1 // SPDX-License-Identifier: GPL-2.0-or-later
3 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
10 Abstract: rt2400pci device specific routines.
11 Supported chipsets: RT2460.
14 #include <linux/delay.h>
15 #include <linux/etherdevice.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
19 #include <linux/eeprom_93cx6.h>
20 #include <linux/slab.h>
23 #include "rt2x00mmio.h"
24 #include "rt2x00pci.h"
25 #include "rt2400pci.h"
29 * All access to the CSR registers will go through the methods
30 * rt2x00mmio_register_read and rt2x00mmio_register_write.
31 * BBP and RF register require indirect register access,
32 * and use the CSR registers BBPCSR and RFCSR to achieve this.
33 * These indirect registers work with busy bits,
34 * and we will try maximal REGISTER_BUSY_COUNT times to access
35 * the register while taking a REGISTER_BUSY_DELAY us delay
36 * between each attempt. When the busy bit is still set at that time,
37 * the access attempt is considered to have failed,
38 * and we will print an error.
40 #define WAIT_FOR_BBP(__dev, __reg) \
41 rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
42 #define WAIT_FOR_RF(__dev, __reg) \
43 rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
45 static void rt2400pci_bbp_write(struct rt2x00_dev
*rt2x00dev
,
46 const unsigned int word
, const u8 value
)
50 mutex_lock(&rt2x00dev
->csr_mutex
);
53 * Wait until the BBP becomes available, afterwards we
54 * can safely write the new data into the register.
56 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
58 rt2x00_set_field32(®
, BBPCSR_VALUE
, value
);
59 rt2x00_set_field32(®
, BBPCSR_REGNUM
, word
);
60 rt2x00_set_field32(®
, BBPCSR_BUSY
, 1);
61 rt2x00_set_field32(®
, BBPCSR_WRITE_CONTROL
, 1);
63 rt2x00mmio_register_write(rt2x00dev
, BBPCSR
, reg
);
66 mutex_unlock(&rt2x00dev
->csr_mutex
);
69 static u8
rt2400pci_bbp_read(struct rt2x00_dev
*rt2x00dev
,
70 const unsigned int word
)
75 mutex_lock(&rt2x00dev
->csr_mutex
);
78 * Wait until the BBP becomes available, afterwards we
79 * can safely write the read request into the register.
80 * After the data has been written, we wait until hardware
81 * returns the correct value, if at any time the register
82 * doesn't become available in time, reg will be 0xffffffff
83 * which means we return 0xff to the caller.
85 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
87 rt2x00_set_field32(®
, BBPCSR_REGNUM
, word
);
88 rt2x00_set_field32(®
, BBPCSR_BUSY
, 1);
89 rt2x00_set_field32(®
, BBPCSR_WRITE_CONTROL
, 0);
91 rt2x00mmio_register_write(rt2x00dev
, BBPCSR
, reg
);
93 WAIT_FOR_BBP(rt2x00dev
, ®
);
96 value
= rt2x00_get_field32(reg
, BBPCSR_VALUE
);
98 mutex_unlock(&rt2x00dev
->csr_mutex
);
103 static void rt2400pci_rf_write(struct rt2x00_dev
*rt2x00dev
,
104 const unsigned int word
, const u32 value
)
108 mutex_lock(&rt2x00dev
->csr_mutex
);
111 * Wait until the RF becomes available, afterwards we
112 * can safely write the new data into the register.
114 if (WAIT_FOR_RF(rt2x00dev
, ®
)) {
116 rt2x00_set_field32(®
, RFCSR_VALUE
, value
);
117 rt2x00_set_field32(®
, RFCSR_NUMBER_OF_BITS
, 20);
118 rt2x00_set_field32(®
, RFCSR_IF_SELECT
, 0);
119 rt2x00_set_field32(®
, RFCSR_BUSY
, 1);
121 rt2x00mmio_register_write(rt2x00dev
, RFCSR
, reg
);
122 rt2x00_rf_write(rt2x00dev
, word
, value
);
125 mutex_unlock(&rt2x00dev
->csr_mutex
);
128 static void rt2400pci_eepromregister_read(struct eeprom_93cx6
*eeprom
)
130 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
133 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR21
);
135 eeprom
->reg_data_in
= !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_IN
);
136 eeprom
->reg_data_out
= !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_OUT
);
137 eeprom
->reg_data_clock
=
138 !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_CLOCK
);
139 eeprom
->reg_chip_select
=
140 !!rt2x00_get_field32(reg
, CSR21_EEPROM_CHIP_SELECT
);
143 static void rt2400pci_eepromregister_write(struct eeprom_93cx6
*eeprom
)
145 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
148 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_IN
, !!eeprom
->reg_data_in
);
149 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_OUT
, !!eeprom
->reg_data_out
);
150 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_CLOCK
,
151 !!eeprom
->reg_data_clock
);
152 rt2x00_set_field32(®
, CSR21_EEPROM_CHIP_SELECT
,
153 !!eeprom
->reg_chip_select
);
155 rt2x00mmio_register_write(rt2x00dev
, CSR21
, reg
);
158 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
159 static const struct rt2x00debug rt2400pci_rt2x00debug
= {
160 .owner
= THIS_MODULE
,
162 .read
= rt2x00mmio_register_read
,
163 .write
= rt2x00mmio_register_write
,
164 .flags
= RT2X00DEBUGFS_OFFSET
,
165 .word_base
= CSR_REG_BASE
,
166 .word_size
= sizeof(u32
),
167 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
170 .read
= rt2x00_eeprom_read
,
171 .write
= rt2x00_eeprom_write
,
172 .word_base
= EEPROM_BASE
,
173 .word_size
= sizeof(u16
),
174 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
177 .read
= rt2400pci_bbp_read
,
178 .write
= rt2400pci_bbp_write
,
179 .word_base
= BBP_BASE
,
180 .word_size
= sizeof(u8
),
181 .word_count
= BBP_SIZE
/ sizeof(u8
),
184 .read
= rt2x00_rf_read
,
185 .write
= rt2400pci_rf_write
,
186 .word_base
= RF_BASE
,
187 .word_size
= sizeof(u32
),
188 .word_count
= RF_SIZE
/ sizeof(u32
),
191 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
193 static int rt2400pci_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
197 reg
= rt2x00mmio_register_read(rt2x00dev
, GPIOCSR
);
198 return rt2x00_get_field32(reg
, GPIOCSR_VAL0
);
201 #ifdef CONFIG_RT2X00_LIB_LEDS
202 static void rt2400pci_brightness_set(struct led_classdev
*led_cdev
,
203 enum led_brightness brightness
)
205 struct rt2x00_led
*led
=
206 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
207 unsigned int enabled
= brightness
!= LED_OFF
;
210 reg
= rt2x00mmio_register_read(led
->rt2x00dev
, LEDCSR
);
212 if (led
->type
== LED_TYPE_RADIO
|| led
->type
== LED_TYPE_ASSOC
)
213 rt2x00_set_field32(®
, LEDCSR_LINK
, enabled
);
214 else if (led
->type
== LED_TYPE_ACTIVITY
)
215 rt2x00_set_field32(®
, LEDCSR_ACTIVITY
, enabled
);
217 rt2x00mmio_register_write(led
->rt2x00dev
, LEDCSR
, reg
);
220 static int rt2400pci_blink_set(struct led_classdev
*led_cdev
,
221 unsigned long *delay_on
,
222 unsigned long *delay_off
)
224 struct rt2x00_led
*led
=
225 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
228 reg
= rt2x00mmio_register_read(led
->rt2x00dev
, LEDCSR
);
229 rt2x00_set_field32(®
, LEDCSR_ON_PERIOD
, *delay_on
);
230 rt2x00_set_field32(®
, LEDCSR_OFF_PERIOD
, *delay_off
);
231 rt2x00mmio_register_write(led
->rt2x00dev
, LEDCSR
, reg
);
236 static void rt2400pci_init_led(struct rt2x00_dev
*rt2x00dev
,
237 struct rt2x00_led
*led
,
240 led
->rt2x00dev
= rt2x00dev
;
242 led
->led_dev
.brightness_set
= rt2400pci_brightness_set
;
243 led
->led_dev
.blink_set
= rt2400pci_blink_set
;
244 led
->flags
= LED_INITIALIZED
;
246 #endif /* CONFIG_RT2X00_LIB_LEDS */
249 * Configuration handlers.
251 static void rt2400pci_config_filter(struct rt2x00_dev
*rt2x00dev
,
252 const unsigned int filter_flags
)
257 * Start configuration steps.
258 * Note that the version error will always be dropped
259 * since there is no filter for it at this time.
261 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR0
);
262 rt2x00_set_field32(®
, RXCSR0_DROP_CRC
,
263 !(filter_flags
& FIF_FCSFAIL
));
264 rt2x00_set_field32(®
, RXCSR0_DROP_PHYSICAL
,
265 !(filter_flags
& FIF_PLCPFAIL
));
266 rt2x00_set_field32(®
, RXCSR0_DROP_CONTROL
,
267 !(filter_flags
& FIF_CONTROL
));
268 rt2x00_set_field32(®
, RXCSR0_DROP_NOT_TO_ME
,
269 !test_bit(CONFIG_MONITORING
, &rt2x00dev
->flags
));
270 rt2x00_set_field32(®
, RXCSR0_DROP_TODS
,
271 !test_bit(CONFIG_MONITORING
, &rt2x00dev
->flags
) &&
272 !rt2x00dev
->intf_ap_count
);
273 rt2x00_set_field32(®
, RXCSR0_DROP_VERSION_ERROR
, 1);
274 rt2x00mmio_register_write(rt2x00dev
, RXCSR0
, reg
);
277 static void rt2400pci_config_intf(struct rt2x00_dev
*rt2x00dev
,
278 struct rt2x00_intf
*intf
,
279 struct rt2x00intf_conf
*conf
,
280 const unsigned int flags
)
282 unsigned int bcn_preload
;
285 if (flags
& CONFIG_UPDATE_TYPE
) {
287 * Enable beacon config
289 bcn_preload
= PREAMBLE
+ GET_DURATION(IEEE80211_HEADER
, 20);
290 reg
= rt2x00mmio_register_read(rt2x00dev
, BCNCSR1
);
291 rt2x00_set_field32(®
, BCNCSR1_PRELOAD
, bcn_preload
);
292 rt2x00mmio_register_write(rt2x00dev
, BCNCSR1
, reg
);
295 * Enable synchronisation.
297 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR14
);
298 rt2x00_set_field32(®
, CSR14_TSF_SYNC
, conf
->sync
);
299 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
302 if (flags
& CONFIG_UPDATE_MAC
)
303 rt2x00mmio_register_multiwrite(rt2x00dev
, CSR3
,
304 conf
->mac
, sizeof(conf
->mac
));
306 if (flags
& CONFIG_UPDATE_BSSID
)
307 rt2x00mmio_register_multiwrite(rt2x00dev
, CSR5
,
309 sizeof(conf
->bssid
));
312 static void rt2400pci_config_erp(struct rt2x00_dev
*rt2x00dev
,
313 struct rt2x00lib_erp
*erp
,
320 * When short preamble is enabled, we should set bit 0x08
322 if (changed
& BSS_CHANGED_ERP_PREAMBLE
) {
323 preamble_mask
= erp
->short_preamble
<< 3;
325 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR1
);
326 rt2x00_set_field32(®
, TXCSR1_ACK_TIMEOUT
, 0x1ff);
327 rt2x00_set_field32(®
, TXCSR1_ACK_CONSUME_TIME
, 0x13a);
328 rt2x00_set_field32(®
, TXCSR1_TSF_OFFSET
, IEEE80211_HEADER
);
329 rt2x00_set_field32(®
, TXCSR1_AUTORESPONDER
, 1);
330 rt2x00mmio_register_write(rt2x00dev
, TXCSR1
, reg
);
332 reg
= rt2x00mmio_register_read(rt2x00dev
, ARCSR2
);
333 rt2x00_set_field32(®
, ARCSR2_SIGNAL
, 0x00);
334 rt2x00_set_field32(®
, ARCSR2_SERVICE
, 0x04);
335 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
336 GET_DURATION(ACK_SIZE
, 10));
337 rt2x00mmio_register_write(rt2x00dev
, ARCSR2
, reg
);
339 reg
= rt2x00mmio_register_read(rt2x00dev
, ARCSR3
);
340 rt2x00_set_field32(®
, ARCSR3_SIGNAL
, 0x01 | preamble_mask
);
341 rt2x00_set_field32(®
, ARCSR3_SERVICE
, 0x04);
342 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
343 GET_DURATION(ACK_SIZE
, 20));
344 rt2x00mmio_register_write(rt2x00dev
, ARCSR3
, reg
);
346 reg
= rt2x00mmio_register_read(rt2x00dev
, ARCSR4
);
347 rt2x00_set_field32(®
, ARCSR4_SIGNAL
, 0x02 | preamble_mask
);
348 rt2x00_set_field32(®
, ARCSR4_SERVICE
, 0x04);
349 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
350 GET_DURATION(ACK_SIZE
, 55));
351 rt2x00mmio_register_write(rt2x00dev
, ARCSR4
, reg
);
353 reg
= rt2x00mmio_register_read(rt2x00dev
, ARCSR5
);
354 rt2x00_set_field32(®
, ARCSR5_SIGNAL
, 0x03 | preamble_mask
);
355 rt2x00_set_field32(®
, ARCSR5_SERVICE
, 0x84);
356 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
357 GET_DURATION(ACK_SIZE
, 110));
358 rt2x00mmio_register_write(rt2x00dev
, ARCSR5
, reg
);
361 if (changed
& BSS_CHANGED_BASIC_RATES
)
362 rt2x00mmio_register_write(rt2x00dev
, ARCSR1
, erp
->basic_rates
);
364 if (changed
& BSS_CHANGED_ERP_SLOT
) {
365 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR11
);
366 rt2x00_set_field32(®
, CSR11_SLOT_TIME
, erp
->slot_time
);
367 rt2x00mmio_register_write(rt2x00dev
, CSR11
, reg
);
369 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR18
);
370 rt2x00_set_field32(®
, CSR18_SIFS
, erp
->sifs
);
371 rt2x00_set_field32(®
, CSR18_PIFS
, erp
->pifs
);
372 rt2x00mmio_register_write(rt2x00dev
, CSR18
, reg
);
374 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR19
);
375 rt2x00_set_field32(®
, CSR19_DIFS
, erp
->difs
);
376 rt2x00_set_field32(®
, CSR19_EIFS
, erp
->eifs
);
377 rt2x00mmio_register_write(rt2x00dev
, CSR19
, reg
);
380 if (changed
& BSS_CHANGED_BEACON_INT
) {
381 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR12
);
382 rt2x00_set_field32(®
, CSR12_BEACON_INTERVAL
,
383 erp
->beacon_int
* 16);
384 rt2x00_set_field32(®
, CSR12_CFP_MAX_DURATION
,
385 erp
->beacon_int
* 16);
386 rt2x00mmio_register_write(rt2x00dev
, CSR12
, reg
);
390 static void rt2400pci_config_ant(struct rt2x00_dev
*rt2x00dev
,
391 struct antenna_setup
*ant
)
397 * We should never come here because rt2x00lib is supposed
398 * to catch this and send us the correct antenna explicitely.
400 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
401 ant
->tx
== ANTENNA_SW_DIVERSITY
);
403 r4
= rt2400pci_bbp_read(rt2x00dev
, 4);
404 r1
= rt2400pci_bbp_read(rt2x00dev
, 1);
407 * Configure the TX antenna.
410 case ANTENNA_HW_DIVERSITY
:
411 rt2x00_set_field8(&r1
, BBP_R1_TX_ANTENNA
, 1);
414 rt2x00_set_field8(&r1
, BBP_R1_TX_ANTENNA
, 0);
418 rt2x00_set_field8(&r1
, BBP_R1_TX_ANTENNA
, 2);
423 * Configure the RX antenna.
426 case ANTENNA_HW_DIVERSITY
:
427 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA
, 1);
430 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA
, 0);
434 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA
, 2);
438 rt2400pci_bbp_write(rt2x00dev
, 4, r4
);
439 rt2400pci_bbp_write(rt2x00dev
, 1, r1
);
442 static void rt2400pci_config_channel(struct rt2x00_dev
*rt2x00dev
,
443 struct rf_channel
*rf
)
446 * Switch on tuning bits.
448 rt2x00_set_field32(&rf
->rf1
, RF1_TUNER
, 1);
449 rt2x00_set_field32(&rf
->rf3
, RF3_TUNER
, 1);
451 rt2400pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
452 rt2400pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
453 rt2400pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
456 * RF2420 chipset don't need any additional actions.
458 if (rt2x00_rf(rt2x00dev
, RF2420
))
462 * For the RT2421 chipsets we need to write an invalid
463 * reference clock rate to activate auto_tune.
464 * After that we set the value back to the correct channel.
466 rt2400pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
467 rt2400pci_rf_write(rt2x00dev
, 2, 0x000c2a32);
468 rt2400pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
472 rt2400pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
473 rt2400pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
474 rt2400pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
479 * Switch off tuning bits.
481 rt2x00_set_field32(&rf
->rf1
, RF1_TUNER
, 0);
482 rt2x00_set_field32(&rf
->rf3
, RF3_TUNER
, 0);
484 rt2400pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
485 rt2400pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
488 * Clear false CRC during channel switch.
490 rf
->rf1
= rt2x00mmio_register_read(rt2x00dev
, CNT0
);
493 static void rt2400pci_config_txpower(struct rt2x00_dev
*rt2x00dev
, int txpower
)
495 rt2400pci_bbp_write(rt2x00dev
, 3, TXPOWER_TO_DEV(txpower
));
498 static void rt2400pci_config_retry_limit(struct rt2x00_dev
*rt2x00dev
,
499 struct rt2x00lib_conf
*libconf
)
503 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR11
);
504 rt2x00_set_field32(®
, CSR11_LONG_RETRY
,
505 libconf
->conf
->long_frame_max_tx_count
);
506 rt2x00_set_field32(®
, CSR11_SHORT_RETRY
,
507 libconf
->conf
->short_frame_max_tx_count
);
508 rt2x00mmio_register_write(rt2x00dev
, CSR11
, reg
);
511 static void rt2400pci_config_ps(struct rt2x00_dev
*rt2x00dev
,
512 struct rt2x00lib_conf
*libconf
)
514 enum dev_state state
=
515 (libconf
->conf
->flags
& IEEE80211_CONF_PS
) ?
516 STATE_SLEEP
: STATE_AWAKE
;
519 if (state
== STATE_SLEEP
) {
520 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR20
);
521 rt2x00_set_field32(®
, CSR20_DELAY_AFTER_TBCN
,
522 (rt2x00dev
->beacon_int
- 20) * 16);
523 rt2x00_set_field32(®
, CSR20_TBCN_BEFORE_WAKEUP
,
524 libconf
->conf
->listen_interval
- 1);
526 /* We must first disable autowake before it can be enabled */
527 rt2x00_set_field32(®
, CSR20_AUTOWAKE
, 0);
528 rt2x00mmio_register_write(rt2x00dev
, CSR20
, reg
);
530 rt2x00_set_field32(®
, CSR20_AUTOWAKE
, 1);
531 rt2x00mmio_register_write(rt2x00dev
, CSR20
, reg
);
533 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR20
);
534 rt2x00_set_field32(®
, CSR20_AUTOWAKE
, 0);
535 rt2x00mmio_register_write(rt2x00dev
, CSR20
, reg
);
538 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, state
);
541 static void rt2400pci_config(struct rt2x00_dev
*rt2x00dev
,
542 struct rt2x00lib_conf
*libconf
,
543 const unsigned int flags
)
545 if (flags
& IEEE80211_CONF_CHANGE_CHANNEL
)
546 rt2400pci_config_channel(rt2x00dev
, &libconf
->rf
);
547 if (flags
& IEEE80211_CONF_CHANGE_POWER
)
548 rt2400pci_config_txpower(rt2x00dev
,
549 libconf
->conf
->power_level
);
550 if (flags
& IEEE80211_CONF_CHANGE_RETRY_LIMITS
)
551 rt2400pci_config_retry_limit(rt2x00dev
, libconf
);
552 if (flags
& IEEE80211_CONF_CHANGE_PS
)
553 rt2400pci_config_ps(rt2x00dev
, libconf
);
556 static void rt2400pci_config_cw(struct rt2x00_dev
*rt2x00dev
,
557 const int cw_min
, const int cw_max
)
561 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR11
);
562 rt2x00_set_field32(®
, CSR11_CWMIN
, cw_min
);
563 rt2x00_set_field32(®
, CSR11_CWMAX
, cw_max
);
564 rt2x00mmio_register_write(rt2x00dev
, CSR11
, reg
);
570 static void rt2400pci_link_stats(struct rt2x00_dev
*rt2x00dev
,
571 struct link_qual
*qual
)
577 * Update FCS error count from register.
579 reg
= rt2x00mmio_register_read(rt2x00dev
, CNT0
);
580 qual
->rx_failed
= rt2x00_get_field32(reg
, CNT0_FCS_ERROR
);
583 * Update False CCA count from register.
585 bbp
= rt2400pci_bbp_read(rt2x00dev
, 39);
586 qual
->false_cca
= bbp
;
589 static inline void rt2400pci_set_vgc(struct rt2x00_dev
*rt2x00dev
,
590 struct link_qual
*qual
, u8 vgc_level
)
592 if (qual
->vgc_level_reg
!= vgc_level
) {
593 rt2400pci_bbp_write(rt2x00dev
, 13, vgc_level
);
594 qual
->vgc_level
= vgc_level
;
595 qual
->vgc_level_reg
= vgc_level
;
599 static void rt2400pci_reset_tuner(struct rt2x00_dev
*rt2x00dev
,
600 struct link_qual
*qual
)
602 rt2400pci_set_vgc(rt2x00dev
, qual
, 0x08);
605 static void rt2400pci_link_tuner(struct rt2x00_dev
*rt2x00dev
,
606 struct link_qual
*qual
, const u32 count
)
609 * The link tuner should not run longer then 60 seconds,
610 * and should run once every 2 seconds.
612 if (count
> 60 || !(count
& 1))
616 * Base r13 link tuning on the false cca count.
618 if ((qual
->false_cca
> 512) && (qual
->vgc_level
< 0x20))
619 rt2400pci_set_vgc(rt2x00dev
, qual
, ++qual
->vgc_level
);
620 else if ((qual
->false_cca
< 100) && (qual
->vgc_level
> 0x08))
621 rt2400pci_set_vgc(rt2x00dev
, qual
, --qual
->vgc_level
);
627 static void rt2400pci_start_queue(struct data_queue
*queue
)
629 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
632 switch (queue
->qid
) {
634 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR0
);
635 rt2x00_set_field32(®
, RXCSR0_DISABLE_RX
, 0);
636 rt2x00mmio_register_write(rt2x00dev
, RXCSR0
, reg
);
639 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR14
);
640 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 1);
641 rt2x00_set_field32(®
, CSR14_TBCN
, 1);
642 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 1);
643 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
650 static void rt2400pci_kick_queue(struct data_queue
*queue
)
652 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
655 switch (queue
->qid
) {
657 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR0
);
658 rt2x00_set_field32(®
, TXCSR0_KICK_PRIO
, 1);
659 rt2x00mmio_register_write(rt2x00dev
, TXCSR0
, reg
);
662 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR0
);
663 rt2x00_set_field32(®
, TXCSR0_KICK_TX
, 1);
664 rt2x00mmio_register_write(rt2x00dev
, TXCSR0
, reg
);
667 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR0
);
668 rt2x00_set_field32(®
, TXCSR0_KICK_ATIM
, 1);
669 rt2x00mmio_register_write(rt2x00dev
, TXCSR0
, reg
);
676 static void rt2400pci_stop_queue(struct data_queue
*queue
)
678 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
681 switch (queue
->qid
) {
685 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR0
);
686 rt2x00_set_field32(®
, TXCSR0_ABORT
, 1);
687 rt2x00mmio_register_write(rt2x00dev
, TXCSR0
, reg
);
690 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR0
);
691 rt2x00_set_field32(®
, RXCSR0_DISABLE_RX
, 1);
692 rt2x00mmio_register_write(rt2x00dev
, RXCSR0
, reg
);
695 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR14
);
696 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 0);
697 rt2x00_set_field32(®
, CSR14_TBCN
, 0);
698 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 0);
699 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
702 * Wait for possibly running tbtt tasklets.
704 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
712 * Initialization functions.
714 static bool rt2400pci_get_entry_state(struct queue_entry
*entry
)
716 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
719 if (entry
->queue
->qid
== QID_RX
) {
720 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
722 return rt2x00_get_field32(word
, RXD_W0_OWNER_NIC
);
724 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
726 return (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
727 rt2x00_get_field32(word
, TXD_W0_VALID
));
731 static void rt2400pci_clear_entry(struct queue_entry
*entry
)
733 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
734 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
737 if (entry
->queue
->qid
== QID_RX
) {
738 word
= rt2x00_desc_read(entry_priv
->desc
, 2);
739 rt2x00_set_field32(&word
, RXD_W2_BUFFER_LENGTH
, entry
->skb
->len
);
740 rt2x00_desc_write(entry_priv
->desc
, 2, word
);
742 word
= rt2x00_desc_read(entry_priv
->desc
, 1);
743 rt2x00_set_field32(&word
, RXD_W1_BUFFER_ADDRESS
, skbdesc
->skb_dma
);
744 rt2x00_desc_write(entry_priv
->desc
, 1, word
);
746 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
747 rt2x00_set_field32(&word
, RXD_W0_OWNER_NIC
, 1);
748 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
750 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
751 rt2x00_set_field32(&word
, TXD_W0_VALID
, 0);
752 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 0);
753 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
757 static int rt2400pci_init_queues(struct rt2x00_dev
*rt2x00dev
)
759 struct queue_entry_priv_mmio
*entry_priv
;
763 * Initialize registers.
765 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR2
);
766 rt2x00_set_field32(®
, TXCSR2_TXD_SIZE
, rt2x00dev
->tx
[0].desc_size
);
767 rt2x00_set_field32(®
, TXCSR2_NUM_TXD
, rt2x00dev
->tx
[1].limit
);
768 rt2x00_set_field32(®
, TXCSR2_NUM_ATIM
, rt2x00dev
->atim
->limit
);
769 rt2x00_set_field32(®
, TXCSR2_NUM_PRIO
, rt2x00dev
->tx
[0].limit
);
770 rt2x00mmio_register_write(rt2x00dev
, TXCSR2
, reg
);
772 entry_priv
= rt2x00dev
->tx
[1].entries
[0].priv_data
;
773 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR3
);
774 rt2x00_set_field32(®
, TXCSR3_TX_RING_REGISTER
,
775 entry_priv
->desc_dma
);
776 rt2x00mmio_register_write(rt2x00dev
, TXCSR3
, reg
);
778 entry_priv
= rt2x00dev
->tx
[0].entries
[0].priv_data
;
779 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR5
);
780 rt2x00_set_field32(®
, TXCSR5_PRIO_RING_REGISTER
,
781 entry_priv
->desc_dma
);
782 rt2x00mmio_register_write(rt2x00dev
, TXCSR5
, reg
);
784 entry_priv
= rt2x00dev
->atim
->entries
[0].priv_data
;
785 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR4
);
786 rt2x00_set_field32(®
, TXCSR4_ATIM_RING_REGISTER
,
787 entry_priv
->desc_dma
);
788 rt2x00mmio_register_write(rt2x00dev
, TXCSR4
, reg
);
790 entry_priv
= rt2x00dev
->bcn
->entries
[0].priv_data
;
791 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR6
);
792 rt2x00_set_field32(®
, TXCSR6_BEACON_RING_REGISTER
,
793 entry_priv
->desc_dma
);
794 rt2x00mmio_register_write(rt2x00dev
, TXCSR6
, reg
);
796 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR1
);
797 rt2x00_set_field32(®
, RXCSR1_RXD_SIZE
, rt2x00dev
->rx
->desc_size
);
798 rt2x00_set_field32(®
, RXCSR1_NUM_RXD
, rt2x00dev
->rx
->limit
);
799 rt2x00mmio_register_write(rt2x00dev
, RXCSR1
, reg
);
801 entry_priv
= rt2x00dev
->rx
->entries
[0].priv_data
;
802 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR2
);
803 rt2x00_set_field32(®
, RXCSR2_RX_RING_REGISTER
,
804 entry_priv
->desc_dma
);
805 rt2x00mmio_register_write(rt2x00dev
, RXCSR2
, reg
);
810 static int rt2400pci_init_registers(struct rt2x00_dev
*rt2x00dev
)
814 rt2x00mmio_register_write(rt2x00dev
, PSCSR0
, 0x00020002);
815 rt2x00mmio_register_write(rt2x00dev
, PSCSR1
, 0x00000002);
816 rt2x00mmio_register_write(rt2x00dev
, PSCSR2
, 0x00023f20);
817 rt2x00mmio_register_write(rt2x00dev
, PSCSR3
, 0x00000002);
819 reg
= rt2x00mmio_register_read(rt2x00dev
, TIMECSR
);
820 rt2x00_set_field32(®
, TIMECSR_US_COUNT
, 33);
821 rt2x00_set_field32(®
, TIMECSR_US_64_COUNT
, 63);
822 rt2x00_set_field32(®
, TIMECSR_BEACON_EXPECT
, 0);
823 rt2x00mmio_register_write(rt2x00dev
, TIMECSR
, reg
);
825 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR9
);
826 rt2x00_set_field32(®
, CSR9_MAX_FRAME_UNIT
,
827 (rt2x00dev
->rx
->data_size
/ 128));
828 rt2x00mmio_register_write(rt2x00dev
, CSR9
, reg
);
830 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR14
);
831 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 0);
832 rt2x00_set_field32(®
, CSR14_TSF_SYNC
, 0);
833 rt2x00_set_field32(®
, CSR14_TBCN
, 0);
834 rt2x00_set_field32(®
, CSR14_TCFP
, 0);
835 rt2x00_set_field32(®
, CSR14_TATIMW
, 0);
836 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 0);
837 rt2x00_set_field32(®
, CSR14_CFP_COUNT_PRELOAD
, 0);
838 rt2x00_set_field32(®
, CSR14_TBCM_PRELOAD
, 0);
839 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
841 rt2x00mmio_register_write(rt2x00dev
, CNT3
, 0x3f080000);
843 reg
= rt2x00mmio_register_read(rt2x00dev
, ARCSR0
);
844 rt2x00_set_field32(®
, ARCSR0_AR_BBP_DATA0
, 133);
845 rt2x00_set_field32(®
, ARCSR0_AR_BBP_ID0
, 134);
846 rt2x00_set_field32(®
, ARCSR0_AR_BBP_DATA1
, 136);
847 rt2x00_set_field32(®
, ARCSR0_AR_BBP_ID1
, 135);
848 rt2x00mmio_register_write(rt2x00dev
, ARCSR0
, reg
);
850 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR3
);
851 rt2x00_set_field32(®
, RXCSR3_BBP_ID0
, 3); /* Tx power.*/
852 rt2x00_set_field32(®
, RXCSR3_BBP_ID0_VALID
, 1);
853 rt2x00_set_field32(®
, RXCSR3_BBP_ID1
, 32); /* Signal */
854 rt2x00_set_field32(®
, RXCSR3_BBP_ID1_VALID
, 1);
855 rt2x00_set_field32(®
, RXCSR3_BBP_ID2
, 36); /* Rssi */
856 rt2x00_set_field32(®
, RXCSR3_BBP_ID2_VALID
, 1);
857 rt2x00mmio_register_write(rt2x00dev
, RXCSR3
, reg
);
859 rt2x00mmio_register_write(rt2x00dev
, PWRCSR0
, 0x3f3b3100);
861 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
864 rt2x00mmio_register_write(rt2x00dev
, MACCSR0
, 0x00217223);
865 rt2x00mmio_register_write(rt2x00dev
, MACCSR1
, 0x00235518);
867 reg
= rt2x00mmio_register_read(rt2x00dev
, MACCSR2
);
868 rt2x00_set_field32(®
, MACCSR2_DELAY
, 64);
869 rt2x00mmio_register_write(rt2x00dev
, MACCSR2
, reg
);
871 reg
= rt2x00mmio_register_read(rt2x00dev
, RALINKCSR
);
872 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_DATA0
, 17);
873 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_ID0
, 154);
874 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_DATA1
, 0);
875 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_ID1
, 154);
876 rt2x00mmio_register_write(rt2x00dev
, RALINKCSR
, reg
);
878 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR1
);
879 rt2x00_set_field32(®
, CSR1_SOFT_RESET
, 1);
880 rt2x00_set_field32(®
, CSR1_BBP_RESET
, 0);
881 rt2x00_set_field32(®
, CSR1_HOST_READY
, 0);
882 rt2x00mmio_register_write(rt2x00dev
, CSR1
, reg
);
884 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR1
);
885 rt2x00_set_field32(®
, CSR1_SOFT_RESET
, 0);
886 rt2x00_set_field32(®
, CSR1_HOST_READY
, 1);
887 rt2x00mmio_register_write(rt2x00dev
, CSR1
, reg
);
890 * We must clear the FCS and FIFO error count.
891 * These registers are cleared on read,
892 * so we may pass a useless variable to store the value.
894 reg
= rt2x00mmio_register_read(rt2x00dev
, CNT0
);
895 reg
= rt2x00mmio_register_read(rt2x00dev
, CNT4
);
900 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
905 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
906 value
= rt2400pci_bbp_read(rt2x00dev
, 0);
907 if ((value
!= 0xff) && (value
!= 0x00))
909 udelay(REGISTER_BUSY_DELAY
);
912 rt2x00_err(rt2x00dev
, "BBP register access failed, aborting\n");
916 static int rt2400pci_init_bbp(struct rt2x00_dev
*rt2x00dev
)
923 if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev
)))
926 rt2400pci_bbp_write(rt2x00dev
, 1, 0x00);
927 rt2400pci_bbp_write(rt2x00dev
, 3, 0x27);
928 rt2400pci_bbp_write(rt2x00dev
, 4, 0x08);
929 rt2400pci_bbp_write(rt2x00dev
, 10, 0x0f);
930 rt2400pci_bbp_write(rt2x00dev
, 15, 0x72);
931 rt2400pci_bbp_write(rt2x00dev
, 16, 0x74);
932 rt2400pci_bbp_write(rt2x00dev
, 17, 0x20);
933 rt2400pci_bbp_write(rt2x00dev
, 18, 0x72);
934 rt2400pci_bbp_write(rt2x00dev
, 19, 0x0b);
935 rt2400pci_bbp_write(rt2x00dev
, 20, 0x00);
936 rt2400pci_bbp_write(rt2x00dev
, 28, 0x11);
937 rt2400pci_bbp_write(rt2x00dev
, 29, 0x04);
938 rt2400pci_bbp_write(rt2x00dev
, 30, 0x21);
939 rt2400pci_bbp_write(rt2x00dev
, 31, 0x00);
941 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
942 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
);
944 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
945 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
946 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
947 rt2400pci_bbp_write(rt2x00dev
, reg_id
, value
);
955 * Device state switch handlers.
957 static void rt2400pci_toggle_irq(struct rt2x00_dev
*rt2x00dev
,
958 enum dev_state state
)
960 int mask
= (state
== STATE_RADIO_IRQ_OFF
);
965 * When interrupts are being enabled, the interrupt registers
966 * should clear the register to assure a clean state.
968 if (state
== STATE_RADIO_IRQ_ON
) {
969 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR7
);
970 rt2x00mmio_register_write(rt2x00dev
, CSR7
, reg
);
974 * Only toggle the interrupts bits we are going to use.
975 * Non-checked interrupt bits are disabled by default.
977 spin_lock_irqsave(&rt2x00dev
->irqmask_lock
, flags
);
979 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR8
);
980 rt2x00_set_field32(®
, CSR8_TBCN_EXPIRE
, mask
);
981 rt2x00_set_field32(®
, CSR8_TXDONE_TXRING
, mask
);
982 rt2x00_set_field32(®
, CSR8_TXDONE_ATIMRING
, mask
);
983 rt2x00_set_field32(®
, CSR8_TXDONE_PRIORING
, mask
);
984 rt2x00_set_field32(®
, CSR8_RXDONE
, mask
);
985 rt2x00mmio_register_write(rt2x00dev
, CSR8
, reg
);
987 spin_unlock_irqrestore(&rt2x00dev
->irqmask_lock
, flags
);
989 if (state
== STATE_RADIO_IRQ_OFF
) {
991 * Ensure that all tasklets are finished before
992 * disabling the interrupts.
994 tasklet_kill(&rt2x00dev
->txstatus_tasklet
);
995 tasklet_kill(&rt2x00dev
->rxdone_tasklet
);
996 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
1000 static int rt2400pci_enable_radio(struct rt2x00_dev
*rt2x00dev
)
1003 * Initialize all registers.
1005 if (unlikely(rt2400pci_init_queues(rt2x00dev
) ||
1006 rt2400pci_init_registers(rt2x00dev
) ||
1007 rt2400pci_init_bbp(rt2x00dev
)))
1013 static void rt2400pci_disable_radio(struct rt2x00_dev
*rt2x00dev
)
1018 rt2x00mmio_register_write(rt2x00dev
, PWRCSR0
, 0);
1021 static int rt2400pci_set_state(struct rt2x00_dev
*rt2x00dev
,
1022 enum dev_state state
)
1030 put_to_sleep
= (state
!= STATE_AWAKE
);
1032 reg
= rt2x00mmio_register_read(rt2x00dev
, PWRCSR1
);
1033 rt2x00_set_field32(®
, PWRCSR1_SET_STATE
, 1);
1034 rt2x00_set_field32(®
, PWRCSR1_BBP_DESIRE_STATE
, state
);
1035 rt2x00_set_field32(®
, PWRCSR1_RF_DESIRE_STATE
, state
);
1036 rt2x00_set_field32(®
, PWRCSR1_PUT_TO_SLEEP
, put_to_sleep
);
1037 rt2x00mmio_register_write(rt2x00dev
, PWRCSR1
, reg
);
1040 * Device is not guaranteed to be in the requested state yet.
1041 * We must wait until the register indicates that the
1042 * device has entered the correct state.
1044 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1045 reg2
= rt2x00mmio_register_read(rt2x00dev
, PWRCSR1
);
1046 bbp_state
= rt2x00_get_field32(reg2
, PWRCSR1_BBP_CURR_STATE
);
1047 rf_state
= rt2x00_get_field32(reg2
, PWRCSR1_RF_CURR_STATE
);
1048 if (bbp_state
== state
&& rf_state
== state
)
1050 rt2x00mmio_register_write(rt2x00dev
, PWRCSR1
, reg
);
1057 static int rt2400pci_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1058 enum dev_state state
)
1063 case STATE_RADIO_ON
:
1064 retval
= rt2400pci_enable_radio(rt2x00dev
);
1066 case STATE_RADIO_OFF
:
1067 rt2400pci_disable_radio(rt2x00dev
);
1069 case STATE_RADIO_IRQ_ON
:
1070 case STATE_RADIO_IRQ_OFF
:
1071 rt2400pci_toggle_irq(rt2x00dev
, state
);
1073 case STATE_DEEP_SLEEP
:
1077 retval
= rt2400pci_set_state(rt2x00dev
, state
);
1084 if (unlikely(retval
))
1085 rt2x00_err(rt2x00dev
, "Device failed to enter state %d (%d)\n",
1092 * TX descriptor initialization
1094 static void rt2400pci_write_tx_desc(struct queue_entry
*entry
,
1095 struct txentry_desc
*txdesc
)
1097 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1098 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
1099 __le32
*txd
= entry_priv
->desc
;
1103 * Start writing the descriptor words.
1105 word
= rt2x00_desc_read(txd
, 1);
1106 rt2x00_set_field32(&word
, TXD_W1_BUFFER_ADDRESS
, skbdesc
->skb_dma
);
1107 rt2x00_desc_write(txd
, 1, word
);
1109 word
= rt2x00_desc_read(txd
, 2);
1110 rt2x00_set_field32(&word
, TXD_W2_BUFFER_LENGTH
, txdesc
->length
);
1111 rt2x00_set_field32(&word
, TXD_W2_DATABYTE_COUNT
, txdesc
->length
);
1112 rt2x00_desc_write(txd
, 2, word
);
1114 word
= rt2x00_desc_read(txd
, 3);
1115 rt2x00_set_field32(&word
, TXD_W3_PLCP_SIGNAL
, txdesc
->u
.plcp
.signal
);
1116 rt2x00_set_field32(&word
, TXD_W3_PLCP_SIGNAL_REGNUM
, 5);
1117 rt2x00_set_field32(&word
, TXD_W3_PLCP_SIGNAL_BUSY
, 1);
1118 rt2x00_set_field32(&word
, TXD_W3_PLCP_SERVICE
, txdesc
->u
.plcp
.service
);
1119 rt2x00_set_field32(&word
, TXD_W3_PLCP_SERVICE_REGNUM
, 6);
1120 rt2x00_set_field32(&word
, TXD_W3_PLCP_SERVICE_BUSY
, 1);
1121 rt2x00_desc_write(txd
, 3, word
);
1123 word
= rt2x00_desc_read(txd
, 4);
1124 rt2x00_set_field32(&word
, TXD_W4_PLCP_LENGTH_LOW
,
1125 txdesc
->u
.plcp
.length_low
);
1126 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_LOW_REGNUM
, 8);
1127 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_LOW_BUSY
, 1);
1128 rt2x00_set_field32(&word
, TXD_W4_PLCP_LENGTH_HIGH
,
1129 txdesc
->u
.plcp
.length_high
);
1130 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_HIGH_REGNUM
, 7);
1131 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_HIGH_BUSY
, 1);
1132 rt2x00_desc_write(txd
, 4, word
);
1135 * Writing TXD word 0 must the last to prevent a race condition with
1136 * the device, whereby the device may take hold of the TXD before we
1137 * finished updating it.
1139 word
= rt2x00_desc_read(txd
, 0);
1140 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 1);
1141 rt2x00_set_field32(&word
, TXD_W0_VALID
, 1);
1142 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1143 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1144 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1145 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1146 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1147 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1148 rt2x00_set_field32(&word
, TXD_W0_RTS
,
1149 test_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
));
1150 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->u
.plcp
.ifs
);
1151 rt2x00_set_field32(&word
, TXD_W0_RETRY_MODE
,
1152 test_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
));
1153 rt2x00_desc_write(txd
, 0, word
);
1156 * Register descriptor details in skb frame descriptor.
1158 skbdesc
->desc
= txd
;
1159 skbdesc
->desc_len
= TXD_DESC_SIZE
;
1163 * TX data initialization
1165 static void rt2400pci_write_beacon(struct queue_entry
*entry
,
1166 struct txentry_desc
*txdesc
)
1168 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1172 * Disable beaconing while we are reloading the beacon data,
1173 * otherwise we might be sending out invalid data.
1175 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR14
);
1176 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 0);
1177 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
1179 if (rt2x00queue_map_txskb(entry
)) {
1180 rt2x00_err(rt2x00dev
, "Fail to map beacon, aborting\n");
1184 * Enable beaconing again.
1186 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 1);
1188 * Write the TX descriptor for the beacon.
1190 rt2400pci_write_tx_desc(entry
, txdesc
);
1193 * Dump beacon to userspace through debugfs.
1195 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_BEACON
, entry
);
1198 * Enable beaconing again.
1200 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 1);
1201 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
1205 * RX control handlers
1207 static void rt2400pci_fill_rxdone(struct queue_entry
*entry
,
1208 struct rxdone_entry_desc
*rxdesc
)
1210 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1211 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
1220 word0
= rt2x00_desc_read(entry_priv
->desc
, 0);
1221 word2
= rt2x00_desc_read(entry_priv
->desc
, 2);
1222 word3
= rt2x00_desc_read(entry_priv
->desc
, 3);
1223 word4
= rt2x00_desc_read(entry_priv
->desc
, 4);
1225 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1226 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1227 if (rt2x00_get_field32(word0
, RXD_W0_PHYSICAL_ERROR
))
1228 rxdesc
->flags
|= RX_FLAG_FAILED_PLCP_CRC
;
1231 * We only get the lower 32bits from the timestamp,
1232 * to get the full 64bits we must complement it with
1233 * the timestamp from get_tsf().
1234 * Note that when a wraparound of the lower 32bits
1235 * has occurred between the frame arrival and the get_tsf()
1236 * call, we must decrease the higher 32bits with 1 to get
1239 tsf
= rt2x00dev
->ops
->hw
->get_tsf(rt2x00dev
->hw
, NULL
);
1240 rx_low
= rt2x00_get_field32(word4
, RXD_W4_RX_END_TIME
);
1241 rx_high
= upper_32_bits(tsf
);
1243 if ((u32
)tsf
<= rx_low
)
1247 * Obtain the status about this packet.
1248 * The signal is the PLCP value, and needs to be stripped
1249 * of the preamble bit (0x08).
1251 rxdesc
->timestamp
= ((u64
)rx_high
<< 32) | rx_low
;
1252 rxdesc
->signal
= rt2x00_get_field32(word2
, RXD_W2_SIGNAL
) & ~0x08;
1253 rxdesc
->rssi
= rt2x00_get_field32(word3
, RXD_W3_RSSI
) -
1254 entry
->queue
->rt2x00dev
->rssi_offset
;
1255 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1257 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
1258 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
1259 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
1263 * Interrupt functions.
1265 static void rt2400pci_txdone(struct rt2x00_dev
*rt2x00dev
,
1266 const enum data_queue_qid queue_idx
)
1268 struct data_queue
*queue
= rt2x00queue_get_tx_queue(rt2x00dev
, queue_idx
);
1269 struct queue_entry_priv_mmio
*entry_priv
;
1270 struct queue_entry
*entry
;
1271 struct txdone_entry_desc txdesc
;
1274 while (!rt2x00queue_empty(queue
)) {
1275 entry
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
1276 entry_priv
= entry
->priv_data
;
1277 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
1279 if (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
1280 !rt2x00_get_field32(word
, TXD_W0_VALID
))
1284 * Obtain the status about this packet.
1287 switch (rt2x00_get_field32(word
, TXD_W0_RESULT
)) {
1288 case 0: /* Success */
1289 case 1: /* Success with retry */
1290 __set_bit(TXDONE_SUCCESS
, &txdesc
.flags
);
1292 case 2: /* Failure, excessive retries */
1293 __set_bit(TXDONE_EXCESSIVE_RETRY
, &txdesc
.flags
);
1294 /* Fall through - this is a failed frame! */
1295 default: /* Failure */
1296 __set_bit(TXDONE_FAILURE
, &txdesc
.flags
);
1298 txdesc
.retry
= rt2x00_get_field32(word
, TXD_W0_RETRY_COUNT
);
1300 rt2x00lib_txdone(entry
, &txdesc
);
1304 static inline void rt2400pci_enable_interrupt(struct rt2x00_dev
*rt2x00dev
,
1305 struct rt2x00_field32 irq_field
)
1310 * Enable a single interrupt. The interrupt mask register
1311 * access needs locking.
1313 spin_lock_irq(&rt2x00dev
->irqmask_lock
);
1315 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR8
);
1316 rt2x00_set_field32(®
, irq_field
, 0);
1317 rt2x00mmio_register_write(rt2x00dev
, CSR8
, reg
);
1319 spin_unlock_irq(&rt2x00dev
->irqmask_lock
);
1322 static void rt2400pci_txstatus_tasklet(unsigned long data
)
1324 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
1328 * Handle all tx queues.
1330 rt2400pci_txdone(rt2x00dev
, QID_ATIM
);
1331 rt2400pci_txdone(rt2x00dev
, QID_AC_VO
);
1332 rt2400pci_txdone(rt2x00dev
, QID_AC_VI
);
1335 * Enable all TXDONE interrupts again.
1337 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
)) {
1338 spin_lock_irq(&rt2x00dev
->irqmask_lock
);
1340 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR8
);
1341 rt2x00_set_field32(®
, CSR8_TXDONE_TXRING
, 0);
1342 rt2x00_set_field32(®
, CSR8_TXDONE_ATIMRING
, 0);
1343 rt2x00_set_field32(®
, CSR8_TXDONE_PRIORING
, 0);
1344 rt2x00mmio_register_write(rt2x00dev
, CSR8
, reg
);
1346 spin_unlock_irq(&rt2x00dev
->irqmask_lock
);
1350 static void rt2400pci_tbtt_tasklet(unsigned long data
)
1352 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
1353 rt2x00lib_beacondone(rt2x00dev
);
1354 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1355 rt2400pci_enable_interrupt(rt2x00dev
, CSR8_TBCN_EXPIRE
);
1358 static void rt2400pci_rxdone_tasklet(unsigned long data
)
1360 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
1361 if (rt2x00mmio_rxdone(rt2x00dev
))
1362 tasklet_schedule(&rt2x00dev
->rxdone_tasklet
);
1363 else if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1364 rt2400pci_enable_interrupt(rt2x00dev
, CSR8_RXDONE
);
1367 static irqreturn_t
rt2400pci_interrupt(int irq
, void *dev_instance
)
1369 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
1373 * Get the interrupt sources & saved to local variable.
1374 * Write register value back to clear pending interrupts.
1376 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR7
);
1377 rt2x00mmio_register_write(rt2x00dev
, CSR7
, reg
);
1382 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1388 * Schedule tasklets for interrupt handling.
1390 if (rt2x00_get_field32(reg
, CSR7_TBCN_EXPIRE
))
1391 tasklet_hi_schedule(&rt2x00dev
->tbtt_tasklet
);
1393 if (rt2x00_get_field32(reg
, CSR7_RXDONE
))
1394 tasklet_schedule(&rt2x00dev
->rxdone_tasklet
);
1396 if (rt2x00_get_field32(reg
, CSR7_TXDONE_ATIMRING
) ||
1397 rt2x00_get_field32(reg
, CSR7_TXDONE_PRIORING
) ||
1398 rt2x00_get_field32(reg
, CSR7_TXDONE_TXRING
)) {
1399 tasklet_schedule(&rt2x00dev
->txstatus_tasklet
);
1401 * Mask out all txdone interrupts.
1403 rt2x00_set_field32(&mask
, CSR8_TXDONE_TXRING
, 1);
1404 rt2x00_set_field32(&mask
, CSR8_TXDONE_ATIMRING
, 1);
1405 rt2x00_set_field32(&mask
, CSR8_TXDONE_PRIORING
, 1);
1409 * Disable all interrupts for which a tasklet was scheduled right now,
1410 * the tasklet will reenable the appropriate interrupts.
1412 spin_lock(&rt2x00dev
->irqmask_lock
);
1414 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR8
);
1416 rt2x00mmio_register_write(rt2x00dev
, CSR8
, reg
);
1418 spin_unlock(&rt2x00dev
->irqmask_lock
);
1426 * Device probe functions.
1428 static int rt2400pci_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1430 struct eeprom_93cx6 eeprom
;
1435 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR21
);
1437 eeprom
.data
= rt2x00dev
;
1438 eeprom
.register_read
= rt2400pci_eepromregister_read
;
1439 eeprom
.register_write
= rt2400pci_eepromregister_write
;
1440 eeprom
.width
= rt2x00_get_field32(reg
, CSR21_TYPE_93C46
) ?
1441 PCI_EEPROM_WIDTH_93C46
: PCI_EEPROM_WIDTH_93C66
;
1442 eeprom
.reg_data_in
= 0;
1443 eeprom
.reg_data_out
= 0;
1444 eeprom
.reg_data_clock
= 0;
1445 eeprom
.reg_chip_select
= 0;
1447 eeprom_93cx6_multiread(&eeprom
, EEPROM_BASE
, rt2x00dev
->eeprom
,
1448 EEPROM_SIZE
/ sizeof(u16
));
1451 * Start validation of the data that has been read.
1453 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1454 rt2x00lib_set_mac_address(rt2x00dev
, mac
);
1456 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
);
1457 if (word
== 0xffff) {
1458 rt2x00_err(rt2x00dev
, "Invalid EEPROM data detected\n");
1465 static int rt2400pci_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
1472 * Read EEPROM word for configuration.
1474 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
);
1477 * Identify RF chipset.
1479 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
1480 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR0
);
1481 rt2x00_set_chip(rt2x00dev
, RT2460
, value
,
1482 rt2x00_get_field32(reg
, CSR0_REVISION
));
1484 if (!rt2x00_rf(rt2x00dev
, RF2420
) && !rt2x00_rf(rt2x00dev
, RF2421
)) {
1485 rt2x00_err(rt2x00dev
, "Invalid RF chipset detected\n");
1490 * Identify default antenna configuration.
1492 rt2x00dev
->default_ant
.tx
=
1493 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
1494 rt2x00dev
->default_ant
.rx
=
1495 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
1498 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1499 * I am not 100% sure about this, but the legacy drivers do not
1500 * indicate antenna swapping in software is required when
1501 * diversity is enabled.
1503 if (rt2x00dev
->default_ant
.tx
== ANTENNA_SW_DIVERSITY
)
1504 rt2x00dev
->default_ant
.tx
= ANTENNA_HW_DIVERSITY
;
1505 if (rt2x00dev
->default_ant
.rx
== ANTENNA_SW_DIVERSITY
)
1506 rt2x00dev
->default_ant
.rx
= ANTENNA_HW_DIVERSITY
;
1509 * Store led mode, for correct led behaviour.
1511 #ifdef CONFIG_RT2X00_LIB_LEDS
1512 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_LED_MODE
);
1514 rt2400pci_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
1515 if (value
== LED_MODE_TXRX_ACTIVITY
||
1516 value
== LED_MODE_DEFAULT
||
1517 value
== LED_MODE_ASUS
)
1518 rt2400pci_init_led(rt2x00dev
, &rt2x00dev
->led_qual
,
1520 #endif /* CONFIG_RT2X00_LIB_LEDS */
1523 * Detect if this device has an hardware controlled radio.
1525 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
1526 __set_bit(CAPABILITY_HW_BUTTON
, &rt2x00dev
->cap_flags
);
1529 * Check if the BBP tuning should be enabled.
1531 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_AGCVGC_TUNING
))
1532 __set_bit(CAPABILITY_LINK_TUNING
, &rt2x00dev
->cap_flags
);
1538 * RF value list for RF2420 & RF2421
1541 static const struct rf_channel rf_vals_b
[] = {
1542 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1543 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1544 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1545 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1546 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1547 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1548 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1549 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1550 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1551 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1552 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1553 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1554 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1555 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1558 static int rt2400pci_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
1560 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
1561 struct channel_info
*info
;
1566 * Initialize all hw fields.
1568 ieee80211_hw_set(rt2x00dev
->hw
, PS_NULLFUNC_STACK
);
1569 ieee80211_hw_set(rt2x00dev
->hw
, SUPPORTS_PS
);
1570 ieee80211_hw_set(rt2x00dev
->hw
, HOST_BROADCAST_PS_BUFFERING
);
1571 ieee80211_hw_set(rt2x00dev
->hw
, SIGNAL_DBM
);
1573 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
1574 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
1575 rt2x00_eeprom_addr(rt2x00dev
,
1576 EEPROM_MAC_ADDR_0
));
1579 * Initialize hw_mode information.
1581 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
1582 spec
->supported_rates
= SUPPORT_RATE_CCK
;
1584 spec
->num_channels
= ARRAY_SIZE(rf_vals_b
);
1585 spec
->channels
= rf_vals_b
;
1588 * Create channel information array
1590 info
= kcalloc(spec
->num_channels
, sizeof(*info
), GFP_KERNEL
);
1594 spec
->channels_info
= info
;
1596 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_START
);
1597 for (i
= 0; i
< 14; i
++) {
1598 info
[i
].max_power
= TXPOWER_FROM_DEV(MAX_TXPOWER
);
1599 info
[i
].default_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
1605 static int rt2400pci_probe_hw(struct rt2x00_dev
*rt2x00dev
)
1611 * Allocate eeprom data.
1613 retval
= rt2400pci_validate_eeprom(rt2x00dev
);
1617 retval
= rt2400pci_init_eeprom(rt2x00dev
);
1622 * Enable rfkill polling by setting GPIO direction of the
1623 * rfkill switch GPIO pin correctly.
1625 reg
= rt2x00mmio_register_read(rt2x00dev
, GPIOCSR
);
1626 rt2x00_set_field32(®
, GPIOCSR_DIR0
, 1);
1627 rt2x00mmio_register_write(rt2x00dev
, GPIOCSR
, reg
);
1630 * Initialize hw specifications.
1632 retval
= rt2400pci_probe_hw_mode(rt2x00dev
);
1637 * This device requires the atim queue and DMA-mapped skbs.
1639 __set_bit(REQUIRE_ATIM_QUEUE
, &rt2x00dev
->cap_flags
);
1640 __set_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
);
1641 __set_bit(REQUIRE_SW_SEQNO
, &rt2x00dev
->cap_flags
);
1644 * Set the rssi offset.
1646 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
1652 * IEEE80211 stack callback functions.
1654 static int rt2400pci_conf_tx(struct ieee80211_hw
*hw
,
1655 struct ieee80211_vif
*vif
, u16 queue
,
1656 const struct ieee80211_tx_queue_params
*params
)
1658 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1661 * We don't support variating cw_min and cw_max variables
1662 * per queue. So by default we only configure the TX queue,
1663 * and ignore all other configurations.
1668 if (rt2x00mac_conf_tx(hw
, vif
, queue
, params
))
1672 * Write configuration to register.
1674 rt2400pci_config_cw(rt2x00dev
,
1675 rt2x00dev
->tx
->cw_min
, rt2x00dev
->tx
->cw_max
);
1680 static u64
rt2400pci_get_tsf(struct ieee80211_hw
*hw
,
1681 struct ieee80211_vif
*vif
)
1683 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1687 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR17
);
1688 tsf
= (u64
) rt2x00_get_field32(reg
, CSR17_HIGH_TSFTIMER
) << 32;
1689 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR16
);
1690 tsf
|= rt2x00_get_field32(reg
, CSR16_LOW_TSFTIMER
);
1695 static int rt2400pci_tx_last_beacon(struct ieee80211_hw
*hw
)
1697 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1700 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR15
);
1701 return rt2x00_get_field32(reg
, CSR15_BEACON_SENT
);
1704 static const struct ieee80211_ops rt2400pci_mac80211_ops
= {
1706 .start
= rt2x00mac_start
,
1707 .stop
= rt2x00mac_stop
,
1708 .add_interface
= rt2x00mac_add_interface
,
1709 .remove_interface
= rt2x00mac_remove_interface
,
1710 .config
= rt2x00mac_config
,
1711 .configure_filter
= rt2x00mac_configure_filter
,
1712 .sw_scan_start
= rt2x00mac_sw_scan_start
,
1713 .sw_scan_complete
= rt2x00mac_sw_scan_complete
,
1714 .get_stats
= rt2x00mac_get_stats
,
1715 .bss_info_changed
= rt2x00mac_bss_info_changed
,
1716 .conf_tx
= rt2400pci_conf_tx
,
1717 .get_tsf
= rt2400pci_get_tsf
,
1718 .tx_last_beacon
= rt2400pci_tx_last_beacon
,
1719 .rfkill_poll
= rt2x00mac_rfkill_poll
,
1720 .flush
= rt2x00mac_flush
,
1721 .set_antenna
= rt2x00mac_set_antenna
,
1722 .get_antenna
= rt2x00mac_get_antenna
,
1723 .get_ringparam
= rt2x00mac_get_ringparam
,
1724 .tx_frames_pending
= rt2x00mac_tx_frames_pending
,
1727 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops
= {
1728 .irq_handler
= rt2400pci_interrupt
,
1729 .txstatus_tasklet
= rt2400pci_txstatus_tasklet
,
1730 .tbtt_tasklet
= rt2400pci_tbtt_tasklet
,
1731 .rxdone_tasklet
= rt2400pci_rxdone_tasklet
,
1732 .probe_hw
= rt2400pci_probe_hw
,
1733 .initialize
= rt2x00mmio_initialize
,
1734 .uninitialize
= rt2x00mmio_uninitialize
,
1735 .get_entry_state
= rt2400pci_get_entry_state
,
1736 .clear_entry
= rt2400pci_clear_entry
,
1737 .set_device_state
= rt2400pci_set_device_state
,
1738 .rfkill_poll
= rt2400pci_rfkill_poll
,
1739 .link_stats
= rt2400pci_link_stats
,
1740 .reset_tuner
= rt2400pci_reset_tuner
,
1741 .link_tuner
= rt2400pci_link_tuner
,
1742 .start_queue
= rt2400pci_start_queue
,
1743 .kick_queue
= rt2400pci_kick_queue
,
1744 .stop_queue
= rt2400pci_stop_queue
,
1745 .flush_queue
= rt2x00mmio_flush_queue
,
1746 .write_tx_desc
= rt2400pci_write_tx_desc
,
1747 .write_beacon
= rt2400pci_write_beacon
,
1748 .fill_rxdone
= rt2400pci_fill_rxdone
,
1749 .config_filter
= rt2400pci_config_filter
,
1750 .config_intf
= rt2400pci_config_intf
,
1751 .config_erp
= rt2400pci_config_erp
,
1752 .config_ant
= rt2400pci_config_ant
,
1753 .config
= rt2400pci_config
,
1756 static void rt2400pci_queue_init(struct data_queue
*queue
)
1758 switch (queue
->qid
) {
1761 queue
->data_size
= DATA_FRAME_SIZE
;
1762 queue
->desc_size
= RXD_DESC_SIZE
;
1763 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
1771 queue
->data_size
= DATA_FRAME_SIZE
;
1772 queue
->desc_size
= TXD_DESC_SIZE
;
1773 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
1778 queue
->data_size
= MGMT_FRAME_SIZE
;
1779 queue
->desc_size
= TXD_DESC_SIZE
;
1780 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
1785 queue
->data_size
= DATA_FRAME_SIZE
;
1786 queue
->desc_size
= TXD_DESC_SIZE
;
1787 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
1796 static const struct rt2x00_ops rt2400pci_ops
= {
1797 .name
= KBUILD_MODNAME
,
1799 .eeprom_size
= EEPROM_SIZE
,
1801 .tx_queues
= NUM_TX_QUEUES
,
1802 .queue_init
= rt2400pci_queue_init
,
1803 .lib
= &rt2400pci_rt2x00_ops
,
1804 .hw
= &rt2400pci_mac80211_ops
,
1805 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1806 .debugfs
= &rt2400pci_rt2x00debug
,
1807 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1811 * RT2400pci module information.
1813 static const struct pci_device_id rt2400pci_device_table
[] = {
1814 { PCI_DEVICE(0x1814, 0x0101) },
1819 MODULE_AUTHOR(DRV_PROJECT
);
1820 MODULE_VERSION(DRV_VERSION
);
1821 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1822 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1823 MODULE_DEVICE_TABLE(pci
, rt2400pci_device_table
);
1824 MODULE_LICENSE("GPL");
1826 static int rt2400pci_probe(struct pci_dev
*pci_dev
,
1827 const struct pci_device_id
*id
)
1829 return rt2x00pci_probe(pci_dev
, &rt2400pci_ops
);
1832 static struct pci_driver rt2400pci_driver
= {
1833 .name
= KBUILD_MODNAME
,
1834 .id_table
= rt2400pci_device_table
,
1835 .probe
= rt2400pci_probe
,
1836 .remove
= rt2x00pci_remove
,
1837 .suspend
= rt2x00pci_suspend
,
1838 .resume
= rt2x00pci_resume
,
1841 module_pci_driver(rt2400pci_driver
);