treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / wireless / mediatek / mt76 / dma.c
blob6173c80189ba3e10c31a6b5f5f4575d7e06933e5
1 // SPDX-License-Identifier: ISC
2 /*
3 * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
4 */
6 #include <linux/dma-mapping.h>
7 #include "mt76.h"
8 #include "dma.h"
10 static int
11 mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q,
12 int idx, int n_desc, int bufsize,
13 u32 ring_base)
15 int size;
16 int i;
18 spin_lock_init(&q->lock);
20 q->regs = dev->mmio.regs + ring_base + idx * MT_RING_SIZE;
21 q->ndesc = n_desc;
22 q->buf_size = bufsize;
23 q->hw_idx = idx;
25 size = q->ndesc * sizeof(struct mt76_desc);
26 q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
27 if (!q->desc)
28 return -ENOMEM;
30 size = q->ndesc * sizeof(*q->entry);
31 q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
32 if (!q->entry)
33 return -ENOMEM;
35 /* clear descriptors */
36 for (i = 0; i < q->ndesc; i++)
37 q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
39 writel(q->desc_dma, &q->regs->desc_base);
40 writel(0, &q->regs->cpu_idx);
41 writel(0, &q->regs->dma_idx);
42 writel(q->ndesc, &q->regs->ring_size);
44 return 0;
47 static int
48 mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
49 struct mt76_queue_buf *buf, int nbufs, u32 info,
50 struct sk_buff *skb, void *txwi)
52 struct mt76_desc *desc;
53 u32 ctrl;
54 int i, idx = -1;
56 if (txwi) {
57 q->entry[q->head].txwi = DMA_DUMMY_DATA;
58 q->entry[q->head].skip_buf0 = true;
61 for (i = 0; i < nbufs; i += 2, buf += 2) {
62 u32 buf0 = buf[0].addr, buf1 = 0;
64 ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
65 if (i < nbufs - 1) {
66 buf1 = buf[1].addr;
67 ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
70 if (i == nbufs - 1)
71 ctrl |= MT_DMA_CTL_LAST_SEC0;
72 else if (i == nbufs - 2)
73 ctrl |= MT_DMA_CTL_LAST_SEC1;
75 idx = q->head;
76 q->head = (q->head + 1) % q->ndesc;
78 desc = &q->desc[idx];
80 WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
81 WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
82 WRITE_ONCE(desc->info, cpu_to_le32(info));
83 WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));
85 q->queued++;
88 q->entry[idx].txwi = txwi;
89 q->entry[idx].skb = skb;
91 return idx;
94 static void
95 mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
96 struct mt76_queue_entry *prev_e)
98 struct mt76_queue_entry *e = &q->entry[idx];
99 __le32 __ctrl = READ_ONCE(q->desc[idx].ctrl);
100 u32 ctrl = le32_to_cpu(__ctrl);
102 if (!e->skip_buf0) {
103 __le32 addr = READ_ONCE(q->desc[idx].buf0);
104 u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctrl);
106 dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
107 DMA_TO_DEVICE);
110 if (!(ctrl & MT_DMA_CTL_LAST_SEC0)) {
111 __le32 addr = READ_ONCE(q->desc[idx].buf1);
112 u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN1, ctrl);
114 dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
115 DMA_TO_DEVICE);
118 if (e->txwi == DMA_DUMMY_DATA)
119 e->txwi = NULL;
121 if (e->skb == DMA_DUMMY_DATA)
122 e->skb = NULL;
124 *prev_e = *e;
125 memset(e, 0, sizeof(*e));
128 static void
129 mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
131 writel(q->desc_dma, &q->regs->desc_base);
132 writel(q->ndesc, &q->regs->ring_size);
133 q->head = readl(&q->regs->dma_idx);
134 q->tail = q->head;
135 writel(q->head, &q->regs->cpu_idx);
138 static void
139 mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush)
141 struct mt76_sw_queue *sq = &dev->q_tx[qid];
142 struct mt76_queue *q = sq->q;
143 struct mt76_queue_entry entry;
144 unsigned int n_swq_queued[4] = {};
145 unsigned int n_queued = 0;
146 bool wake = false;
147 int i, last;
149 if (!q)
150 return;
152 if (flush)
153 last = -1;
154 else
155 last = readl(&q->regs->dma_idx);
157 while ((q->queued > n_queued) && q->tail != last) {
158 mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
159 if (entry.schedule)
160 n_swq_queued[entry.qid]++;
162 q->tail = (q->tail + 1) % q->ndesc;
163 n_queued++;
165 if (entry.skb)
166 dev->drv->tx_complete_skb(dev, qid, &entry);
168 if (entry.txwi) {
169 if (!(dev->drv->drv_flags & MT_DRV_TXWI_NO_FREE))
170 mt76_put_txwi(dev, entry.txwi);
171 wake = !flush;
174 if (!flush && q->tail == last)
175 last = readl(&q->regs->dma_idx);
178 spin_lock_bh(&q->lock);
180 q->queued -= n_queued;
181 for (i = 0; i < ARRAY_SIZE(n_swq_queued); i++) {
182 if (!n_swq_queued[i])
183 continue;
185 dev->q_tx[i].swq_queued -= n_swq_queued[i];
188 if (flush)
189 mt76_dma_sync_idx(dev, q);
191 wake = wake && q->stopped &&
192 qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8;
193 if (wake)
194 q->stopped = false;
196 if (!q->queued)
197 wake_up(&dev->tx_wait);
199 spin_unlock_bh(&q->lock);
201 if (wake)
202 ieee80211_wake_queue(dev->hw, qid);
205 static void *
206 mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
207 int *len, u32 *info, bool *more)
209 struct mt76_queue_entry *e = &q->entry[idx];
210 struct mt76_desc *desc = &q->desc[idx];
211 dma_addr_t buf_addr;
212 void *buf = e->buf;
213 int buf_len = SKB_WITH_OVERHEAD(q->buf_size);
215 buf_addr = le32_to_cpu(READ_ONCE(desc->buf0));
216 if (len) {
217 u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
218 *len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
219 *more = !(ctl & MT_DMA_CTL_LAST_SEC0);
222 if (info)
223 *info = le32_to_cpu(desc->info);
225 dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
226 e->buf = NULL;
228 return buf;
231 static void *
232 mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
233 int *len, u32 *info, bool *more)
235 int idx = q->tail;
237 *more = false;
238 if (!q->queued)
239 return NULL;
241 if (!flush && !(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
242 return NULL;
244 q->tail = (q->tail + 1) % q->ndesc;
245 q->queued--;
247 return mt76_dma_get_buf(dev, q, idx, len, info, more);
250 static void
251 mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
253 writel(q->head, &q->regs->cpu_idx);
256 static int
257 mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, enum mt76_txq_id qid,
258 struct sk_buff *skb, u32 tx_info)
260 struct mt76_queue *q = dev->q_tx[qid].q;
261 struct mt76_queue_buf buf;
262 dma_addr_t addr;
264 addr = dma_map_single(dev->dev, skb->data, skb->len,
265 DMA_TO_DEVICE);
266 if (unlikely(dma_mapping_error(dev->dev, addr)))
267 return -ENOMEM;
269 buf.addr = addr;
270 buf.len = skb->len;
272 spin_lock_bh(&q->lock);
273 mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
274 mt76_dma_kick_queue(dev, q);
275 spin_unlock_bh(&q->lock);
277 return 0;
280 static int
281 mt76_dma_tx_queue_skb(struct mt76_dev *dev, enum mt76_txq_id qid,
282 struct sk_buff *skb, struct mt76_wcid *wcid,
283 struct ieee80211_sta *sta)
285 struct mt76_queue *q = dev->q_tx[qid].q;
286 struct mt76_tx_info tx_info = {
287 .skb = skb,
289 int len, n = 0, ret = -ENOMEM;
290 struct mt76_queue_entry e;
291 struct mt76_txwi_cache *t;
292 struct sk_buff *iter;
293 dma_addr_t addr;
294 u8 *txwi;
296 t = mt76_get_txwi(dev);
297 if (!t) {
298 ieee80211_free_txskb(dev->hw, skb);
299 return -ENOMEM;
301 txwi = mt76_get_txwi_ptr(dev, t);
303 skb->prev = skb->next = NULL;
304 if (dev->drv->drv_flags & MT_DRV_TX_ALIGNED4_SKBS)
305 mt76_insert_hdr_pad(skb);
307 len = skb_headlen(skb);
308 addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE);
309 if (unlikely(dma_mapping_error(dev->dev, addr)))
310 goto free;
312 tx_info.buf[n].addr = t->dma_addr;
313 tx_info.buf[n++].len = dev->drv->txwi_size;
314 tx_info.buf[n].addr = addr;
315 tx_info.buf[n++].len = len;
317 skb_walk_frags(skb, iter) {
318 if (n == ARRAY_SIZE(tx_info.buf))
319 goto unmap;
321 addr = dma_map_single(dev->dev, iter->data, iter->len,
322 DMA_TO_DEVICE);
323 if (unlikely(dma_mapping_error(dev->dev, addr)))
324 goto unmap;
326 tx_info.buf[n].addr = addr;
327 tx_info.buf[n++].len = iter->len;
329 tx_info.nbuf = n;
331 dma_sync_single_for_cpu(dev->dev, t->dma_addr, dev->drv->txwi_size,
332 DMA_TO_DEVICE);
333 ret = dev->drv->tx_prepare_skb(dev, txwi, qid, wcid, sta, &tx_info);
334 dma_sync_single_for_device(dev->dev, t->dma_addr, dev->drv->txwi_size,
335 DMA_TO_DEVICE);
336 if (ret < 0)
337 goto unmap;
339 if (q->queued + (tx_info.nbuf + 1) / 2 >= q->ndesc - 1) {
340 ret = -ENOMEM;
341 goto unmap;
344 return mt76_dma_add_buf(dev, q, tx_info.buf, tx_info.nbuf,
345 tx_info.info, tx_info.skb, t);
347 unmap:
348 for (n--; n > 0; n--)
349 dma_unmap_single(dev->dev, tx_info.buf[n].addr,
350 tx_info.buf[n].len, DMA_TO_DEVICE);
352 free:
353 e.skb = tx_info.skb;
354 e.txwi = t;
355 dev->drv->tx_complete_skb(dev, qid, &e);
356 mt76_put_txwi(dev, t);
357 return ret;
360 static int
361 mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)
363 dma_addr_t addr;
364 void *buf;
365 int frames = 0;
366 int len = SKB_WITH_OVERHEAD(q->buf_size);
367 int offset = q->buf_offset;
369 spin_lock_bh(&q->lock);
371 while (q->queued < q->ndesc - 1) {
372 struct mt76_queue_buf qbuf;
374 buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
375 if (!buf)
376 break;
378 addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
379 if (unlikely(dma_mapping_error(dev->dev, addr))) {
380 skb_free_frag(buf);
381 break;
384 qbuf.addr = addr + offset;
385 qbuf.len = len - offset;
386 mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
387 frames++;
390 if (frames)
391 mt76_dma_kick_queue(dev, q);
393 spin_unlock_bh(&q->lock);
395 return frames;
398 static void
399 mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
401 struct page *page;
402 void *buf;
403 bool more;
405 spin_lock_bh(&q->lock);
406 do {
407 buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
408 if (!buf)
409 break;
411 skb_free_frag(buf);
412 } while (1);
413 spin_unlock_bh(&q->lock);
415 if (!q->rx_page.va)
416 return;
418 page = virt_to_page(q->rx_page.va);
419 __page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
420 memset(&q->rx_page, 0, sizeof(q->rx_page));
423 static void
424 mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
426 struct mt76_queue *q = &dev->q_rx[qid];
427 int i;
429 for (i = 0; i < q->ndesc; i++)
430 q->desc[i].ctrl &= ~cpu_to_le32(MT_DMA_CTL_DMA_DONE);
432 mt76_dma_rx_cleanup(dev, q);
433 mt76_dma_sync_idx(dev, q);
434 mt76_dma_rx_fill(dev, q);
436 if (!q->rx_head)
437 return;
439 dev_kfree_skb(q->rx_head);
440 q->rx_head = NULL;
443 static void
444 mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
445 int len, bool more)
447 struct page *page = virt_to_head_page(data);
448 int offset = data - page_address(page);
449 struct sk_buff *skb = q->rx_head;
451 offset += q->buf_offset;
452 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, offset, len,
453 q->buf_size);
455 if (more)
456 return;
458 q->rx_head = NULL;
459 dev->drv->rx_skb(dev, q - dev->q_rx, skb);
462 static int
463 mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
465 int len, data_len, done = 0;
466 struct sk_buff *skb;
467 unsigned char *data;
468 bool more;
470 while (done < budget) {
471 u32 info;
473 data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
474 if (!data)
475 break;
477 if (q->rx_head)
478 data_len = q->buf_size;
479 else
480 data_len = SKB_WITH_OVERHEAD(q->buf_size);
482 if (data_len < len + q->buf_offset) {
483 dev_kfree_skb(q->rx_head);
484 q->rx_head = NULL;
486 skb_free_frag(data);
487 continue;
490 if (q->rx_head) {
491 mt76_add_fragment(dev, q, data, len, more);
492 continue;
495 skb = build_skb(data, q->buf_size);
496 if (!skb) {
497 skb_free_frag(data);
498 continue;
500 skb_reserve(skb, q->buf_offset);
502 if (q == &dev->q_rx[MT_RXQ_MCU]) {
503 u32 *rxfce = (u32 *)skb->cb;
504 *rxfce = info;
507 __skb_put(skb, len);
508 done++;
510 if (more) {
511 q->rx_head = skb;
512 continue;
515 dev->drv->rx_skb(dev, q - dev->q_rx, skb);
518 mt76_dma_rx_fill(dev, q);
519 return done;
522 static int
523 mt76_dma_rx_poll(struct napi_struct *napi, int budget)
525 struct mt76_dev *dev;
526 int qid, done = 0, cur;
528 dev = container_of(napi->dev, struct mt76_dev, napi_dev);
529 qid = napi - dev->napi;
531 rcu_read_lock();
533 do {
534 cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
535 mt76_rx_poll_complete(dev, qid, napi);
536 done += cur;
537 } while (cur && done < budget);
539 rcu_read_unlock();
541 if (done < budget && napi_complete(napi))
542 dev->drv->rx_poll_complete(dev, qid);
544 return done;
547 static int
548 mt76_dma_init(struct mt76_dev *dev)
550 int i;
552 init_dummy_netdev(&dev->napi_dev);
554 for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
555 netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll,
556 64);
557 mt76_dma_rx_fill(dev, &dev->q_rx[i]);
558 skb_queue_head_init(&dev->rx_skb[i]);
559 napi_enable(&dev->napi[i]);
562 return 0;
565 static const struct mt76_queue_ops mt76_dma_ops = {
566 .init = mt76_dma_init,
567 .alloc = mt76_dma_alloc_queue,
568 .tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw,
569 .tx_queue_skb = mt76_dma_tx_queue_skb,
570 .tx_cleanup = mt76_dma_tx_cleanup,
571 .rx_reset = mt76_dma_rx_reset,
572 .kick = mt76_dma_kick_queue,
575 void mt76_dma_attach(struct mt76_dev *dev)
577 dev->queue_ops = &mt76_dma_ops;
579 EXPORT_SYMBOL_GPL(mt76_dma_attach);
581 void mt76_dma_cleanup(struct mt76_dev *dev)
583 int i;
585 netif_napi_del(&dev->tx_napi);
586 for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++)
587 mt76_dma_tx_cleanup(dev, i, true);
589 for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
590 netif_napi_del(&dev->napi[i]);
591 mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
594 EXPORT_SYMBOL_GPL(mt76_dma_cleanup);