buffer from queue to rx_used.
154 * Posts and claims requests to the allocator.
155 * Calls iwl_pcie_rxq_restock to refill any empty
156 * slots.
158 * RBD life-cycle:
160 * Init:
161 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
163 * Regular Receive interrupt:
164 * Page Stolen:
165 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
166 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
167 * Page not Stolen:
168 * rxq.queue -> rxq.rx_free -> rxq.queue
169 * ...
174 * iwl_rxq_space - Return number of free slots available in queue.
176 static int iwl_rxq_space(const struct iwl_rxq *rxq)
178 /* Make sure rx queue size is a power of 2 */
179 WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
182 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
183 * between empty and completely full queues.
184 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
185 * defined for negative dividends.
187 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
191 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
193 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
195 return cpu_to_le32((u32)(dma_addr >> 8));
199 * iwl_pcie_rx_stop - stops the Rx DMA
201 int iwl_pcie_rx_stop(struct iwl_trans *trans)
203 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
204 /* TODO: remove this once fw does it */
205 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
206 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
207 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
208 } else if (trans->trans_cfg->mq_rx_supported) {
209 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
210 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
211 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
212 } else {
213 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
214 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
215 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
216 1000);
221 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
223 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
224 struct iwl_rxq *rxq)
226 u32 reg;
228 lockdep_assert_held(&rxq->lock);
231 * explicitly wake up the NIC if:
232 * 1. shadow registers aren't enabled
233 * 2. there is a chance that the NIC is asleep
235 if (!trans->trans_cfg->base_params->shadow_reg_enable &&
236 test_bit(STATUS_TPOWER_PMI, &trans->status)) {
237 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
239 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
240 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
241 reg);
242 iwl_set_bit(trans, CSR_GP_CNTRL,
243 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
244 rxq->need_update = true;
245 return;
249 rxq->write_actual = round_down(rxq->write, 8);
250 if (trans->trans_cfg->mq_rx_supported)
251 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
252 rxq->write_actual);
253 else
254 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
257 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
259 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
260 int i;
262 for (i = 0; i < trans->num_rx_queues; i++) {
263 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
265 if (!rxq->need_update)
266 continue;
267 spin_lock(&rxq->lock);
268 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
269 rxq->need_update = false;
270 spin_unlock(&rxq->lock);
274 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
275 struct iwl_rxq *rxq,
276 struct iwl_rx_mem_buffer *rxb)
278 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
279 struct iwl_rx_transfer_desc *bd = rxq->bd;
281 BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
283 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
284 bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
285 } else {
286 __le64 *bd = rxq->bd;
288 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
291 IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
292 (u32)rxb->vid, rxq->id, rxq->write);
296 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
298 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
299 struct iwl_rxq *rxq)
301 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
302 struct iwl_rx_mem_buffer *rxb;
305 * If the device isn't enabled - no need to try to add buffers...
306 * This can happen when we stop the device and still have an interrupt
307 * pending. We stop the APM before we sync the interrupts because we
308 * have to (see comment there). On the other hand, since the APM is
309 * stopped, we cannot access the HW (in particular not prph).
310 * So don't try to restock if the APM has been already stopped.
312 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
313 return;
315 spin_lock(&rxq->lock);
316 while (rxq->free_count) {
317 /* Get next free Rx buffer, remove from free list */
318 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
319 list);
320 list_del(&rxb->list);
321 rxb->invalid = false;
322 /* some low bits are expected to be unset (depending on hw) */
323 WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
324 /* Point to Rx buffer via next RBD in circular buffer */
325 iwl_pcie_restock_bd(trans, rxq, rxb);
326 rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
327 rxq->free_count--;
329 spin_unlock(&rxq->lock);
332 * If we've added more space for the firmware to place data, tell it.
333 * Increment device's write pointer in multiples of 8.
335 if (rxq->write_actual != (rxq->write & ~0x7)) {
336 spin_lock(&rxq->lock);
337 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
338 spin_unlock(&rxq->lock);
343 * iwl_pcie_rxsq_restock - restock implementation for single queue rx
345 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
346 struct iwl_rxq *rxq)
348 struct iwl_rx_mem_buffer *rxb;
351 * If the device isn't enabled - not need to try to add buffers...
352 * This can happen when we stop the device and still have an interrupt
353 * pending. We stop the APM before we sync the interrupts because we
354 * have to (see comment there). On the other hand, since the APM is
355 * stopped, we cannot access the HW (in particular not prph).
356 * So don't try to restock if the APM has been already stopped.
358 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
359 return;
361 spin_lock(&rxq->lock);
362 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
363 __le32 *bd = (__le32 *)rxq->bd;
364 /* The overwritten rxb must be a used one */
365 rxb = rxq->queue[rxq->write];
366 BUG_ON(rxb && rxb->page);
368 /* Get next free Rx buffer, remove from free list */
369 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
370 list);
371 list_del(&rxb->list);
372 rxb->invalid = false;
374 /* Point to Rx buffer via next RBD in circular buffer */
375 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
376 rxq->queue[rxq->write] = rxb;
377 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
378 rxq->free_count--;
380 spin_unlock(&rxq->lock);
382 /* If we've added more space for the firmware to place data, tell it.
383 * Increment device's write pointer in multiples of 8. */
384 if (rxq->write_actual != (rxq->write & ~0x7)) {
385 spin_lock(&rxq->lock);
386 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
387 spin_unlock(&rxq->lock);
392 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
394 * If there are slots in the RX queue that need to be restocked,
395 * and we have free pre-allocated buffers, fill the ranks as much
396 * as we can, pulling from rx_free.
398 * This moves the 'write' index forward to catch up with 'processed', and
399 * also updates the memory address in the firmware to reference the new
400 * target buffer.
402 static
403 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
405 if (trans->trans_cfg->mq_rx_supported)
406 iwl_pcie_rxmq_restock(trans, rxq);
407 else
408 iwl_pcie_rxsq_restock(trans, rxq);
412 * iwl_pcie_rx_alloc_page - allocates and returns a page.
415 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
416 u32 *offset, gfp_t priority)
418 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
419 unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size);
420 unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
421 struct page *page;
422 gfp_t gfp_mask = priority;
424 if (trans_pcie->rx_page_order > 0)
425 gfp_mask |= __GFP_COMP;
427 if (trans_pcie->alloc_page) {
428 spin_lock_bh(&trans_pcie->alloc_page_lock);
429 /* recheck */
430 if (trans_pcie->alloc_page) {
431 *offset = trans_pcie->alloc_page_used;
432 page = trans_pcie->alloc_page;
433 trans_pcie->alloc_page_used += rbsize;
434 if (trans_pcie->alloc_page_used >= allocsize)
435 trans_pcie->alloc_page = NULL;
436 else
437 get_page(page);
438 spin_unlock_bh(&trans_pcie->alloc_page_lock);
439 return page;
441 spin_unlock_bh(&trans_pcie->alloc_page_lock);
444 /* Alloc a new receive buffer */
445 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
446 if (!page) {
447 if (net_ratelimit())
448 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
449 trans_pcie->rx_page_order);
451 * Issue an error if we don't have enough pre-allocated
452 * buffers.
454 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
455 IWL_CRIT(trans,
456 "Failed to alloc_pages\n");
457 return NULL;
460 if (2 * rbsize <= allocsize) {
461 spin_lock_bh(&trans_pcie->alloc_page_lock);
462 if (!trans_pcie->alloc_page) {
463 get_page(page);
464 trans_pcie->alloc_page = page;
465 trans_pcie->alloc_page_used = rbsize;
467 spin_unlock_bh(&trans_pcie->alloc_page_lock);
470 *offset = 0;
471 return page;
475 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
477 * A used RBD is an Rx buffer that has been given to the stack. To use it again
478 * a page must be allocated and the RBD must point to the page. This function
479 * doesn't change the HW pointer but handles the list of pages that is used by
480 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
481 * allocated buffers.
483 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
484 struct iwl_rxq *rxq)
486 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
487 struct iwl_rx_mem_buffer *rxb;
488 struct page *page;
490 while (1) {
491 unsigned int offset;
493 spin_lock(&rxq->lock);
494 if (list_empty(&rxq->rx_used)) {
495 spin_unlock(&rxq->lock);
496 return;
498 spin_unlock(&rxq->lock);
500 page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
501 if (!page)
502 return;
504 spin_lock(&rxq->lock);
506 if (list_empty(&rxq->rx_used)) {
507 spin_unlock(&rxq->lock);
508 __free_pages(page, trans_pcie->rx_page_order);
509 return;
511 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
512 list);
513 list_del(&rxb->list);
514 spin_unlock(&rxq->lock);
516 BUG_ON(rxb->page);
517 rxb->page = page;
518 rxb->offset = offset;
519 /* Get physical address of the RB */
520 rxb->page_dma =
521 dma_map_page(trans->dev, page, rxb->offset,
522 trans_pcie->rx_buf_bytes,
523 DMA_FROM_DEVICE);
524 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
525 rxb->page = NULL;
526 spin_lock(&rxq->lock);
527 list_add(&rxb->list, &rxq->rx_used);
528 spin_unlock(&rxq->lock);
529 __free_pages(page, trans_pcie->rx_page_order);
530 return;
533 spin_lock(&rxq->lock);
535 list_add_tail(&rxb->list, &rxq->rx_free);
536 rxq->free_count++;
538 spin_unlock(&rxq->lock);
542 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
544 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
545 int i;
547 for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
548 if (!trans_pcie->rx_pool[i].page)
549 continue;
550 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
551 trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
552 __free_pages(trans_pcie->rx_pool[i].page,
553 trans_pcie->rx_page_order);
554 trans_pcie->rx_pool[i].page = NULL;
559 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
561 * Allocates for each received request 8 pages
562 * Called as a scheduled work item.
564 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
566 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
567 struct iwl_rb_allocator *rba = &trans_pcie->rba;
568 struct list_head local_empty;
569 int pending = atomic_read(&rba->req_pending);
571 IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
573 /* If we were scheduled - there is at least one request */
574 spin_lock(&rba->lock);
575 /* swap out the rba->rbd_empty to a local list */
576 list_replace_init(&rba->rbd_empty, &local_empty);
577 spin_unlock(&rba->lock);
579 while (pending) {
580 int i;
581 LIST_HEAD(local_allocated);
582 gfp_t gfp_mask = GFP_KERNEL;
584 /* Do not post a warning if there are only a few requests */
585 if (pending < RX_PENDING_WATERMARK)
586 gfp_mask |= __GFP_NOWARN;
588 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
589 struct iwl_rx_mem_buffer *rxb;
590 struct page *page;
592 /* List should never be empty - each reused RBD is
593 * returned to the list, and initial pool covers any
594 * possible gap between the time the page is allocated
595 * to the time the RBD is added.
597 BUG_ON(list_empty(&local_empty));
598 /* Get the first rxb from the rbd list */
599 rxb = list_first_entry(&local_empty,
600 struct iwl_rx_mem_buffer, list);
601 BUG_ON(rxb->page);
603 /* Alloc a new receive buffer */
604 page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
605 gfp_mask);
606 if (!page)
607 continue;
608 rxb->page = page;
610 /* Get physical address of the RB */
611 rxb->page_dma = dma_map_page(trans->dev, page,
612 rxb->offset,
613 trans_pcie->rx_buf_bytes,
614 DMA_FROM_DEVICE);
615 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
616 rxb->page = NULL;
617 __free_pages(page, trans_pcie->rx_page_order);
618 continue;
621 /* move the allocated entry to the out list */
622 list_move(&rxb->list, &local_allocated);
623 i++;
626 atomic_dec(&rba->req_pending);
627 pending--;
629 if (!pending) {
630 pending = atomic_read(&rba->req_pending);
631 if (pending)
632 IWL_DEBUG_TPT(trans,
633 "Got more pending allocation requests = %d\n",
634 pending);
637 spin_lock(&rba->lock);
638 /* add the allocated rbds to the allocator allocated list */
639 list_splice_tail(&local_allocated, &rba->rbd_allocated);
640 /* get more empty RBDs for current pending requests */
641 list_splice_tail_init(&rba->rbd_empty, &local_empty);
642 spin_unlock(&rba->lock);
644 atomic_inc(&rba->req_ready);
648 spin_lock(&rba->lock);
649 /* return unused rbds to the allocator empty list */
650 list_splice_tail(&local_empty, &rba->rbd_empty);
651 spin_unlock(&rba->lock);
653 IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
657 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
659 .* Called by queue when the queue posted allocation request and
660 * has freed 8 RBDs in order to restock itself.
661 * This function directly moves the allocated RBs to the queue's ownership
662 * and updates the relevant counters.
664 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
665 struct iwl_rxq *rxq)
667 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
668 struct iwl_rb_allocator *rba = &trans_pcie->rba;
669 int i;
671 lockdep_assert_held(&rxq->lock);
674 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
675 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
676 * function will return early, as there are no ready requests.
677 * atomic_dec_if_positive will perofrm the *actual* decrement only if
678 * req_ready > 0, i.e. - there are ready requests and the function
679 * hands one request to the caller.
681 if (atomic_dec_if_positive(&rba->req_ready) < 0)
682 return;
684 spin_lock(&rba->lock);
685 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
686 /* Get next free Rx buffer, remove it from free list */
687 struct iwl_rx_mem_buffer *rxb =
688 list_first_entry(&rba->rbd_allocated,
689 struct iwl_rx_mem_buffer, list);
691 list_move(&rxb->list, &rxq->rx_free);
693 spin_unlock(&rba->lock);
695 rxq->used_count -= RX_CLAIM_REQ_ALLOC;
696 rxq->free_count += RX_CLAIM_REQ_ALLOC;
699 void iwl_pcie_rx_allocator_work(struct work_struct *data)
701 struct iwl_rb_allocator *rba_p =
702 container_of(data, struct iwl_rb_allocator, rx_alloc);
703 struct iwl_trans_pcie *trans_pcie =
704 container_of(rba_p, struct iwl_trans_pcie, rba);
706 iwl_pcie_rx_allocator(trans_pcie->trans);
709 static int iwl_pcie_free_bd_size(struct iwl_trans *trans, bool use_rx_td)
711 struct iwl_rx_transfer_desc *rx_td;
713 if (use_rx_td)
714 return sizeof(*rx_td);
715 else
716 return trans->trans_cfg->mq_rx_supported ? sizeof(__le64) :
717 sizeof(__le32);
720 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
721 struct iwl_rxq *rxq)
723 struct device *dev = trans->dev;
724 bool use_rx_td = (trans->trans_cfg->device_family >=
725 IWL_DEVICE_FAMILY_AX210);
726 int free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
728 if (rxq->bd)
729 dma_free_coherent(trans->dev,
730 free_size * rxq->queue_size,
731 rxq->bd, rxq->bd_dma);
732 rxq->bd_dma = 0;
733 rxq->bd = NULL;
735 rxq->rb_stts_dma = 0;
736 rxq->rb_stts = NULL;
738 if (rxq->used_bd)
739 dma_free_coherent(trans->dev,
740 (use_rx_td ? sizeof(*rxq->cd) :
741 sizeof(__le32)) * rxq->queue_size,
742 rxq->used_bd, rxq->used_bd_dma);
743 rxq->used_bd_dma = 0;
744 rxq->used_bd = NULL;
746 if (trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_AX210)
747 return;
749 if (rxq->tr_tail)
750 dma_free_coherent(dev, sizeof(__le16),
751 rxq->tr_tail, rxq->tr_tail_dma);
752 rxq->tr_tail_dma = 0;
753 rxq->tr_tail = NULL;
755 if (rxq->cr_tail)
756 dma_free_coherent(dev, sizeof(__le16),
757 rxq->cr_tail, rxq->cr_tail_dma);
758 rxq->cr_tail_dma = 0;
759 rxq->cr_tail = NULL;
762 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
763 struct iwl_rxq *rxq)
765 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
766 struct device *dev = trans->dev;
767 int i;
768 int free_size;
769 bool use_rx_td = (trans->trans_cfg->device_family >=
770 IWL_DEVICE_FAMILY_AX210);
771 size_t rb_stts_size = use_rx_td ? sizeof(__le16) :
772 sizeof(struct iwl_rb_status);
774 spin_lock_init(&rxq->lock);
775 if (trans->trans_cfg->mq_rx_supported)
776 rxq->queue_size = trans->cfg->num_rbds;
777 else
778 rxq->queue_size = RX_QUEUE_SIZE;
780 free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
783 * Allocate the circular buffer of Read Buffer Descriptors
784 * (RBDs)
786 rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
787 &rxq->bd_dma, GFP_KERNEL);
788 if (!rxq->bd)
789 goto err;
791 if (trans->trans_cfg->mq_rx_supported) {
792 rxq->used_bd = dma_alloc_coherent(dev,
793 (use_rx_td ? sizeof(*rxq->cd) : sizeof(__le32)) * rxq->queue_size,
794 &rxq->used_bd_dma,
795 GFP_KERNEL);
796 if (!rxq->used_bd)
797 goto err;
800 rxq->rb_stts = trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
801 rxq->rb_stts_dma =
802 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
804 if (!use_rx_td)
805 return 0;
807 /* Allocate the driver's pointer to TR tail */
808 rxq->tr_tail = dma_alloc_coherent(dev, sizeof(__le16),
809 &rxq->tr_tail_dma, GFP_KERNEL);
810 if (!rxq->tr_tail)
811 goto err;
813 /* Allocate the driver's pointer to CR tail */
814 rxq->cr_tail = dma_alloc_coherent(dev, sizeof(__le16),
815 &rxq->cr_tail_dma, GFP_KERNEL);
816 if (!rxq->cr_tail)
817 goto err;
819 return 0;
821 err:
822 for (i = 0; i < trans->num_rx_queues; i++) {
823 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
825 iwl_pcie_free_rxq_dma(trans, rxq);
828 return -ENOMEM;
831 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
833 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
834 struct iwl_rb_allocator *rba = &trans_pcie->rba;
835 int i, ret;
836 size_t rb_stts_size = trans->trans_cfg->device_family >=
837 IWL_DEVICE_FAMILY_AX210 ?
838 sizeof(__le16) : sizeof(struct iwl_rb_status);
840 if (WARN_ON(trans_pcie->rxq))
841 return -EINVAL;
843 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
844 GFP_KERNEL);
845 trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
846 sizeof(trans_pcie->rx_pool[0]),
847 GFP_KERNEL);
848 trans_pcie->global_table =
849 kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
850 sizeof(trans_pcie->global_table[0]),
851 GFP_KERNEL);
852 if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
853 !trans_pcie->global_table) {
854 ret = -ENOMEM;
855 goto err;
858 spin_lock_init(&rba->lock);
861 * Allocate the driver's pointer to receive buffer status.
862 * Allocate for all queues continuously (HW requirement).
864 trans_pcie->base_rb_stts =
865 dma_alloc_coherent(trans->dev,
866 rb_stts_size * trans->num_rx_queues,
867 &trans_pcie->base_rb_stts_dma,
868 GFP_KERNEL);
869 if (!trans_pcie->base_rb_stts) {
870 ret = -ENOMEM;
871 goto err;
874 for (i = 0; i < trans->num_rx_queues; i++) {
875 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
877 rxq->id = i;
878 ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
879 if (ret)
880 goto err;
882 return 0;
884 err:
885 if (trans_pcie->base_rb_stts) {
886 dma_free_coherent(trans->dev,
887 rb_stts_size * trans->num_rx_queues,
888 trans_pcie->base_rb_stts,
889 trans_pcie->base_rb_stts_dma);
890 trans_pcie->base_rb_stts = NULL;
891 trans_pcie->base_rb_stts_dma = 0;
893 kfree(trans_pcie->rx_pool);
894 kfree(trans_pcie->global_table);
895 kfree(trans_pcie->rxq);
897 return ret;
900 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
902 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
903 u32 rb_size;
904 unsigned long flags;
905 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
907 switch (trans_pcie->rx_buf_size) {
908 case IWL_AMSDU_4K:
909 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
910 break;
911 case IWL_AMSDU_8K:
912 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
913 break;
914 case IWL_AMSDU_12K:
915 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
916 break;
917 default:
918 WARN_ON(1);
919 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
922 if (!iwl_trans_grab_nic_access(trans, &flags))
923 return;
925 /* Stop Rx DMA */
926 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
927 /* reset and flush pointers */
928 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
929 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
930 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
932 /* Reset driver's Rx queue write index */
933 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
935 /* Tell device where to find RBD circular buffer in DRAM */
936 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
937 (u32)(rxq->bd_dma >> 8));
939 /* Tell device where in DRAM to update its Rx status */
940 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
941 rxq->rb_stts_dma >> 4);
943 /* Enable Rx DMA
944 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
945 * the credit mechanism in 5000 HW RX FIFO
946 * Direct rx interrupts to hosts
947 * Rx buffer size 4 or 8k or 12k
948 * RB timeout 0x10
949 * 256 RBDs
951 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
952 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
953 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
954 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
955 rb_size |
956 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
957 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
959 iwl_trans_release_nic_access(trans, &flags);
961 /* Set interrupt coalescing timer to default (2048 usecs) */
962 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
964 /* W/A for interrupt coalescing bug in 7260 and 3160 */
965 if (trans->cfg->host_interrupt_operation_mode)
966 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
969 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
971 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
972 u32 rb_size, enabled = 0;
973 unsigned long flags;
974 int i;
976 switch (trans_pcie->rx_buf_size) {
977 case IWL_AMSDU_2K:
978 rb_size = RFH_RXF_DMA_RB_SIZE_2K;
979 break;
980 case IWL_AMSDU_4K:
981 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
982 break;
983 case IWL_AMSDU_8K:
984 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
985 break;
986 case IWL_AMSDU_12K:
987 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
988 break;
989 default:
990 WARN_ON(1);
991 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
994 if (!iwl_trans_grab_nic_access(trans, &flags))
995 return;
997 /* Stop Rx DMA */
998 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
999 /* disable free amd used rx queue operation */
1000 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
1002 for (i = 0; i < trans->num_rx_queues; i++) {
1003 /* Tell device where to find RBD free table in DRAM */
1004 iwl_write_prph64_no_grab(trans,
1005 RFH_Q_FRBDCB_BA_LSB(i),
1006 trans_pcie->rxq[i].bd_dma);
1007 /* Tell device where to find RBD used table in DRAM */
1008 iwl_write_prph64_no_grab(trans,
1009 RFH_Q_URBDCB_BA_LSB(i),
1010 trans_pcie->rxq[i].used_bd_dma);
1011 /* Tell device where in DRAM to update its Rx status */
1012 iwl_write_prph64_no_grab(trans,
1013 RFH_Q_URBD_STTS_WPTR_LSB(i),
1014 trans_pcie->rxq[i].rb_stts_dma);
1015 /* Reset device indice tables */
1016 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
1017 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
1018 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
1020 enabled |= BIT(i) | BIT(i + 16);
1024 * Enable Rx DMA
1025 * Rx buffer size 4 or 8k or 12k
1026 * Min RB size 4 or 8
1027 * Drop frames that exceed RB size
1028 * 512 RBDs
1030 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
1031 RFH_DMA_EN_ENABLE_VAL | rb_size |
1032 RFH_RXF_DMA_MIN_RB_4_8 |
1033 RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
1034 RFH_RXF_DMA_RBDCB_SIZE_512);
1037 * Activate DMA snooping.
1038 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
1039 * Default queue is 0
1041 iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
1042 RFH_GEN_CFG_RFH_DMA_SNOOP |
1043 RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
1044 RFH_GEN_CFG_SERVICE_DMA_SNOOP |
1045 RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
1046 trans->cfg->integrated ?
1047 RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
1048 RFH_GEN_CFG_RB_CHUNK_SIZE_128));
1049 /* Enable the relevant rx queues */
1050 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
1052 iwl_trans_release_nic_access(trans, &flags);
1054 /* Set interrupt coalescing timer to default (2048 usecs) */
1055 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1058 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
1060 lockdep_assert_held(&rxq->lock);
1062 INIT_LIST_HEAD(&rxq->rx_free);
1063 INIT_LIST_HEAD(&rxq->rx_used);
1064 rxq->free_count = 0;
1065 rxq->used_count = 0;
1068 int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
1070 WARN_ON(1);
1071 return 0;
1074 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
1076 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1077 struct iwl_rxq *def_rxq;
1078 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1079 int i, err, queue_size, allocator_pool_size, num_alloc;
1081 if (!trans_pcie->rxq) {
1082 err = iwl_pcie_rx_alloc(trans);
1083 if (err)
1084 return err;
1086 def_rxq = trans_pcie->rxq;
1088 cancel_work_sync(&rba->rx_alloc);
1090 spin_lock(&rba->lock);
1091 atomic_set(&rba->req_pending, 0);
1092 atomic_set(&rba->req_ready, 0);
1093 INIT_LIST_HEAD(&rba->rbd_allocated);
1094 INIT_LIST_HEAD(&rba->rbd_empty);
1095 spin_unlock(&rba->lock);
1097 /* free all first - we might be reconfigured for a different size */
1098 iwl_pcie_free_rbs_pool(trans);
1100 for (i = 0; i < RX_QUEUE_SIZE; i++)
1101 def_rxq->queue[i] = NULL;
1103 for (i = 0; i < trans->num_rx_queues; i++) {
1104 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1106 spin_lock(&rxq->lock);
1108 * Set read write pointer to reflect that we have processed
1109 * and used all buffers, but have not restocked the Rx queue
1110 * with fresh buffers
1112 rxq->read = 0;
1113 rxq->write = 0;
1114 rxq->write_actual = 0;
1115 memset(rxq->rb_stts, 0,
1116 (trans->trans_cfg->device_family >=
1117 IWL_DEVICE_FAMILY_AX210) ?
1118 sizeof(__le16) : sizeof(struct iwl_rb_status));
1120 iwl_pcie_rx_init_rxb_lists(rxq);
1122 if (!rxq->napi.poll)
1123 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1124 iwl_pcie_dummy_napi_poll, 64);
1126 spin_unlock(&rxq->lock);
1129 /* move the pool to the default queue and allocator ownerships */
1130 queue_size = trans->trans_cfg->mq_rx_supported ?
1131 trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
1132 allocator_pool_size = trans->num_rx_queues *
1133 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1134 num_alloc = queue_size + allocator_pool_size;
1136 for (i = 0; i < num_alloc; i++) {
1137 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1139 if (i < allocator_pool_size)
1140 list_add(&rxb->list, &rba->rbd_empty);
1141 else
1142 list_add(&rxb->list, &def_rxq->rx_used);
1143 trans_pcie->global_table[i] = rxb;
1144 rxb->vid = (u16)(i + 1);
1145 rxb->invalid = true;
1148 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1150 return 0;
1153 int iwl_pcie_rx_init(struct iwl_trans *trans)
1155 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1156 int ret = _iwl_pcie_rx_init(trans);
1158 if (ret)
1159 return ret;
1161 if (trans->trans_cfg->mq_rx_supported)
1162 iwl_pcie_rx_mq_hw_init(trans);
1163 else
1164 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1166 iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1168 spin_lock(&trans_pcie->rxq->lock);
1169 iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1170 spin_unlock(&trans_pcie->rxq->lock);
1172 return 0;
1175 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1177 /* Set interrupt coalescing timer to default (2048 usecs) */
1178 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1181 * We don't configure the RFH.
1182 * Restock will be done at alive, after firmware configured the RFH.
1184 return _iwl_pcie_rx_init(trans);
1187 void iwl_pcie_rx_free(struct iwl_trans *trans)
1189 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1190 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1191 int i;
1192 size_t rb_stts_size = trans->trans_cfg->device_family >=
1193 IWL_DEVICE_FAMILY_AX210 ?
1194 sizeof(__le16) : sizeof(struct iwl_rb_status);
1197 * if rxq is NULL, it means that nothing has been allocated,
1198 * exit now
1200 if (!trans_pcie->rxq) {
1201 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1202 return;
1205 cancel_work_sync(&rba->rx_alloc);
1207 iwl_pcie_free_rbs_pool(trans);
1209 if (trans_pcie->base_rb_stts) {
1210 dma_free_coherent(trans->dev,
1211 rb_stts_size * trans->num_rx_queues,
1212 trans_pcie->base_rb_stts,
1213 trans_pcie->base_rb_stts_dma);
1214 trans_pcie->base_rb_stts = NULL;
1215 trans_pcie->base_rb_stts_dma = 0;
1218 for (i = 0; i < trans->num_rx_queues; i++) {
1219 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1221 iwl_pcie_free_rxq_dma(trans, rxq);
1223 if (rxq->napi.poll)
1224 netif_napi_del(&rxq->napi);
1226 kfree(trans_pcie->rx_pool);
1227 kfree(trans_pcie->global_table);
1228 kfree(trans_pcie->rxq);
1230 if (trans_pcie->alloc_page)
1231 __free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
1234 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1235 struct iwl_rb_allocator *rba)
1237 spin_lock(&rba->lock);
1238 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1239 spin_unlock(&rba->lock);
1243 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1245 * Called when a RBD can be reused. The RBD is transferred to the allocator.
1246 * When there are 2 empty RBDs - a request for allocation is posted
1248 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1249 struct iwl_rx_mem_buffer *rxb,
1250 struct iwl_rxq *rxq, bool emergency)
1252 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1253 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1255 /* Move the RBD to the used list, will be moved to allocator in batches
1256 * before claiming or posting a request*/
1257 list_add_tail(&rxb->list, &rxq->rx_used);
1259 if (unlikely(emergency))
1260 return;
1262 /* Count the allocator owned RBDs */
1263 rxq->used_count++;
1265 /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1266 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1267 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1268 * after but we still need to post another request.
1270 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1271 /* Move the 2 RBDs to the allocator ownership.
1272 Allocator has another 6 from pool for the request completion*/
1273 iwl_pcie_rx_move_to_allocator(rxq, rba);
1275 atomic_inc(&rba->req_pending);
1276 queue_work(rba->alloc_wq, &rba->rx_alloc);
1280 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1281 struct iwl_rxq *rxq,
1282 struct iwl_rx_mem_buffer *rxb,
1283 bool emergency,
1284 int i)
1286 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1287 struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue];
1288 bool page_stolen = false;
1289 int max_len = trans_pcie->rx_buf_bytes;
1290 u32 offset = 0;
1292 if (WARN_ON(!rxb))
1293 return;
1295 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1297 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1298 struct iwl_rx_packet *pkt;
1299 u16 sequence;
1300 bool reclaim;
1301 int index, cmd_index, len;
1302 struct iwl_rx_cmd_buffer rxcb = {
1303 ._offset = rxb->offset + offset,
1304 ._rx_page_order = trans_pcie->rx_page_order,
1305 ._page = rxb->page,
1306 ._page_stolen = false,
1307 .truesize = max_len,
1310 pkt = rxb_addr(&rxcb);
1312 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1313 IWL_DEBUG_RX(trans,
1314 "Q %d: RB end marker at offset %d\n",
1315 rxq->id, offset);
1316 break;
1319 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1320 FH_RSCSR_RXQ_POS != rxq->id,
1321 "frame on invalid queue - is on %d and indicates %d\n",
1322 rxq->id,
1323 (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1324 FH_RSCSR_RXQ_POS);
1326 IWL_DEBUG_RX(trans,
1327 "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1328 rxq->id, offset,
1329 iwl_get_cmd_string(trans,
1330 iwl_cmd_id(pkt->hdr.cmd,
1331 pkt->hdr.group_id,
1332 0)),
1333 pkt->hdr.group_id, pkt->hdr.cmd,
1334 le16_to_cpu(pkt->hdr.sequence));
1336 len = iwl_rx_packet_len(pkt);
1337 len += sizeof(u32); /* account for status word */
1338 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1339 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1341 /* Reclaim a command buffer only if this packet is a response
1342 * to a (driver-originated) command.
1343 * If the packet (e.g. Rx frame) originated from uCode,
1344 * there is no command buffer to reclaim.
1345 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1346 * but apparently a few don't get set; catch them here. */
1347 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1348 if (reclaim && !pkt->hdr.group_id) {
1349 int i;
1351 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1352 if (trans_pcie->no_reclaim_cmds[i] ==
1353 pkt->hdr.cmd) {
1354 reclaim = false;
1355 break;
1360 sequence = le16_to_cpu(pkt->hdr.sequence);
1361 index = SEQ_TO_INDEX(sequence);
1362 cmd_index = iwl_pcie_get_cmd_index(txq, index);
1364 if (rxq->id == trans_pcie->def_rx_queue)
1365 iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1366 &rxcb);
1367 else
1368 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1369 &rxcb, rxq->id);
1371 if (reclaim) {
1372 kzfree(txq->entries[cmd_index].free_buf);
1373 txq->entries[cmd_index].free_buf = NULL;
1377 * After here, we should always check rxcb._page_stolen,
1378 * if it is true then one of the handlers took the page.
1381 if (reclaim) {
1382 /* Invoke any callbacks, transfer the buffer to caller,
1383 * and fire off the (possibly) blocking
1384 * iwl_trans_send_cmd()
1385 * as we reclaim the driver command queue */
1386 if (!rxcb._page_stolen)
1387 iwl_pcie_hcmd_complete(trans, &rxcb);
1388 else
1389 IWL_WARN(trans, "Claim null rxb?\n");
1392 page_stolen |= rxcb._page_stolen;
1393 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1394 break;
1395 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1398 /* page was stolen from us -- free our reference */
1399 if (page_stolen) {
1400 __free_pages(rxb->page, trans_pcie->rx_page_order);
1401 rxb->page = NULL;
1404 /* Reuse the page if possible. For notification packets and
1405 * SKBs that fail to Rx correctly, add them back into the
1406 * rx_free list for reuse later. */
1407 if (rxb->page != NULL) {
1408 rxb->page_dma =
1409 dma_map_page(trans->dev, rxb->page, rxb->offset,
1410 trans_pcie->rx_buf_bytes,
1411 DMA_FROM_DEVICE);
1412 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1414 * free the page(s) as well to not break
1415 * the invariant that the items on the used
1416 * list have no page(s)
1418 __free_pages(rxb->page, trans_pcie->rx_page_order);
1419 rxb->page = NULL;
1420 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1421 } else {
1422 list_add_tail(&rxb->list, &rxq->rx_free);
1423 rxq->free_count++;
1425 } else
1426 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1429 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1430 struct iwl_rxq *rxq, int i)
1432 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1433 struct iwl_rx_mem_buffer *rxb;
1434 u16 vid;
1436 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1438 if (!trans->trans_cfg->mq_rx_supported) {
1439 rxb = rxq->queue[i];
1440 rxq->queue[i] = NULL;
1441 return rxb;
1444 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1445 vid = le16_to_cpu(rxq->cd[i].rbid);
1446 else
1447 vid = le32_to_cpu(rxq->bd_32[i]) & 0x0FFF; /* 12-bit VID */
1449 if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
1450 goto out_err;
1452 rxb = trans_pcie->global_table[vid - 1];
1453 if (rxb->invalid)
1454 goto out_err;
1456 IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1458 rxb->invalid = true;
1460 return rxb;
1462 out_err:
1463 WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1464 iwl_force_nmi(trans);
1465 return NULL;
1469 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1471 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1473 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1474 struct napi_struct *napi;
1475 struct iwl_rxq *rxq;
1476 u32 r, i, count = 0;
1477 bool emergency = false;
1479 if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1480 return;
1482 rxq = &trans_pcie->rxq[queue];
1484 restart:
1485 spin_lock(&rxq->lock);
1486 /* uCode's read index (stored in shared DRAM) indicates the last Rx
1487 * buffer that the driver may process (last buffer filled by ucode). */
1488 r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1489 i = rxq->read;
1491 /* W/A 9000 device step A0 wrap-around bug */
1492 r &= (rxq->queue_size - 1);
1494 /* Rx interrupt, but nothing sent from uCode */
1495 if (i == r)
1496 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1498 while (i != r) {
1499 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1500 struct iwl_rx_mem_buffer *rxb;
1501 /* number of RBDs still waiting for page allocation */
1502 u32 rb_pending_alloc =
1503 atomic_read(&trans_pcie->rba.req_pending) *
1504 RX_CLAIM_REQ_ALLOC;
1506 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1507 !emergency)) {
1508 iwl_pcie_rx_move_to_allocator(rxq, rba);
1509 emergency = true;
1510 IWL_DEBUG_TPT(trans,
1511 "RX path is in emergency. Pending allocations %d\n",
1512 rb_pending_alloc);
1515 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1517 rxb = iwl_pcie_get_rxb(trans, rxq, i);
1518 if (!rxb)
1519 goto out;
1521 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1523 i = (i + 1) & (rxq->queue_size - 1);
1526 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1527 * try to claim the pre-allocated buffers from the allocator.
1528 * If not ready - will try to reclaim next time.
1529 * There is no need to reschedule work - allocator exits only
1530 * on success
1532 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1533 iwl_pcie_rx_allocator_get(trans, rxq);
1535 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1536 /* Add the remaining empty RBDs for allocator use */
1537 iwl_pcie_rx_move_to_allocator(rxq, rba);
1538 } else if (emergency) {
1539 count++;
1540 if (count == 8) {
1541 count = 0;
1542 if (rb_pending_alloc < rxq->queue_size / 3) {
1543 IWL_DEBUG_TPT(trans,
1544 "RX path exited emergency. Pending allocations %d\n",
1545 rb_pending_alloc);
1546 emergency = false;
1549 rxq->read = i;
1550 spin_unlock(&rxq->lock);
1551 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1552 iwl_pcie_rxq_restock(trans, rxq);
1553 goto restart;
1557 out:
1558 /* Backtrack one entry */
1559 rxq->read = i;
1560 /* update cr tail with the rxq read pointer */
1561 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1562 *rxq->cr_tail = cpu_to_le16(r);
1563 spin_unlock(&rxq->lock);
1566 * handle a case where in emergency there are some unallocated RBDs.
1567 * those RBDs are in the used list, but are not tracked by the queue's
1568 * used_count which counts allocator owned RBDs.
1569 * unallocated emergency RBDs must be allocated on exit, otherwise
1570 * when called again the function may not be in emergency mode and
1571 * they will be handed to the allocator with no tracking in the RBD
1572 * allocator counters, which will lead to them never being claimed back
1573 * by the queue.
1574 * by allocating them here, they are now in the queue free list, and
1575 * will be restocked by the next call of iwl_pcie_rxq_restock.
1577 if (unlikely(emergency && count))
1578 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1580 napi = &rxq->napi;
1581 if (napi->poll) {
1582 napi_gro_flush(napi, false);
1584 if (napi->rx_count) {
1585 netif_receive_skb_list(&napi->rx_list);
1586 INIT_LIST_HEAD(&napi->rx_list);
1587 napi->rx_count = 0;
1591 iwl_pcie_rxq_restock(trans, rxq);
1594 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1596 u8 queue = entry->entry;
1597 struct msix_entry *entries = entry - queue;
1599 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1603 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1604 * This interrupt handler should be used with RSS queue only.
1606 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1608 struct msix_entry *entry = dev_id;
1609 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1610 struct iwl_trans *trans = trans_pcie->trans;
1612 trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1614 if (WARN_ON(entry->entry >= trans->num_rx_queues))
1615 return IRQ_NONE;
1617 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1619 local_bh_disable();
1620 iwl_pcie_rx_handle(trans, entry->entry);
1621 local_bh_enable();
1623 iwl_pcie_clear_irq(trans, entry);
1625 lock_map_release(&trans->sync_cmd_lockdep_map);
1627 return IRQ_HANDLED;
1631 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1633 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1635 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1636 int i;
1638 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1639 if (trans->cfg->internal_wimax_coex &&
1640 !trans->cfg->apmg_not_supported &&
1641 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1642 APMS_CLK_VAL_MRB_FUNC_MODE) ||
1643 (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1644 APMG_PS_CTRL_VAL_RESET_REQ))) {
1645 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1646 iwl_op_mode_wimax_active(trans->op_mode);
1647 wake_up(&trans_pcie->wait_command_queue);
1648 return;
1651 for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
1652 if (!trans_pcie->txq[i])
1653 continue;
1654 del_timer(&trans_pcie->txq[i]->stuck_timer);
1657 /* The STATUS_FW_ERROR bit is set in this function. This must happen
1658 * before we wake up the command caller, to ensure a proper cleanup. */
1659 iwl_trans_fw_error(trans);
1661 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1662 wake_up(&trans_pcie->wait_command_queue);
1665 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1667 u32 inta;
1669 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1671 trace_iwlwifi_dev_irq(trans->dev);
1673 /* Discover which interrupts are active/pending */
1674 inta = iwl_read32(trans, CSR_INT);
1676 /* the thread will service interrupts and re-enable them */
1677 return inta;
1680 /* a device (PCI-E) page is 4096 bytes long */
1681 #define ICT_SHIFT 12
1682 #define ICT_SIZE (1 << ICT_SHIFT)
1683 #define ICT_COUNT (ICT_SIZE / sizeof(u32))
1685 /* interrupt handler using ict table, with this interrupt driver will
1686 * stop using INTA register to get device's interrupt, reading this register
1687 * is expensive, device will write interrupts in ICT dram table, increment
1688 * index then will fire interrupt to driver, driver will OR all ICT table
1689 * entries from current index up to table entry with 0 value. the result is
1690 * the interrupt we need to service, driver will set the entries back to 0 and
1691 * set index.
1693 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1695 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1696 u32 inta;
1697 u32 val = 0;
1698 u32 read;
1700 trace_iwlwifi_dev_irq(trans->dev);
1702 /* Ignore interrupt if there's nothing in NIC to service.
1703 * This may be due to IRQ shared with another device,
1704 * or due to sporadic interrupts thrown from our NIC. */
1705 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1706 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1707 if (!read)
1708 return 0;
1711 * Collect all entries up to the first 0, starting from ict_index;
1712 * note we already read at ict_index.
1714 do {
1715 val |= read;
1716 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1717 trans_pcie->ict_index, read);
1718 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1719 trans_pcie->ict_index =
1720 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1722 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1723 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1724 read);
1725 } while (read);
1727 /* We should not get this value, just ignore it. */
1728 if (val == 0xffffffff)
1729 val = 0;
1732 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1733 * (bit 15 before shifting it to 31) to clear when using interrupt
1734 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1735 * so we use them to decide on the real state of the Rx bit.
1736 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1738 if (val & 0xC0000)
1739 val |= 0x8000;
1741 inta = (0xff & val) | ((0xff00 & val) << 16);
1742 return inta;
1745 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1747 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1748 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1749 bool hw_rfkill, prev, report;
1751 mutex_lock(&trans_pcie->mutex);
1752 prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1753 hw_rfkill = iwl_is_rfkill_set(trans);
1754 if (hw_rfkill) {
1755 set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1756 set_bit(STATUS_RFKILL_HW, &trans->status);
1758 if (trans_pcie->opmode_down)
1759 report = hw_rfkill;
1760 else
1761 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1763 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1764 hw_rfkill ? "disable radio" : "enable radio");
1766 isr_stats->rfkill++;
1768 if (prev != report)
1769 iwl_trans_pcie_rf_kill(trans, report);
1770 mutex_unlock(&trans_pcie->mutex);
1772 if (hw_rfkill) {
1773 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1774 &trans->status))
1775 IWL_DEBUG_RF_KILL(trans,
1776 "Rfkill while SYNC HCMD in flight\n");
1777 wake_up(&trans_pcie->wait_command_queue);
1778 } else {
1779 clear_bit(STATUS_RFKILL_HW, &trans->status);
1780 if (trans_pcie->opmode_down)
1781 clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1785 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1787 struct iwl_trans *trans = dev_id;
1788 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1789 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1790 u32 inta = 0;
1791 u32 handled = 0;
1793 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1795 spin_lock(&trans_pcie->irq_lock);
1797 /* dram interrupt table not set yet,
1798 * use legacy interrupt.
1800 if (likely(trans_pcie->use_ict))
1801 inta = iwl_pcie_int_cause_ict(trans);
1802 else
1803 inta = iwl_pcie_int_cause_non_ict(trans);
1805 if (iwl_have_debug_level(IWL_DL_ISR)) {
1806 IWL_DEBUG_ISR(trans,
1807 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1808 inta, trans_pcie->inta_mask,
1809 iwl_read32(trans, CSR_INT_MASK),
1810 iwl_read32(trans, CSR_FH_INT_STATUS));
1811 if (inta & (~trans_pcie->inta_mask))
1812 IWL_DEBUG_ISR(trans,
1813 "We got a masked interrupt (0x%08x)\n",
1814 inta & (~trans_pcie->inta_mask));
1817 inta &= trans_pcie->inta_mask;
1820 * Ignore interrupt if there's nothing in NIC to service.
1821 * This may be due to IRQ shared with another device,
1822 * or due to sporadic interrupts thrown from our NIC.
1824 if (unlikely(!inta)) {
1825 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1827 * Re-enable interrupts here since we don't
1828 * have anything to service
1830 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1831 _iwl_enable_interrupts(trans);
1832 spin_unlock(&trans_pcie->irq_lock);
1833 lock_map_release(&trans->sync_cmd_lockdep_map);
1834 return IRQ_NONE;
1837 if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1839 * Hardware disappeared. It might have
1840 * already raised an interrupt.
1842 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1843 spin_unlock(&trans_pcie->irq_lock);
1844 goto out;
1847 /* Ack/clear/reset pending uCode interrupts.
1848 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1850 /* There is a hardware bug in the interrupt mask function that some
1851 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1852 * they are disabled in the CSR_INT_MASK register. Furthermore the
1853 * ICT interrupt handling mechanism has another bug that might cause
1854 * these unmasked interrupts fail to be detected. We workaround the
1855 * hardware bugs here by ACKing all the possible interrupts so that
1856 * interrupt coalescing can still be achieved.
1858 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1860 if (iwl_have_debug_level(IWL_DL_ISR))
1861 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1862 inta, iwl_read32(trans, CSR_INT_MASK));
1864 spin_unlock(&trans_pcie->irq_lock);
1866 /* Now service all interrupt bits discovered above. */
1867 if (inta & CSR_INT_BIT_HW_ERR) {
1868 IWL_ERR(trans, "Hardware error detected. Restarting.\n");
1870 /* Tell the device to stop sending interrupts */
1871 iwl_disable_interrupts(trans);
1873 isr_stats->hw++;
1874 iwl_pcie_irq_handle_error(trans);
1876 handled |= CSR_INT_BIT_HW_ERR;
1878 goto out;
1881 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1882 if (inta & CSR_INT_BIT_SCD) {
1883 IWL_DEBUG_ISR(trans,
1884 "Scheduler finished to transmit the frame/frames.\n");
1885 isr_stats->sch++;
1888 /* Alive notification via Rx interrupt will do the real work */
1889 if (inta & CSR_INT_BIT_ALIVE) {
1890 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1891 isr_stats->alive++;
1892 if (trans->trans_cfg->gen2) {
1894 * We can restock, since firmware configured
1895 * the RFH
1897 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1900 handled |= CSR_INT_BIT_ALIVE;
1903 /* Safely ignore these bits for debug checks below */
1904 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1906 /* HW RF KILL switch toggled */
1907 if (inta & CSR_INT_BIT_RF_KILL) {
1908 iwl_pcie_handle_rfkill_irq(trans);
1909 handled |= CSR_INT_BIT_RF_KILL;
1912 /* Chip got too hot and stopped itself */
1913 if (inta & CSR_INT_BIT_CT_KILL) {
1914 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1915 isr_stats->ctkill++;
1916 handled |= CSR_INT_BIT_CT_KILL;
1919 /* Error detected by uCode */
1920 if (inta & CSR_INT_BIT_SW_ERR) {
1921 IWL_ERR(trans, "Microcode SW error detected. "
1922 " Restarting 0x%X.\n", inta);
1923 isr_stats->sw++;
1924 iwl_pcie_irq_handle_error(trans);
1925 handled |= CSR_INT_BIT_SW_ERR;
1928 /* uCode wakes up after power-down sleep */
1929 if (inta & CSR_INT_BIT_WAKEUP) {
1930 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1931 iwl_pcie_rxq_check_wrptr(trans);
1932 iwl_pcie_txq_check_wrptrs(trans);
1934 isr_stats->wakeup++;
1936 handled |= CSR_INT_BIT_WAKEUP;
1939 /* All uCode command responses, including Tx command responses,
1940 * Rx "responses" (frame-received notification), and other
1941 * notifications from uCode come through here*/
1942 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1943 CSR_INT_BIT_RX_PERIODIC)) {
1944 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1945 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1946 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1947 iwl_write32(trans, CSR_FH_INT_STATUS,
1948 CSR_FH_INT_RX_MASK);
1950 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1951 handled |= CSR_INT_BIT_RX_PERIODIC;
1952 iwl_write32(trans,
1953 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1955 /* Sending RX interrupt require many steps to be done in the
1956 * the device:
1957 * 1- write interrupt to current index in ICT table.
1958 * 2- dma RX frame.
1959 * 3- update RX shared data to indicate last write index.
1960 * 4- send interrupt.
1961 * This could lead to RX race, driver could receive RX interrupt
1962 * but the shared data changes does not reflect this;
1963 * periodic interrupt will detect any dangling Rx activity.
1966 /* Disable periodic interrupt; we use it as just a one-shot. */
1967 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1968 CSR_INT_PERIODIC_DIS);
1971 * Enable periodic interrupt in 8 msec only if we received
1972 * real RX interrupt (instead of just periodic int), to catch
1973 * any dangling Rx interrupt. If it was just the periodic
1974 * interrupt, there was no dangling Rx activity, and no need
1975 * to extend the periodic interrupt; one-shot is enough.
1977 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1978 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1979 CSR_INT_PERIODIC_ENA);
1981 isr_stats->rx++;
1983 local_bh_disable();
1984 iwl_pcie_rx_handle(trans, 0);
1985 local_bh_enable();
1988 /* This "Tx" DMA channel is used only for loading uCode */
1989 if (inta & CSR_INT_BIT_FH_TX) {
1990 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1991 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1992 isr_stats->tx++;
1993 handled |= CSR_INT_BIT_FH_TX;
1994 /* Wake up uCode load routine, now that load is complete */
1995 trans_pcie->ucode_write_complete = true;
1996 wake_up(&trans_pcie->ucode_write_waitq);
1999 if (inta & ~handled) {
2000 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
2001 isr_stats->unhandled++;
2004 if (inta & ~(trans_pcie->inta_mask)) {
2005 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
2006 inta & ~trans_pcie->inta_mask);
2009 spin_lock(&trans_pcie->irq_lock);
2010 /* only Re-enable all interrupt if disabled by irq */
2011 if (test_bit(STATUS_INT_ENABLED, &trans->status))
2012 _iwl_enable_interrupts(trans);
2013 /* we are loading the firmware, enable FH_TX interrupt only */
2014 else if (handled & CSR_INT_BIT_FH_TX)
2015 iwl_enable_fw_load_int(trans);
2016 /* Re-enable RF_KILL if it occurred */
2017 else if (handled & CSR_INT_BIT_RF_KILL)
2018 iwl_enable_rfkill_int(trans);
2019 /* Re-enable the ALIVE / Rx interrupt if it occurred */
2020 else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
2021 iwl_enable_fw_load_int_ctx_info(trans);
2022 spin_unlock(&trans_pcie->irq_lock);
2024 out:
2025 lock_map_release(&trans->sync_cmd_lockdep_map);
2026 return IRQ_HANDLED;
2029 /******************************************************************************
2031 * ICT functions
2033 ******************************************************************************/
2035 /* Free dram table */
2036 void iwl_pcie_free_ict(struct iwl_trans *trans)
2038 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2040 if (trans_pcie->ict_tbl) {
2041 dma_free_coherent(trans->dev, ICT_SIZE,
2042 trans_pcie->ict_tbl,
2043 trans_pcie->ict_tbl_dma);
2044 trans_pcie->ict_tbl = NULL;
2045 trans_pcie->ict_tbl_dma = 0;
2050 * allocate dram shared table, it is an aligned memory
2051 * block of ICT_SIZE.
2052 * also reset all data related to ICT table interrupt.
2054 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2056 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2058 trans_pcie->ict_tbl =
2059 dma_alloc_coherent(trans->dev, ICT_SIZE,
2060 &trans_pcie->ict_tbl_dma, GFP_KERNEL);
2061 if (!trans_pcie->ict_tbl)
2062 return -ENOMEM;
2064 /* just an API sanity check ... it is guaranteed to be aligned */
2065 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2066 iwl_pcie_free_ict(trans);
2067 return -EINVAL;
2070 return 0;
2073 /* Device is going up inform it about using ICT interrupt table,
2074 * also we need to tell the driver to start using ICT interrupt.
2076 void iwl_pcie_reset_ict(struct iwl_trans *trans)
2078 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2079 u32 val;
2081 if (!trans_pcie->ict_tbl)
2082 return;
2084 spin_lock(&trans_pcie->irq_lock);
2085 _iwl_disable_interrupts(trans);
2087 memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2089 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2091 val |= CSR_DRAM_INT_TBL_ENABLE |
2092 CSR_DRAM_INIT_TBL_WRAP_CHECK |
2093 CSR_DRAM_INIT_TBL_WRITE_POINTER;
2095 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2097 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2098 trans_pcie->use_ict = true;
2099 trans_pcie->ict_index = 0;
2100 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2101 _iwl_enable_interrupts(trans);
2102 spin_unlock(&trans_pcie->irq_lock);
2105 /* Device is going down disable ict interrupt usage */
2106 void iwl_pcie_disable_ict(struct iwl_trans *trans)
2108 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2110 spin_lock(&trans_pcie->irq_lock);
2111 trans_pcie->use_ict = false;
2112 spin_unlock(&trans_pcie->irq_lock);
2115 irqreturn_t iwl_pcie_isr(int irq, void *data)
2117 struct iwl_trans *trans = data;
2119 if (!trans)
2120 return IRQ_NONE;
2122 /* Disable (but don't clear!) interrupts here to avoid
2123 * back-to-back ISRs and sporadic interrupts from our NIC.
2124 * If we have something to service, the tasklet will re-enable ints.
2125 * If we *don't* have something, we'll re-enable before leaving here.
2127 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2129 return IRQ_WAKE_THREAD;
2132 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2134 return IRQ_WAKE_THREAD;
2137 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2139 struct msix_entry *entry = dev_id;
2140 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2141 struct iwl_trans *trans = trans_pcie->trans;
2142 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2143 u32 inta_fh, inta_hw;
2145 lock_map_acquire(&trans->sync_cmd_lockdep_map);
2147 spin_lock(&trans_pcie->irq_lock);
2148 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2149 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2151 * Clear causes registers to avoid being handling the same cause.
2153 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
2154 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2155 spin_unlock(&trans_pcie->irq_lock);
2157 trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2159 if (unlikely(!(inta_fh | inta_hw))) {
2160 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2161 lock_map_release(&trans->sync_cmd_lockdep_map);
2162 return IRQ_NONE;
2165 if (iwl_have_debug_level(IWL_DL_ISR)) {
2166 IWL_DEBUG_ISR(trans,
2167 "ISR inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2168 inta_fh, trans_pcie->fh_mask,
2169 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2170 if (inta_fh & ~trans_pcie->fh_mask)
2171 IWL_DEBUG_ISR(trans,
2172 "We got a masked interrupt (0x%08x)\n",
2173 inta_fh & ~trans_pcie->fh_mask);
2176 inta_fh &= trans_pcie->fh_mask;
2178 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2179 inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2180 local_bh_disable();
2181 iwl_pcie_rx_handle(trans, 0);
2182 local_bh_enable();
2185 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2186 inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2187 local_bh_disable();
2188 iwl_pcie_rx_handle(trans, 1);
2189 local_bh_enable();
2192 /* This "Tx" DMA channel is used only for loading uCode */
2193 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2194 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2195 isr_stats->tx++;
2197 * Wake up uCode load routine,
2198 * now that load is complete
2200 trans_pcie->ucode_write_complete = true;
2201 wake_up(&trans_pcie->ucode_write_waitq);
2204 /* Error detected by uCode */
2205 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
2206 (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
2207 IWL_ERR(trans,
2208 "Microcode SW error detected. Restarting 0x%X.\n",
2209 inta_fh);
2210 isr_stats->sw++;
2211 iwl_pcie_irq_handle_error(trans);
2214 /* After checking FH register check HW register */
2215 if (iwl_have_debug_level(IWL_DL_ISR)) {
2216 IWL_DEBUG_ISR(trans,
2217 "ISR inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2218 inta_hw, trans_pcie->hw_mask,
2219 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2220 if (inta_hw & ~trans_pcie->hw_mask)
2221 IWL_DEBUG_ISR(trans,
2222 "We got a masked interrupt 0x%08x\n",
2223 inta_hw & ~trans_pcie->hw_mask);
2226 inta_hw &= trans_pcie->hw_mask;
2228 /* Alive notification via Rx interrupt will do the real work */
2229 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2230 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2231 isr_stats->alive++;
2232 if (trans->trans_cfg->gen2) {
2233 /* We can restock, since firmware configured the RFH */
2234 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2238 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
2239 u32 sleep_notif =
2240 le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2241 if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2242 sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2243 IWL_DEBUG_ISR(trans,
2244 "Sx interrupt: sleep notification = 0x%x\n",
2245 sleep_notif);
2246 trans_pcie->sx_complete = true;
2247 wake_up(&trans_pcie->sx_waitq);
2248 } else {
2249 /* uCode wakes up after power-down sleep */
2250 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2251 iwl_pcie_rxq_check_wrptr(trans);
2252 iwl_pcie_txq_check_wrptrs(trans);
2254 isr_stats->wakeup++;
2258 if (inta_hw & MSIX_HW_INT_CAUSES_REG_IML) {
2259 /* Reflect IML transfer status */
2260 int res = iwl_read32(trans, CSR_IML_RESP_ADDR);
2262 IWL_DEBUG_ISR(trans, "IML transfer status: %d\n", res);
2263 if (res == IWL_IMAGE_RESP_FAIL) {
2264 isr_stats->sw++;
2265 iwl_pcie_irq_handle_error(trans);
2269 /* Chip got too hot and stopped itself */
2270 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2271 IWL_ERR(trans, "Microcode CT kill error detected.\n");
2272 isr_stats->ctkill++;
2275 /* HW RF KILL switch toggled */
2276 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2277 iwl_pcie_handle_rfkill_irq(trans);
2279 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2280 IWL_ERR(trans,
2281 "Hardware error detected. Restarting.\n");
2283 isr_stats->hw++;
2284 trans->dbg.hw_error = true;
2285 iwl_pcie_irq_handle_error(trans);
2288 iwl_pcie_clear_irq(trans, entry);
2290 lock_map_release(&trans->sync_cmd_lockdep_map);
2292 return IRQ_HANDLED;